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Abstract In this article, we study superconvergence properties of immersed finite
element methods for the one dimensional elliptic interface problem. Due to low
global regularity of the solution, classical superconvergence phenomenon for finite
element methods disappears unless the discontinuity of the coefficient is resolved by
partition. We show that immersed finite element solutions inherit all desired super-
convergence properties from standard finite element methods without requiring the
mesh to be aligned with the interface. In particular, on interface elements, super-
convergence occurs at roots of generalized orthogonal polynomials that satisfy both
orthogonality and interface jump conditions.
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1 Introduction

Immersed finite element (IFE) methods are a class of finite element methods (FEM)
for solving differential equations with discontinuous coefficients, often known as
interface problems. Unlike the classical FEM whose mesh is required to be aligned
with the interface, IFE methods do not have such restriction. Consequently, IFE
methods can use more structured, or even uniform meshes to solve interface problem
regardless of interface location. This flexibility is advantageous for problems with
complicated interfacial geometry [37] or for dynamic simulation involving a moving
interface [22, 28, 29].

The main idea of IFE methods is to adapt approximating functions instead of
meshes to fit the interface. On elements containing (part of) the interface, which we
call interface elements, universal polynomials cannot approximate the solution accu-
rately because of the low regularity of solution at the interface. A simple remedy is
to construct piecewise polynomials as basis functions on interface elements in order
to mimic the exact solution. The first IFE method was developed by Li [25] for solv-
ing the one-dimensional two-point boundary value problem. Piecewise linear shape
functions were constructed on interface elements to incorporate the interface jump
conditions. Following this idea, a family of quadratic IFE functions were introduced
in [9]. Later in [1, 2], Adjerid and Lin extended the IFE approximation to arbi-
trary polynomial degree, and proved the optimal error estimates in the energy and
the L2-norms. In the past decade, IFE methods have also been extensively studied
for a variety of interface problems in two dimension [19, 26, 27, 31–33] and three
dimension [23, 37].

There have been many studies in the mathematical theories for IFE methods, for
example [2, 17, 21, 25, 30]. Most of theoretical analysis focuses on error estimation in
Sobolev H 1- and L2- norms, but very few literature are concerned with the pointwise
convergence. To the best of our knowledge, there is no systematic study on supercon-
vergence phenomenon of IFE methods. Superconvergence theory for classical finite
element methods [4, 18, 38] are invalid for IFE methods, unless the discontinuity of
coefficient is resolved by the solution mesh.

Superconvergence phenomena of FEM were discussed as early as 1967 by
Zienkiewicz and Cheung [45]. Later, Douglas and Dupont in [18] proved that the
p-th order C0 finite element method to the two-point boundary value problem con-
verges with rate O(h2p) at nodal points. Since then the superconvergence behavior of
FEM has been studied intensively. We refer to [5, 6, 15, 24, 34, 36, 38] for an incom-
plete list of references. In the mean time, there also has been considerable interest in
studying superconvergence for other numerical methods, for example, spectral and
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spectral collocation methods [42–44], finite volume methods [8, 12, 14, 16, 40], dis-
continuous Galerkin and local discontinuous Galerkin methods [3, 10, 11, 13, 20, 39,
41].

In this article, we focus on the conforming p-th degree IFE methods for the
prototypical one-dimensional elliptic interface problem. There are two major contri-
butions in this article. First, we present a novel approach for developing IFE basis
functions. The idea is completely different from classical approaches [1, 2], and the
construction is based on the theory of orthogonal polynomials. Our new IFE bases
accommodate interface jump conditions, and they satisfy certain orthogonality condi-
tions which will be specified later. These basis functions can be explicitly constructed
without solving linear systems. In an interface element, these IFE bases are either
polynomials or piecewise polynomials, hence we call them generalized orthogonal
polynomials.

Next, we analyze superconvergence properties of IFE methods. We will show that
superconvergence phenomena occur at the roots of generalized orthogonal polyno-
mials. To be more specific, the convergence rate of p-th degree IFE solutions is
O(hp+2) at nodal points. The accuracy at nodes can be improved to exact if the
elliptic operator has only the diffusion term. The IFE solution converge to the exact
solution with rate O(hp+2) at the roots of generalized Lobatto polynomials, and the
convergence rate of derivatives is escalated to O(hp+1) at the roots of generalized
Legendre polynomials. All the results can be viewed as an extension from the classic
result for FEM [18].

The rest of the paper is organized as follows. In Section 2, we recall the IFE
methods for interface problems and introduce some notations. In Section 3, we intro-
duce the generalized orthogonal polynomials, based on which we present an explicit
approach to construct IFE basis functions. In Section 4, we study the superconver-
gence properties of IFE methods for interface problems. In Section 5, we report some
numerical results. A few concluding remarks are presented in Section 6.

2 Immersed finite element methods

Let � = (a, b) be an open interval. Assume that α ∈ � is an interface point such
that �− = (a, α) and �+ = (α, b). Consider the following one-dimensional elliptic
interface problem

− (βu′)′ + γ u′ + cu = f, x ∈ �− ∪ �+, (2.1)

u(a) = u(b) = 0. (2.2)

The diffusion coefficient β is assumed to have a finite jump across the interface α.
Without loss of generality, we assume that β is a piecewise constant defined by

β(x) =
{

β−, if x ∈ �−,

β+, if x ∈ �+,
(2.3)
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where min{β+, β−} > 0. The coefficients γ and c are assumed to be constants. At
the interface α, the solution is assumed to satisfy the interface jump conditions

[[u(α)]] = 0,
[[
βu′(α)

]] = 0, (2.4)

where [[v(α)]] := v(α+) − v(α−). Denote the ratio of coefficient jump by ρ = βmax
βmin

where βmax = max{β+, β−}, βmin = min{β+, β−}.

Throughout this article, we use standard notation of Sobolev spaces. We will also
need to develop a few new spaces that characterize the interface problems. We define
for m ≥ 1 and q ≥ 1 the Sobolev space

W̃
m,q
β (�) =

{
v ∈ C(�) : v|�± ∈ Wm,q(�±), v|∂� = 0,[[

βv(j)(α)
]]

= 0, j = 1, 2, · · · , m
}
, (2.5)

equipped the norm and semi-norm

‖v‖q
m,q,� = ‖v‖q

m,q,�− + ‖v‖q

m,q,�+ , |v|qm,q,� = |v|q
m,q,�− + |v|q

m,q,�+,

for q < ∞, and

‖v‖m,∞,� =max{‖v‖m,∞,�− ,‖v‖m,∞,�+}, |v|m,∞,� =max{|v|m,∞,�−, |v|m,∞,�+}.
On a subset � ⊂ � that contains the interface point α, we define

‖v‖q
m,q,� = ‖v‖q

m,q,�− + ‖v‖q

m,q,�+ , |v|qm,q,� = |v|q
m,q,�− + |v|q

m,q,�+,

where �± = � ∩ �±. If � = �, we usually write ‖ · ‖m,q instead of ‖ · ‖m,q,� for
simplicity. In addition, if q = 2, we simply write ‖ · ‖m instead of ‖ · ‖m,q .

