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material interface has a nontrivial geometry. IFE functions developed in this article are

applicable to arbitrary configurations of elasticity materials and interface locations. Opti-

mal approximation capability is observed for this new IFE space. The displacement Galer-

kin method based on this IFE space is robust (locking-free). Numerical experiments are
L presented to demonstrate that the IFE solution converges optimally for both compressible
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1. Introduction

The partial differential equation (PDE) for linear elasticity plays an important role in solid mechanics. When used to mod-
el an object made of multiple elasticity materials separated by a definite interface, the coefficients in this partial differential
equation are discontinuous, and are often piecewise constants. In addition to the usual boundary condition, the exact solu-
tion to this PDE also requires to satisfy the displacement and traction jump conditions across each material interface, and
this leads to a so-called linear elasticity interface problem.

Solving elasticity interface problems appears in many physical and engineering applications. For instance, in minimum-
compliance-design problems [1], one desires to find an optimal choice of stiffness tensor Ej;(x,y) to minimize the compli-
ance of a structure for increasing its stiffness. When an isotropic elastic body is considered, the stiffness tensor is a linear
combination of Lamé parameters A(x,y) and p(x,y) and this leads to an elasticity equilibrium equation, as seen in (1.1). In
many cases, the design problems involve multiple material phases [2,3], and the Lamé parameters 4 and u of the joint elastic
body are usually discontinuous across the material interfaces. Consequently, this leads to the linear elasticity interface prob-
lem. Other interesting applications include microstructural evolution [4,5], the atomic interactions [6], and problems in the
crystalline materials [7], to name just a few.

In this article, we consider a planar object made of two elastic materials whose Lamé parameters are different, but the
method presented here is readily extendable to an elasticity object with multiple materials. The model problem of interest
is the following planar elasticity pure displacement problem:
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Fig. 1. The domain of elasticity interface problem.

~V.ou)=finQ, (1.1)

u=gonoQ. (1.2)

Without loss of generality, the solution domain Q ¢ R? is assumed to be a rectangle (or a union of several rectangles) formed
with two types of elastic material separated by an interface I" which is assumed to be a smooth curve. That means the do-
main Q is the union of two disjoint sub-domains Q- and Q*, each formed by one of the materials, such that Q = Q- UQ* UT,
as illustrated in Fig. 1. Across the interface I', the solution u is assumed to satisfy the following jump conditions:

[l =0, (1.3)

[ (u) n; = 0. (1.4)

In our discussion, we use letters in bold font to denote vector-valued functions and their associated function spaces. The
function u (x) = (1, (x,y), u2(x,y))" denotes the displacement vector at a point X = (x,y) in the elastic body Q. The vector n
denotes the outward normal of I". Function € (u) = (¢;(u)) denotes the linearized strain tensor defined by

v 2 (9Xj OXi

and o (u) = (oy(u))

1<ij<2

is the stress tensor. Let / and u denote the Lamé parameters given by

1<ij<2
Ev E

P Aoy KTy

where E and v are Young’s modulus and Poisson’s ratio, respectively, with v € (0,3). Then, linear isotropic elastic materials
are assumed to fulfill the following linear constitutive relation between the stress and strain tensors:

o(u) = 1 Tr (€(w))dy; + 21€5(w),
where 6; denotes the Kronecker delta such that
1 ifi=j
0j = ' 1.5
! { 0 ifi] (1.3)

and Tr (€) denotes the trace of tensor € so that
2
Tr(ew) = eu(w) =V -u.
k=1

The function f = (f;,f,)" represents the given body force and g = (g,,g,)" is the given displacement on the boundary 9Q. The
Lamé parameters 4, u are assumed to have a finite jump across the interface I" such that

(A,u), ifxeQ,

1.
(rut), ifxeQ. (16)

(i) ) = {

It is challenging to solve interface problems since the discontinuities across material interfaces require special care in
numerical approximation. Conventional finite element methods [8-10] can work satisfactorily provided that meshes are tai-
lored to fit interfaces, known as body-fitting meshes illustrated in the plot on the left in Fig. 2; otherwise, the convergence of
numerical solutions is not guaranteed [11]. The body-fitting restriction makes conventional methods excessively expensive
if interfaces evolve in a simulation. It is therefore attractive to develop numerical methods based on non-body-fitting
meshes, such as the Cartesian mesh illustrated in the plot on the right in Fig. 2. In a finite difference formulation, Yang,
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Li, and Li developed an immersed interface method for the planar linear elasticity interface problem which allows the inter-
face to be embedded in the interior of some elements [12,13]. However, the linear systems arising from this method are non-
symmetric and become ill-conditioned as the materials become nearly incompressible. In a finite element formulation,
Hansbo and Hansbo developed a bilinear finite element method by employing a Nitsche’s idea and a modified weak formu-
lation using weighted average traction across the interfaces [14]. Becker, Burman, and Hansbo extended the Nitsche finite
element method for incompressible elastic materials using a mixed formulation [15]. Hou, Li, Wang, and Wang [16] modified
the traditional finite element method by designing a trial function that is a piecewise polynomial to fit jump condition across
the interface while keeping the test function basis independent of interface. Due to the inconsistency of trial and test func-
tion spaces, the resulting linear system in this method is nonsymmetric, although positive-definiteness is guaranteed under
certain conditions.

The recently developed immersed finite element (IFE) methods [17-26] locally adjust finite element basis functions to sat-
isfy jump conditions across an interface. In IFE methods, solution meshes are allowed to be independent of interfaces; hence, if
desired, a Cartesian mesh can be employed even if the interface geometry is nontrivial. Also IFE methods use standard finite
element basis functions for all elements located away from interfaces, but they utilize IFE basis functions constructed accord-
ing to jump conditions on elements whose interiors are cut by interfaces. In [18,24], Gong, Li, and Yang proposed linear IFE
methods to solve elasticity interface problems on triangular Cartesian meshes. Point-wise convergence has been investigated,
and numerical results indicate that the linear IFE solutions can achieve at least an O(h) convergence in L™ norm. Recently, Lin
and Zhang developed a bilinear IFE method [25] based on the rectangular Cartesian mesh. This article reported that both linear
and bilinear IFE methods for the linear elasticity interface problem converge optimally in both L* and H' norms. Nevertheless,
both of these IFE methods have limitations. First, the existence of these IFE functions is not guaranteed for arbitrary config-
uration of elastic materials in an interface problem [25]. Moreover, both of these IFE methods work well for compressible elas-
tic materials, but once the elastic material is nearly incompressible, i.e., Poisson’s ratio v ~ 0.5, these IFE methods encounter
the volume “locking” effect [27]. The “locking” effect arises when displacements are approximated by using the lowest-order
conforming type finite elements even for solving non-interface problems. As we know, in either the linear or the bilinear IFE
method, the majority of elements do not intersect the material interface, where standard conforming type finite element func-
tions are utilized; hence, the “locking” can be considered inevitable for these IFE methods.

Several approaches have been developed to circumvent the ‘locking” effect, such as the mixed finite element methods
[28-34], the nonconforming finite element methods [30,35,32,36-39], and the discontinuous Galerkin methods [40-43].
In this article, we follow the route of nonconforming finite elements due to its simple formulation compared with other
ideas. We construct new IFE functions that are consistent with nonconforming rotated-Q; (abbreviated as NCRQ;, from
now on) finite element functions on a rectangular mesh in the sense that an IFE function becomes a NCR Q; finite element
function if the discontinuity of the Lamé coefficients disappears. The NCR Q; element was first proposed in [44] for solving
the Stokes problem. It was also used for linear elasticity problems [37]. Instead of using nodal values as continuity con-
straints in the conforming finite element formulation, the NCRQ; finite element uses averaged values over edges as con-
straints. As indicated in [37], the method using the ANCRQ; finite element on a mesh made of quadrilateral elements does
not have numerical locking provided that a reduced quadrature procedure is applied to treat the integral containing the 4
term, ie. [ A(V-u,)(V -vy)dxdy. This reduced integration technique has been used widely in engineering community
and analyzed by mathematicians [45,35,31,46-48,33]. On the other hand, though it still needs to be proven theoretically,
our numerical experiments indicate that the reduced integration is not necessary to circumvent numerical locking if the
NCRQ; element is used on a rectangular mesh.

