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a b s t r a c t

The particle-in-cell (PIC) method has been widely used for plasma simulation, because
of its noise-reduction capability and moderate computational cost. The immersed finite
element (IFE)method is efficient for solving interface problems onCartesianmeshes,which
is desirable for the PICmethod. The combination of these twomethods provides an effective
tool for plasma simulation with complex interface/boundary. This paper introduces an
improved IFE–PIC method that enhances the performance in both IFE and PIC aspects. For
the electric field solver, we adopt the newly developed partially penalized IFEmethodwith
enhanced accuracy. For PIC implementation, we introduce a new interpolation technique
to ensure the conservation of the charge. Numerical examples are provided to demonstrate
the features of the improved IFE–PIC method.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

There are two classes of methods for plasma simulation. The first one is the traditional dynamic simulation [1], which is
mainly used to obtain the distribution functions of particles by solving the Vlasov equation. The second one is the particle
simulationmethod [2–4],which is used to track a large number of individual particles and to obtain the trajectory parameters
and characteristics of plasma by statistical methods. Due to the enormous number of particles to be tracked and the limited
computational resources, the development of the particle simulationmethodwas quite slow. The particle simulationmethod
entered a rapid developing period [5–7] since Birdsall and Langdon [8] introduced the particle-in-cell (PIC) method which
utilizes the finite-sized particle (or cloud) instead of a huge number of real particles.

Immersed finite element (IFE) method is a finite element method for solving interface problems on uniform Cartesian
meshes, which was first proposed by Li et al. [9]. Different from classical finite element methods using body-fitted meshes,
the mesh of the IFE method is independent of the interface. However, the IFE basis functions around interfaces are modified
to accommodate the interface jump conditions. The advantage of the IFE method is that structured Cartesian meshes can
be used to solve interface problems with arbitrary interface geometry. For problems with a moving interface, IFE methods
are especially advantageous since there is no need to regenerate the solution meshes repeatedly [10–12]. The IFE methods
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have been developed for solving the second-order elliptic equations [13–17], elasticity equations [18–20], and Stokes
equations [21], to name only a few.

In the past decade, the IFE method has been used together with the PIC method for plasma simulations [22–25]. The
IFE method used as an electric field solver is performed on well-structured Cartesian meshes. This is particularly desirable
for the PIC method because tracking a large number of plasma particles can be efficiently done in a uniform structured
mesh. We refer to a few recent applications of the IFE–PIC method for different types of particle simulations, such as ion
thruster [26,27], hall thruster [28], and lunar surface environment [29,30]. Also, the IFE–PIC method has been extended to
handle unbounded interface problems with asymptotic boundary condition [31] and periodic boundary condition [32].

For the current IFE–PICmethod, we noticed that there are two issues. First, the classical Galerkin IFEmethod is used as the
field solver. As shown in [33], the classical IFE method is not accurate around the interface, because the IFE basis functions
are discontinuous across the element boundaries, and the classical Galerkin formulation cannot control such discontinuity.
Second, the particle interpolationmethod of the PIC algorithm is imperfect. The conventional interpolation approach applied
on the interface element often leads to the non conservation of charge, because it neglects the fact that some nodes of the
interface cells are inside the conductors. Similar problems occur in applying the electric field force to the particles on the
interface elements.

In this paper, we introduce an improved IFE–PIC method that focuses on overcoming the problems mentioned above.
As a remedy of discontinuity of IFE field solver, we adopt the newly developed partially penalized immersed finite element
(PPIFE) method [33] to improve the accuracy of IFE methods near interfaces. For PIC interpolation, we introduce a two-step
approach for particle interpolation that preserves the charge conservation. Comparingwith conventional charge distribution
in PIC, we add a correction step that redistributes the quantity distributed to the nodes inside the conductor to the remaining
nodes in order tomaintain charge conservation. In addition, we use IFE basis functions to calculate the electric field and force
on the interface elements. The new approach can calculate the motion of particles more accurately.