Next, we recall the main idea of the immersed finite element methods (IFEM) for
interface problem (2.1)–(2.4). Consider the following interface-independent partition
of �:

a = x0 < x1 < · · · < xk−1 ≤ α ≤ xk < · · · < xN = b. (2.6)

Based on the partition (2.6), we define a mesh Th = {τi}Ni=1, where τi = (xi−1, xi).
Denoted by hi = xi − xi−1 the size of the element τi , and by h = max{hi, i =
1, · · · , N} the mesh size of Th. Note that the interface α is located in the element
τk , which we call the interface element. The rest of elements τi , i �= k are called
noninterface elements. If the interface α coincides with the mesh point xk−1 or xk ,
then the partition (2.6) becomes interface-fitted; hence there is no difference between
the IFEM and standard FEM.

Standard polynomials are used as basis functions on all noninterface elements.
To be more specific, we use the standard Lobatto polynomials as bases. The p-th
degree FE space on the noninterface element τi is the standard polynomial space of
degree p, denoted by Pp(τi). On the interface element τk , we construct new IFE basis
functions using the generalized Lobatto polynomials (will be defined in (3.6)–(3.8)).
The corresponding p-th degree IFE space on τk denoted by P̃p(τk) shall be defined
in (3.15).
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We define the p-th degree global IFE space on the mesh Th by

Sp(Th) = {v ∈ H 1
0 (�) : v|τi

∈ Pp(τi),∀i �= k; v|τk
∈ P̃p(τk)}.

The IFEM for (2.1)–(2.4) is to find uh ∈ Sp(Th) such that

(βu′
h, v

′
h) + (γ u′

h, vh) + (cuh, vh) = (f, vh), ∀vh ∈ Sp(Th),

where (·, ·) is the standard L2 inner product on (a, b).

3 Generalized orthogonal polynomials

In this section, we recall standard Legendre and Lobatto polynomials, and use them
as basis functions on noninterface elements. Next, we construct the generalized
orthogonal polynomials to be used as basis functions on interface elements.

3.1 Standard orthogonal polynomials

As usual, we construct basis functions on the reference interval τ = [−1, 1], then
map them to each physical element τi by some appropriate affine mapping. Let Pn(ξ)

be the Legendre polynomial of degree n on τ defined by

Pn(ξ) = 1

2nn!
dn

dξn

[
(ξ2 − 1)n

]
.

Legendre polynomials satisfy the following orthogonality∫ 1

−1
Pm(ξ)Pn(ξ)dξ = 2

2n + 1
δmn. (3.1)

Define {ψn} to be the family of Lobatto polynomials on τ = [−1, 1],

ψ0(ξ) = 1 − ξ

2
, ψ1(ξ) = 1 + ξ

2
, ψn(ξ) =

∫ ξ

−1
Pn−1(t)dt, n ≥ 2. (3.2)

3.2 Generalized orthogonal polynomials

On the interface element τk containing α, we construct a sequence of polynomials
satisfying both orthogonality and interface jump conditions. Again, we map τk to
the reference interval τ = [−1, 1] containing the reference interface point α̂. Let
β̂(ξ) = β(x) such that β̂(ξ) = β− on τ− = (−1, α̂) and β̂(ξ) = β+ on τ+ = (α̂, 1).

Define a sequence of orthogonal polynomials {Ln} with the weight function
w(ξ) = 1

β̂(ξ)
, i.e.,

(Ln, Lm)w :=
∫ 1

−1
w(ξ)Ln(ξ)Lm(ξ)dξ = cnδmn, (3.3)

where cn = ‖Ln‖2
w = (Ln, Ln)w. If we require {Ln} to be monic polynomials, then

they can be uniquely constructed via the following three-term recurrence formula
([35], Theorem 3.1):
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Remark 3.1 Let {Ln} be the family of monic orthogonal polynomials satisfying (3.3).
Then {Ln} can be constructed as follows

L0(ξ) = 1, L1(ξ) = ξ − a0, (3.4)

Ln+1(ξ) = (ξ − an)Ln(ξ) − bnLn−1(ξ), n ≥ 1, (3.5)

where

an = (ξLn, Ln)w

(Ln, Ln)w
, n ≥ 0

bn = (Ln, Ln)w

(Ln−1, Ln−1)w
, n ≥ 1.

The polynomials {Ln} are generalized from standard Legendre polynomials {Pn}
by allowing the weight function to be discontinuous. Hence, we call {Ln} the
generalized Legendre polynomials.

Next, we define a sequence of piecewise polynomial {φn} in a similar manner
as (3.2)

φ0(ξ) =
⎧⎨
⎩

(1−α̂)β−+(α̂−ξ)β+
(1−α̂)β−+(1+α̂)β+ , in τ−,

(1−ξ)β−
(1−α̂)β−+(1+α̂)β+ , in τ+.

(3.6)

φ1(ξ) =
⎧⎨
⎩

(1+ξ)β+
(1−α̂)β−+(1+α̂)β+ , in τ−,

(ξ−α̂)β−+(1+α̂)β+
(1−α̂)β−+(1+α̂)β+ , in τ+.

(3.7)

φn(ξ) =
∫ ξ

−1
w(t)Ln−1(t)dt, n = 2, 3, · · · (3.8)

Note that φ0 and φ1 are constructed to fulfill nodal value conditions

φ0(−1) = 1, φ0(1) = 0, φ1(−1) = 0, φ1(1) = 1.

and the interface jump condition (2.4). In fact, φ0 and φ1 are piecewise linear poly-
nomials, and they are exactly the two Lagrange type IFE nodal basis functions (see
[2, 25]).

Theorem 3.1 {φn} are a sequence of piecewise polynomials that satisfy

• the interface jump conditions[[
φn(α̂)

]] = 0,
[[
β̂φ′

n(α̂)
]]

= 0, ∀n ≥ 0, (3.9)

• the weighted orthogonality condition

〈φm, φn〉β̂ :=
∫ 1

−1
β̂(ξ)φ′

m(ξ)φ′
n(ξ)dξ = c̃nδmn, ∀m, n ≥ 1, (3.10)

where c̃n is some nonzero constant.

Proof We first prove the interface jump conditions (3.9). It is true for φ0 and φ1 by
direct verification using (3.6) and (3.7). For n ≥ 2, we note that φn is continuous
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because it is defined through the integral (3.8). Moreover, since {Ln} is a sequence
of polynomials, then

[[
β̂φ′

n(α̂)
]]

= β+φ′
n(α̂+) − β−φ′

n(α̂−) = Ln−1(α̂+) − Ln−1(α̂−) = 0.

The orthogonality (3.10) follows from (3.3) and (3.8), i.e.,

〈φm, φn〉β̂ = (Lm−1, Ln−1)w = cn−1δm−1,n−1 = c̃nδmn.