The rest of the article is organized as follows. In Section 2, we introduce an NCR O -IFE space based on a rectangular mesh.
In Section 3, we discuss basic properties of this new IFE space. In Section 4, we apply this IFE space in a Galerkin formulation
to solve the planar elasticity interface problems. In Section 5, we provide numerical results to demonstrate features of this
nonconforming IFE method, including its optimal approximation capability and its “locking free” performance for linear elas-
ticity interface problems with nearly incompressible materials. Brief conclusions are given in Section 6.
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Fig. 2. Body-fitting mesh and non-body-fitting mesh.
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2. Nonconforming rotated Q, IFE spaces

In this section, we introduce the ANCR Q;-IFE functions and corresponding IFE spaces defined on a rectangular mesh.

ForO<h<1,let 7, ={T;,j=1,...,M} be a Cartesian mesh of Q with maximum edge length h. We call the elements
whose interiors are cut through by I' “interface elements”, and denote the set of interface elements by 7 ;l We use
77 = T, \ T} to denote the collection of non-interface elements. Moreover, we let £, represent the collection of all the edges
in 7, and denote the collections of interior edges and boundary edges by £ and £, respectively.

2.1. NCRQ;-FE functions on non-interface elements

Standard MCR Q; finite element functions will be used on non-interface elements: for T € 77, define the local finite ele-
ment space S;(T) as follows:

Sh(T) = {¥r = (17, ¥21) : ¥jr €NCRQ:, j=1,2}, (2.1)

where NCRQ; = Span{1,x,y,x* — y?}. Eight local basis functions ¥;r € S;(T), j=1,...,8, are chosen to satisfy the following
edge average value restrictions:

1 Jj .
< k
and
0
i / ‘l‘jAT(va)ds: < . )7 j:57617787 (23)
‘ek‘ Jey 6]—41(

where e,k = 1,2,3,4 are four edges of T. We refer readers to [37,44,49] and references therein for more details about the
standard NCRQ; finite element functions.

2.2. NCR Q;-IFE functions on interface elements

Without loss of generality, we assume that the mesh size h is small enough such that interface elements in 7, satisfy the
following hypotheses [19,20,25]:

(H1) The interface I" cannot intersect the edge of any rectangular element at more than two points unless an edge of the
boundary is part of T';

(H2) If T intersects the edge of a rectangular element at two points, then these two points must be on different edges of this
rectangular element.

Assume that T is an interface element whose boundary intersects I at points D and E. First, we note that there are two
types of interface elements: if D and E are located at two adjacent edges, we classify this element as Type I interface element;
if D and E are located at two opposite edges, we classify this element as Type Il interface element. Fig. 3 provides illustrations
for these two types of interface elements. The line DE separates T into two sub-elements T~ and T*.

Without loss of generality, we consider a typical interface element T = [0A;A,A3A, with vertices

e (2) () (3 2o (0)

We label the four edges e;,i = 1,2,3,4, of T as follows:
e1 =A1Az, e =AAy, e3=A4A3, e4=A3A;. (2.4)

We also assume that

2= (5) == (an)

for a Type I interface element, where 0 <d < 1,0 <e < 1, and

dh eh
o= (%) == ()
0 h
for a Type Il interface element, where 0 < d < 1 and 0 < e < 1. We note that every interface element can be mapped into one
of the above interface elements via an orthogonal affine mapping.

Vector-valued piecewise NCRQ; polynomials are used to construct nonconforming local IFE functions on each interface
element. Specifically, on an interface element T, a local NCR Q;-IFE function ®r is piecewisely defined as follows:
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Fig. 3. Types of interface nonconforming rectangles.

@ (X) = ¢f,T(X,Y) a; +b X-‘rC]y—&-d (Xz yz) -
@7 (x) ! $27(X,Y) a; + by x+cy+d; (2 —y?) ) -
x B .
T @ (X) Y\ _fapebixray+did -y
! b37(%.Y) al +bix+cyy +di (2 —y?) :

Note that for each ®; defined above, there are 16 undetermined coefficients, aJS,bS, cj,dj, where j=1,2, and s = +, —. For

eight given values v;,j = 1,...,8, the following constraints will be used to determine these coefficients:

o the average values over the edges (8 restrictions):

Uj .
/(DTxy )ds = , Vj=1,2,3,4. (2.6)
‘ ]‘ Vjta
o the displacement continuity at the intersection points (4 restrictions):
@7 (D) = ®; (D), ®F(E) =®;(E). (2.7)
o the weak traction continuity (2 restrictions):
La(@?)nﬁds = /76((D;)nﬁds. (2.8)
DE DE
e the second derivative continuity (2 restrictions):
2 1+ 2 y—
0“7 _ fol 1 ' (2.9)
ox? ox?

We will show that these conditions are linearly independent so that they can uniquely determine a local NCR Q; IFE function
®; on an interface element T. Note that, to maintain the continuity across DE, instead of (2.9), it seems to be more natural to
impose the following condition:

or (25) - 5 (°55), 210

because [®r]|5z is a quadratic polynomial which can usually be determined by its values at three points. However, when the
slope of DE is 1 or —1, conditions (2.7) and (2.10) lose their linear independence. On the other hand, (2.7) and (2.9) are always
linearly independent. In addition, when the slope of DE is not 1 or —1, conditions (2.7) and (2.9) are equivalent to (2.7) and
(2.10). These observations suggest us to use (2.9) instead of (2.10).
Remark 2.1. The condition (2.8) ensures that the IFE function ®; can weakly (in the sense of integration) preserve the
traction continuity across the line segment DE.

The combination of conditions in (2.6)-(2.9) provides 16 constraints for a local NCR Q;-IFE function, and this leads to the

following algebraic system to determine a, b, c{,dj,j = 1,2,5 = 4, —:

McC =V, (2.11)

where

- — S S S - - g+ - g+\¢
C:(a17a{r7a27a;7b17b17b27b27C]7CT7C27C§7d]1d]7d27d2)7
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V = (v1, 3, U3, U4, Us, Us, U7, 13,0,0,0,0,0,0,0,0)". (2.12)
For a Type I interface element, the coefficient matrix M¢ = Mt = (Mi;)16.16 » With the normalization h = 1, is given by
Mc = M. = (2.13)
d 1-d 0o 0 ¢ 10 0 0 0 0 0 ¢ 12 0 o0
o 1.0 0 01 0 o0 0 { 0O 0 2 0 0
0 1 0 0 0o f 0 0 0 1 0 O 0o -2 0 0
el-e0 0O 0O 0 0 0 ¢ =20 0 -9 21 0 0
0 0 di-do 0o ¢ =0 0 0 0 o0 o0 ¢ 12
0 0 o0 1 0 0 01 0 0 0 ! 0 0 0 2
0 o0 0 1 0 0 0 1 0 0 0 1 0 0 0 -2
0 0 el-e0 0 0 0 0 0 ¢ 52 0 0 -g €1}
1 -1 0 0 d -do0o 0 0 0 0 0 d& -& 0 0
0 0 1. -1 0 0 d dO0O 0 O0O0 0 0 d& -d
1 -1 0 0 0O O O 0 e —-e 0 0 - ¢ 0 0
o o 1 -1 0 0 O O O O e -e O 0 -e* ¢?
0O o O O O o0 O o 0O o o0 o 2 -2 0 0
0O 0 O O O O O o o o o0 O 0 0 2 =2
0 0 0 0 % % % % ok k% ok % * * * *
0 0 0 0 * * * * * % % % * * * *
where the components denoted by * are specified as follows
Miss = de(Z” +2p7), mse = —de(2" +2u"), mis, = T
migg = —d* i, misq = &, mis 1o = —d* ",
mis,, = dei, mhs,, = —de’’, mhs 3 = d*e(i” + ),

Mis 14 = —dz‘?()~+ +ut), m115,15 =d(—e*i + dz.u_)v misq6 = d(e?A" — dz/ﬁ)v

2, 2 _
migs =d"i, mhge =—d° 2%, mig, = dep,
Mg = —dept”, Mige = dept, Mig 1o = —dept”,
2, 2, 2, _
Mgy =d° (A + u), Migy, = —d" (2" +p), m116,13 =d(d"A —e*u),

Mig 14 = *d(dzﬁ —etut), migs = *dze([ + 1), Mig 16 = dze(;L+ + 4.

