
MATH 4513 Numerical Analysis
Chapter 3. Interpolation and Polynomial Approximation

Xu Zhang

Department of Mathematics
Oklahoma State University

Text Book: Numerical Analysis (10th edition)
R. L. Burden, D. J. Faires, A. M. Burden

Xu Zhang (Oklahoma State University) MATH 4513 Numerical Analysis Fall 2020 1 / 92



Chapter 3. Interpolation and Polynomial Approximation

Table of Contents

Chapter 3. Interpolation and Polynomial Approximation

3.1 Interpolation and Lagrange Polynomials
3.2 Divided Differences
3.3 Hermite Interpolation
3.4 Cubic Spline Interpolation
3.5 Parametric Curve

Xu Zhang (Oklahoma State University) MATH 4513 Numerical Analysis Fall 2020 2 / 92



Chapter 3. Interpolation and Polynomial Approximation 3.1 Interpolation and Lagrange Polynomials

3.1 Interpolation and Lagrange Polynomials

One of the most useful classes of functions is polynomials:

Pn(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0.

where n is a nonnegative integer and a0, a1, · · · , an are real
constants.

One reason is that any continuous function can be approximated
by a polynomial arbitrarily close. By this we mean that given any
continuous function, there exists a polynomial that is as “close” to
the given function as desired. (see Theorem 1)

Another important reason for considering the class of polynomials
in the approximation of functions is that the derivative and
indefinite integral of a polynomial are easy to determine and are
also polynomials.
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Theorem 1 (Weierstrass Approximation Theorem).

Suppose f ∈ C[a, b]. For each ε > 0, there exists a polynomial P (x)
such that

|f(x)− P (x)| < ε, for all x ∈ [a, b].

106 C H A P T E R 3 Interpolation and Polynomial Approximation

3.1 Interpolation and the Lagrange Polynomial

One of the most useful and well-known classes of functions mapping the set of real numbers
into itself is the algebraic polynomials, the set of functions of the form

Pn(x) = anxn + an−1xn−1 + · · · + a1x + a0,

where n is a nonnegative integer and a0, . . . , an are real constants. One reason for their
importance is that they uniformly approximate continuous functions. By this we mean that
given any function, defined and continuous on a closed and bounded interval, there exists
a polynomial that is as “close” to the given function as desired. This result is expressed
precisely in the Weierstrass Approximation Theorem. (See Figure 3.1.)

Figure 3.1
y
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y � f (x)

y � f (x) � ε

y � f (x) � ε

y � P (x)

Theorem 3.1 (Weierstrass Approximation Theorem)
Suppose that f is defined and continuous on [a, b]. For each ε > 0, there exists a polynomial
P(x), with the property that

|f (x)− P(x)| < ε, for all x in [a, b].

The proof of this theorem can be found in most elementary texts on real analysis (see,
for example, [Bart], pp. 165–172).

Another important reason for considering the class of polynomials in the approximation
of functions is that the derivative and indefinite integral of a polynomial are easy to determine
and are also polynomials. For these reasons, polynomials are often used for approximating
continuous functions.

Karl Weierstrass (1815–1897) is
often referred to as the father of
modern analysis because of his
insistence on rigor in the
demonstration of mathematical
results. He was instrumental in
developing tests for convergence
of series, and determining ways
to rigorously define irrational
numbers. He was the first to
demonstrate that a function could
be everywhere continuous but
nowhere differentiable, a result
that shocked some of his
contemporaries.

The Taylor polynomials were introduced in Section 1.1, where they were described
as one of the fundamental building blocks of numerical analysis. Given this prominence,
you might expect that polynomial interpolation would make heavy use of these functions.
However this is not the case. The Taylor polynomials agree as closely as possible with
a given function at a specific point, but they concentrate their accuracy near that point.
A good interpolation polynomial needs to provide a relatively accurate approximation
over an entire interval, and Taylor polynomials do not generally do this. For example,
suppose we calculate the first six Taylor polynomials about x0 = 0 for f (x) = ex.
Since the derivatives of f (x) are all ex, which evaluated at x0 = 0 gives 1, the Taylor
polynomials are
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A typical example for polynomial approximations is the Taylor polynomial.

Pn(x) = f(x0)+f
′(x0)(x−x0)+

f ′′(x0)

2
(x−x0)2+ · · ·+

f (n)(x0)

n!
(x−x0)n

For example, using Taylor polynomials at x0 = 0 to approximate
f(x) = ex, we obtain

P0(x) = 1,

P1(x) = 1 + x,

P2(x) = 1 + x+
x2

2
,

P3(x) = 1 + x+
x2

2
+
x3

6
,

P4(x) = 1 + x+
x2

2
+
x3

6
+
x4

24
,

P5(x) = 1 + x+
x2

2
+
x3

6
+
x4

24
+

x5

120
,

· · ·
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3.1 Interpolation and the Lagrange Polynomial 107

P0(x) = 1, P1(x) = 1+ x, P2(x) = 1+ x + x2

2
, P3(x) = 1+ x + x2

2
+ x3

6
,

P4(x) = 1+ x + x2

2
+ x3

6
+ x4

24
, and P5(x) = 1+ x + x2

2
+ x3

6
+ x4

24
+ x5

120
.

Very little of Weierstrass’s work
was published during his lifetime,
but his lectures, particularly on
the theory of functions, had
significant influence on an entire
generation of students. The graphs of the polynomials are shown in Figure 3.2. (Notice that even for the

higher-degree polynomials, the error becomes progressively worse as we move away from
zero.)

Figure 3.2
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Although better approximations are obtained for f (x) = ex if higher-degree Taylor
polynomials are used, this is not true for all functions. Consider, as an extreme example,
using Taylor polynomials of various degrees for f (x) = 1/x expanded about x0 = 1 to
approximate f (3) = 1/3. Since

f (x) = x−1, f ′(x) = −x−2, f ′′(x) = (−1)22 · x−3,

and, in general,

f (k)(x) = (−1)kk!x−k−1,

the Taylor polynomials are

Pn(x) =
n∑

k=0

f (k)(1)

k! (x − 1)k =
n∑

k=0

(−1)k(x − 1)k .

To approximate f (3) = 1/3 by Pn(3) for increasing values of n, we obtain the values in
Table 3.1—rather a dramatic failure! When we approximate f (3) = 1/3 by Pn(3) for larger
values of n, the approximations become increasingly inaccurate.

Table 3.1 n 0 1 2 3 4 5 6 7

Pn(3) 1 −1 3 −5 11 −21 43 −85
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Note that even for higher-degree polynomials, error becomes
progressively worse as we move away from the point x0 = 0.

f(3) = 20.0855

P1(3) = 4, P2(3) = 8.5, P3(3) = 13, P4(3) = 16.375.
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Remark on Taylor Polynomials
For Taylor polynomials, all information used in the approximation
is concentrated at the single number x0, so these polynomials will
generally give inaccurate approximations as we move away from
x0. This limits Taylor polynomial approximation to the situation in
which approximations are needed only at numbers close to x0.

A good interpolation polynomial needs to provide a relatively
accurate approximation over an entire interval, and Taylor
polynomials do not generally do this.