The piecewise polynomials {φn} are generalized from standard Lobatto polyno-
mials {ψn} defined in (3.2). The construction (3.8) uses piecewise constant weight
function w(ξ) = 1

β̂(ξ)
instead of a universal constant one. We call {φn} the

generalized Lobatto polynomials.
The generalized Lobatto polynomials {φn} form a sequence of IFE basis functions

satisfying both interface jump conditions and orthogonal conditions. In Fig. 1, we
plot a few generalized Legendre polynomials Ln and generalized Lobatto polyno-
mials φn for the configuration of α̂ = 0.15 and β̂ = {1, 5}. In Fig. 2, we plot the
generalized polynomials for multiple (two) interface points α̂ = −0.15 and 0.4. The
coefficient β̂ has three pieces in this case, i.e., β̂ = {1, 5, 3}.

Remark 3.2 The generalized Lobatto polynomials {φn} are identical (up to a mul-
tiple constant) to IFE basis functions introduced in [1]. However, the construction
in this article is more explicit and does not require solving a linear system. This
procedure is more advantageous when there are multiple discontinuities in an
interval.

Remark 3.3 In the construction procedure of φn, we did not impose the extended
interface jump conditions [1]:[[

β̂φ
(j)
n (α̂)

]]
= 0, ∀ j = 2, 3, · · · , n. (3.11)

Fig. 1 Generalized Lobatto (left) and Legendre (right) polynomials with one interface point
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Fig. 2 Generalized Lobatto (left) and Legendre (right) polynomials with two interface points

However, it can be easily verified that all the generalized Lobatto polynomials {φn}
satisfy (3.11) automatically.

We can obtain the local FE basis functions ψi,n on each noninterface element τi

and the IFE basic functions φk,n on the interface element τk by the following affine
mappings,

ψi,n(x) := ψn(ξ) = ψn

(
2x − xi−1 − xi

hi

)
, n ≥ 0. (3.12)

φk,n(x) := φn(ξ) = φn

(
2x − xk−1 − xk

hk

)
, n ≥ 0. (3.13)

Then the p-th degree local FE space Pp(τi) on noninterface elements τi , i �= k,
and local IFE space P̃p(τk) on interface element τk are defined by

Pp(τi) = span{ψi,n : n = 0, 1, · · · , p}. (3.14)

P̃p(τk) = span{φk,n : n = 0, 1, · · · , p}. (3.15)

Finally, the p-th degree global IFE space is defined by

Sp(Th) := {v ∈ H 1
0 (�) : v|τi

∈ Pp(τi), i �= k, and v|τk
∈ P̃p(τk)}. (3.16)

The IFEM for the interface problem (2.1)–(2.4) is: find uh ∈ Sp(Th) such that

a(uh, vh) := (βu′
h, v

′
h)+ (γ u′

h, vh)+ (cuh, vh) = (f, vh), ∀vh ∈ Sp(Th). (3.17)

3.3 Properties of generalized orthogonal polynomials

In this subsection, we investigate some fundamental properties of the generalized
orthogonal polynomials.

First, it is interesting to know the number and distribution of zeros for the gen-
eralized Lobatto polynomials and generalized Legendre polynomials in the interval
[−1, 1]. To prove our main result, we need the following lemma.
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Lemma 3.1 (Generalized Rolle’s theorem) Assume that the function f is real-valued
and continuous on a closed interval [a, b] with f (a) = f (b). If for every x in the
open interval (a, b), both of one side limits

f ′(x+) = lim
h→0+

f (x + h) − f (x)

h
, f ′(x−) = lim

h→0−
f (x + h) − f (x)

h

exist, then there is some number c in the open interval (a, b) such that one of the two
limits f ′(c+) and f ′(c−) is ≥ 0 and the other is ≤ 0.

The above lemma generalizes the Rolle’s theorem to functions that are continuous
on [a, b], but not necessarily differentiable at all interior points of (a, b). The proof
is straightforward and similar to the standard Rolle’s theorem; hence we omit it in
this article.

Theorem 3.2 The generalized Legendre polynomials {Ln} and generalized Lobatto
polynomials {φn} have the same numbers of roots as the standard Legendre polyno-
mials {Pn} and Lobatto polynomials {ψn}, respectively, i.e.,
1. For n ≥ 1, Ln has n simple roots in the open interval (−1, 1).
2. For n ≥ 1, φn+1(±1) = 0, and φn+1 has n − 1 simple “roots” in the open

interval (−1, 1), i.e., the piecewise polynomial φn+1(ξ) crosses the ξ -axis n − 1
times in (−1, 1).

Proof Note that {Ln} is a family of orthogonal polynomials on [−1, 1]. The weight
function w(ξ) = β̂(ξ)−1 is positive and is a Lebesgue integrable function. Hence,
the polynomial Ln has n simple roots in (−1, 1).

For the generalized Lobatto polynomial φn+1, by its definition (3.7), it is obvious
that φn+1(−1) = 0. The orthogonality condition (3.3) yields

φn+1(1) =
∫ 1

−1
w(ξ)Ln(ξ)dξ =

∫ 1

−1
w(ξ)Ln(ξ)L0(ξ)dξ = 0.

In the remaining of the proof, we will show that φn+1 has exactly n − 1 roots in
the open interval (−1, 1). By (3.9) and (3.10), we have for m ≤ n,

∫ 1

−1
β̂φ′

n+1(ξ)φ′
m(ξ)dξ = −

∫ 1

−1
φn+1(ξ)(β̂φ′

m)′(ξ)dξ

= −
∫ 1

−1
φn+1(ξ)L′

m−1(ξ)dξ = 0.

Since L′
m−1 ∈ Pm−2(τ ), then

∫ 1

−1
φn+1(ξ)v(ξ)dξ = 0, ∀ v ∈ Pn−2(τ ). (3.18)
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In particular, choosing v = 1 we have∫ 1

−1
φn+1(ξ)dξ = 0.

Since φn+1 is continuous, and its average is zero over (−1, 1), therefore it must
change signs at least once in (−1, 1). Let ξ1, ξ2, · · · , ξk be all points in (−1, 1) at
which φn+1 changes signs. We will show that k = n − 1 by contradiction.

Suppose k < n − 1. We choose v(ξ) = (ξ − ξ1)(ξ − ξ2) · · · (ξ − ξk) ∈ Pn−2(τ )

so that φn+1(ξ)v(ξ) does not change signs. The orthogonality (3.18) yields∫ 1

−1
φn+1(ξ)v(ξ)dξ = 0. (3.19)

This contradicts the fact that φn+1(ξ)v(ξ) does not change signs.

Suppose k > n− 1. Without loss of generality, we assume −1 < ξ1 < · · · < ξk <

1 partitions [−1, 1] into k + 1 subintervals, and α̂ ∈ (ξi, ξi+1). On all k noninterface
subintervals, applying standard Rolle’s theorem, we conclude that the derivative of
φn+1(ξ) has at least one zero in each of these k noninterface intervals. Hence, the
weighted derivative Ln(ξ) = β̂φ′

n+1(ξ) has at least k zeros on noninterface intervals.
On the interface subinterval (ξi, ξi+1), φn+1 is not differentiable at the interior

point α̂, then by the generalized Rolle’s theorem (Lemma 3.1), there exists a point
c such that one of φ′

n+1(c−) and φ′
n+1(c+) is non-negative, and the other is non-

positive. It can be directly verified that

Ln(c−) = β̂(c−)φ′
n+1(c−), Ln(c+) = β̂(c+)φ′

n+1(c+)

are also one of each, because β̂ is strictly positive. Also, Ln is a polynomial, thus
continuous everywhere including at c. Hence, Ln(c) = 0. That is, the polynomial Ln

has a zero in (ξi, ξi+1), which means Ln(ξ) has at least k + 1(> n) zeros on (−1, 1).
This contradicts the first part of the theorem.