The coefficient matrix Mc = M2 = (mﬁ’J.)16X16 for a Type Il interface element, again with the normalization h = 1, is given by

Mc = M2 = (2.14)
d 1-d 0 0 ¢ =0 0 0 0 0 0 o 0
0o 1. 0 0 0 1 0 0 0 1 0 O 0 2 0 0
e 1-e 0 0 & 2 0 0 e 1-e 0 0 P 322 0
1. 0 0 0 000 01 0 0 o0 -1 0 0 0
0 0 di1-do 0 ¢ =290 0 0 0 0 0 £ L
0o 0 0 1 00 0 1 0 0 0 0 0 0 2
0 0 el-e 0 0 ¢ 520 0 e l-e O 0  £5% 22
0o 0 1. 0 0 0O O OO 0 I o0 0 0 -1 0
1 -1 0 0 d -d 0 0 0 0 0 ©0 d’ —d& 0 0
0 0 1 -1 0 0 d -d0 0 0 O 0 0 R
1 -1 0 0 e - 0 0 1 -1 0 0 e-11-e 0 0
0 0 1 -1 0 0 e - 0 0 1 -1 0 0 e2-1 1-¢?
0 0 0 0 0 0O 0O 0 0 O0 O 2 -2 0 0
0 0 0 0 0 0O 0O 0 0O O 0 O 0 0 2 -2
0 0 0 0 * * * % * * * * * * %
0 0 0 0 * % k% % * * * * * * *
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where the components denoted by x are specified as follows:

miss =4 +21°, Mmiss = —(4" +2u"), mlis, =du —eu,

Misg = —du" + ey, Misq =di —ep, Mis 10 = —du* +ep’,

mis =7, mils 1, = =", mis ;= (d+e)i +(d+3e)u,
mIIIS,M =—(d+e)i" —(d+3e)u, mis;s =71+ (d2 —eu, m'l’s,w =" - (d2 —eut,

mIIIG,S =(d-e), mige = —(d—e)i", mIIIGJ =Hu,

mige = —p1", mligg = (0, mig o= —p1",

mis,; = (d—e)(2” +2p), Misy, = —(d —e)2" — (2d - 2e)u’, mis,; = (dz —eX)i

Mmis 14 = *(dz —e)i" +ut, m1116,15 =—(d-e)i —(d-3eu, m’llﬁ‘lﬁ =(d—e)2" +(d—3e)u.

Foreachj=1,...,8, let V; ¢ R'® denote the j-th standard unit vector of form in (2.12). Then forj = 1,...,8, with V = V; in
(2.11), we can solve for C = C; and use it in (2.5) to form the j-th NCR Q;-IFE local basis function ®; r, for either Type I or Type
II interface element.

A typical NCRQ; local basis function W47 on a non-interface element is illustrated in Fig. 4. As a comparison, the local
NCRQ;-IFE basis functions ®4 on Type I and Type II interface elements are illustrated in Figs. 5 and 6, respectively. Note
that, while the second component of ¥, is zero, the second component of @41 is not completely zero because ®, is con-
structed to satisfy the interface jump conditions (2.6)-(2.9).

On each interface element T, the local NCRQ;-IFE space S}'I(T) is then given by

S, (T) = Span{®;r: j=1,...,8}. (2.15)
Then, the global NCR Q;-IFE space is defined accordingly as

Sh(Q) = {(I) e (I*(Q))*: @, €S}(T) for Te T}, a=in, Ve Th;/a ®|, ds= /BWTk |, ds, \ﬁ,k}
]

TinoT,
(2.16)
3. Properties of nonconforming rotated Q, IFE spaces
In this section, we discuss basic properties of NCR Q;-IFE basis functions and the corresponding IFE spaces.

3.1. Basic properties

Lemma 3.1 (Continuity). VT € T}, S (T) c C(T).

Proof. Note that every function ®r SL(T) is a piecewise polynomial; hence, it suffices to show ®; is continuous across the
line segment DE. The jump function [®;] is linear since @ satisfies the condition (2.9). Then, [®7] = 0 follows from (2.7).

Lemma 3.2 (Partition of unity). VT € T‘;I, the NCR Q;-IFE local basis functions ®;r € S}'l(T),j =1,...,8, fulfill

-
-
0.2 F\\ s
-

06 Ee _—""02

Fig. 4. The standard NCRQ; FE local basis function W, r: the left plot is for the first component y,, and the right one is for the second component 0.
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Fig. 5. The NCR 9, -IFE basis functions @4 r on the Type I interface element: the left plot is for the first component of ®,, and the right plot is for its second
component with 2* =20, 2~ =1,u* =2,u~ = 1,D = (0.6,0)',E = (0,0.7)".

Fig. 6. The NCRQ;-IFE basis functions ®4r on the Type Il interface element: the left plot is for the first component of @, r, and the right plot is for its second
component with 2* =20, 2~ = 1,u* =2, = 1,D = (0.6,0)",E = (0.3,1)".

1

jﬁ;d’j,T(X:Y) = (O)’ and ]ZZ(I)”(XJ) = ((1)) 3.1)

Proof. By direct calculations, we obtain the following

4 4 4 4
DGi=1 Y b;=0 G =0 ) d;=0
j=1 j=1 i= =

4 4 4 4
Sap=1 Y bo=0 >, =0, >d,=0
j=1 J=1 i= =

4 4 4 4
D=1 > b =0 > ¢i=0 3 d;=0
=1 j=1 j=1 i=

4 4 4 4
Zafz =1, be,z =0, Zcf.z =0, Zdﬁ =0
j=1 j=1 i= =

This proves the first equation in (3.1). A similar argument can be carried out to show the second equation. O
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The following lemma indicates that the NCR Q;-IFE basis functions are consistent with standard ACR©Q; finite element
basis functions.

Lemma 3.3 (Consistency). VT € TL, the NCR Q1 -IFE local basis functions ®;r € SL(T),j =1,...,8, and the standard NCR Q;-FE
basis functions ¥;r,j =1,...,8, are identical, i.e., ®j;r = ¥;r,j =1,...,8, under each of the following conditions:

o the elasticity parameters have no discontinuity, i.e., A" = 2", u* = u~;
e min{|T"|,|T"|} shrinks to zero, where |T°|, s = —, +, denotes the area of the polygon T°.

Proof. Consider the first case. Let A* =/~ and u* =y~ and solve the system (2.11). A direct calculation results in
jr=¥r,j=1,...,8.

Consider the second case. Without loss of generality, we assume [T~| — 0. Then for Type I interface element, we have
either d — 0, or e — 0; for Type II interface element, we have both d — 0 and e — 0. A direct calculation shows that

@ — ¥jr,j=1....,8 for both interface element Types. Also note that under this assumption, @;r becomes @;;. O

3.2. Unisolvency properties

We now consider the important unisolvency property: an IFE function is uniquely determined by constraints given either
at the nodes or edges together with suitably designed interface jump conditions. Note that all scalar IFE functions developed
for solving second order elliptic interface problems have the unisolvency property [50,21,23,51]. But for the planar elasticity
interface problem, both linear [18,24] and bilinear [25] IFE functions have the unisolvency property conditionally. In fact, a
counter-example was presented in [25] to show that there exist no linear IFE functions for a certain configuration of the
interface and the Lamé parameters. This limitation of linear and bilinear IFE functions for the planar elasticity interface prob-
lem hinders their applications. Therefore it is critical to know whether the nonconforming rotated Q, IFE functions also suf-
fer from this shortcoming. Fortunately, the answer is no.

For the Type I interface element, the determinant of matrix M{- can be written as follows

det(Mc) = P27 " + Py” jU" + Py [t + Pyi jim ++ PSA™ [ + Pt ju= + Py o (32)
where

Py = d’e? (8" — 3 — 6de + 3d’e + 2¢* — 3de’ + 3¢?) (2d” + 3d” — 6de — 3d’e + 8¢* -+ 3de” - 3¢%),

P, = de<9d7e +20e* — 18d°e(1 +e) + d’e(—16 + 18e + 27e?) + 4d* (5 + 15e* — 9e*) + 2d”e?(20 + 30e> + 9¢* — 9e*)
+de’ (24— 16¢* — 18¢* + 9e*) + d’e(~24 — 104¢” + 27¢%) ),

P, = 2d°e*(5d” — 6de + 5¢%)%,

P, =P, P, = (4d2 — 8d%e + 3d"e + 4e? + 6d%¢? — 3d°e? — 2de’ + 3d%e® — 3de4)

(4a!2 —2d% — 3d%e + 4e? + 6d%¢ + 3d°e? — 8de’ — 3d’e® + 3ae4),

P = 4de(5d2 — 6de + 5e2) (4d2 —5d% + 4e? + 6d%e? — 5de3),

2
P =2 (—4d2 +5d% — 4e? — 6d%e? + 5de3) ‘

Lemma 3.4. Assume that 0 < d <1 and 0 < e < 1. Then we have

Pi>0, forj=1,...7. (3.3)