It is usually more efficient to develop methods that use
information spreaded at various points.
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Lagrange Interpolation Polynomials

Suppose that a function f(x) passes through two points (x0, y0) and
(x1, y1). Define the following linear Lagrange polynomials

L0(x) =
x− x1
x0 − x1

, L1(x) =
x− x0
x1 − x0

.

It is easy to verify that

L0(x0) = 1, L0(x1) = 0,

L1(x0) = 0, L1(x1) = 1.

The linear Lagrange interpolating polynomial through (x0, y0) and
(x1, y1) is

P (x) = y0L0(x) + y1L1(x) =
x− x1
x0 − x1

y0 +
x− x0
x1 − x0

y1.

It can be verified that P (x0) = y0 and P (x1) = y1. (Exercise)
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Example 2.
Determine the linear Lagrange interpolating polynomial that passes
through the points (2, 4) and (5, 1).

Solution
In this case, we have

L0(x) =
x− 5

2− 5
= −1

3
(x− 5), and L1(x) =

x− 2

5− 2
=

1

3
(x− 2).

Then, the linear Lagrange interpolating polynomial is

P (x) = y0L0(x) + y1L1(x)

= −1

3
(x− 5) · 4 + 1

3
(x− 2) · 1

= −4

3
x+

20

3
+

1

3
x− 2

3
= −x+ 6.

3.1 Interpolation and the Lagrange Polynomial 109
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To generalize the concept of linear interpolation, consider the construction of a poly-
nomial of degree at most n that passes through the n+ 1 points

(x0, f (x0)), (x1, f (x1)), . . . , (xn, f (xn)).

(See Figure 3.4.)

Figure 3.4
y
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In this case we first construct, for each k = 0, 1, . . . , n, a function Ln,k(x) with the
property that Ln,k(xi) = 0 when i �= k and Ln,k(xk) = 1. To satisfy Ln,k(xi) = 0 for each
i �= k requires that the numerator of Ln,k(x) contain the term

(x − x0)(x − x1) · · · (x − xk−1)(x − xk+1) · · · (x − xn).

To satisfy Ln,k(xk) = 1, the denominator of Ln,k(x) must be this same term but evaluated at
x = xk . Thus

Ln,k(x) = (x − x0) · · · (x − xk−1)(x − xk+1) · · · (x − xn)

(xk − x0) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
.

A sketch of the graph of a typical Ln,k (when n is even) is shown in Figure 3.5.
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To generalize the concept of linear interpolation, consider the
construction of a polynomial of degree at most n that passes
through the following n+ 1 points:

(x0, f(x0)), (x1, f(x1)), · · · , (xn, f(xn)).

3.1 Interpolation and the Lagrange Polynomial 109
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property that Ln,k(xi) = 0 when i �= k and Ln,k(xk) = 1. To satisfy Ln,k(xi) = 0 for each
i �= k requires that the numerator of Ln,k(x) contain the term

(x − x0)(x − x1) · · · (x − xk−1)(x − xk+1) · · · (x − xn).

To satisfy Ln,k(xk) = 1, the denominator of Ln,k(x) must be this same term but evaluated at
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Construct for each k = 0, 1, · · · , n, a function Ln,k(x) such that

Ln,k(xi) = δik =

{
1 if i = k

0 if i 6= k.

To satisfy Ln,k(xi) = 0 for each i 6= k requires the numerator of
Ln,k(x) contains

(x− x0) · · · (x− xk−1)(x− xk+1) · · · (x− xn)

To satisfy Ln,k(xk) = 1 requires the denominator of Ln,k(x) must
be this same term but evaluated at xk

(xk − x0) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
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Definition 3 (Lagrange Interpolating Polynomials).
The n-th Lagrange interpolating polynomials are defined by

Ln,k(x) =
(x− x0) · · · (x− xk−1)(x− xk+1) · · · (x− xn)

(xk − x0) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)

=

n∏
i 6=k
i=0

(x− xi)
(xk − xi)

for each k = 0, 1, · · · , n.110 C H A P T E R 3 Interpolation and Polynomial Approximation

Figure 3.5

xx0 x1 xk�1 xk xk�1 xn�1 xn
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The interpolating polynomial is easily described once the form of Ln,k is known. This
polynomial, called the nth Lagrange interpolating polynomial, is defined in the following
theorem.

The interpolation formula named
for Joseph Louis Lagrange
(1736–1813) was likely known
by Isaac Newton around 1675,
but it appears to first have been
published in 1779 by Edward
Waring (1736–1798). Lagrange
wrote extensively on the subject
of interpolation and his work had
significant influence on later
mathematicians. He published
this result in 1795.

Theorem 3.2 If x0, x1, . . . , xn are n + 1 distinct numbers and f is a function whose values are given at
these numbers, then a unique polynomial P(x) of degree at most n exists with

f (xk) = P(xk), for each k = 0, 1, . . . , n.

This polynomial is given by

P(x) = f (x0)Ln,0(x)+ · · · + f (xn)Ln,n(x) =
n∑

k=0

f (xk)Ln,k(x), (3.1)

where, for each k = 0, 1, . . . , n,

Ln,k(x) = (x − x0)(x − x1) · · · (x − xk−1)(x − xk+1) · · · (x − xn)

(xk − x0)(xk − x1) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
(3.2)

=
n∏

i=0
i �=k

(x − xi)

(xk − xi)
.

The symbol
∏

is used to write
products compactly and parallels
the symbol

∑
, which is used for

writing sums.

We will write Ln,k(x) simply as Lk(x) when there is no confusion as to its degree.

Example 2 (a) Use the numbers (called nodes) x0 = 2, x1 = 2.75, and x2 = 4 to find the second
Lagrange interpolating polynomial for f (x) = 1/x.

(b) Use this polynomial to approximate f (3) = 1/3.

Solution (a) We first determine the coefficient polynomials L0(x), L1(x), and L2(x). In
nested form they are

L0(x) = (x − 2.75)(x − 4)

(2− 2.5)(2− 4)
= 2

3
(x − 2.75)(x − 4),

L1(x) = (x − 2)(x − 4)

(2.75− 2)(2.75− 4)
= −16

15
(x − 2)(x − 4),

and

L2(x) = (x − 2)(x − 2.75)

(4− 2)(4− 2.5)
= 2

5
(x − 2)(x − 2.75).
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We may write Ln,k(x) simply as Lk(x) when there is no confusion as to
its degree.
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Theorem 4.
If x0, x1, · · · , xn are n+ 1 distinct numbers and f is a function whose
values are given at these numbers, then a unique polynomial P (x) of
degree at most n exists with

f(xk) = P (xk), for each k = 0, 1, · · · , n.

This polynomial is given by

P (x) = f(x0)Ln,0(x) + · · ·+ f(xn)Ln,n(x) =

n∑
k=0

f(xk)Ln,k(x),

where for each k = 0, 1, · · · , n

Ln,k(x) =
(x− x0) · · · (x− xk−1)(x− xk+1) · · · (x− xn)

(xk − x0) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)

=

n∏
i 6=k
i=0

(x− xi)
(xk − xi)

for each k = 0, 1, · · · , n.

Xu Zhang (Oklahoma State University) MATH 4513 Numerical Analysis Fall 2020 13 / 92



Chapter 3. Interpolation and Polynomial Approximation 3.1 Interpolation and Lagrange Polynomials

Example 5.