The rest of the article is organized as follows. In Section 2, we recall the classical IFE method and the PIC interpolation.
In Section 3, we present our improved IFE–PIC method. The improvement in the IFE solver part is the PPIFE method with
additional penalty terms. The improvement in the PIC part includes the new particle interpolation scheme and the new
method for the force deposit. In Section4,wepresent somenumerical experiments to compare theperformance of traditional
IFE–PIC method and improved IFE–PIC method. Brief conclusions will be given in Section 5.

2. Review of IFE–PIC method

In this section, we first recall the main steps in a typical IFE–PIC computational cycle. Then we will recall the classical IFE
method and PIC interpolation that are widely used in the literature.

2.1. Main steps of IFE–PIC method

Real plasma particles are modeled as manymacro-particles in the PICmethod, and they follow the evolution of the orbits
of individual particles in the self-consistent electromagnetic field. The field is then updated by solving the governing elliptic
equation with discontinuous dielectric coefficients. The IFE–PIC method is an iteration of solving for the electromagnetic
field and particle motion until the steady state is achieved.

In general, an IFE–PIC computational cycle consists of the following five steps:

Step 1. Initialization A series of initial settings of the simulation including domain, mesh, boundary condition, and initial
position and velocity of particles are set up.

Step 2. Particle push The motion of the particle is induced by the particles themselves and the external fields E . The
trajectory of an individual charged particle is obtained by integrating the Newton–Lorentz equation

m
dv
dt

= q(E + v × B), (1)

where m, q and v are the mass, the charge, and the velocity of the particle, respectively. B denotes the static magnetic
field.

Step 3. Charge deposit The change of the positions of particles leads to the change of the charge density ρ on each node.
Thus, we need to calculate the charge density at each node according to the new positions of particles. The process of
interpolating the particle charges on the discrete mesh points is called weighting. In traditional PIC method, we use the
ratio of the area of the rectangle formedby the opposite cell vertex and the particle to the area of element as theweighting.

Step 4. Solving for potential After obtaining the charge density ρ on each node, the electric field should also be updated.
The potential function Φ(x) can be described by the second-order Poisson’s equation with discontinuous dielectric
coefficient β(x), which represents different types of material:

− ∇ · (β∇Φ) = ρ(x). (2)

To solve this equation, we use the IFE method as a field solver, because of its applicability of Cartesian mesh, which is
desirable in the PIC simulation for fast tracking of particles’ locations.
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Fig. 1. A sketch of the domain for the interface problem.

Step 5. Force deposit After solving for the potential Φ(x), we calculate the electric field E at each node by

E(x) = −∇Φ(x). (3)

Next, we need to deposit the electric field at nodes to the particles with arbitrary positions. The electric field of each node
can be obtained using two-point difference method from the potential Φ(x) on each element node. The electric field of
each particle can be obtained by interpolating.

We note that, in step 3, when the particle is located in an interface element, the current interpolation using the simple
area-weighting will result in the non-conservation of charge. Also, in step 4, the classical IFE method may not be as accurate
around interface as the rest of the domain due to the discontinuity of IFE basis functions. Finally, in step 5, the force deposit
is not accurate in the interface element due to part of the element is the conductor. In this paper, our improvement of the
IFE–PIC method will mainly focus on these three steps.

2.2. Classical IFE method for interface problems

The electric field Φ(x) is assumed to be governed by the following second-order elliptic equation:

− ∇ · (β∇Φ) = f , in Ω, (4)

Φ = g, on ∂Ω. (5)

Here, we assume that Ω ⊂ R2 is a rectangular domain separated by an interface curve Γ into two sub-domains Ω−, Ω+

such that Ω = Ω+ ∪ Ω− ∪ Γ . See Fig. 1 as an illustration.
The coefficient β(x) is discontinuous across the interface.Without loss of generality, we assume β is a piecewise constant

function as follows:

β(x) =

{
β−, x ∈ Ω−,

β+, x ∈ Ω+,
(6)

where x = [x, y]t . Across the interface Γ , the following interface jump conditions are satisfied:

[[Φ]]Γ = 0, (7)[[
β

∂Φ

∂n

]]
Γ

= 0. (8)

Let Th = {T } be a uniform triangular or rectangular mesh of the domain Ω with size h. If an element T is cut through
by the interface, it is called an interface element; otherwise, it is said to be a noninterface element. The sets of interface
elements and noninterface elements are denoted by T i

h and T n
h , respectively. Standard linear or bilinear finite element

functions are used on all noninterface elements. Special piecewise-polynomial basis functions are constructed on interface
element to accommodate the interface conditions. To be more precise, we use the linear IFE method as an example. Assume
that T = △A1A2A3 is an interface triangle, and the interface curve Γ intersects T at two points, denoted by D and E. The
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Fig. 2. An interface triangle.

element T is divided into two sub-elements T+ and T− by the line segment DE. See Fig. 2 as an illustration. The local IFE
basis functions φi,T , i = 1, 2, 3 on T are defined as follows:

φi,T (x) =

{
φ+

i,T (x) = a+

i x + b+

i y + c+

i , x ∈ T+,

φ−

i,T (x) = a−

i x + b−

i y + c−

i , x ∈ T−,
∀ i = 1, 2, 3. (9)

They satisfy the following conditions:

1. Nodal-value conditions

φi,T (Aj) = δij =

{
1, if i = j,
0, if i ̸= j, ∀ i, j = 1, 2, 3. (10)

2. Function-value continuity

φ+

i,T (D) = φ−

i,T (D), φ+

i,T (E) = φ−

i,T (E), ∀ i = 1, 2, 3. (11)

3. Flux continuity

β+
∂φ+

i,T

∂n
= β−

∂φ−

i,T

∂n
, ∀ i = 1, 2, 3, (12)

where n is the normal vector of DE.

The local linear IFE space is defined as

P̃1(T ) = span{φ1,T , φ2,T , φ3,T }. (13)

Denote the set of interior nodes on Th by Nh. On each node xi, i = 1, 2, . . . ,N , we define the global linear IFE basis function
Φi such that

Φi(xj) = δij, ∀ i, j = 1, 2, . . . ,N, (14)

and

Φi|T ∈ P̃1(T ), ∀ T ∈ T i
h , and Φi|T ∈ P1(T ) = span{1, x, y}, ∀ T ∈ T n

h . (15)

The global linear IFE space is formed as Sh = span{Φi : i = 1, 2, . . . ,N}.
The classical (Galerkin) IFE method is to find uh ∈ Sh such that

a(uh, vh) = (f , vh), ∀ vh ∈ Sh, (16)

where

a(u, v) =

∑
T∈Th

∫
T
β∇u · ∇vdx, (f , v) =

∫
Ω

f vdx. (17)

The construction of the bilinear IFE spaces on rectangular meshes are similar, and we refer to [13,14,20] for more details.
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(a) Non interface element. (b) Interface element.

Fig. 3. Standard PIC deposition scheme of particle charge in a 2D simulation domain.

2.3. Particle interpolation in traditional PIC method

In the PIC method, particle interpolation is required at Step 3 and Step 5 described in Section 2.1. First, in charge deposit
in Step 3, as shown in Fig. 3(a), the portion of the total particle charge assigned to a certain cell vertex is proportional to the
area of the rectangle formed by the opposite cell vertex and the particle. Thus, the interpolation of the particle P , located at
position XP , to the node Xi,j can be calculated by

qi,j = qP
S(Xi+1,j+1, XP )
S(Xi,j, Xi+1,j+1)

, (18)

where qi,j is the amount of charge of node (i, j), qP is the amount of charge of particle P , and S(A, B) is the area of the rectangle
whose diagonal is AB.

