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Immersed finite element method of lines for moving
interface problems with nonhomogeneous flux jump

Tao Lin, Yanping Lin, and Xu Zhang

Abstract. This article presents an immersed finite element method of lines
for solving parabolic moving interface problems with a non-homogeneous flux
jump. The immersed finite elements are used for spatial discretization, which
allow the material interface to be embedded in the interior of elements in the
mesh. This feature makes it possible to employ the method of lines for solving
a moving interface problem over a fixed solution mesh. Numerical experiments
are provided to show features of this new method.

1. Introduction

We consider the following parabolic moving interface problem:

(1.1)

⎧⎨
⎩

ut − (βux)x = f(t, x), x ∈ Ω, t ∈ (0, Tend],
u(t, x) = g(t, x), x ∈ ∂Ω, t ∈ (0, Tend],
u(0, x) = u0(x), x ∈ Ω.

Here Ω ⊂ R is an open interval, and for the sake of simplicity, we assume that there
is only one interface point α(t) moving inside Ω. This point separates Ω into two
sub-intervals Ω−(t) and Ω+(t) such that Ω = Ω−(t)∪Ω+(t)∪{α(t)} with Ω−(t) on
the left hand side of α(t). The diffusivity coefficient β(t, x) is discontinuous across
the interface α(t). Without loss of generality, we assume that it is a piece-wise
constant function defined as follows:

(1.2) β(t, x) =

{
β−, x ∈ Ω−(t),
β+, x ∈ Ω+(t).

Consequently, the solution u is assumed to satisfy the following nonhomogeneous
interface jump conditions:

[u]|α(t) = 0,(1.3)

[βux]|α(t) = Q(t).(1.4)
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The model problem (1.1)-(1.4) appears in many applications, for instance, the
Stefan problem [CDH67] for simulating temperature distribution undergoing a
phase transition such as ice melting into water. The well-known Stefan condition
requires the flux jump to be proportional to the velocity of the moving front, which
is nonzero in general. Other interesting applications include the simulation of the
electric potential [Coo75], the modeling of the water flow in porous media with
a source at the interface [Miy06], and the modeling of air-vapor-heat transport
through textile materials [ZS11], to name just a few.

It is well known that finite element (FE) methods can be used for solving
interface problems provided that solution meshes are aligned with the material
interfaces. Consequently, each element in a mesh contains essentially only one type
of materials. However, the basis functions on each element are generic polynomials
independent of the interface jump conditions. The recently developed immersed
finite element (IFE) methods [LLW03, LLLR04, GLL07, AL09, He09, HLL11,
WLL11, XLQ11, WWY12] employ an alternative approach to solve interface
problems. IFE methods can use meshes independent of the interface location, but
their basis functions are specially constructed to satisfy pertinent interface jump
conditions.

For moving interface problems, using IFEs in spatial discretization has a ma-
jor advantage over traditional FEs in the sense that a fixed mesh can be used
throughout the whole simulation so that popular methods such as the method of
lines (MoL) can be employed to reduce a moving interface problem to an ordinary
differential equation (ODE) system that can be solved numerically by a preferred
ODE solver. Fully discrete Crank-Nicolson type IFE schemes [HLLZ12] and the
IFE MoL [LLZ12] have been developed for solving moving interface problems with
a homogeneous flux jump, i.e., Q(t) = 0. In this article, we extend IFE MoL to
problems with a nonhomogeneous flux jump.

The rest of this article is organized as follows. In Section 2, we develop an
IFE MoL based on a semi-discrete formulation using linear IFEs. In Section 3, we
present several numeral results to demonstrate features of this new scheme. Brief
conclusions are summarized in Section 4.