In conclusion, φn+1 has exactly n − 1 roots in the open interval (−1, 1).

Next we show the consistency of the generalized orthogonal polynomials with
standard orthogonal polynomials.

Lemma 3.2 If the interface coincides with the boundary i.e., α̂ = ±1, or if there is
no jump of coefficient, i.e., β+ = β−, then {φn} and {Ln} become standard Lobatto
polynomial {ψn} and Legendre polynomials {Pn}, respectively, up to a multiple
constant.

Proof Suppose α̂ = −1. The weight function w(ξ) = 1
β+ becomes a constant. By

the recurrence formula (3.5), it is easy to see that Ln = cnPn, where cn is a constant.
By (3.8) we have

φn(ξ) =
∫ ξ

−1

1

β+ Ln−1(s)ds = 1

β+ cn−1

∫ ξ

−1
Pn−1(s)ds = 1

β+ cn−1ψn(ξ),
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for some constant cn−1.

When α̂ = 1, the argument is similar. When β+ = β−, the weight function
w(ξ) = 1

β− becomes a constant. The corresponding result can be obtained following
a similar argument as above.

We define a class of differential operators D
j
x and integral operators D

−j
x , j ≥ 1:

(D1
xv)

∣∣
τi

= (Dxv)
∣∣
τi

= v′(x), (D
j
xv)

∣∣
τi

= Dx(D
j−1
x v)

∣∣
τi

(3.20)

and D
−j
x : W̃

m,q
β (�) → W̃

m,q
β (�), j ≥ 1 by

(D−1
x v)

∣∣
τi

=
∫ x

xi−1

v(x)dx, (D
−j
x v)

∣∣
τi

=
∫ x

xi−1

D
−(j−1)
x v(x)dx, j ≥ 2. (3.21)

Next we prove an important inverse inequality for generalized polynomials.

Lemma 3.3 (Inverse Inequality) There exists a constant C, depending only on the
polynomial degree p such that

|v|l,q,τk
≤ Cρh

m−l+ 1
q
− 1

r |v|m,r,τk
, ∀v ∈ P̃p(τk), (3.22)

where 1 ≤ q ≤ ∞, 1 ≤ r ≤ ∞, 0 ≤ m ≤ l, and ρ = βmax

βmin
.

Proof First we consider q < ∞, and r < ∞.

|v|ql,q,τk
=

∫
τk

|Dl
xv|qdx

=
∫

τ+
k

1

(β+)q
|Dl−1

x (β+v′)|qdx +
∫

τ−
k

1

(β−)q
|Dl−1

x (β−v′)|qdx

≤ 1

(βmin)q

∫
τk

|Dl−1
x (βv′)|qdx

= 1

(βmin)q
|βv′|ql−1,q,τk.

(3.23)

Note that βv′ is a polynomial for all v ∈ P̃p(τk). In fact, βv′ ∈ Pp−1(τk). Standard
inverse inequality [7] applied to βv′ yields

|βv′|l−1,q,τk
≤ Ch

m−l+ 1
q
− 1

r |βv′|m−1,r,τk. (3.24)
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On the other hand,

|βv′|rm−1,r,τk
=

∫
τk

|Dm−1
x (βv′)|rdx

=
∫

τ+
k

(β+)r |Dm
x v|rdx +

∫
τ−
k

(β−)r |Dm
x v|rdx

≤ (βmax)
r

∫
τk

|Dm
x v|rdx

= (βmax)
r |v|rm,r,τk.

(3.25)

Combining (3.23), (3.24), and (3.25) we have

|v|l,q,τk
≤ Cρh

m−l+ 1
q
− 1

r |v|m,r,τk. (3.26)

If q = ∞ (or r = ∞), we have

|v|l,∞,τk
= lim

q→∞ |v|l,q,τk
∀v ∈ P̃p(τk).

Thus, the estimate (3.26) holds true.

4 Superconvergence analysis

In this section, we analyze the superconvergence property for the IFE method (3.17).
We first analyze the convergence estimates for interpolation. Then we discuss the
superconvergence analysis for diffusion (only) interface problems i.e., γ = c = 0
in (2.1). Finally, we consider the general elliptic interface problems, i.e., γ �= 0, and
c �= 0.

4.1 IFE interpolation

We consider the IFE interpolation using generalized Lobatto polynomials. For any
u ∈ W̃

m,q
β (�), m ≥ 1, we have the following Lobatto expansion of u on noninterface

elements τi

u(x)|τi
=

∞∑
n=0

ui,nψi,n(x), i �= k (4.1)

where

ui,0 = u(xi−1), ui,1 = u(xi), ui,n =

∫
τi

u′(x)ψ ′
i,n(x)dx

∫
τi

ψ ′
i,n(x)ψ ′

i,n(x)dx

, n ≥ 2. (4.2)

On the interface element τk , since the flux βu′ is continuous, then it can be expanded
by generalized Legendre polynomials {Lk,n}

βu′(x) =
∞∑

n=0

ūk,nLk,n(x).
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Dividing by β and then integrating on both sides yield the expansion for u

u(x)|τk
= u(xk−1) +

∞∑
n=0

ūk,n

∫ x

xk−1

1

β(t)
Lk,n(t)dt =

∞∑
n=0

uk,nφk,n(x). (4.3)

By the orthogonality (3.10) and the properties of generized Lobatto polynomials in
Theorem 3.2, we have

uk,0 = u(xk−1), uk,1 = u(xk), uk,n = 〈u, φk,n〉τk

〈φk,n, φk,n〉τk

, n ≥ 2, (4.4)

where

〈u, v〉τk
=

∫ xk

xk−1

βu′(x)v′(x)dx, ∀ u, v ∈ W̃
m,q
β (�).

Using the (generalized) Lobatto expansions (4.1) and (4.3) on noninterface and
interface elements, we define the IFE interpolation Ih : W̃

m,q
β (�) → Sp(Th) as

follows

(Ihu)|τi
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p∑
n=0

ui,nψi,n(x), if i �= k

p∑
n=0

ui,nφi,n(x), if i = k.

(4.5)

Lemma 4.1 Given any integer n ≥ 3, there holds for all j ≤ n − 2

D
−j
x φk,n(xk−1) = D

−j
x φk,n(xk) = 0 (4.6)

where D
−j
x is the integral operator defined in (3.21).

Proof Note from (3.18) and Theorem 3.2 that

φk,n(xk−1) = φk,n(xk) = 0,

∫ xk

xk−1

φk,n(x)v(x)dx = 0, ∀ v ∈ Pn−3(τk). (4.7)

Choosing v = 1 in the above equation, we immediately obtain

D−1
x φk,n(xk) =

∫ xk

xk−1

φk,n(x)dx = 0 = D−1
x φk,n(xk−1), ∀ n ≥ 3.