On non-interface elements, the interpolation (18)workswell. However, on interface elements, it will face some difficulty,
as shown in Fig. 3(b), the charge should not be assigned to the node Xi+1,j, which is inside the conducting object. Directly
applying (18) on interface elements will cause the non-conservation for the total charge and charge density.

Moreover, in Step 5 the electric field is required to be interpolated at the particles’ positions, so that the electric field force
can be obtained. The potentialΦ at grid points are solved by the IFEmethodwith the appropriate boundary conditions. Then,
the electric field E = [Ex, Ey]t can be obtained from the potential Φ using the following equation:

E(x, y) = −∇Φ(x, y). (19)

The conventional approach for this interpolation uses the finite difference form for Ex and Ey:

(Ex)i,j =
Φi−1,j − Φi+1,j

2∆x
, (Ey)i,j =

Φi,j−1 − Φi,j+1

2∆y
, (20)

where∆x and∆y aremesh sizes in the x- and y-directions, respectively. After the electric field is obtained, the forces caused
by the field at mesh nodes can be deposited to the arbitrary particles positions.

When a particle is located in the interface element, the calculation (20) is apparently inaccurate, because the electric field
of the four points that belong to different objects are discontinuous.

3. Improved IFE–PIC method

In this section,wepresent an improved IFE–PICmethod. The improvement involves both the IFE solver and the PIC particle
interpolation.

3.1. Partially penalized IFE method

Due to the discontinuity of IFE basis functions, classical IFE method using Galerkin formulationmay generate large errors
around the interface. Partially penalized immersed finite element (PPIFE) method is introduced in [33] that is known to
greatly improve the accuracy of IFE solution around interface. The main idea of this method is to add penalty terms on
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interface edges to reduce the negative impact of the discontinuity introduced by IFE functions. In our improved IFE–PIC
method, we adopt this new PPIFE scheme as the new field solver.

To present the PPIFE method, we need to introduce a few notations. Let Eh be the set of all interior edges of the mesh Th.
If an edge e ∈ Eh intersects with the interface curve Γ , we call it an interface edge; otherwise, a noninterface edge. The sets
of interface edges and noninterface edges are denoted by E i

h and En
h , respectively. For each interior edge e ∈ Eh, it must be

shared by two adjacent elements, denoted by Te,1 and Te,2. For a function u defined on Te,1 ∪ Te,2, the average and jump of u
on e are defined as follows:

{{u}}e =
1
2

(
(u|Te,1 )e + (u|Te,2 )e

)
, [[u]]e = (u|Te,1 )e − (u|Te,2 )e. (21)

The PPIFE method for solving (4)–(8) is to find uh ∈ Sh such that

aϵ(uh, vh) = (f , vh), ∀vh ∈ Sh, (22)

where

aϵ(u, v) =

∑
T∈Th

∫
T
β∇u · ∇vdx −

∑
e∈Eh

∫
e
{{β∇u · n}} [[v]] ds + ϵ

∑
e∈Eh

∫
e
{{β∇v · n}} [[u]] ds +

∑
e∈Eh

∫
e

σe

|e|
[[u]] [[v]] ds. (23)

Here, ϵ can be chosen as −1, 0, or 1, which corresponds to symmetric, incomplete, or non-symmetric PPIFE methods,
respectively. σe is a positive penalty parameter. As shown in [33], for non-symmetric PPIFE method, the scheme (22) is
stable as long as σe > 0 on every edge e. For symmetric and incomplete PPIFE methods, (22) is stable when σe is large
enough.

3.2. Charge-conservative particle interpolation

As shown in Section 2, the particle interpolation technique (18) is not accurate for particles in the interface elements.
Also, the total charge is not conservative due to part of the nodes are inside the objects such as metal or ceramic materials.
In this subsection, we introduce a two-step interpolation that can maintain the charge conservation.

3.2.1. Improved algorithm for charge deposit
We note that if a particle is in a noninterface element, it is suitable to use the standard charge distribution (18) with area

weight method. If a particle P is in an interface element, we introduce a correction step to redistribute the charge assigned
to nodes inside the conductor to other nodes. This step ensures the conservation of the charge in the simulation domain. The
complete two-step interpolation is as follows.