2. IFE Method of Lines

2.1. Linear IFE Functions for Nonhomogeneous Flux Jump. Let Th
be a uniform partition of Ω with a mesh size h. An element in this mesh is an
interface element if α(t) is in its interior. Let T i,t

h , and T n,t
h be the collections of

interface elements and non-interface elements at time t, respectively. Also let Nh

be the set of nodes in Th.
We use φt

j(x) to denote the global linear IFE basis function [AL09] associated
with the node xj ∈ Nh. The superscript t on the basis function emphasizes the fact
that it is either a linear IFE basis function or a standard linear FE basis function
depending on whether α(t) is in the elements adjacent to the node xj . Since α(t)
changes with respect to time, φt

j(x) is time dependent even though the mesh is

time independent [HLLZ12]. Then, we let St
h(Ω) = span{φt

j : xj ∈ Nh} be the
linear IFE space at the time t defined on the mesh Th. Note that in [HLL11], the
authors enriched the IFE space by introducing an additional IFE function in order
to handle the nonhomogeneous flux jump for elliptic interface problems. Our effort
here is to extend this idea to the moving interface problem (1.1)-(1.4).
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Assume, at time t, the interface point α(t) moves into the element T = (xj , xj+1),
i.e., T becomes an interface element such that α(t) separates T into T− = (xj , α),
and T+ = (α, xj+1). We construct an enrichment linear IFE function φt

J (x) for
treating the nonhomogeneous flux jump as follow [HLL11]:

(2.1) φt
J (x) =

⎧⎨
⎩

c1(t)(x− xj), for x ∈ T−,
c2(t)(xj+1 − x), for x ∈ T+,
0, otherwise.

Note that φt
J is also time dependent, and c1(t), and c2(t) are determined by the

following nonhomogeneous interface jump conditions

[φt
J (α)] = 0, and [βφt

J,x(α)] = 1.

It is easy to show that c1(t) and c2(t) are uniquely determined by these conditions
with the following formulas,

(2.2) c1(t) =
xi+1 − α

β−(α− xi+1) + β+(xi − α)
, c2(t) =

α− xi

β−(α− xi+1) + β+(xi − α)
.

2.2. An IFE Method of Lines. We note that each IFE basis function φt
j(x)

is associated with a fixed node xj ∈ Nh even though φt
j(x) may changes with respect

to t. Therefore, following the basic idea of the method of lines, we can look for a
semi-discrete IFE solution to the moving interface problem in the following form:

(2.3) uh(t, x) = ũh(t, x) +
∑

T∈T i,t
h

Q(t)φt
J(x),

where ũh(t, ·) ∈ St
h(Ω) is the homogenized solution such that

(2.4) ũh(t, x) =
∑

xj∈Nh

uj(t)φ
t
j(x).

First, it is easy to see that uh(t, x) satisfies the jump conditions (1.3) and (1.4).
Then, we determine the unknown coefficients uj(t) through a set of ODEs in t.
Consider the weak form of the problem. Multiply v ∈ H1

0 (Ω) on both side of (1.1)
and integrate on each Ωs, s = +,−:∫

Ωs

utvdx +

∫
Ωs

(βux)xvdx =

∫
Ω

fvdx, ∀ v ∈ H1
0 (Ω),

Applying integration by parts, summing over s = +,−, and using the relation (1.4),
we obtain the following weak form:∑

T∈Th

∫
T

utvdx +
∑
T∈Th

∫
T

βuxvxdx =

∫
Ω

fvdx−Q(α)v(α), ∀ v ∈ H1
0 (Ω).

This weak form suggests the following IFE equations for determining uh ∈ St
h(Ω):

∑
T∈Th

∫
T

∂uh

∂t
vhdx +

∑
T∈Th

∫
T

βuhxvhxdx =

∫
Ω

fvhdx−Q(α)vh(α), ∀ vh ∈ St,0
h (Ω),

where St,0
h (Ω) = {φj ∈ St

h(Ω) : xj ∈ N 0
h}, and N 0

h ⊂ Nh is the collection of nodes
inside Ω. Taking the time derivative of uh yields

(2.5)
∂uh

∂t
=

∑
xj∈Nh

duj

dt
φt
j +

∑
xj∈N i,t

h

uj

∂φt
j

∂t
+

∑
T∈T i,t

h

dQ

dt
φt
J +

∑
T∈T i,t

h

Q
∂φt

J

∂t
.
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Using (2.3)-(2.5) in the IFE equation above and substituting vh by the IFE basis
functions φt

i, we obtain an ODE system of uj(t):

∑
xj∈Nh

u′
j(t)

∫
Ω

φt
iφ

t
jdx +

∑
xj∈N i

h,t

uj(t)

∫
Ω

φt
i

(
∂

∂t
φt
j

)
dx +

∑
xj∈Nh

uj(t)

∫
Ω

βφt
ixφ

t
jxdx

=

∫
Ω

fφt
idX −Q(α)φt

i(α) −
∑

T∈T i,t
h

∫
T

φt
i

∂Q

∂t
φt
Jdx−

∑
T∈T i,t

h

∫
T

φt
iQ

∂φt
J,T

∂t
dx(2.6)

−
∑

T∈T i,t
h

∫
T

βφt
i,x(Qφt

J,x)dx, ∀φt
j ∈ St,0

h (Ω).