Proof. We can verify (3.3) by direct computations. For instance,
P} = d*e? (%(3(1 —2e)* +3d*(1-d) +%d2 +%e(d2 +e?) +‘;3e(d - e)2>
1 2 a2 1, 3,5 5 3 o\ _ det
(E(Be—Zd) +3e‘(1—e) +te +§d(d +e )+§d(d—e) 1

Similar arguments apply to P},j =2,3,...,7. O
For Type II interface element, we note from (2.14) that,

det(Me) = P{A" ™ + Py jU" + Py ju + Pyit o + Pm i + Popt - + Py, (3.4)
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where

Pl = (5d79dz+11d3 —3d* +5e — 6de +d’e — 3¢ + de’ fe3+3e4>
(Sdf?»d2 —d® +3d" + 5e — 6de + d*e — 9e? + de* + 11¢3 73e4>,

P = 20d — 49d* +100d> — 101d* + 44d° + 29d° — 36d” + 9d° + 20e — 74de + 104d’e — 108d’e
+36d*e — 10d°e — 49¢® + 104de” — 146d”e? + 136d°e? — 29d*e? + 100e* — 108de’
+136d%e> — 124d°e® + 36d%e® — 101e* + 36de* — 29d’e* + 36d°e* — 18d*e* + 44e° — 10de’ + 29¢° — 36e” + 9e®,

P! =2(5d — 6d° + 5d° + 5e — 6de + d°e — 6€® + de” + 5¢%)%,

Pi—Pl

Pl = (4—5d+13d2 —11d® +3d* - 5e — 2de — d’e + 7€ — dé® + €3 73e4)

(475d+7d2 +d® —3d* —5e—2de — d’e + 13¢2 — de* — 11¢° +3e4),

p! :4(47 5d +10d* — 5d° — 5e — 2de — d®e + 10¢? — de? — 5e3)

(5d — 6% + 5d° + 5e — 6de + d’e — 6e? + de? +5€3>,

PY=2(-4+5d 108" + 5d° + 5e + 2de + d’e ~ 10¢* 1 de’ + 5¢°) "

Similarly, we can show the following lemma.

Lemma 3.5. Assume that 0 <d <1 and 0 < e < 1. Then we get

Pl>0, forj=1,...,7. (3.5)

A combination of Lemmas 3.4 and 3.5 implies that the matrix Mc is nonsingular for both Type I and Type Il interface ele-

ments. Consequently, we conclude that the NCR Q;-IFE functions developed in the previous section do have the unisolvency
property.

Theorem 3.1. The NCR Q;-IFE functions defined by (2.5) for the planar elasticity interface problem are uniquely determined by
the average values over edges of T as given in (2.6).

Remark 3.1. In contrast to the conditional unisolvency property of linear and bilinear IFE functions [25], Theorem 3.1 guar-
antees the availability of NCRQ;-IFE functions for any configuration of elasticity materials and interface location. This is a
significant advantage of our new IFE basis functions over those previously developed.

4. Interpolation and displacement Galerkin method
4.1. NCRQ;-IFE interpolation

To investigate the approximation capability of these new IFE spaces, we consider the IFE interpolation defined as follows.
In contrast to the conventional Lagrange type interpolation, the interpolation with ANCR Q;-IFE basis functions uses average
values over element edges for the given function.

Assuming that 7 is a Cartesian mesh of Q, we define the local interpolation operator I : H'(T) — S,,(T) by

8
ZCj(Dj_T if Te TL.
j=1
Lr(w) =<7 (4.1)
ZCj‘l’j_T if Te Tn,
j=1
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where
(x s, j=1,2,3,4. 4.2
<Cj+4> ‘e]| / ) ds, (4.2)
The global IFE interpolation operator I, : H' (Q) — S;(Q) is defined element by element as follows:
(Ihu)|; =Ir(w) VT € Ty (4.3)

Numerical experiments in Section 5 will show that the IFE interpolation function converges to the exact function optimally
as the mesh size tends to zero, and this confirms that the IFE spaces developed in this article also have the optimal approx-
imation capability like standard NCR Q;-FE spaces.

4.2. The NCR Q;-IFE Galerkin method

The optimal approximation capability of the NCRO;-IFE space constructed in Section 2 suggests that we can use it to
solve the planar elasticity interface problem (1.1)-(1.4).

Assume that u solves (1.1)-(1.4) and u|s € H*(¥¥),s = +, — Multiplying Eq. (1.1) by v € Hé(Q) and applying Green’s for-
mula on Q°,s = +, — leads to:

2ie(u) : €(v)dxdy + / A(V-u)(V - v)dxdy — / swn-vds— [ f-vdxdy, vveH)\Q) (4.4)
o o I [0}

where the inner-product of two tensors is defined by
Zeu V€V (4.5)
ij=1

Summing over s and applying the interface jump condition (1.4), we obtain the following weak form of the planar elasticity
interface problem:

/ 2u1€ (u) : € (v)dxdy + / (V- u)(V - v)dxdy / f.vdxdy, YveH\(Q). (4.6)
Q
Then the NCR Q;-IFE method in the displacement formulation is given as follows: Find u,, € S;(Q2) such that
/ 2ue(uy) : €(vy)dxdy + Z / ~uy)(V - vy)dxdy = / f. vydxdy, Vv, e Sh( ) (4.7)
TeTy TeTy

and

/uhds:/gds, Ve e &,
e e

where the MCRQ;-IFE space SJ(Q) is defined by

SHQ) = {q) € SHQ) : / ®ds=0ifeec 52}. (4.8)

5. Numerical experiments

In this section, we use numerical examples to demonstrate features of NCR Q;-IFE method. We investigate the accuracy of
both IFE interpolations and IFE solutions with different configurations of interface and Lamé parameters.

We remark that this NCR Q;-IFE Galerkin method can be implemented through the usual finite element procedure. Espe-
cially, our numerical experiments suggest that it is unnecessary to use the reduced integration [37] to assemble the algebraic
system for this method. In our computations, we use the usual 9-point (3 points in each direction) Gaussian quadrature in all
non-interface elements. In each interface element, we partition the two sub-elements formed by the interface into four tri-
angles and carry out integrations on each triangle with the usual 3-point quadrature rule. As demonstrated in the examples
presented later in this section, this straightforward implementation of the ACR Q;-IFE Galerkin method performs optimally
even if the elasticity material is nearly incompressible.

Let Q= (-1,1) x (—1,1) be the solution domain. In all the computations involving IFEs, we use Cartesian meshes
Tn,h > 0, which are formed by partitioning Q into N x N congruent squares of size h = 2/N. To simplify the notation, we
let Iyu;,i = 1,2 denote the i-th component of the IFE interpolation I u of a function u. Similarly, we use uy denote the i-th
component of the IFE solution wu, to the interface problem. Errors of an IFE approximation are given in the L*,[?, and
semi-H' norms. In the following error tables, rates of convergence are computed by applying the formulas:

U oy —ul\
In ( y 1 , =1,2 51
) " unzy —wl) 61
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for a specific norm | - ||, where v = Iyu; or vy = uy;. Errors in the L norm are defined by
[[0h — Ujll~ = ran( max |vg(x,y) — uj(xvy)|>7 j=12, (5.2)
€T
(xy)eTcT

where, again, vy = Iyu; or vy = uy;, and T consists of the 49 uniformly distributed points in T as illustrated in Fig. 7. The I?
and semi-H' norms are computed by suitable Gaussian quadratures.

The first planar elasticity interface problem to be considered has a curve interface I" that is a circle with radius ro = /8
subdividing Q into two sub-domains, denoted by Q™ and Q" i.e.,

Q ={xy) X+y <y}, Q ={xy) ¥ +y*>13}. (5.3)

The boundary function g and the load function f in the interface problem (1.1)-(1.4) are chosen such that the exact solution

u is as follows:
*,y) Ere .
(X’y)> - %r“Z an '
(*x,y)
y)

(5.4)

where oy = 5,0, = 7, and r = \/x% + y2. Note that this example was discussed in [25].

Example 5.1 (Compressible materials). In this experiment, we test the accuracy of IFE interpolations and IFE solutions for
compressible elastic materials, i.e., v* < 0.5 and v* is not close to 0.5.