Step 1: Initial distribution Interpolate the charge qP of the particle to four nodes of the element using the standard area-
weight approach:

q(1)i = wiqP , i = 1, 2, 3, 4, (24)

where

w1 =
A4

A
, w2 =

A3

A
, w3 =

A2

A
, w4 =

A1

A
.

Here Ai, i = 1, 2, 3, 4, are the areas of small rectangles, illustrated in Fig. 4.
Step 2: Re-distribution Correct the charge distribution to nodes inside the object.

• Case 1: There is only one node (e.g. node #2) in the object, as shown in Fig. 4(a). The charge initially distributed to
node #2 should be redistributed to the other three nodes. The correction procedure is the following:

q(2)1 = q(1)1 +
w1

w1 + w3 + w4
q(1)2 ,

q(2)2 = 0,

q(2)3 = q(1)3 +
w3

w1 + w3 + w4
q(1)2 ,

q(2)4 = q(1)4 +
w4

w1 + w3 + w4
q(1)2 .

• Case 2: If two nodes are inside the object, as shown in Fig. 4(b), then the correction procedure becomes

q(2)1 = q(1)1 +
w1

w1 + w3
(q(1)2 + q(1)4 ),

q(2)2 = 0,

q(2)3 = q(1)3 +
w3

w1 + w3
(q(1)2 + q(1)4 ),

q(2)4 = 0.
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(a) One node inside the object. (b) Two nodes inside the object. (c) Three nodes inside the object.

Fig. 4. New deposit algorithm of particle charge.

• Case 3: If three nodes are inside the object, as shown in Fig. 4(c), then

q(2)1 = q(1)1 + q(1)2 + q(1)3 + q(1)4 ,

q(2)2 = 0,

q(2)3 = 0,

q(2)4 = 0.

Wenote that if we use the traditional PIC charge interpolation (without correction) on interface elements, the total charge
of nodes is less than the charge of particle, that is∑

i∈Λ

q(1)i ̸= qP , (25)

where Λ denotes the indices of nodes outside the object. However, adding the correction, the interpolation satisfies∑
i∈Λ

q(2)i = qP . (26)

This clearly shows that the new interpolation scheme preserves the charge-conservation.
Moreover, this new interpolation scheme is robust regarding the location of the particle. That is, if the particle touches

the boundary of the interface element, the algorithm is still valid.

3.2.2. Improved algorithm for force deposit
The potential distribution at grid points is obtained by solving linear algebraic equations contained in the immersed finite

element method, and then for the electric potential at point (x, y) in an element T can be approximated using the following
equation:

ΦT (x, y) =

d∑
i=1

uiφi,T (x, y). (27)

Here, ui are the numerical solutions of the potential at the vertices of T , and φi,T are local IFE basis functions. The degree of
freedom d = 3 for the linear IFE method, and d = 4 for the bilinear IFE method.

Suppose the electrical field is in Ω+, and the conductor is in Ω−. Then the electric field E at a particle P(x, y) can be
obtained by

Ex(x, y) = −

(
u1

∂φ+

1 (x, y)
∂x

+ u2
∂φ+

2 (x, y)
∂x

+ · · · + ud
∂φ+

d (x, y)
∂x

)
,

Ey(x, y) = −

(
u1

∂φ+

1 (x, y)
∂y

+ u2
∂φ+

2 (x, y)
∂y

+ · · · + ud
∂φ+

d (x, y)
∂y

)
.

(28)

For points located in T−, the electric field can be calculated in the same way. This method is more accurate than linear
interpolation when the internal and external potential of objects are discontinuous. With the new PPIFE field solver, and
the improved PIC interpolation technique on particles and force, the workflow of our improved IFE–PIC algorithm can be
summarized in Fig. 5.
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Fig. 5. Flow chart of the improved IFE-PIC method.