Use the numbers (called nodes) x0 = 2, x1 = 2.75, and x2 = 4 to find the
second-degree Lagrange interpolating polynomial P2(x) for the function

f(x) =
1

x
. Then use this polynomial to approximate f(3) =

1

3
.

Solution (1/2)

The Lagrange polynomials associated with x0 = 2, x1 = 2.75, and x2 = 4
are

L0(x) =
(x− 2.75)(x− 4)

(2− 2.75)(2− 4)
=

2

3
(x− 2.75)(x− 4).

L1(x) =
(x− 2)(x− 4)

(2.75− 2)(2.75− 4)
= −16

15
(x− 2)(x− 4).

L2(x) =
(x− 2)(x− 2.75)

(2.75− 2)(4− 2.75)
=

2

5
(x− 2)(x− 2.75).
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Solution (2/2)

Also,

f(x0) = f(2) =
1

2
, f(x1) = f(2.75) =

4

11
, and f(x2) = f(4) =

1

4

So the second-degree Lagrange Interpolating polynomial is

P2(x) =

2∑
k=0

f(xk)Lk(x)

=
1

2
· 2
3
(x− 2.75)(x− 4)− 4

11
· 16
15

(x− 2)(x− 4)

+
1

4
· 2
5
(x− 2)(x− 2.75)

=
1

22
x2 − 35

88
x+

49

44

Use P2(x) to approximate f(x) at x = 3

f(3) ≈ P2(3) =
29

88
= 0.32955. |f(3)− P2(3)| = 0.03418
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For the error bound of the Lagrange interpolation, we have the
following result.

Theorem 6 (Lagrange Interpolation Error Theorem).

Suppose x0, x1, · · · , xn are distinct numbers in the interval [a, b] and
f ∈ Cn+1[a, b]. Then, for each x ∈ [a, b], there exists a number ξ(x)
between min{x0, x1 · · ·xn} and max{x0, x1 · · ·xn}, and hence in [a, b],
such that

f(x) = P (x) +
f (n+1)(ξ)

(n+ 1)!
(x− x0)(x− x1) · · · (x− xn),

where P (x) is the interpolating polynomial of f(x).
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Comparison of Lagrange polynomials and Taylor polynomials
The nth-degree Taylor polynomial around x0 concentrates all the
known information at x0, and has an error term of the form

f (n+1)(ξ)

(n+ 1)!
(x− x0)n+1.

The nth-degree Lagrange polynomial uses information at distinct
numbers x0, x1, · · · , xn, and, in place of (x− x0)n, its error
formula uses a product of the n+ 1 terms:

f (n+1)(ξ)

(n+ 1)!
(x− x0)(x− x1) · · · (x− xn).
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Example 7.

In Example 5, we found the 2nd-degree Lagrange polynomial P2(x) for

f(x) =
1

x
on [2, 4] using the nodes x0 = 2, x1 = 2.75, x2 = 4 Determine the

error form of this polynomial, and the maximum error when the polynomial is
used to approximate f(x) for x ∈ [2, 4].

Solution (1/2)

Since f(x) = 1
x , we have

f ′(x) = −x−2, f ′′(x) = 2x−3, f ′′′(x) = −6x−4.

By Theorem 6, we have on the interval [2, 4],

|f(x)− P (x)| =
∣∣∣∣f ′′′(ξ)3!

g(x)

∣∣∣∣ = 6ξ−4

6
|g(x)| = 1

ξ4
|g(x)| ≤ 1

16
|g(x)|

where, g(x) = (x− 2)(x− 2.75)(x− 4) = x3 − 35
4 x

2 + 49
2 x− 22.
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Solution (2/2)

We now need to determine the maximum value of |g(x)| on x ∈ [2, 4].

g′(x) = 3x2 − 35

2
x+

49

2
=

1

2
(3x− 7)(2x− 7).

The critical points are x1 =
7

3
and x2 =

7

2
. The global extrema are

among the critical points and endpoints x = 2 and x = 4.

g(2) = 0, g(
7

3
) =

25

108
, g(

7

2
) = − 9

16
, g(4) = 0.

Hence, the maximum error is

max
x∈[2,4]

|f(x)− P (x)| ≤ 1

16

∣∣∣∣− 9

16

∣∣∣∣ = 9

256
≈ 0.0351526.

Note that in Example 5, we found the error at x = 3 is

|f(3)− P2(3)| = 0.03418 < 0.0351526 = max
2≤x≤4

|f(x)− P2(x)|.
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Coding Exercise (1/2)

Write a MATLAB subroutine

L = LagPoly(dataX, k, x)

to realize the evaluation of the Lagrange polynomial

Lk(x) =
(x− x0) · · · (x− xk−1)(x− xk+1) · · · (x− xn)

(xk − x0) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
=

n∏
i6=k
i=0

(x− xi)
(xk − xi)

.

the input dataX = [x0, x1, · · · , xn] contains n+ 1 distinct points.

the input k is the index of the Lagrange polynomial.

the input x is the point you want to evaluate.

the output L is the value of Lk(x).
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Chapter 3. Interpolation and Polynomial Approximation 3.1 Interpolation and Lagrange Polynomials

Coding Exercise (2/2)

Write a second MATLAB subroutine

y = LagInterp(dataX, dataY, x)

to realize the evaluation of the Lagrange interpolating polynomial

P (x) =

n∑
k=1

ykLk(x)

the input dataX = [x0, x1, · · · , xn] stores n+ 1 distinct points.

the input dataY = [y0, y1, · · · , yn] stores n+ 1 y-values.

the input x is the point you want to evaluate.

the output y is the value of P (x).

for evaluation of Lk(x), you can call the first subroutine

L = LagPoly(dataX, k, x)
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Exercise
A census of the population of the United States is taken every 10 years. The
following table lists the population, in thousands of people, from 1950 to
2000, and the data are also represented in the figure.

C H A P T E R

3 Interpolation and Polynomial Approximation

Introduction
A census of the population of the United States is taken every 10 years. The following
table lists the population, in thousands of people, from 1950 to 2000, and the data are also
represented in the figure.

Year 1950 1960 1970 1980 1990 2000

Population 151,326 179,323 203,302 226,542 249,633 281,422
(in thousands)

P(t)

t1950

Year

Po
pu

la
tio

n

1 � 108

2 � 108

3 � 108

1960 1970 1980 1990 2000

In reviewing these data, we might ask whether they could be used to provide a rea-
sonable estimate of the population, say, in 1975 or even in the year 2020. Predictions of
this type can be obtained by using a function that fits the given data. This process is called
interpolation and is the subject of this chapter. This population problem is considered
throughout the chapter and in Exercises 18 of Section 3.1, 18 of Section 3.3, and 28 of
Section 3.5.
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In reviewing these data, we might ask
whether they could be used to provide a
reasonable estimate of the population,
say, in 1975 or even in the year 2020.

We can construct the Lagrange
interpolation on these given data to
generate a fifth degree polynomial.

Then use the interpolation polynomial
for prediction.
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Chapter 3. Interpolation and Polynomial Approximation 3.2 Divided Differences

3.2 Divided Differences

Recall the n-th Lagrange Interpolation Pn(x) of the function f(x) at n+ 1
distinct points x0, x1 · · · , xn.