The matrix form of this IFE method of lines is as follows:

(2.7) M(t)u′(t) + (K(t) + A(t))u(t) = rhsf (t) − rhsQ(t),

where

• M(t), A(t) are mass and stiffness matrices associated to the first and third
terms on the left hand side of (2.6).

• K(t) is corresponding to the second term on the left hand side of (2.6).
• rhsf (t) is the source term vector associated to the first term on the right

hand side of (2.6).
• rhsQ(t) is related to the last four terms of (2.6).

Remark 2.1. If we solve a moving interface problem with a homogeneous flux
jump condition, i.e., Q(t) = 0, then rhsQ(t) = 0 in (2.7); if we solve a problem
with a static interface, i.e., α(t) = α, then K(t) = 0 in (2.7).

2.3. Some Implementation Issues. In this subsection, we briefly discuss
some implementation issues for the IFE method of lines.

Matrices M(t), A(t) and vector rhsf (t): Standard IFE packages developed for
the problem with a fixed interface can be directly used to assemble M(t), A(t),
and rhsf (t). The only thing one needs to pay attention is to update the interface
location for a given value of the time variable t in the computation.

Matrix K(t): This matrix involves integrals of the time derivative of IFE basis

functions
∂φt

i

∂t . We would like to mention that K(t) is much sparser than M(t) or
A(t); hence, it costs little time to get it assembled. The complete procedure for
assembling K(t) is provided in [HLLZ12].

Vector rhsQ(t): The assembling of this vector involves the integrals of φt
J , φt

J,x,
∂φt

J

∂t . From (2.1) and (2.2) we can easily obtain

(2.8)
∂φt

J (x)

∂t
=

⎧⎪⎪⎨
⎪⎪⎩

β+(xi+1 − xi)α
′(t)

(β−(α− xi+1) + β+(xi − α))2
(x− xi), in T−,

−β−(xi+1 − xi)α
′(t)

(β−(α− xi+1) + β+(xi − α))2
(xi+1 − x), in T+,

(2.9) φJ,x(x) =

⎧⎪⎪⎨
⎪⎪⎩

xi+1 − α(t)

β−(α(t) − xi+1) + β+(xi − α(t))
, in T−,

xi − α(t)

β−(α(t) − xi+1) + β+(xi − α(t))
, in T+.
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We emphasize again that assembling vector rhsQ(t) costs little time. This is be-
cause we only need to calculate related integrals locally over the interface element.
As a consequence, this vector is also very sparse.

3. Numerical Experiments

In this section, we present numerical examples to demonstrate features of this
IFE MoL for solving moving interface problem with a nonhomogeneous flux jump.

We consider the interface problem defined on the solution domain Ω× [0, Tend],
where Ω = (0, 1) and Tend = 1. The interface α(t) is a moving point which separates
Ω into two sub-domains Ω−(t) = (0, α(t)) and Ω+ = (α(t), 1). The exact solution
u(t, x) is chosen as follows

(3.1) u(x, t) =

⎧⎨
⎩

(
(x− α(t))2 + 1

β−

)
ex − 1

β− eα(t), x ∈ (0, α(t)),(
(x− α(t))2 + 2

β+

)
ex − 2

β+ e
α(t), x ∈ (α(t), 1).

Simple calculations show Q(t) = eα(t) > 0.

Example 3.1. General ODE Solver. In this example, we test some general
ODE solvers with fixed time step. We denote the step size by τ , and let tn = nτ ,
with n = 0, 1, · · · , N . We assume the moving interface is governed by

α(t) = α1(t) =

(
π

5
− 1

3

)
t +

1

3
.