We test three configurations of Lamé parameters which have been investigated by bilinear IFE method in [25]. The first
configuration is for a moderate discontinuity in the Lamé parameters, i.e., A" =5, = 1, u* = 10, u~ = 2, and Poisson’s ratio
v* = 1/3. Corresponding errors in IFE interpolations and IFE solutions are listed in Table 1. The second one is for a larger dis-
continuity in Lamé parameters, i.e., 27 = 100,42~ = 1, u* = 200, u~ = 2, and Poisson’s ratio in this case is v* = 1/3. Corre-
sponding errors are listed in Table 2. The third one is configured by flipping the Lamé parameters over the sub-domains
Q™ and Q" in the second experiment, ie., /" =1,1" =100, u* =2, 4~ =200, and Poisson’s ratio in this case is still
vt = 1/3. Errors of IFE interpolations and IFE solutions are listed in Table 3.

The data in Tables 1-3 suggest that both IFE interpolations and IFE solutions converge optimally in all three norms, i.e.,

Tt — till2 + hiIat; — wil,p ~ O(R?), i=1,2, (5.5)

i — ill,2 + hlug — il ~ O(R), i=1,2. (5.6)
Another interesting observation is that the NCR O, -IFE solution seems to converge optimally in the L™ norm, because data in
these tables suggest

i — ]|~ ~ O(h?), i=1,2. (5.7)

Comparing these results with those of linear and bilinear IFE method in [25], we would like to note that while linear and
bilinear IFE solutions also converge with optimal rates in L? and H' norms, they generally have a sub-optimal convergence
rate in the L™ norm.

Example 5.2 (Nearly incompressible materials). In this experiment, we test the NCR Q;-IFE method for elasticity interface
problems with nearly incompressible materials (v ~ 0.5).

° ° ° . °

° ° ° ° ° ° [

° ° ° ° ° ° °

° ° ° ° ° ° [

° L] o L] L] L] [ ]

° ° ° ° ° ° [}
° . ° . °

Fig. 7. Points selected to calculate the discrete L™ norm on T.
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First, we test the problem with a moderate discontinuity in Lamé parameters, i.e., 2" = 20,2~ = 1, u* = 0.02, u~ = 0.001.
In this case, Poisson’s ratio v* ~ 0.4995. We solve this interface problem on the same Cartesian meshes by both the bilinear
IFE method proposed in [25] and the NCR Q;-IFE method. Corresponding errors of the IFE solutions are presented in Table 4.
Errors of the approximations to the first component u; generated by these two IFE methods are also compared in Fig. 8,
where the convergence patterns are illustrated more intuitively. The behavior of the approximations to the second compe-
tent u, is similar; hence, we omit the related plots. Then, we compare these two IFE methods with a larger jump in Lamé
parameters, i.e., 2* =200, =1, u" = 0.2, u~ = 0.001, and v* ~ 0.4995. Corresponding errors are listed in Table 5.

In our computations for nearly incompressible materials, the NCR Q;-IFE solution u, maintains the optimal convergence
in the L, [?, and H' norms. We also note that the NCRQ; solution demonstrates a kind of super-convergence behavior in H'
norm without any post-processing when the mesh size h is relatively large, but it returns to the usual O(h) order as the mesh
becomes finer. Notice that this sort of super-convergence is not visible for compressible materials (see Tables 1-3, for in-
stance) but apparent only for nearly incompressible materials (see also Table 9) at least from our numerical experiments.
Also this phenomenon seems to be new compared to the usual super-convergence phenomena observed with suitable
post-processing.

In comparison, these experiments clearly demonstrate that the bilinear IFE method suffers the “locking” phenomenon as
expected. As the mesh size becomes small, the rates at which the bilinear IFE solution approaches the exact solution are far
below the optimal rates in the L*,L?, and H' norms (see data in Tables 4 and 5 and illustrations in Fig. 8). In particular, we

g:rbolres 1of the ANCRQ;-IFE solution u,, with 2" =5, A~ =1, u* = 10, u~ = 2 for Example 5.1. The materials are compressible such that v* = 1/3.
N Ihu; —uq Inuy —uy
[l rate I lle, rate [ lu, rate -l rate Il Il rate [ lu, rate
10 5.19E -2 1.76E - 2 3.79E -1 1.98E -1 4.52E -2 991E -1

20 1.46E — 2 1.83 4.46E -3 1.98 191E-1 0.99 5.98E — 2 1.72 1.17E -2 1.96 5.06E — 1 0.97
40 3.89E -3 1.91 1.12E-3 2.00 9.57E - 2 1.00 1.65E -2 1.86 293E-3 1.99 2.55E -1 0.99
80 1.00E -3 1.96 2.80E - 4 2.00 4.79E - 2 1.00 4.32E -3 1.93 7.35E -4 2.00 1.27E -1 1.00
160 2.54E -4 1.98 7.00E — 5 2.00 2.40E -2 1.00 1.11E-3 1.97 1.84E — 4 2.00 6.37E -2 1.00
320 6.40E — 5 1.99 1.75E-5 2.00 1.20E -2 1.00 2.80E - 4 1.98 4.59E - 5 2.00 3.19E -2 1.00
640 1.61E-5 1.99 4.38E -6 2.00 5.99E -3 1.00 7.05E -5 1.99 1.15E-5 2.00 1.59E -2 1.00

Uip — U Upp — Uy

N . rate -, rate [ 1n, rate -l rate -1, rate [ 1n, rate

10 576 E—-2 228E-2 420E-1 1.98E—-1 568E—-2 1.05E-0

20 1.79E-2 1.69 567E-3 2.00 209E-1 1.01 590E-2 1.74 144E-2 2.00 537E-1 0.96
40 5.04E-3 1.83 142E-3 2.00 1.04E-1 1.00 1.72E-2 1.78 3.62E-3 2.00 270E-1 0.99
80 134E-3 1.91 354E-4 2.00 522E-2 1.00 477E-3 1.85 9.05E-4 2.00 135E-1 1.00
160 344E-4 1.96 884E-5 2.00 261E-2 1.00 1.25E-3 1.93 226E-4 2.00 6.77E—-2 1.00
320 873E-5 1.98 221E-5 2.00 131E-2 1.00 322E-4 1.96 566 E—-5 2.00 338E-2 1.00
640 220E-5 1.99 552E-6 2.00 6.53E-3 1.00 815E-5 1.98 141E-5 2.00 1.69E-2 1.00

Table 2

Errors of the NCR Q;-IFE solution u, with 2" = 100,i~ = 1, u* = 200, u~ = 2 for Example 5.1. The materials are compressible such that v* =1/3.
N Iyuy —uy Ihupy —up

[ Il rate - lle, rate [ In, rate -l rate -, rate [ In, rate

10 2.59E -3 1.20E -3 2.52E -2 9.88E -3 2.26E -3 4.97E -2
20 9.70E - 4 1.41 3.16E - 4 1.93 1.36E — 2 0.89 2.99E -3 1.72 5.84E — 4 1.96 2.54E - 2 0.97
40 3.46E — 4 1.49 829E -5 1.93 713E-3 0.93 8.24E -4 1.86 147E - 4 1.99 1.28E - 2 0.99
80 9.64E — 5 1.84 213E-5 1.96 3.66E — 3 0.96 2.16E — 4 1.93 3.69E - 5 2.00 6.41E - 3 1.00

160 2.55E -5 1.92 5.44E - 6 1.97 1.86E -3 0.98 5.54E -5 1.97 9.24E - 6 2.00 321E-3 1.00
320 6.55E — 6 1.96 1.37E-6 1.99 9.37E -4 0.99 1.40E - 5 1.98 231E-6 2.00 1.60E - 3 1.00
640 1.68E — 6 1.96 345E -7 1.99 4.70E — 4 0.99 3.52E-6 1.99 5.78E -7 2.00 8.02E — 4 1.00

Uy — Ut Upp — Uz
N Il rate [, rate [ In, rate [l rate I, rate [, rate
10 3.54E -3 1.80E -3 2.65E -2 9.88E -3 291E-3 5.26E — 2
20 1.15E -3 1.63 4.58E — 4 1.97 1.44E -2 0.87 295E -3 1.74 7.38E -4 1.98 2.70E - 2 0.96
40 342E -4 1.74 1.22E—-4 1.90 7.65E -3 0.92 8.59E -4 1.78 1.86E — 4 1.99 1.36E -2 0.99
80 112E-4 1.61 3.07E-5 1.99 3.95E -3 0.95 238E-4 1.85 4.64E - 5 2.00 6.82E — 3 1.00

160 3.20E-5 1.81 7.66E — 6 2.00 2.01E-3 0.98 6.27E -5 1.93 1.16E - 5 2.00 341E-3 1.00
320 8.57E -6 1.90 1.90E - 6 2.01 1.01E-3 0.99 1.61E-5 1.96 2.90E - 6 2.00 1.70E -3 1.00
640 2.24E -6 1.94 4.79E -7 1.99 5.08E — 4 0.99 4.07E -6 1.98 7.24E -7 2.00 8.52E -4 1.00
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Table 3
Errors of the NCR Q;-IFE solution w, with 2~ =1, 1~ = 100, u* = 2, u~ = 200 for Example 5.1. The materials are compressible such that v* = 1/3.