Pn(x) =

n∑
k=0

f(xk)Ln,k(x)

where

Ln,k(x) =

n∏
i6=k
i=0

(x− xi)
(xk − xi)

.

Question: What if we have one more data point available
(xn+1, f(xn+1)), then how to construct a new n+ 1-th degree
interpolation Pn+1(x)?

Answer: We have to abandon all Lagrange polynomial Ln,k(x), and
reconstruct new Lagrange polynomials Ln+1,k(x).

Question: Is there a more efficient way for adding more data points?
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Chapter 3. Interpolation and Polynomial Approximation 3.2 Divided Differences

Although the interpolation polynomial Pn(x) is unique, there are
alternative representations that are useful in certain situations.

In fact, we can write Pn(x) in the following form

Pn(x) = a0 + a1(x− x0) + a2(x− x0)(x− x1) + · · ·
+ an(x− x0)(x− x1) · · · (x− xn−1),

for appropriate constants a0, a1, · · · , an.

Note that

Pn(x0) = f(x0) =⇒ a0 = f(x0)

Pn(x1) = f(x1) =⇒ a1(x1 − x0) = f(x1)− f(x0)

=⇒ a1 =
f(x1)− f(x0)

x1 − x0

Exercise: verify that

a2 =

f(x2)− f(x1)
x2 − x1

− f(x1)− f(x0)
x1 − x0

x2 − x0
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We now introduce the divided-difference notation, which will be very useful
in determine the values of ai.

Definition 8 (Divided Difference).
The zeroth divided difference of the function f at xi is

f [xi] = f(xi).

The first divided difference of f at xi and xi+1 is

f [xi, xi+1] =
f [xi+1]− f [xi]
xi+1 − xi

The second divided difference of f at xi, xi+1 and xi+2 is

f [xi, xi+1, xi+2] =
f [xi+1, xi+2]− f [xi, xi+1]

xi+2 − xi
.

In general, the k-th divided difference of f at xi, xi+1, · · · , xi+k is

f [xi, xi+1, · · · , xi+k] =
f [xi+1, xi+2, · · · , xi+k]− f [xi, xi+1, · · · , xi+k−1]

xi+k − xi
.
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It can be seen that

a0 = f(x0) = f [x0],

a1 =
f(x1)− f(x0)

x1 − x0
= f [x0, x1]

a2 =

f(x2)−f(x1)
x2−x1

− f(x1)−f(x0)
x1−x0

x2 − x0
= f [x0, x1, x2]

In general, we have

ak = f [x0, x1, · · · , xk], for all k = 0, 1, · · · , n.

Interpolation with Newton’s Divided Difference
The Lagrange interpolation Pn(x) of f(x) at x0, x1, · · · , xn can be
written as

Pn(x) = f [x0] +
n∑

k=1

f [x0, · · · , xk](x− x0) · · · (x− xk−1).
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Divided Difference Table

126 C H A P T E R 3 Interpolation and Polynomial Approximation

As might be expected from the evaluation of a0 and a1, the required constants are

ak = f [x0, x1, x2, . . . , xk],
for each k = 0, 1, . . . , n. So Pn(x) can be rewritten in a form called Newton’s Divided-
Difference:

Pn(x) = f [x0] +
n∑

k=1

f [x0, x1, . . . , xk](x − x0) · · · (x − xk−1). (3.10)

The value of f [x0, x1, . . . , xk] is independent of the order of the numbers x0, x1, . . . , xk , as
shown in Exercise 21.

The generation of the divided differences is outlined in Table 3.9. Two fourth and one
fifth difference can also be determined from these data.

Table 3.9

First Second Third
x f (x) divided differences divided differences divided differences

x0 f [x0]
f [x0, x1] = f [x1] − f [x0]

x1 − x0

x1 f [x1] f [x0, x1, x2] = f [x1, x2] − f [x0, x1]
x2 − x0

f [x1, x2] = f [x2] − f [x1]
x2 − x1

f [x0, x1, x2, x3] = f [x1, x2, x3] − f [x0, x1, x2]
x3 − x0

x2 f [x2] f [x1, x2, x3] = f [x2, x3] − f [x1, x2]
x3 − x1

f [x2, x3] = f [x3] − f [x2]
x3 − x2

f [x1, x2, x3, x4] = f [x2, x3, x4] − f [x1, x2, x3]
x4 − x1

x3 f [x3] f [x2, x3, x4] = f [x3, x4] − f [x2, x3]
x4 − x2

f [x3, x4] = f [x4] − f [x3]
x4 − x3

f [x2, x3, x4, x5] = f [x3, x4, x5] − f [x2, x3, x4]
x5 − x2

x4 f [x4] f [x3, x4, x5] = f [x4, x5] − f [x3, x4]
x5 − x3

f [x4, x5] = f [x5] − f [x4]
x5 − x4

x5 f [x5]

ALGORITHM

3.2
Newton’s Divided-Difference Formula

To obtain the divided-difference coefficients of the interpolatory polynomial P on the (n+1)
distinct numbers x0, x1, . . . , xn for the function f :

INPUT numbers x0, x1, . . . , xn; values f (x0), f (x1), . . . , f (xn) as F0,0, F1,0, . . . , Fn,0.

OUTPUT the numbers F0,0, F1,1, . . . , Fn,n where

Pn(x) = F0,0 +
n∑

i=1

Fi,i

i−1∏
j=0

(x − xj). (Fi,i is f [x0, x1, . . . , xi].)
Step 1 For i = 1, 2, . . . , n

For j = 1, 2, . . . , i

set Fi,j = Fi,j−1 − Fi−1,j−1

xi − xi−j
. (Fi,j = f [xi−j, . . . , xi].)

Step 2 OUTPUT (F0,0, F1,1, . . . , Fn,n);
STOP.
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Chapter 3. Interpolation and Polynomial Approximation 3.2 Divided Differences

Example 9.
Compute a divided difference table for these function values:

x 3 1 5 6

f(x) 1 −3 2 4

Then determine the Newton interpolation polynomial.

Solution (1/2)
Arrange the table vertically to have

i xi f [xi] f [xi−1, xi] f [xi−2, xi−1, xi] f [xi−3, xi−2, xi−1, xi]

0 3 1

1 1 −3 2

2 5 2 5/4 −3/8
3 6 4 2 3/20 7/40
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Solution (2/2)

Note that the values marked in red and blue will be used for constructing the
interpolating polynomial

i xi f [xi] f [xi−1, xi] f [xi−2, xi−1, xi] f [xi−3, xi−2, xi−1, xi]
0 3 1
1 1 −3 2
2 5 2 5/4 −3/8
3 6 4 2 3/20 7/40

The Newton interpolation polynomial is

P (x) = f [x0] + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1)
+f [x0, x1, x2, x3](x− x0)(x− x1)(x− x2)

= 1 + 2(x− 3) +−3

8
(x− 3)(x− 1) +

7

40
(x− 3)(x− 1)(x− 5)

=
1

40
(7x3 − 78x2 + 301x− 350)
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Comparison of Lagrange and Newton
Lagrange Interpolation is sometimes said to require less work,
and is sometimes recommended for problems in which it’s known,
in advance, from previous experience, how many terms are
needed for sufficient accuracy.