4. Numerical examples

In this section, we present some numerical examples to demonstrate the features of the improved IFE–PIC method.
We set up a test problem of conducting cylinder with background plasma particles. Let the two-dimensional simulation

domain be Ωs = [−1, 1] × [−1, 1]. The center and the radius of the cylinder are set to be O = [0, 0] and r0 = π/12,
respectively, as shown in Fig. 6. For plasma particles, we load 1 635 841 (= 12792) uniformly distributed particles Pi,j into
the simulation domain and the positions of particles are given by

Pi,j =

[
−1 +

i
1280

, −1 +
j

1280

]
, i, j = 1, 2, . . . , 1279. (29)

Assume that the loaded particles are electrons, and the charge density on the mesh point is ρ = −4, so we can get the
charge of each particle. Then we remove all the particles inside the cylinder. We choose appropriate Dirichlet boundary
conditions and source function so that the analytical solution of this simulation problem is

Φ(x, y) =

⎧⎪⎨⎪⎩
Φ−(x, y) =

1
β−

r2 +

(
1

β+
−

1
β−

)
r20 , if r ≤ r0,

Φ+(x, y) =
1

β+
r2, if r > r0

(30)

where r =

√
x2 + y2, and [β−, β+

] = [1, 10]. The analytical solution (30) of the potential in the simulation domain is shown
in Fig. 6.
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Fig. 6. Simulation domain Ωs (left) and the analytical solution (right).

Fig. 7. Density distribution using standard PIC interpolation.

4.1. Comparison of PIC interpolations

We first compare the performance of traditional PIC charge interpolation with the new interpolationmethod. The charge
densities on mesh points can be obtained by depositing the physical quantities (charge of electrons) from the particle
locations ontomesh nodes. Fig. 7 shows the charge density distributionwith standard charge deposit algorithmon a 20 × 20
Cartesian mesh. It can be shown that all the charge of interface element is less than the prescribed value ρ = −4, because
the charge of particles are deposited to several mesh points inside the object.

Using the improved PIC algorithm introduced in Section 3.2, the charge density distribution in simulation domain Ωs is
shown in Fig. 8. On the right side of Fig. 8, we show a zoom-in plot around interface. It can be shown that the charge on
the nodes of interface elements are not unanimously less than −4. On some nodes (e.g. [−0.3, 0.1], and [−0.3, 0.2]), the
change quantities are actually greater than −4. This is because of the redistribution step we added, so that the charge of
particles will not be deposited to anymesh points inside the conductor. Moreover, this new interpolation algorithm ensures
the conservation of the charge in the calculation domain.

4.2. Comparison of IFE–PIC performance

Next, we combine the new PIC algorithm with the new electrical field solver, the PPIFE scheme. We compare the
performance of traditional and improved IFE–PIC schemes. In Figs. 9 and 10, we plot the numerical errors of electrical field
by traditional and improved IFE–PIC methods, respectively. It can be easily observed that the new IFE–PIC method has much
smaller error than the traditional IFE–PIC method especially around the interface.
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Fig. 8. Density distribution using improved PIC interpolation.

Fig. 9. Error of traditional IFE-PIC solution on a Cartesian mesh of Ωs .

Fig. 10. Error of improved IFE-PIC solution on a Cartesian mesh of Ωs .

4.3. Sensitivity of the number of particles

In this test, we focus on the sensitivity of our IFE–PIC method to the number of particles. Note that on non-interface
elements, regardless of the number of particles within each element, the final charge of interpolation to nodes are same,
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Fig. 11. Effect of different particle numbers on charge distribution in interface element.

Table 1
Comparison of the error of charge distribution.

N Standard PIC Improved PIC

ρ Eρ ρ Eρ

1 −2.600000 35.00% −4.083332 2.08%
4 −3.250000 18.75% −4.145832 3.65%

16 −3.240625 18.98% −4.286457 7.16%
64 −3.481812 12.95% −4.238281 5.96%

256 −3.479996 13.00% −4.236654 5.92%
1024 −3.482821 12.93% −4.240478 6.01%

Table 2
Comparison of the L2 norm error of electric potential.