Moveover, noticing that D−1
x v ∈ Pn−3(τk) for all v ∈ Pn−4(τk), we have, from (4.7)

and the integration by parts,∫
τk

D−1
x φk,n(x)v(x)dx = −

∫
τk

φk,n(x)D−1
x v(x)dx = 0, ∀ v ∈ Pn−4(τk).

In other words, D−1
x φk,n shares the same properties of φk,n, i.e.,

D−1
x φk,n(xk) = D−1

x φk,n(xk−1)=0,

∫ xk

xk−1

D−1
x φk,n(x)v(x)dx = 0, v ∈ Pn−4(τk).
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By recursion, there holds for all j ≤ n − 3

D
−j
x φk,n(xk)=D

−j
x φk,n(xk−1)=0,

∫ xk

xk−1

D
−j
x φk,n(x)v(x)dx =0, v ∈ Pn−3−j (τk),

which yields

D
−(j+1)
x φk,n(xk) =

∫ xk

xk−1

D
−j
x φk,n(x)dx = 0 = D

−(j+1)
x φk,n(xk−1), j ≤ n − 3.

This finishes our proof.

Now we are ready to show the approximation properties of the IFE interpolation
Ihu.

Lemma 4.2 Assume that u ∈ W̃
p+2,∞
β (�), and Ihu is the IFE interpolation of u

defined by (4.5). The following orthogonality and approximation properties hold true.

1. Orthogonality:∫
τi

β(u − Ihu)′v′dx = 0, ∀ v ∈ Sp(Th), i = 1, . . . , N. (4.8)

2. Superconvergence on noninterface elements τi , i �= k: There exists a constant C
depending only on the polynomial degree p such that

|(u − Ihu)(lim)| ≤ Chp+2|u|p+2,∞,τi
, i �= k, (4.9)

|(u′ − (Ihu)′)(gin)| ≤ Chp+1|u|p+2,∞,τi
, i �= k, (4.10)

where lim, m = 1, · · · , p − 1 are interior roots of ψi,p+1 on τi , and gin, n =
1, · · · , p are roots of Pi,p on τi .

3. Superconvergence on interface element τk: There exists a constant C depending
only on the polynomial degree p and the ratio of coefficient ρ such that

|(u − Ihu)(lkm)| ≤ Chp+2|u|p+2,∞,τk
, (4.11)

|(βu′ − (βIhu)′)(gkn)| ≤ Chp+1|u|p+2,∞,τk
, (4.12)

where lkm, m = 1, · · · , p − 1 are interior roots of φk,p+1 on τk , and gkn, n =
1, · · · , p are roots of Lk,p on τk .

Proof By (4.1), (4.3) and (4.5), we have

(u − Ihu)|τi
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∞∑
n=p+1

ui,nψi,n(x), if i �= k,

∞∑
n=p+1

ui,nφi,n(x), if i = k.

(4.13)

Then (4.8) follows from the orthogonal properties of (generalized) Lobatto polyno-
mials.
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On each noninterface element τi, i �= k, we have from (4.2)

ui,n = hi

2n − 1

∫
τi

u′(x)ψ ′
i,n(x)dx = 2

2n − 1

∫ 1

−1

du(ξ)

dξ
Pn−1(ξ)dξ

= 2

2n − 1

1

(n − 1)!2n−1

∫ 1

−1

du(ξ)

dξ

dn−1

dξn−1
(ξ2 − 1)n−1dξ

= 2

2n − 1

(−1)j−1

(n − 1)!2n−1

∫ 1

−1

dju(ξ)

dξj

dn−j

dξn−j
(ξ2 − 1)n−1dξ, j ≤ n.

Since

dju(ξ)

dξj
=

(
hi

2

)j
dju(x)

dxj
,

then let j = n, we have

|ui,n| ≤ Cnh
n|u|n,∞,τi

, (4.14)

where Cn is a positive constant depending only on n. By (4.13) and (4.14) we can
show (4.9) as follows

(u − Ihu)(lim) =
∞∑

n=p+1

ui,nψi,n(lim) ≤ |ui,p+2||ψi,p+2(lim)| + O(hp+3)

≤ Cphp+2|u|p+2,∞,τi
,

where Cp depends only on the polynomial degree p.
On the interface element τk , by (4.4),

uk,n = 1

〈φn, φn〉τ
hk

2

∫
τk

(βu′)(x)φ′
k,n(x)dx

= (−1)j−1

〈φn, φn〉τ
hk

2

∫ xk

xk−1

(βu′)(j+1)(x)D
−j
x φk,n(x)dx, j ≤ n − 2.

Here in the last step, we have used the integration by parts and (4.6). We let j = n−2,
and use the estimate ‖D−1

x v‖0,∞ ≤ h‖v‖0,∞ to obtain

|uk,n| ≤ Cnh
n|βu′|n−1,∞,τk

≤ Cn,ρhn|u|n,∞,τk
, (4.15)

where Cn,ρ depends on n and the coefficient ratio ρ. Then (4.11) follow from (4.13)
and (4.15)

(u − Ihu)(lkm) =
∞∑

n=p+1

uk,nφi,n(lkm) ≤ |uk,p+2||φk,p+2(lkm)| + O(hp+3)

≤ Cp,ρhp+2|u|p+2,∞,τk
,

where Cp,ρ depends only on the polynomial degree p and coefficient ratio ρ.
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For derivatives, we note that

(u′ − (Ihu)′)|τi
= 2

hi

∞∑
n=p

ui,nPi,n(x), if i �= k,

(βu′ − (βIhu)′)|τk
= 2

hk

∞∑
n=p

uk,nLk,n(x).

Then (4.10) and (4.12) follow from (4.14)–(4.15). The proof is complete.

4.2 Superconvergence for diffusion interface problems

We first consider the diffusion interface problem, i.e., γ = c = 0 in (2.1). Assume
that uh ∈ Sp(Th) is the IFE solution of

a(uh, vh) := (βu′
h, v

′
h) = (f, vh), ∀vh ∈ Sp(Th). (4.16)

By the Poincaré inequality, and the orthogonality (4.8), we have

‖Ihu − uh‖2
1 ≤ Ca(Ihu − uh, Ihu − uh) ≤ Ca(Ihu − u, Ihu − uh) = 0.

Hence, uh = Ihu. That means uh inherits all superconvergent properties (4.9)–(4.12)
of Ihu. We summarize these results in the following theorem.

Theorem 4.1 Let Th = {τi}Ni=1 be a mesh of � such that the interface α ∈ τk . Let

uh ∈ Sp(Th) be the IFE solution of (4.16) where p ≥ 2, and u ∈ W̃
p+2,∞
β (�) be the

exact solution of (2.1)–(2.4). Then we have the following results.