N Ihuy —ug Thuy —uy

-1l rate [N, rate [ I, rate I, rate I lle, rate [ lu, rate
10 2.59E -1 8.79E -2 1.89E -0 9.88E -1 2.26E -1 4.95E -0
20 7.32E -2 1.83 2.23E-2 1.98 9.53E -1 0.99 2.99E -1 1.72 5.82E -2 1.96 2.53E-0 0.97
40 1.94E - 2 1.91 5.58E -3 2.00 4.78E — 1 1.00 8.24E - 2 1.86 1.47E - 2 1.99 1.27E-0 0.99
80 5.01E -3 1.96 1.40E - 3 2.00 2.29E -1 1.00 2.16E -2 1.93 3.67E -3 2.00 6.37E — 1 1.00
160 1.27E-3 1.98 3.49E -4 2.00 1.20E - 1 1.00 5.54E -3 1.97 9.19E - 4 2.00 3.19E -1 1.00
320 3.20E -4 1.99 8.73E-5 2.00 5.98E — 2 1.00 1.40E - 3 1.98 2.30E -4 2.00 1.59E - 1 1.00
640 8.03E-5 1.99 2.18E-5 2.00 2.99E -2 1.00 3.52E -4 1.99 5.74E - 5 2.00 7.97E -2 1.00

Ujp — U Upp — Uz
N Il rate I, rate [ I, rate e, rate Il e, rate [ lu, rate
10 2.88E -1 1.11E-1 2.07E-0 9.87E - 1 2.82E -1 523E-0
20 8.95E — 2 1.67 2.77E -2 2.00 1.04E -0 0.99 2.95E -1 1.74 7.16E — 2 1.98 2.69E -0 0.96
40 2.52E -2 1.83 6.92E - 3 2.00 521E-1 1.00 8.58E — 2 1.78 1.80E - 2 2.00 135E-0 0.90
80 6.68E — 3 1.91 1.73E-3 2.00 2.61E -1 1.00 2.38E-2 1.85 4.50E - 3 2.00 6.77E — 1 1.00
160 1.72E -3 1.96 4.32E - 4 2.00 1.30E - 1 1.00 6.27E -3 1.93 1.12E-3 2.00 3.38E-1 1.00
320 437E -4 1.98 1.08E - 4 2.00 6.51E — 2 1.00 1.61E-3 1.96 2.81E -4 2.00 1.69E — 1 1.00
640 1.10E - 4 1.99 2.70E -5 2.00 3.26E - 2 1.00 4.07E - 4 1.98 7.02E -5 2.00 8.46E — 2 1.00

Table 4
Comparison of errors in the bilinear IFE solution and the NCR Q;-IFE solution in “Locking” test with 2* = 20, 4™ =1, u* = 0.02, u~ = 0.001 for Example 5.2. The
materials are nearly incompressible such that v+ ~ 0.4995.

N Uy — Uy Upp — Uy

I rate -1l rate [ |, rate -1l rate -1, rate [ |, rate
Bilinear IFE method
10 218E-2 1.89E -2 128 E-1 418 E -2 3.00E-2 249E -1
20 153 E-2 0.51 1.27E -2 0.57 939E-2 0.44 244 E -2 0.51 2.06 E—-2 0.54 1.63E-1 0.62
40 874E-3 0.80 7.02E-3 0.85 582E-2 0.69 142E-2 0.78 1.20E -2 0.78 9.09E-2 0.84
80 414E-3 1.08 294E-3 1.26 3.18E-2 0.87 648 E-3 1.13 488 E-3 1.29 437 E-2 1.06

160 185E-3 1.17 9.99E -4 1.56 1.62E-2 0.98 234E-3 1.47 1.68E—-3 1.54 216 E-2 1.02

320 847E—-4 1.12 355E-4 1.49 891 E-3 0.86 1.62E-3 0.53 596 E—-4 1.49 139E-2 0.63
640 701 E—-4 0.27 196 E—-4 0.86 6.51E-3 0.45 951E—-4 0.77 293 E-4 1.02 854E-3 0.70
1280 375E-4 0.90 1.03E-4 0.93 429E-3 0.60 416 E—-4 1.19 150E-4 0.97 514E-3 0.73
Nonconforming rotated Q, IFE method

10 176 E—1 508 E-2 6.50E—1 9.69E-2 392E-2 536 E-1

20 621 E-2 1.50 1.70E-2 1.57 291E-1 1.16 744 E -2 0.38 148 E—-2 141 3.77E-1 0.51
40 260E-2 1.26 578E-3 1.56 145E-1 1.01 423 E-2 0.81 527E-3 1.49 218E-1 0.79
80 8.02E-3 1.70 165E-3 1.81 580E-2 1.32 146 E—-2 1.54 153E-3 1.78 955E-2 1.19

160 214E-3 1.91
320 577E—-4 1.92
640 143 E-4 2.01
1280 383E-5 1.90

440E -4 191
1.15E—-4 1.94
291E-5 1.98
733E-6 1.99

224E-2 1.37
9.07E-3 1.30
386E-3 1.23
1.73E-3 1.16

439E-3 1.73
1.20E-3 1.87
311E-4 1.95
8.08E-5 1.94

412E-4 1.90
1.08E—-4 1.94
274E-5 1.97
692E-6 1.99

382E-2 1.32
1.57E-2 1.28
6.73E-3 1.22
3.02E-3 1.16

have not even observed the bilinear IFE solution to have any obvious convergence pattern in the L* norm. Therefore, these
experiments strongly suggest that the NCR O;-IFE method is more reliable because of its desirable “locking-free” feature for
solving the elasticity interface problems.

We now consider another interface problem described by (1.1)-(1.4) in which the interface is a straight line. Specifically,
we assume that the interface I" is a vertical straight line x = x, that divides the solution domain Q = (-1,1) x (-1,1) into

two sub-domains, denoted by Q and Q7 i.e.,
Q ={(xy) €Q:x<x}, Q" ={xy) €Q:x>x} (5.8)

The boundary condition function g and the load function f in this interface problem are chosen such that the exact solution u
is as follows:

(u;(x,w) (e (X x0) cOs(2xy) o
ur(x,y u(xy)/) i (X — Xo) cos(2xy) '
- - 5.9
u(x,y) (uz(x,y)) uf(x,y)\ [ 7z (X —X0) €0 (X +X0)y) o (5.9)
(UQ(XJ)) k(X = Xo) cOs (X + Xo)y) et
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Fig. 8. Comparison of errors of the bilinear IFE and the NCR Q; -IFE solutions to u; for Example 5.2. From left to right: L norm error, L* norm error, H' norm
error.

Table 5
Comparison of errors in the bilinear IFE solution and the NCR Q;-IFE solution in “Locking” test with 2* = 200, 2~ = 1, u* = 0.2, u~ = 0.001 for Example 5.2. The
materials are compressible such that v* ~ 0.4995.