N IFE-PIC Improved IFE-PIC

1 1.868830 × 10−3 5.160630 × 10−4

4 1.190797 × 10−3 4.851096 × 10−4

16 1.208151 × 10−3 6.142589 × 10−4

64 1.281327 × 10−3 5.380597 × 10−4

256 1.284765 × 10−3 5.359054 × 10−4

1024 1.280203 × 10−3 5.403805 × 10−4

i.e., ρ = −4. However, on interface elements, the element is split into two parts. The particles located in the conductor will
not contribute to the charge distribution, as a result, the number of particles in an interface element should have greater
influence on the charge distribution results.

Fig. 11 demonstrate an interface element with 1, or 16, or 256 equally distributed particles, respectively. As shown in
Fig. 11, if the number of particles is small, the charge distribution will rely more on the random fall of individual particles.
On the other hand, if the number of particles is large, the effect of a single particle could be neglected. This is consistent with
the actual situation.

Next, we compute the average density for different number of particles with traditional and improved PIC interpolations.
We use N to denote the number of particles in each interface element. Let xi, i = 1, . . . ,NI be the nodes that belong to at
least one interface element. The mean value of density at the interface nodes is computed as follows:

ρ =
1
NI

NI∑
i=1

ρh(xi), (31)

where the ρh(xi) is the interpolated charging density at the point xi. The percentage error of the density is defined by

Eρ =
|ρ − ρ|

|ρ|
. (32)

The L2 norm error of the potential function is defined by

Eu = ∥u − uh∥ =

(∫
Ω

|u − uh|
2dx

) 1
2

. (33)

Tables 1 and 2 report the error of charging density and error of electric potential using the two IFE–PIC methods. These
tests are conducted on a uniform 40 × 40 Cartesian mesh. Table 1 clearly indicates that as we increase the number
of particles that belong to each element, the traditional PIC interpolation becomes more accurate, this indicates that the



1898 J. Bai et al. / Computers and Mathematics with Applications 75 (2018) 1887–1899

Table 3
The L2 norm errors of electric potential for different mesh.

Mesh Traditional IFE-PIC Improved IFE-PIC

10 × 10 1.112170 × 10−2 8.131783 × 10−3

20 × 20 3.953483 × 10−3 2.520218 × 10−3

40 × 40 1.280203 × 10−3 5.403805 × 10−4

80 × 80 5.275457 × 10−4 1.784664 × 10−4

160 × 160 3.553394 × 10−4 1.313621 × 10−4

320 × 320 1.372616 × 10−4 1.103237 × 10−5

Rate 1.240231 1.771787

traditional approach is very sensitive to the number of particles. On the other hand, the new interpolation technique is
much more accurate than the traditional approach, and are more robust with respect to the number of particles. Table 2
shows that the improved IFE–PIC scheme is about three times more accurate than the classical scheme in the L2 norm of the
electric potential.

Remark 4.1. Based on our current numerical experiments, simply improving only one part of IFE solver or PIC interpolation
is less significant, and the behavior on accuracy varies in different choices of interface geometry, conductivity coefficient,
and the number of particles.

4.4. Convergence of potential on a sequence of meshes

In this example, we test convergence of potential on a family of uniform meshes with the same number of particles in
each element. We consider that the number of particles is the same as in Section 4.1. Table 3 reports the L2 norm error of the
potential. From the comparison, we can see that our improved IFE–PIC scheme is much more accurate on every mesh level
than the widely used scheme.

5. Conclusions

In this paper, we proposed a new IFE–PIC method for plasma simulation. The new method has improvement in both IFE
solver and PIC interpolation. One prominent feature is that our new PIC interpolation has the charge-conservation property.
Moreover, the improved IFE solverwith partially penalty terms producesmore accurate approximation around the interface.
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