• uh is exact at the mesh points, i.e.,

(u − uh)(xi) = 0, ∀ i = 0, 1, · · · , N. (4.17)

• On every noninterface element τi , i �= k, uh is superconvergent at roots of
Lobatto polynomial ψi,p+1, and the derivative u′

h is superconvergent at roots of
Legendre polynomial Pi,p. That is, there exists a constant C depending only on
polynomial degree p such that

(u − uh)(lim) ≤ Chp+2|u|p+2,∞, (u′ − u′
h)(gin) ≤ Chp+1|u|p+2,∞. (4.18)

• On the interface element τk , uh is superconvergent at roots of generalized
Lobatto polynomial φk,p+1, and the flux βu′

h is superconvergent at roots of gen-
eralized Legendre polynomial Lk,p. That is, there exists a constant C depending
only on polynomial degree p and the ratio of coefficient jump ρ such that

(u − uh)(lkm) ≤ Chp+2|u|p+2,∞, (βu′ − βu′
h)(gkn) ≤ Chp+1|u|p+2,∞.

(4.19)

4.3 Superconvergence for general elliptic interface problems

We consider the general second-order elliptic interface problem. As the standard
finite element approximation, we cannot expect uh is exact at the mesh points. How-
ever, we may establish similar superconvergence results as the counterpart finite
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element methods by using the superconvergence analysis tool. To this end, we will
need to construct a special function ω.

Let ω ∈ Sp(Th) be a function satisfying

(βω′, v′) = (γ (u − Ihu), v′), ∀v ∈ Sp(Th). (4.20)

Apparently, the Lax-Milgram theory assures the existence and uniqueness of the
solution ω. Moreover, we have the following estimate for ω.

Lemma 4.3 Let u ∈ W̃
p+1,∞
β (�) and ω ∈ Sp(Th) be the special function defined by

(4.20). Then for all p ≥ 2,

‖ω‖0,∞ ≤ Chp+2‖u‖p+1,∞, (4.21)

where C is a positive constant depending only on the coefficients β and γ .

Proof In each element τi , we assume that ω has the following expansion

ω|τi
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p∑
n=2

ci,nψi,n(x) + ω(xi−1)ψi,0(x) + ω(xi)ψi,1(x), if i �= k,

p∑
n=2

ci,nφi,n(x) + ω(xi−1)φi,0(x) + ω(xi)φi,1(x), if i = k.

(4.22)

By choosing v = ψi,n and v = φk,n in (4.20), where 2 ≤ n ≤ p, we can find

ci,n =

⎧⎪⎨
⎪⎩

2n−1
2

∫
τi

γ
β
(u − Ihu)(x)Pi,n−1(x)dx, if i �= k,

1

〈φn, φn〉τ
∫
τi

γ
β
(u − Ihu)(x)Li,n−1(x)dx, if i = k.

Apparently, by the standard approximation theory,

|ci,n| ≤ Ch‖u − Ihu‖0,∞ ≤ Chp+2‖u‖p+1,∞. (4.23)

Here the constant C depends only on the coefficients β and γ . Similarly, for all
i ≤ N − 1, we separately choose v = ψi,1, i �= k and v = φi,1, i = k in (4.20) to
obtain

ω(xi) − ω(xi−1) =
∫

τi

γ

β
(u − Ihu)(x)dx, ∀ i ≤ N − 1.

In light of (4.13) and the orthogonal properties of (generalized) Lobotto polynomials,
we know that u − Ihu is orthogonal to polynomials of degree no more than p − 2.
Then for p ≥ 2

ω(xi) − ω(xi−1) = 0, i �= k.

Since ω(x0) = ω(a) = 0, we have for all i ≤ N − 1

ω(xi) =
{

0, if i ≤ k − 1,∫
τk

γ
β
(u − Ihu)(x)dx, if i ≥ k.
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Consequently,

|ω(xi)| ≤ Ch‖u − Ihu‖0,∞ ≤ Chp+2‖u‖p+1,∞, ∀i. (4.24)

Then the estimate (4.21) follows from (4.22), (4.23), and (4.24).

Now we are ready to show the superconvergence for general elliptic interface
problems.

Theorem 4.2 Let Th = {τi}Ni=1 be an partition of � such that the interface α ∈ τk .

Let uh ∈ Sp(Th) be the IFE solution of (3.17) where p ≥ 2, and u ∈ W̃
p+2,∞
β (�)

be the exact solution of (2.1)–(2.4). Then we have the following superconvergence
results.

• There exists a constant C, depending on p, ρ, γ , c such that the following
estimate holds true on every noninterface element τi , i �= k.

(u−uh)(lim) ≤ Chp+2‖u‖p+2,∞, (u′ −u′
h)(gin) ≤ Chp+1‖u‖p+2,∞, (4.25)

where lim, m = 0, 1, · · · , p are roots of ψi,p+1, including the mesh points, and
gin, n = 1, 2, · · · , n are roots of Pi,p.

• There exists a constant C, depending on p, ρ, γ , c such that the following
estimate holds true on the interface element τk .

(u − uh)(lkm) ≤ Chp+2‖u‖p+2,∞, (βu′ − βu′
h)(gkn) ≤ Chp+1‖u‖p+2,∞,

(4.26)
where lkm, m = 0, 1, · · · , p are roots of φi,p+1, including the mesh points, and
gkn, n = 1, 2, · · · , n are roots of Lk,p.

Proof First, let

uI = Ihu − ω,

where ω is defined by (4.20). By (3.17) and the coercivity of the bilinear form of the
IFE method, we have

‖uh − uI‖2
1 ≤ Ca(uh − uI , uh − uI ) = Ca(u − uI , uh − uI ).

By (4.8) and (4.20), we have

|a(u − uI , v)| = |(c(u − Ihu), v) − (γω, v′) + (cω, v)|
= | − (cD−1

x (u − Ihu), v′) − (γω, v′) + (cω, v)|
≤ C

(
h‖u − Ihu‖0,∞ + ‖ω‖0,∞

) ‖v‖1, ∀v ∈ Sp(Th),

where in the second step, we have used the integration by parts, and the fact that

D−1
x (u − Ihu)(xi) = D−1

x (u − Ihu)(xi−1) = 0.

Consequently,

‖uh − uI‖1 ≤ C
(
h‖u − Ihu‖0,∞ + ‖ω‖0,∞

) ≤ Chp+2‖u‖p+1,∞.
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Noticing that (uh − uI )(a) = 0, we have

(uh − uI )(x) =
∫ x

a

(uh − uI )
′(x)dx,

which yields

‖uh − uI‖0,∞ ≤ C|uh − uI |1 ≤ Chp+2‖u‖p+1,∞,

and thus,

‖uh − Ihu‖0,∞ ≤ Chp+2‖u‖p+1,∞ + ‖ω‖0,∞ ≤ Chp+2‖u‖p+1,∞.

Since uh − Ihu ∈ Sp(Th), the inverse inequality holds. Then

|uh − Ihu|1,∞ ≤ Ch−1‖uh − Ihu‖0,∞ ≤ Chp+1‖u‖p+1,∞.

Then (4.25) and (4.26) follow from (4.9) and (4.10).

Remark 4.1 As we may recall, the convergence rates O(hp+2) at the Lobatto (gen-
eralized Lobatto) points and O(hp+1) at the Gauss (generalized Lobatto) points are
the same as these of the counterpart FEM. While, as for the convergence rate at mesh
nodes, the order O(hp+2) in the Theorem 4.2 is lower than that of the FEM for
p ≥ 3, which is O(h2p). Nevertheless, our numerical experiments demonstrate that
the convergence rate at mesh points sometimes might be even higher than O(hp+2).