The ODE system in the IFE MoL (2.7) is equivalent to the standard form:

u′ = F (t,u), u(0) = u0,

where

F (t,u) = M(t)−1
(
− (K(t) + A(t))u + rhsf (t) − rhsQ(t)

)
,

and u0 = (u0(xj)), xj ∈ Nh. Popular ODE solvers such as Runge Kutta methods
and multi-step methods can be employed to solve this ODE system. We have tested
several second order ODE solvers in our experiments because they have the order
of accuracy comparable to that of the IFE space used in the spacial discretization,
and we select h = τ in these experiments.

Numerical results produced by the implicit midpoint scheme and second order
backward difference (BDF) scheme [AP98] are listed in Tables 1 and 2. Errors of
numerical solutions in L∞, L2, and semi-H1 norms are calculated at the final time
level t = 1. Linear regression of these errors with different mesh size h yields the
convergence order for each Sobolev norm. Both small coefficient jump (β−, β+) =
(1, 3), and large coefficient jump (β−, β+) = (1, 1000) are tested.

Table 1. Errors of Linear IFE MoL at t = 1 with β− = 1, β+ = 3

Implicit Midpoint BDF2
h ‖ · ‖L∞ ‖ · ‖L2

| · |H1
‖ · ‖L∞ ‖ · ‖L2

| · |H1
1/20 1.42E−4 1.20E−3 7.98E−2 1.55E−4 1.23E−3 7.98E−2
1/40 3.02E−5 2.95E−4 4.06E−2 4.43E−5 2.86E−4 4.06E−2
1/80 3.95E−5 8.22E−5 2.01E−2 2.31E−5 7.83E−5 2.01E−2
1/160 5.00E−6 1.98E−5 1.00E−2 5.65E−6 1.97E−5 1.00E−2
1/320 3.12E−6 4.71E−6 5.02E−3 4.60E−6 4.52E−6 5.02E−3
1/640 3.86E−7 1.25E−6 2.51E−3 7.06E−7 1.18E−6 2.51E−3
1/1280 3.53E−7 2.53E−7 1.25E−3 1.71E−7 2.23E−7 1.25E−3

Order 1.51 2.02 1.00 1.56 2.04 1.00
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Table 2. Errors of Linear IFE MoL at t = 1 with β− = 1, β+ = 1000

Implicit Midpoint BDF2
h ‖ · ‖L∞ ‖ · ‖L2

| · |H1
‖ · ‖L∞ ‖ · ‖L2

| · |H1
1/20 1.96E−4 9.68E−4 6.78E−2 6.40E−5 9.96E−4 6.77E−2
1/40 7.10E−5 2.62E−4 3.81E−2 2.11E−5 2.64E−4 3.81E−2
1/80 2.00E−5 6.40E−5 1.74E−2 8.79E−6 6.41E−5 1.74E−2
1/160 5.84E−6 1.55E−5 8.57E−3 1.22E−6 1.57E−5 8.56E−3
1/320 2.87E−6 3.94E−6 4.45E−3 8.83E−7 3.87E−6 4.45E−3
1/640 8.94E−7 9.52E−7 2.16E−3 1.68E−7 9.63E−7 2.16E−3
1/1280 2.04E−7 2.51E−7 1.07E−3 4.84E−8 2.50E−7 1.07E−3

Order 1.61 2.00 1.01 1.73 2.00 1.01

The data in Table 1 and 2 suggest that errors in L2 and H1 norms obey optimal
rates. However, errors in L∞ norm has a sub-optimal convergence order, and the
reason for this sub-optimal convergence is an interesting topic for future research.
Other ODE solvers such as the Crank-Nicolson, diagonally implicit Runge Kutta
(DIRK2) schemes, etc., are also tested. The performances are similar, so we omit
the corresponding data in this manuscript.

Example 3.2. Adaptive ODE Solver. One attractive feature of the method
of lines is that the adaptivity in time variable can be easily realized. Hence, with a
suitably chosen adaptive ODE solver, the IFE MoL can efficiently produce a reliable
numerical solution to a parabolic initial boundary value problem whose interface
changes with respect to time at a variable rate.