The Newton’s Interpolation has the advantage that more data
points can be added, for improved accuracy, without re-doing the
whole problem.
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Algorithm for Generating Divided Differences Table
Inputs: dataX = [x0, x1, x2, · · · , xn], dataY = [y0, y1, y2, · · · , yn]
Output: C = [cij ] is an (n+ 1)× (n+ 1) divided difference matrix.

C = divdifTable(dataX,dataY)

For j = 1 : n
For i = 0 : n− j

cij =
ci+1,j−1 − ci,j−1

xi+j − xi
(note: cij = f [xi, xi+1, · · · , xi+j ])

End
End

x0 y0 c00 c01 c02 c03 · · · c0,n−1 c0n
x1 y1 c10 c11 c12 c13 · · · c1,n−1
x2 y2 c20 c21 c22 c23 · · ·
...

...
...

...
...

xn−1 yn−1 cn−1,0 cn−1,1
xn yn cn0

note: ci,0 = yi, for i = 0, 1, · · · , n.
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Properties of Divided Difference
If z0, z1, · · · , zn is a permutation of x0, x1, · · · , xn, then

f [z0, z1, · · · , zn] = f [x0, x1, · · · , xn].

(Hint: consider the leading coefficient of Pn(x).)

Suppose that f ∈ Cn[a, b] and x0, x1, · · · , xn are distinct numbers
in [a, b]. Then there exists a number ξ ∈ (a, b) with

f [x0, x1, · · · , xn] =
f (n)(ξ)

n!
.

(Hint: use the generalized Rolle’s theorem.)
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3.3 Hermite Interpolation

In previous sections, we introduced the interpolation P (x) of a
continuous function f(x) at some given points

x0 x1 x2 · · · xn
f(x0) f(x1) f(x2) · · · f(xn)

In some applications, we want not only the interpolation function P (x) to
match with f(x) at some points, but also the derivatives of P (x) to match
with the derivatives of f(x) at those points. These interpolating
polynomials are called osculating polynomials.

In particular, we look for a polynomial P (x) of the least degree such that
P (x) and P ′(x) agrees with f and its derivative f ′ at n+ 1 distinct points
x0, x1, · · · , xn, i.e.,

P (xi) = f(xi)

P ′(xi) = f ′(xi)
i = 0, 1, · · · , n.

This is called Hermite interpolation.
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Recall the nth-degree Lagrange interpolating polynomials:

Ln,k(x) =

n∏
i 6=k
i=0

(x− xi)
(xk − xi)

k = 0, 1, · · · , n.

They satisfy Ln,k(xi) = δik.

Construction of Hermite Interpolation (1/3)
Define n+ 1 polynomials:

Ak(x) =
(
1− 2(x− xk)L′n,k(xk)

)
L2
n,k(x) k = 0, 1, · · · , n.

It can be verified that
The degree of Ak is 2n+ 1.

Ak(xi) = δik.
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Construction of Hermite Interpolation (2/3)

Also, the derivative of Ak(x) is

A′k(x) =
(
−2L′n,k(xk)

)
L2
n,k(x)+

(
1−2(x−xk)L′n,k(xk)

)
2Ln,k(x)L

′
n,k(x).

Thus,
A′k(xk) = −2L′k(xk) + 2L′k(xi) = 0,

and
A′k(xi) = 0, for i 6= k.

In summary, we have

Ak(xi) = δik, A′k(xi) = 0.
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Construction of Hermite Interpolation (3/3)

Define another n+ 1 polynomials:

Bk(x) = (x− xk)L2
n,k(x) k = 0, 1, · · · , n.

It can be verified that

The degree of Bk(x) is 2n+ 1.

Bk(xi) = (xi − xk)L2
n,k(xi) = 0 k = 0, 1, · · · , n.

The derivative of Bk(x) is

B′k(x) = L2
n,k(x) + 2(x− xk)Ln,k(x)L

′
n,k(x).

Thus, so that B′k(xk) = 1, and B′k(xi) = 0, for i 6= k. Hence,

Bk(xi) = 0, B′k(xi) = δik.
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Hermite Interpolation

If f ∈ C1[a, b] and x0, x1 · · · , xn ∈ [a, b] are distinct, the unique
polynomial of least degree agreeing with f and f ′ at x0, x1 · · · , xn is
the Hermite polynomial of degree at most 2n+ 1 given by

H2n+1(x) =

n∑
k=0

f(xk)Ak(x) +

n∑
k=0

f ′(xk)Bk(x).

where

Ak(x) =
(
1− 2(x− xk)L′n,k(xk)

)
L2
n,k(x),

Bk(x) = (x− xk)L2
n,k(x),

and Ln,k(x) =

n∏
i 6=k
i=0

(x− xi)
(xk − xi)

.
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Example 10.

Determine the Hermite polynomial that interpolates the data below

x 1 2
f(x) 1 −3
f ′(x) −1 2

Solution(1/2)

First compute the Lagrange polynomials of the point x0 = 1 and x1 = 2.

L0(x) = −(x− 2), L1(x) = x− 1

Next, we compute third-order polynomials (n = 1, 2n+ 1 = 3).

A0(x) = (1− 2(x− 1)(−1))(x− 2)2 = (2x− 1)(x− 2)2

A1(x) = (1− 2(x− 2))(x− 1)2 = −(2x− 5)(x− 1)2

B0(x) = (x− 1)(x− 2)2,

B1(x) = (x− 2)(x− 1)2
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Solution (2/2)
Then, the Hermite interpolating polynomial is

H3(x) = f(x0)A0(x) + f(x1)A1(x) + f ′(x0)B0(x) + f ′(x1)B1(x)

= 1 · (2x− 1)(x− 2)2 + (−3) · −(2x− 5)(x− 1)2

+(−1) · (x− 1)(x− 2)2 + 2 · (x− 2)(x− 1)2

= 9x3 − 39x2 + 50x− 19.
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There is an alternative approach to construct Hermite
interpolation using Newton’s divided differences.
Since each data point xi is associated with two values f(xi) and
f ′(xi). We denote

z2i = z2i+1 = xi, i = 0, 1, · · ·n.

and conduct the divided difference table using z0, z1, · · · , z2n+1.
Since z2i = z2i+1 = xi, we cannot define f [z2i = z2i+1] by the
standard first-divided difference formula

f [z2i, z2i+1] =
f [z2i+1]− f [z2i]
z2i+1 − z2i

,

but instead, the reasonable substitution is

f [z2i, z2i+1] = f ′(xi).
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The original data table

x0 x1 x2 · · · xn
f(x0) f(x1) f(x2) · · · f(xn)
f ′(x0) f ′(x1) f ′(x2) · · · f ′(xn)

can be represented by zi, 0 ≤ i ≤ 2n+ 1

x0 x0 x1 x1 x2 · · · xn−1 xn xn
z0 z1 z2 z3 z4 · · · z2n−1 z2n z2n+1

f(z0) f(z1) f(z2) f(z3) f(z4) · · · f(z2n−1) f(z2n) f(z2n+1)
f(x0) f(x0) f(x1) f(x1) f(x2) · · · f(xn−1) f(xn) f(xn)

The only difference is that the first divided difference

f [z0, z1] =
f [z1]− f [z0]
z1 − z0

=
f [x0]− f [x0]
x0 − x0

= f ′(x0).