Remark 4.2 For problems with multiple interface points, the analytical results in
Theorem 4.1 and Theorem 4.2 are still true. Example 5.2 provides a numerical
evidence for this scenario.

Remark 4.3 In general, there is no superconvergence at the interface point, because
the IFE method treats the interface as an interior point. Even if there is no coeffi-
cient jump, the IFE method (becomes standard FE method) has no superconvergence
behavior at a random interior point, unless it coincides with Lobatto or Gauss points.

5 Numerical experiments

In this section, we present some numerical experiments to demonstrate the supercon-
vergence of IFE methods.

We use a family of uniform mesh {Th}, h > 0 where h denotes the mesh size.
We will test linear (p=1), quadratic (p=2), and cubic (p=3) IFE approximation. In
the following experiments, we always start from a mesh consisting of eight elements.
Due to the finite machine precision, we choose different sets of meshes for different
polynomial degrees p. The convergence rate is calculated using linear regression of
the errors.
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We compute the error eh = uh − u in the following norms

‖eh‖node = max
x∈{xi }

|uh(x) − u(x)|, ‖eh‖L∞ = max
x∈�

|uh(x) − u(x)|,
‖eh‖Lob = max

x∈{lip} |uh(x) − u(x)|, ‖βe′
h‖Gau = max

x∈{gip} |βu′
h(x) − βu′(x)|,

‖eh‖L2 =
(∫

�

|uh − u|2dx

) 1
2

, |eh|H 1 =
(∫

�

|u′
h − u′|2dx

) 1
2

.

Here, ‖eh‖node denotes the maximum error over all the nodes (mesh points). ‖eh‖L∞
is the infinity norm over the whole domain �. To compute it, we select 10 uniformly
distributed points on each non-interface element, and select 10 points in each sub-
element of an interface element. Among all these sample points, we compute the
largest discrepancy from the exact solution. ‖βe′

h‖Gau is the maximum error of flux
over all (generalized) Legendre points. ‖eh‖Lob is maximum error over all (general-
ized) Lobatto points, respectively. ‖eh‖L2 and |eh|H 1 are the standard Sobolev L2-
and semi-H 1- norms.

Example 5.1 (One interface point) In this example, we consider an interface problem
with one interface point. We use the following example as the exact solution

u(x) =

⎧⎪⎪⎨
⎪⎪⎩

1

β− cos(x), if x ∈ [0, α),

1

β+ cos(x) +
(

1

β− − 1

β+

)
cos(α), if x ∈ (α, 1].

(5.1)

It is easy to verify that

[[u(α)]] = 0,
[[
βu(j)(α)

]]
= 0, ∀j ≥ 1.

We consider the general elliptic interface problem, and choose the coefficient
(β−, β+) = (1, 5), γ = 1, c = 10, and the interface α = π/6. Errors of the
IFE solution of degree p = 1, 2, 3 in the aforementioned norms are reported in

Table 1 Error of P1 IFE Solution with β = [1, 5], α = π/6, γ = 1, c = 1

1/h ‖eh‖node ‖eh‖L∞ ‖βe′
h‖Gau ‖eh‖L2 ‖eh‖H 1

8 5.71e-05 1.92e-03 1.07e-03 9.97e-04 2.51e-02

16 1.43e-05 4.81e-04 2.75e-04 2.48e-04 1.24e-02

32 3.25e-06 1.20e-04 6.98e-05 6.21e-05 6.26e-03

64 5.44e-07 3.01e-05 1.75e-05 1.56e-05 3.14e-03

128 2.07e-07 7.53e-06 4.40e-06 3.91e-06 1.58e-03

256 5.16e-08 1.88e-06 1.10e-06 9.78e-07 7.88e-04

512 1.29e-08 4.71e-07 2.76e-07 2.44e-07 3.94e-04

rate 2.02 1.99 1.99 2.00 1.00
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Table 2 Error of P2 IFE Solution with β = [1, 5], α = π/6, γ = 1, c = 1

1/h ‖eh‖node ‖eh‖L∞ ‖eh‖Lob ‖βe′
h‖Gau ‖eh‖L2 ‖eh‖H 1

8 3.69e-08 6.69e-06 2.98e-07 9.74e-06 2.51e-06 1.31e-04

16 5.22e-09 8.85e-07 1.63e-08 1.25e-06 3.17e-07 3.33e-05

24 1.17e-09 2.67e-07 3.13e-09 3.67e-07 9.47e-08 1.48e-05

32 1.77e-10 1.14e-07 1.20e-09 1.55e-07 3.97e-08 8.25e-06

40 3.60e-11 5.88e-08 5.57e-10 7.98e-08 2.07e-08 5.38e-06

48 2.42e-11 3.54e-08 2.65e-10 4.67e-08 1.21e-08 3.76e-06

56 2.92e-11 2.22e-08 1.20e-10 2.93e-08 7.57e-09 2.76e-06

rate 4.11 2.93 3.92 2.99 2.98 1.99

Tables 1, 2, and 3, respectively. At (generalized) Legendre-Gauss points and (general-
ized) Lobatto points (for p = 2,3), the convergence rates are O(hp+1) and O(hp+2),
respectively. At mesh points, the IFE solutions uh demonstrate a superconvergence
order of at least O(hp+2) for p = 2, 3, compared to the rate O(hp+1) in the infinity
norm ‖ · ‖L∞ . These data indicate that at these special points, IFE solution are super-
close to the exact solution, and the convergence rates are one order higher than the
optimal rate. Moreover, the convergence rates are O(hp+1) and O(hp) in ‖ · ‖L2 and
| · |H 1 norm, respectively, which is consistent with the diffusion interface problem
in [2].

Next we illustrate superconvergence behavior at roots of (generalized) orthogonal
polynomials. In Figs. 3, 4, and 5, we list the plots of solution error uh − u and the
flux error βu′

h − βu′ on the mesh consisting of eight elements. Also, we highlight
the roots of corresponding orthogonal polynomials by star with red color. Clearly, at
those points, errors are much smaller compared to other points. Note that the interface
α ∈ (0.5, 0.6), and the red-color-marked points on this interface element are roots of
generalized Lobatto/Legendre polynomials.