N Ugp — Uy Upp — U

- lle., rate -1l rate ||y, rate -l rate -1l rate | |p, rate
Bilinear IFE method
10 3.74E -3 237E-3 2.05E -2 4.18E -3 3.11E-3 2.55E -2
20 4.07E - 3 —-.12 1.69E - 3 0.49 211E-2 —.04 4.40E -3 -.07 2.20E -3 0.49 1.99E - 2 0.36
40 3.66E — 3 0.15 1.49E -3 0.18 2.03E -2 0.05 3.64E -3 0.28 141E -3 0.65 1.57E -2 0.35
80 3.53E-3 0.05 1.24E - 3 0.27 1.97E - 2 0.05 3.12E-3 0.22 8.96E — 4 0.65 1.37E -2 0.19
160 1.93E -3 0.87 6.00E — 4 1.05 1.27E -2 0.63 1.59E - 3 0.97 441E -4 1.02 1.14E - 2 0.27
320 6.97E — 4 1.47 2.22E -4 1.44 6.05E — 3 1.07 8.34E — 4 0.93 1.64E — 4 1.43 6.35E -3 0.84
640 3.83E-4 0.86 6.48E — 5 1.77 3.58E -3 0.76 3.26E -4 1.36 6.18E -5 1.41 4.04E - 3 0.65
1280 1.93E-4 0.99 242E -5 1.42 244E -3 0.55 1.61E -4 1.02 2.83E-5 1.13 2.88E -3 0.49
Nonconforming rotated Q; IFE method
10 6.43E — 2 1.50E — 2 2.19E -1 2.99E -2 7.01E -3 1.08E — 1
20 211E-2 1.61 591E -3 1.34 1.01E-1 1.12 249E -2 0.14 3.83E-3 0.87 1.03E -1 0.06
40 1.51E -2 0.48 3.15E -3 0.91 7.99E -2 0.34 2.15E -2 0.21 2.71E -3 0.50 1.05E — 1 —-.03
80 6.20E - 3 1.29 1.40E - 3 1.17 4.32E -2 0.89 1.23E-2 0.81 1.26E - 3 1.10 6.59E — 2 0.67
160 1.87E -3 1.73 439E - 4 1.68 1.75E -2 1.30 411E-3 1.58 4.01E -4 1.65 2.91E -2 1.18
320 527E -4 1.83 117E -4 1.91 6.60E — 3 1.41 1.15E -3 1.83 1.08E - 4 1.90 1.11E -2 1.39

640 1.45E - 4 1.86 3.04E -5 1.94 2.44E -3 1.43 3.05E -4 1.92 2.82E-5 1.93 413E-3 1.43
1280 3.77E -5 1.95 7.73E -6 1.98 8.94E — 4 1.45 7.90E -5 1.95 7.18E -6 1.97 1.49E -3 1.47

Example 5.3 (Solving a group of interface problems on the same mesh). In this experiment, to demonstrate the advantage and
robustness of the NCR O, - IFE method, we use one mesh to solve 5 elasticity interface problems whose interfaces are straight
lines located at

T T T T
700’ 200" 200°100°
respectively.

The Cartesian mesh formed in Q = (—1,1) x (-1, 1) for this experiment has the mesh size h = 2/320. The Lamé param-
eters of the elasticity interface problem in this experiment are A" =2,/~ =1, u* = 3, 4~ = 2 representing a typical com-
pressible material configuration with a moderate jump. Errors of IFE solutions generated on this fixed mesh to these
interface problems are listed in Table 6. Since the data presented in this table clearly indicate that IFE solutions to all of these
interface problems have comparable accuracy in the L*, L2, and semi-H' norms even though the interfaces in these problems
are at different locations, the IFE method proposed here is potentially advantageous in applications that require to solve elas-
ticity interface problems with a sequence of material interfaces.

In addition, for those problems whose straight line interfaces are at

X T T T T
®~ 7100" 200°200°100°
respectively, we note that the mesh contains interface elements and IFE functions developed in Section 2 are used in gen-
erating solutions to these interface problems. However, for the problem whose interface is at xo = 0, the interface coincides

Xo =
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Table 6
Errors of the NCRQ;-IFE solutions u, for problems whose interfaces are at different locations for Example 5.3.The mesh size is h = 2/320 and the Lamé
parameters are A* =2,4" =1, u* =3, u~ = 2. The materials are compressible such that v© = 0.2,v~ ~ 0.1667.

Interface location: Uy — Uq Upp — Uy

-1l I, [ I, Il Il Il [ lu,
—m/100 1.1777E -5 2.5923E -6 1.7824E -3 2.4343E -5 7.3793E - 6 4.3019E -3
—7/200 1.1887E -5 2.6252E - 6 1.8043E -3 2.4573E - 5 7.4702E — 6 4.3544E — 3
0 1.1997E - 5 2.6583E - 6 1.8263E - 3 2.4803E — 5 7.5610E — 6 4.4070E - 3
/200 1.2107E -5 2.6915E - 6 1.8483E -3 2.5034E - 5 7.6520E — 6 4.4597E -3
/100 1.2218E -5 2.7249E - 6 1.8703E -3 2.5264E — 5 7.7430E - 6 45123E -3

Fig. 9. Different meshes are compared for the Thin Layer Interface Problem 5.4. The left plot is a body-fitting triangular mesh which has 5128 triangles. The
right plot is a non-body-fitting Cartesian mesh which contains 400 rectangles.

with edges of those elements besides the vertical interface line x = 0. In this case, the mesh has no interface elements so that
the NCR Q;-IFE method is in fact the MCR Q;-FE method according to the consistency of the NCR Q;-IFE functions as stated in
Lemma 3.3. The errors data in Table 6 confirm that the IFE method can perform as accurately as the FE method, but the IFE
method has the advantage that its mesh does not have to be generated according to the interface location.

Example 5.4 (IFE solution for a problem with a boundary layer). In this experiment, we assume that a straight line interface is
located at xo = —1 + 7/300. Since the interface x = —1 + 7/300 is very close the left boundary of Q, the sub-domain Q" is a
very thin layer beside the left boundary of Q.

If we use the standard FE method to solve this interface problem, then the body-fitting restriction requires the elements
inside Q™ and around the interface to be very small so that they can be placed entirely inside or outside of the thin layer, but
not to be cut by the interface. Generating a body-fitting mesh for a solution domain with a boundary layer is not only com-
plicated, but also leads to an unstructured mesh with a large number of degrees of freedom usually. Since an IFE method
allows interfaces to be embedded in finite elements, a simple Cartesian mesh with much less degrees of freedom can be used
for solving the same interface problem in which one of the materials forms a thin layer of the solution domain. Fig. 9 provides
a comparison of these two types of meshes for the thin layer interface problem. The unstructured mesh in Fig. 9 has 5128
triangular elements. When this mesh is used together with the standard linear FEs to solve our elasticity interface problem,
the global degrees of freedom in the FE system is 5402. On the other hand, the structured mesh in Fig. 9 has only 400 rect-
angular elements, on which the global degrees of freedom in the NCR Q;-IFE method are 1600, much less than those of the FE
method. Most importantly, the error data in Table 7 demonstrate that the accuracies of solutions obtained by smaller IFE
systems and by the much larger FE system are not much different. Therefore, the IFE method has its advantage over the
FE method for interface problems with thin layers.

We then investigate the convergence of the NCR O;-IFE method for thin layer case in which the interface is the vertical
line at xo = —1 + 7/300. We test for both compressible (/¥ =2,2~ =1, u* =3, u~ = 2,v* = 0.2,v- ~ 0.1667) and the nearly
incompressible (1* = 2000, 2~ = 1000, u* =3, 4~ =1, v* ~ 0.4993, v~ ~ 0.4995) materials. Errors of IFE solutions are listed
in Tables 8 and 9. These numerical results indicate that the ACR Q;-IFE method can solve the thin layer elasticity interface
problem optimally in L, L? and H' norms for both compressible and nearly incompressible materials. In Fig. 10, we plot
error data in different norms for the incompressible material configuration for an illustration of the convergence behavior.

We note that, in the computations on those meshes whose mesh sizes are
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Table 7
Comparison of errors of the linear FE and NCR Q;-IFE solutions u, for the Thin Layer Example 5.4. The Lamé parameters are 2* =2,2" = 1,u* =3, 4~ =2 s0
that the material is compressible such that v* =0.2,v~ ~ 0.1667.

Method Uy — Uy Upp — Uy
[l I Il [ -l Il Il [ u,
FE method 3.61E-4 238E-4 7.17E -3 7.16E — 4 5.53E -4 1.89E -2
IFE method 8.70E — 4 197E -4 8.42E -3 1.96E - 4 5.34E - 4 2.20E -2
Table 8
Errors of the NCR Q;-IFE solution u, with 2" =2, 2~ = 1,u* = 3, u~ = 2 for Example 5.4. The materials are compressible such that v* = 0.2,v~ ~ 0.1667.
N Uiy — Uy Upp — U2
I, rate [N, rate [ I, rate 1l rate -1z, rate [ |, rate
10 3.15E-3 7.52E -4 1.68E — 2 7.40E -3 2.03E -3 4.38E -2
20 8.70E — 4 1.86 197E -4 1.94 8.42E -3 1.00 1.96E - 3 1.92 5.34E - 4 1.93 2.20E -2 1.00
40 237E-4 1.87 5.07E-5 1.95 4.22E -3 1.00 5.36E — 4 1.87 138E-4 1.95 1.10E - 2 1.00
80 7.09E -5 1.74 130E-5 1.97 2.12E-3 0.99 153E-4 1.81 3.51E-5 1.97 5.52E -3 0.99

160 232E-5 1.61 3.24E-6 2.00 1.07E -3 0.99 461E -5 1.73 8.76E — 6 2.00 2.78E-3 0.99
320 5.95E - 6 1.97 8.18E -7 1.98 5.34E - 4 1.00 128E-5 1.85 2.22E-6 1.98 1.39E-3 1.00
640 1.48E - 6 2.01 2.04E -7 2.00 2.67E - 4 1.00 3.38E-6 1.92 5.54E -7 2.00 6.94F — 4 1.00

Table 9

Errors of the NCRQ;-IFE solution u, with i* = 2000, 2~ = 1000, u* = 3,u~ =1 for Example 5.4. The materials are nearly incompressible such that
vt~ 0.4995,v" ~ 0.4993.