Similar argument applies for f [z2, z3], f [z4, z5], · · · , f [z2n, z2n+1].
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Divided-Difference Table for Hermite Polynomial
140 C H A P T E R 3 Interpolation and Polynomial Approximation

Table 3.16 First divided Second divided
z f (z) differences differences

z0 = x0 f [z0] = f (x0)

f [z0, z1] = f ′(x0)

z1 = x0 f [z1] = f (x0) f [z0, z1, z2] = f [z1, z2] − f [z0, z1]
z2 − z0

f [z1, z2] = f [z2] − f [z1]
z2 − z1

z2 = x1 f [z2] = f (x1) f [z1, z2, z3] = f [z2, z3] − f [z1, z2]
z3 − z1

f [z2, z3] = f ′(x1)

z3 = x1 f [z3] = f (x1) f [z2, z3, z4] = f [z3, z4] − f [z2, z3]
z4 − z2

f [z3, z4] = f [z4] − f [z3]
z4 − z3

z4 = x2 f [z4] = f (x2) f [z3, z4, z5] = f [z4, z5] − f [z3, z4]
z5 − z3

f [z4, z5] = f ′(x2)

z5 = x2 f [z5] = f (x2)

Example 2 Use the data given in Example 1 and the divided difference method to determine the Hermite
polynomial approximation at x = 1.5.

Solution The underlined entries in the first three columns of Table 3.17 are the data given
in Example 1. The remaining entries in this table are generated by the standard divided-
difference formula (3.9).

For example, for the second entry in the third column we use the second 1.3 entry in
the second column and the first 1.6 entry in that column to obtain

0.4554022− 0.6200860

1.6− 1.3
= −0.5489460.

For the first entry in the fourth column we use the first 1.3 entry in the third column and the
first 1.6 entry in that column to obtain

−0.5489460− (−0.5220232)

1.6− 1.3
= −0.0897427.

The value of the Hermite polynomial at 1.5 is

H5(1.5) = f [1.3] + f ′(1.3)(1.5− 1.3)+ f [1.3, 1.3, 1.6](1.5− 1.3)2

+ f [1.3, 1.3, 1.6, 1.6](1.5− 1.3)2(1.5− 1.6)

+ f [1.3, 1.3, 1.6, 1.6, 1.9](1.5− 1.3)2(1.5− 1.6)2

+ f [1.3, 1.3, 1.6, 1.6, 1.9, 1.9](1.5− 1.3)2(1.5− 1.6)2(1.5− 1.9)

= 0.6200860+ (−0.5220232)(0.2)+ (−0.0897427)(0.2)2

+ 0.0663657(0.2)2(−0.1)+ 0.0026663(0.2)2(−0.1)2

+ (−0.0027738)(0.2)2(−0.1)2(−0.4)

= 0.5118277.
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H2n+1(x) = f [z0] +

2n+1∑
k=1

f [z0, z1, · · · , zk](x− z0)(x− z1) · · · (x− zk−1).
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Example 11.

Determine the Hermite polynomial that interpolates the data below

x 1 2
f(x) 1 −3
f ′(x) −1 2

using Newton’s divided differences table.

Solution
The divided difference table is

z0 = 1 f [z0] = 1 f [z0, z1] = −1 f [z0, z1, z2] = −3 f [z0, z1, z2, z3] = 9
z1 = 1 f [z1] = 1 f [z1, z2] = −4 f [z1, z2, z3] = 6
z2 = 2 f [z2] = −3 f [z2, z3] = 2
z3 = 2 f [z3] = −3

Then the 3rd-degree Hermite interpolating polynomial is

H3(x) = 1− (x− 1)− 3(x− 1)2 + 9(x− 1)2(x− 2)

= 9x3 − 39x2 + 50x− 19.
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For the error bound of the Hermite interpolation, we have the following
result.

Theorem 12 (Hermite Interpolation Error Theorem).

Suppose x0, x1, · · · , xn are distinct numbers in the interval [a, b] and
f ∈ C2n+2[a, b]. Then, for each x ∈ [a, b], there exists a number ξ in
(a, b) (generally unknown), such that

f(x) = H2n+1(x) +
f (2n+2)(ξ)

(2n+ 2)!
(x− x0)2(x− x1)2 · · · (x− xn)2,

where P2n+1(x) is the Hermite interpolating polynomial of f(x).
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Example 13.

A baseball pitcher throws a fastball from the pitcher’s mound to the catcher.
Although the distance from the mound to the home plate is 60 feet 6 inches,
the ball typically travels about 55 feet 6 inches. Suppose the initial velocity of
the ball is 95 miles per hour (mph), and the terminal velocity is 92 mph.
Construct a Hermite interpolating polynomial for the data

Time t (in seconds) 0 0.4
Distance d (in feet) 0 55.5

Speed (in mph) 95 92

1 Use the derivative of Hermite polynomial to estimate the speed of the
baseball in mph at t = 0.2 seconds.

2 Does the maximum velocity of the ball occur at t = 0, or does the
derivative of the Hermite polynomial have a maximum exceeding 95
mph? If so, does this seem reasonable?
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Solution (1/3)

Convert “miles per hour” to “feet per second” (note 1 mph = 1.46667 fps).

Rewrite the table as follow

Time t (in seconds) 0 0.4
Distance d(t) (in feet) 0 55.5
Speed s(t) = d′(t)(in fps) 139.33 134.93

Generate the Div-Diff table

t0 = 0 f [t0] = 0 f [t0, t1] = 139.33 f [t0, t1, t2] = −1.45 f [t0, t1, t2, t3] = −20.25
t1 = 0 f [t1] = 0 f [t1, t2] = 138.75 f [t1, t2, t3] = −9.55
t2 = 0.4 f [t2] = 55.5 f [t2, t3] = 134.93
t3 = 0.4 f [t3] = 55.5

The Hermite interpolating polynomial is

d(t) = 0 + 139.33(t− 0)− 1.45(t− 0)(t− 0)− 20.25(t− 0)(t− 0)(t− 0.4)

= −20.25t3 + 6.65t2 + 139.33t.
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Solution (2/3)

The speed can be approximated by

d(t) = −20.25t3 + 6.65t2 + 139.33t

s(t) = d′(t) = −60.75t2 + 13.3t+ 139.33

The speed at t = 0.2 is s(0.2) = 139.56 fps = 95.15 mph.

To find the maximum speed, we consider the acceleration

a(t) = s′(t) = −121.5t+ 13.3 = 0 =⇒ t = 0.1095

The maximum speed is smax = 140.06 fps = 95.49 mph, occurs at
t = 0.1095 second.
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Solution (3/3)
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3.4 Cubic Spline Interpolation

In previous sections, we introduced the approximation of arbitrary
functions on closed intervals using a single polynomial.

However, high-degree polynomials can oscillate erratically, that is, a
minor fluctuation over a small portion of the interval can induce large
fluctuations over the entire range.