Table 3 Error of P3 IFE Solution with β = [1, 5], α = π/6, γ = 1, c = 1

1/h ‖eh‖node ‖eh‖L∞ ‖eh‖Lob ‖βe′
h‖Gau ‖eh‖L2 ‖eh‖H 1

8 4.24e-10 1.18e-07 1.65e-09 6.97e-08 5.59e-08 4.27e-06

10 1.65e-10 4.83e-08 5.38e-10 2.88e-08 2.29e-08 2.19e-06

12 6.63e-11 2.33e-08 2.16e-10 1.40e-08 1.11e-08 1.27e-06

14 2.57e-11 1.26e-08 1.00e-10 7.58e-09 5.97e-09 7.95e-07

16 8.77e-12 7.37e-09 5.13e-11 4.45e-09 3.50e-09 5.32e-07

18 1.74e-12 4.60e-09 2.85e-11 2.78e-09 2.18e-09 3.73e-07

20 1.00e-12 3.02e-09 1.69e-11 1.82e-09 1.43e-09 2.72e-07

rate 6.79 4.00 4.00 5.00 4.00 3.00
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Fig. 3 Error and flux error of P1 IFE solution. β = [1, 5], α = π/6, γ = 1, c = 1

Fig. 4 Error and flux error of P2 IFE solution. β = [1, 5], α = π/6, γ = 1, c = 1

Fig. 5 Error and flux error of P3 IFE solution. β− = 1, β+ = 10, α = π/6, γ = 1, c = 10
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Table 4 Error of P1 IFE Solution with β = {1, 5, 100}, α = {π

6
,
π

6
+ 0.06}, γ = 1, c = 1

1/h ‖eh‖node ‖eh‖L∞ ‖βe′
h‖Gau ‖eh‖L2 ‖eh‖H 1

8 2.71e-05 1.92e-03 1.38e-03 9.67e-04 2.46e-02

16 5.26e-06 4.81e-04 3.48e-04 2.42e-04 1.24e-02

32 1.46e-06 1.20e-04 8.78e-05 6.06e-05 6.20e-03

64 3.86e-07 3.01e-05 2.20e-05 1.52e-05 3.11e-03

128 1.02e-07 7.53e-06 5.52e-06 3.82e-06 1.56e-03

256 2.56e-08 1.88e-06 1.38e-06 9.55e-07 7.81e-04

512 6.40e-09 4.71e-07 3.45e-07 2.39e-07 3.91e-04

rate 1.98 2.00 1.99 2.00 1.00

Example 5.2 (Multiple interface points) In this example, we use IFE method for
interface problems with multiple discontinuities. In particular, we consider the fol-
lowing function as the exact solution, where the coefficient function β has two
discontinuities at α1 and α2.

u(x)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

β1
cos(x), if x ∈ [0, α1),

1

β2
cos(x)+

(
1

β1
− 1

β2

)
cos(α1), if x ∈ (α1, α2],

1

β3
cos(x)+

(
1

β1
− 1

β2

)
cos(α1) +

(
1

β2
− 1

β3

)
cos(α2), if x ∈ (α2, 1].

(5.2)
We set the interface points α1 = π

6 , and α2 = π
6 + 0.06. They separate the domain

into three subdomains, on which the diffusion coefficients are chosen as β1 = 1,
β2 = 5, β3 = 100. It can be easy to verify that

[[u(αi)]] = 0,
[[
βu(j)(αi)

]]
= 0, ∀j ≥ 1, i = 1, 2.

Table 5 Error of P2 IFE Solution with β = {1, 5, 100}, α = {π

6
,
π

6
+ 0.06}, γ = 1, c = 1

1/h ‖eh‖node ‖eh‖L∞ ‖eh‖Lob ‖βe′
h‖Gau ‖eh‖L2 ‖eh‖H 1

8 2.89e-08 6.70e-06 3.08e-07 9.77e-06 2.23e-06 1.17e-04

16 6.26e-09 8.84e-07 1.54e-08 1.45e-06 2.89e-07 3.05e-05

24 1.36e-09 2.67e-07 2.95e-09 3.67e-07 8.66e-08 1.35e-05

32 2.06e-10 1.14e-07 1.17e-09 1.55e-07 3.62e-08 7.53e-06

40 4.12e-11 5.87e-08 5.46e-10 9.17e-08 1.90e-08 4.93e-06

48 2.69e-11 3.54e-08 2.60e-10 4.67e-08 1.11e-08 3.46e-06

56 3.50e-11 2.22e-08 1.15e-10 2.93e-08 6.94e-09 2.53e-06

rate 3.95 2.93 3.95 2.97 3.00 1.97
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Table 6 Error of P3 IFE Solution with β = {1, 5, 100}, α = {π

6
,
π

6
+ 0.06}, γ = 1, c = 1

1/h ‖eh‖node ‖eh‖L∞ ‖eh‖Lob ‖βe′
h‖Gau ‖eh‖L2 ‖eh‖H 1

8 2.01e-10 1.18e-07 1.66e-09 6.94e-08 5.51e-08 4.20e-06

10 9.06e-10 4.83e-08 5.41e-10 2.87e-08 2.26e-08 2.15e-06

12 7.44e-11 2.33e-08 2.16e-10 1.40e-08 1.10e-08 1.25e-06

14 2.94e-11 1.26e-08 9.99e-11 7.58e-09 5.92e-09 7.88e-07

16 1.00e-11 7.37e-09 5.13e-11 4.45e-09 3.47e-09 5.27e-07

18 1.70e-12 4.60e-09 2.85e-11 2.78e-09 2.16e-09 3.70e-07

20 1.27e-12 3.02e-09 1.69e-11 1.82e-09 1.42e-09 2.70e-07

rate 5.76 4.00 5.01 3.97 3.99 3.00

Fig. 6 Error and flux error of P1 IFE solution. β = {1, 5, 100}, α = {π

6
,
π

6
+ 0.06}

Fig. 7 Error and flux error of P2 IFE solution. β = {1, 5, 100}, α = {π

6
,
π

6
+ 0.06}
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Fig. 8 Error and flux error of P3 IFE solution. β = {1, 5, 100}, α = {π

6
,
π

6
+ 0.06}

Tables 4–6 report the numerical errors and convergence rates in different norms.
Figures 6, 7 and 8 demonstrate the superconvergence behavior on the roots of gen-
eralized Lobatto/Legendre polynomials. We note that, on the coarsest mesh which
contains 8 elements, the interface element contains two interface points. As the mesh
size becomes smaller, the interface points are separated in different elements. This
example shows the robustness of our scheme with respect to multiple coefficient
discontinuities.

The numerical results for diffusion (only) interface problems are similar, except
at mesh points there are only roundoff errors. We also conducted numerical exper-
iments for different configuration of interface locations α, and different sets of
coefficients β±, including large coefficient contrast. Similar superconvergence prop-
erties have been observed as in Examples 5.1 and 5.2, hence we omit these data in the
article.

6 Conclusion

In this article, we developed an explicit construction for the orthogonal IFE basis
functions. First we constructed a set of bases for flux using (generalized) Legendre
polynomials, then integrate to obtain basis functions for the primary unknown. The
procedure is somewhat “reversed” from the classical approach in constructing IFE
basis functions. The superconvergence behavior has been observed and proved for
general elliptic interface problems in the one dimensional setting. At the roots of
generalized Lobatto polynomial of degree p + 1, the IFE solution is superconvergent
to the exact solution with order p + 2 (comparing with the optimal order p + 1); at
the roots of generalized Legendre polynomial of degree p, the derivative of the IFE
solution is superconvergent to the derivative of the exact solution with order p + 1
(comparing with the optimal order p). In addition, the convergent rate at all mesh
points (including those of the interface element) is of order p+2 (comparing with the
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optimal order p + 1). The idea presented in this article seems extendable to the two
dimensional elliptic interface problems (at least for the tensor-product space case),
which will be of interest in future work.

Acknowledgments The authors would like to thank Prof. Tao Lin for his valuable suggestions on this
article.
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