To demonstrate this feature, we consider another example which is basically
the same as that in the previous example but its interface is governed by:

α(t) = α2(t) =
1

30

(
log (10t + 0.25) +

1

500
e6t+3 + 4

)
.

Obviously, this interface function changes with respect to time at a variable rate,
see the plot on the left in Figure 1. We use the standard embedded DIRK45 scheme
in [HW96] to solve these two moving interface problems. The plot on the right
in Figure 1 displays the time step sizes used for producing a numerical solution to
the second moving interface problem. Comparing this plot with the derivative of
α(t) in the plot on the left, we can see that our IFE MoL with this adaptive ODE
solver uses larger time step sizes in the region where |α′(t)| has smaller values while
it uses smaller time step sizes in the region where |α′(t)| is large. This obviously
indicates that this IFE MoL can efficiently handle the change of the interface with
respect to time via the adaptivity feature in DIRK45.
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Figure 1. left plot: the graph of |α′(t)|; right plot: time step sizes
used in the adaptive IFE MoL on a uniform mesh with h = 1/160.
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As demonstrated by the data in Table 3, this adaptive feature enables the IFE
MoL to produce reliable numerical results by strategically choosing the step size in
the time integration. The mesh sizes used in this group of numerical experiments
are listed in the first column of Table 3. The second and third columns contain
error data of the IFE solutions to the two moving interface problems. The numbers
below N are the total numbers of time iterations. We note that the interface in
the second moving interface problem changes more complicatedly than the first.
Consequently, the adaptive IFE MoL uses less time iterations for the first problem.
More importantly, applying linear regression to the data in this table, we can see
that the adaptive IFE MoL produces numerical solutions to both problems with
optimal convergence rates in the L2 and H1 norms.

Figure 2 displays the curve for the L∞ norm errors in the IFE MoL solution
generated on a mesh of h = 1/160 with an adaptive ODE solver at a sequence of
time levels. This adaptive IFE MoL solution uses 108 time steps. The other two
curves are for L∞ norm errors in numerical solutions produced by IFE methods
with a uniform time step size τ = 1/108. It is clear that the adaptive IFE MoL
can maintain the error in its solution below a certain level almost uniformly over
the whole time interval while errors in those IFE methods based a uniform time
step size grow along with the time. These numerical results further demonstrate
the reliability of the IFE MoL combined with a good adaptive ODE solver.

Table 3. Errors of Adaptive DIRK45 at t = 1 with β− = 1, β+ = 1000

DIRK45: α(t) = α1(t) DIRK45: α(t) = α2(t)
h N ‖ · ‖L∞ ‖ · ‖L2

| · |H1
N ‖ · ‖L∞ ‖ · ‖L2

| · |H1
1/20 8 3.27E−5 9.87E−4 6.77E−2 16 2.27E−3 1.98E−3 1.68E−1
1/40 13 1.42E−5 2.66E−4 3.81E−2 30 6.85E−4 5.31E−4 4.90E−2
1/80 25 2.60E−6 6.35E−5 1.74E−2 57 1.13E−4 1.03E−4 1.76E−2
1/160 49 1.09E−6 1.58E−5 8.56E−3 108 3.10E−5 2.89E−5 7.74E−3
1/320 95 8.01E−7 4.03E−6 4.45E−3 217 2.22E−5 9.13E−6 3.76E−3
1/640 190 2.59E−7 1.04E−6 2.16E−3 432 3.99E−6 2.29E−6 1.88E−3
1/1280 379 7.86E−8 2.68E−7 1.07E−3 864 8.45E−7 6.32E−7 9.38E−4

Order 1.41 1.98 1.01 1.83 1.93 1.22
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Figure 2. Curves for L∞ errors of IFE solutions generated on a
uniform mesh with h = 1/160. The adaptive IFE MoL uses 108
times steps determined according to error control strategy, but the
other two IFE methods use a uniform time step size τ = 1/108.
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4. Conclusion

In this article, we develop an IFE MoL for the one dimensional parabolic moving
interface problem with a nonhomogeneous flux jump condition. An enrichment
linear IFE function is constructed to homogenize the original problem. Abundant
choice of efficient ODE solvers allows this IFE MoL to solve this kind of moving
interface problems efficiently.
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