The following is a 20th degree Lagrange interpolation approximating the
back of a duck. Clearly this does not reflect the profile of the back.
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Illustration Figure 3.11 shows a ruddy duck in flight. To approximate the top profile of the duck, we
have chosen points along the curve through which we want the approximating curve to pass.
Table 3.18 lists the coordinates of 21 data points relative to the superimposed coordinate
system shown in Figure 3.12. Notice that more points are used when the curve is changing
rapidly than when it is changing more slowly.

Figure 3.11

Table 3.18

x 0.9 1.3 1.9 2.1 2.6 3.0 3.9 4.4 4.7 5.0 6.0 7.0 8.0 9.2 10.5 11.3 11.6 12.0 12.6 13.0 13.3

f (x) 1.3 1.5 1.85 2.1 2.6 2.7 2.4 2.15 2.05 2.1 2.25 2.3 2.25 1.95 1.4 0.9 0.7 0.6 0.5 0.4 0.25

Figure 3.12
f (x)

x

1

2

3

4

6 7 8 91 32 4 5 10 11 12 13

Using Algorithm 3.4 to generate the natural cubic spline for this data produces the coeffi-
cients shown in Table 3.19. This spline curve is nearly identical to the profile, as shown in
Figure 3.13.
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In this section, we introduce the interpolation using piecewise
polynomials. This will effectively prevent the oscillation.

The simplest piecewise-polynomial approximation is piecewise-linear
interpolation. Consider a set of data points:

x0 x1 x2 · · · xn
f(x0) f(x1) f(x2) · · · f(xn)

The following is a piecewise linear polynomial interpolation of a smooth
curve.

3.5 Cubic Spline Interpolation 145

Figure 3.7

y � f (x)

x0 x1 x2 xj xj�1 xj�2 xn�1 xn. . . . . .

y

x

To determine the appropriate Hermite cubic polynomial on a given interval is simply
a matter of computing H3(x) for that interval. The Lagrange interpolating polynomials
needed to determine H3 are of first degree, so this can be accomplished without great
difficulty. However, to use Hermite piecewise polynomials for general interpolation, we
need to know the derivative of the function being approximated, and this is frequently
unavailable.

The remainder of this section considers approximation using piecewise polynomials
that require no specific derivative information, except perhaps at the endpoints of the interval
on which the function is being approximated.

Isaac Jacob Schoenberg
(1903–1990) developed his work
on splines during World War II
while on leave from the
University of Pennsylvania to
work at the Army’s Ballistic
Research Laboratory in
Aberdeen, Maryland. His original
work involved numerical
procedures for solving
differential equations. The much
broader application of splines to
the areas of data fitting and
computer-aided geometric design
became evident with the
widespread availability of
computers in the 1960s.

The simplest type of differentiable piecewise-polynomial function on an entire interval
[x0, xn] is the function obtained by fitting one quadratic polynomial between each successive
pair of nodes. This is done by constructing a quadratic on [x0, x1] agreeing with the function
at x0 and x1, another quadratic on [x1, x2] agreeing with the function at x1 and x2, and so
on. A general quadratic polynomial has three arbitrary constants—the constant term, the
coefficient of x, and the coefficient of x2—and only two conditions are required to fit the
data at the endpoints of each subinterval. So flexibility exists that permits the quadratics to
be chosen so that the interpolant has a continuous derivative on [x0, xn]. The difficulty arises
because we generally need to specify conditions about the derivative of the interpolant at
the endpoints x0 and xn. There is not a sufficient number of constants to ensure that the
conditions will be satisfied. (See Exercise 26.)

The root of the word “spline” is
the same as that of splint. It was
originally a small strip of wood
that could be used to join two
boards. Later the word was used
to refer to a long flexible strip,
generally of metal, that could be
used to draw continuous smooth
curves by forcing the strip to pass
through specified points and
tracing along the curve.

Cubic Splines

The most common piecewise-polynomial approximation uses cubic polynomials between
each successive pair of nodes and is called cubic spline interpolation. A general cubic
polynomial involves four constants, so there is sufficient flexibility in the cubic spline pro-
cedure to ensure that the interpolant is not only continuously differentiable on the interval,
but also has a continuous second derivative. The construction of the cubic spline does not,
however, assume that the derivatives of the interpolant agree with those of the function it is
approximating, even at the nodes. (See Figure 3.8.)
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The disadvantage of using piecewise linear approximation is that
the approximation function is not ”smooth”, i.e., it is not
differentiable at nodes xi.

Often it is clear from physical conditions that smoothness is
required, so the approximating function must be continuously
differentiable.

Using Hermite polynomials could be a choice, however this
requires the known of the derivative values at nodes.
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The goal in this section is to develop a new interpolation so that

it uses piecewise polynomials (to avoid oscillation).

it is continuously differentiable over the entire domain (to ensure
the smoothness).

it requires no specific derivative information of the original
function, except perhaps at the two endpoints of the interval
(minimum information from original function).
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The most common piecewise-polynomial approximation is called
cubic spline interpolation.
The interpolation uses piecewise cubic polynomials, and globally
second-order differentiable (S ∈ C2([x0, xn])).

146 C H A P T E R 3 Interpolation and Polynomial Approximation

Figure 3.8

x0 x1 x2 xj xj�1 xj�2 xn�1 xn. . . . . .

S(x)

xxn�2

S0

S1
Sj Sj�1

Sn�1

Sn�2

Sj(xj�1) � f (xj�1) � Sj�1(xj�1)
Sj(xj�1) � Sj�1(xj�1)� �

�Sj (xj�1) � Sj�1(xj�1)�

Definition 3.10 Given a function f defined on [a, b] and a set of nodes a = x0 < x1 < · · · <
xn = b, a cubic spline interpolant S for f is a function that satisfies the following
conditions:

(a) S(x) is a cubic polynomial, denoted Sj(x), on the subinterval [xj, xj+1] for each
j = 0, 1, . . . , n− 1;

(b) Sj(xj) = f (xj) and Sj(xj+1) = f (xj+1) for each j = 0, 1, . . . , n− 1;

(c) Sj+1(xj+1) = Sj(xj+1) for each j = 0, 1, . . . , n− 2; (Implied by (b).)

(d) S′j+1(xj+1) = S′j(xj+1) for each j = 0, 1, . . . , n− 2;

(e) S′′j+1(xj+1) = S′′j (xj+1) for each j = 0, 1, . . . , n− 2;

(f) One of the following sets of boundary conditions is satisfied:

(i) S′′(x0) = S′′(xn) = 0 (natural (or free) boundary);

(ii) S′(x0) = f ′(x0) and S′(xn) = f ′(xn) (clamped boundary).

A natural spline has no conditions
imposed for the direction at its
endpoints, so the curve takes the
shape of a straight line after it
passes through the interpolation
points nearest its endpoints. The
name derives from the fact that
this is the natural shape a flexible
strip assumes if forced to pass
through specified interpolation
points with no additional
constraints. (See Figure 3.9.)

Figure 3.9

Although cubic splines are defined with other boundary conditions, the conditions given
in (f) are sufficient for our purposes. When the free boundary conditions occur, the spline is
called a natural spline, and its graph approximates the shape that a long flexible rod would
assume if forced to go through the data points {(x0, f (x0)), (x1, f (x1)), . . . , (xn, f (xn))}.