N Uy — Up Upp — Uz

e, rate I, rate [ In, rate Il rate I I, rate [ I, rate
10 7.63E -2 6.63E — 2 2.56E -1 8.86E — 2 6.98E — 2 2.89E -1
20 1.83E -2 2.06 1.69E — 2 1.97 6.76E — 2 1.92 2.26E -3 1.97 1.78E - 2 1.98 7.71E -2 1.91
40 4.69E -3 1.96 441E -3 1.94 1.93E -2 1.81 5.66E — 3 2.00 4.52E -3 197 2.26E -2 1.77
80 1.23E-3 1.93 1.19E -3 1.89 6.58E — 3 1.55 145E -3 1.96 1.17E-3 1.95 8.72E -3 137
160 3.23E-4 1.93 3.20E -4 1.90 281E-3 1.23 3.71E -4 1.97 3.07E -4 1.94 4.05E -3 1.11
320 8.00E - 5 2.01 7.88E -5 2.02 1.29E - 4 1.12 9.23E -5 2.01 7.59E -5 2.01 1.74E - 3 1.22
640 1.98E -5 2.01 1.95E -5 2.02 6.31E -4 1.03 230E-5 2.01 1.88E -5 2.01 8.39E -4 1.05

1280 4.99E - 6 1.99 491E -6 1.99 3.16E - 4 1.00 5.76E — 6 2.00 4.74E - 6 1.99 417E -4 1.01

10° . . 10° : :
107 E 10" 1
2| -2
10 3 10 E|
El N
s k3
L 10° E = 10° E
g 2
) )
1074 1 107 1
-5 -5
10 —+— Infinite norm error 3 10 —+— Infinite norm error [}
—O—" L2 norm error —O—" L2 norm error
—+— H1 norm error —+—— H1 norm error
6| L T -6 L T
10 -3 -2 -1 0 10 -3 -2 -1 0
10 10 10 10 10 10 10 10
h h

Fig. 10. Plots of errors of IFE solutions uy, for the Thin Layer Example 5.4 in different norms. The left and right plots are for the first component u; and the
second component u,, respectively.

h =2/10,2/20,2/40,2/80,2/160,

the interface x = —1 + /300 is in the first layer of elements adjacent to the left boundary of Q = (-1,1) x (—1,1). But on
those meshes whose mesh sizes are 2/320 and smaller, the interface line is not in the first layer of elements on the left any-
more. This property demonstrates the robustness of this IFE method from the point of view of the interface location in a
mesh.



T. Lin et al./Journal of Computational Physics 247 (2013) 228-247 245

Table 10

Errors of nonconforming rotated Q; IFE solution wu, for Example 5.5 with 2* = 2000, .~ = 1000, u* = 3,u” =1, v* ~ 0.4993, and v~ ~ 0.4995.
N Urp — Uy Upp — Up

-1l rate I, rate [ I, rate Il rate -1l rate [, rate

10 8.11E -1 7.05E -1 2.76E -0 1.20E-0 7.25E -1 3.21E-0
20 2.01E-1 2.01 1.78E -1 1.99 711E -1 1.96 2.73E -1 2.13 1.82E -1 2.00 8.25E — 1 1.96
40 4.98E -2 2.01 4.46E — 2 2.00 1.85E — 1 1.94 6.78E — 2 2.01 4.54E -2 2.00 2.17E -1 1.92
80 1.24E -2 2.00 1.12E-2 2.00 523E-2 1.82 1.69E — 2 2.00 1.14E -3 2.00 6.37E -2 1.77

160 3.11E-3 2.00 2.79E -3 2.00 1.79E - 2 1.55 4.24E -3 2.00 2.84E -3 2.00 230E -2 1.47
320 7.77E — 4 2.00 6.98E — 4 2.00 7.54E -3 1.24 1.06E - 4 2.00 7.10E - 4 2.00 1.01E -2 1.19
640 1.94E - 4 2.00 1.74E - 4 2.00 3.58E-3 1.08 2.65E — 4 2.00 1.77E - 4 2.00 4.85E -3 1.06
1280 4.86E — 5 2.00 4.36E -5 2.00 1.76E -3 1.02 6.62E — 5 2.00 443E -5 2.00 2.40E -3 1.01

error of u ,
S
L
error of u,
S

10 4 10 4
-4 4|
10 —#— Infinite norm error [§ 10 204 —#— Infinite norm error [§
—O—" L2 norm error o —O= " L2 norm error
—+— H1 norm error —+— H1 norm error
107 -3 = = 0 107 -3 s - 0
10 10 107 10 10 10 107 10
h h

Fig. 11. These plots are errors of IFE solutions uy, in different norms for Example 5.5. The left plot is for the first component u; and the right plot is for the
second component u5.

From the errors in H' norm for a nearly incompressible case in Table 9, one can observe a kind of super-convergence
behavior with coarse meshes, but the convergence rate tends to be an optimal O(h) order as the meshes become finer. This
phenomenon is also observed in the nearly incompressible case of Example 5.2.

Example 5.5 (Reduced quadrature is unnecessary on rectangular meshes). Even though a reduced quadrature procedure is
used to prevent the numerical locking for the NCR Q;-FE method on general quadrilateral meshes [37], this example intends
to demonstrate that, on rectangular meshes, both the ANCR Q;-FE and NCR O;-IFE methods without any special quadrature
procedure do not seem to have the locking shortcoming.

In this example, the straight line interface is x = 1/640. Nearly incompressible materials are chosen such that
7 =2000,2" =1000,u" =3,u =1, v =~ 0.4993, and v~ ~ 0.4995. The error data listed in Table 10 demonstrate that
the NCR Q;-IFE method converges optimally in the L*,[* and H' norms even though the standard quadrature procedures
described at the beginning of this section are used in all computations to generate these numerical results. Plots in
Fig. 11 further illustrate the convergence features of the NCR O;-IFE method. Again, we remark that the NCR Q;-IFE method
possesses a certain superconvergence in the H' norm on coarse meshes, but on finer meshes, it converges at the optimal or-
der dictated by the polynomials used in this method. Furthermore, the mesh corresponding to N = 1280 has no interface
elements and the NCR Q,-IFE solution produced on this mesh is the NCR Q;-FE solution because of the consistency of the
NCRQ;-IFE functions stated in Lemma 3.3. These data clearly suggests that, both the NCR Q;-FE and NCR Q;-IFE methods
are locking free on rectangular meshes without using any special quadrature procedure.

6. Conclusion

In this article, we have proposed a new IFE method based on the ACRQ; finite element for solving planar elasticity inter-
face problems with discontinuous Lamé parameters. This method can be used on Cartesian meshes even if the material inter-
face is nontrivial. We prove that the nonconforming IFE basis functions can be constructed for any configuration of the
elasticity materials and interface geometry. Our numerical experiments indicate that the NCR Q;-IFE solution has the opti-
mal convergence in L*,H' and L* norms. The method is robust in the sense that it does not suffer from the dreaded volume
“locking”. This IFE method can solve a sequence/group of interface problems by one mesh so long as their interface are not
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drastically different in topology. In addition, this IFE method can use simple Cartesian meshes to effectively and reliably
solve interface problems with thin boundary layers. We note that there have been published results [36] concerning the
NCRQ; finite element methods for the 3D elasticity system, but, to our best knowledge, no published results yet for using
NCR Q;-IFE to solve elasticity interface problems. The ideas in this article seem to be readily extendable to the 3D case; how-
ever, classifying the location of interface relative to the faces of a cubic element is an issue far more complicated than its 2D
counterpart. It is therefore an interesting future research topic to extend this nonconforming rotated IFE method to the three
dimensional elasticity interface problems.
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