In general, clamped boundary conditions lead to more accurate approximations because
they include more information about the function. However, for this type of boundary
condition to hold, it is necessary to have either the values of the derivative at the endpoints
or an accurate approximation to those values.

Example 1 Construct a natural cubic spline that passes through the points (1, 2), (2, 3), and (3, 5).

Solution This spline consists of two cubics. The first for the interval [1, 2], denoted

S0(x) = a0 + b0(x − 1)+ c0(x − 1)2 + d0(x − 1)3,
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Cubic Spline Interpolation (Natural Spline)
Consider a set of data points:

x0 x1 x2 · · · xn
f(x0) f(x1) f(x2) · · · f(xn)

We construct a cubic spline interpolant S(x) for f satisfies
1 On each subinterval [xj , xj+1], S(x) is a cubic polynomial,

denoted by Sj(x) for j = 0, 1, · · · , n− 1.

2 Sj(xj) = f(xj) and Sj(xj+1) = f(xj+1) for j = 0, 1, · · · , n− 1.

3 S′j+1(xj+1) = S′j(xj+1) for j = 0, 1, · · · , n− 2.

4 S′′j+1(xj+1) = S′′j (xj+1) for j = 0, 1, · · · , n− 2.

5 the natural boundary conditions, S′′(x0) = S′′(xn) = 0.
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Example 14.

Construct a natural spline that passes through the points (1, 2), (2, 3), and
(3, 5).

Solution (1/2)

This spline consists of two cubics. The two subintervals are [1, 2] and
[2, 3]. We write the piecewise cubic polynomial as follows

S(x) =

{
S0(x) = a0 + b0(x− 1) + c0(x− 1)2 + d0(x− 1)3, on [1, 2]

S1(x) = a1 + b1(x− 2) + c1(x− 2)2 + d1(x− 2)3, on [2, 3].

There are eight constants to be determined, which requires 8 conditions.
Four conditions come from nodal values:

S0(1) = 2 =⇒ a0 = 2,

S0(2) = 3 =⇒ b0 + c0 + d0 = 1,

S1(2) = 3 =⇒ a1 = 3,

S1(3) = 5 =⇒ b1 + c1 + d1 = 2,
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Solution (2/2)
Two conditions come from derivatives at interior nodes x1 = 2.

S′0(2) = S′1(2) =⇒ b0 + 2c0 + 3d0 = b1,

S′′0 (2) = S′′1 (2) =⇒ 2c0 + 6d0 = 2c1.

The last two conditions are from the natural boundary conditions

S′′0 (1) = 0 =⇒ 2c0 = 0,

S′′1 (3) = 0 =⇒ 2c1 + 6d1 = 0.

Solve this system of the eight equations gives the spline

S(x) =


2 +

3

4
(x− 1) +

1

4
(x− 1)3, on [1, 2],

3 +
3

2
(x− 2) +

3

4
(x− 2)2 − 1

4
(x− 2)3, on [2, 3].
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Construction of a natural cubic spline

Assume the following n+ 1 distinct points

x0 x1 x2 · · · xn
f(x0) f(x1) f(x2) · · · f(xn)

subdivide the interval [x0, xn] into n subintervals: Ij = [xj , xj+1],
j = 0, 1, · · · , n− 1.

The cubic spline S(x) restricted on the interval Ij is a cubic
polynomial Sj(x) for each 0 ≤ j ≤ n− 1:

S(x)|Ij = Sj(x) = aj + bj(x− xj) + cj(x− xj)2 + dj(x− xj)3.

There are 4n constants aj , bj , cj , and dj to be determined.
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On the interval [xj , xj+1], denote the length hj = xj+1 − xj . We
note that

Sj(x) = aj + bj(x− xj) + cj(x− xj)2 + dj(x− xj)3.

It is easy to see that

aj = f(xj), j = 0, 1, · · · , n− 1. (3.1)

If we also let an = f(xn), then by some calculations we can
represent bj and dj in terms of cj for 0 ≤ j ≤ n− 1:

bj =
1

hj
(aj+1 − aj)−

hj
3
(2cj + cj+1),

dj =
1

3hj
(cj+1 − cj).

(3.2)

Here, we also use the definition cn = S′′n(xn)/2.
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We obtain a linear system for cj , 1 ≤ j ≤ n− 1:

hj−1cj−1+2(hj−1+hj)cj+hjcj+1 =
3

hj
(aj+1−aj)−

3

hj−1
(aj−aj−1).

Write it as a linear system Ax = b where
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Natural Splines

Theorem 3.11 If f is defined at a = x0 < x1 < · · · < xn = b, then f has a unique natural spline interpolant
S on the nodes x0, x1, . . ., xn; that is, a spline interpolant that satisfies the natural boundary
conditions S′′(a) = 0 and S′′(b) = 0.

Proof The boundary conditions in this case imply that cn = S′′(xn)/2 = 0 and that

0 = S′′(x0) = 2c0 + 6d0(x0 − x0),

so c0 = 0. The two equations c0 = 0 and cn = 0 together with the equations in (3.21)
produce a linear system described by the vector equation Ax = b, where A is the (n+ 1)×
(n+ 1) matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............

0

h0 2(h0 + h1) h1

...........

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

h1 . . . . . . . . . . . . . . . . . . . . .

2(h1 . . . . . . . . . . . . . . . . . .

+ h2) h2 . . . . . . . . . . . . . . . . . . . . . .
0

hn−2 2(hn−2 + hn−1) hn−1

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and b and x are the vectors

b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
3

h1
(a2 − a1)− 3

h0
(a1 − a0)

...
3

hn−1
(an − an−1)− 3

hn−2
(an−1 − an−2)

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and x =

⎡
⎢⎢⎢⎣

c0

c1
...

cn

⎤
⎥⎥⎥⎦ .

The matrix A is strictly diagonally dominant, that is, in each row the magnitude of the
diagonal entry exceeds the sum of the magnitudes of all the other entries in the row. A linear
system with a matrix of this form will be shown by Theorem 6.21 in Section 6.6 to have a
unique solution for c0, c1, . . . , cn.

The solution to the cubic spline problem with the boundary conditions S′′(x0) =
S′′(xn) = 0 can be obtained by applying Algorithm 3.4.

ALGORITHM

3.4
Natural Cubic Spline

To construct the cubic spline interpolant S for the function f , defined at the numbers
x0 < x1 < · · · < xn, satisfying S′′(x0) = S′′(xn) = 0:

INPUT n; x0, x1, . . . , xn; a0 = f (x0), a1 = f (x1), . . . , an = f (xn).

OUTPUT aj, bj, cj, dj for j = 0, 1, . . . , n− 1.

(Note: S(x) = Sj(x) = aj + bj(x − xj)+ cj(x − xj)
2 + dj(x − xj)

3 for xj ≤ x ≤ xj+1.)

Step 1 For i = 0, 1, . . . , n− 1 set hi = xi+1 − xi.
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Natural Splines

Theorem 3.11 If f is defined at a = x0 < x1 < · · · < xn = b, then f has a unique natural spline interpolant
S on the nodes x0, x1, . . ., xn; that is, a spline interpolant that satisfies the natural boundary
conditions S′′(a) = 0 and S′′(b) = 0.

Proof The boundary conditions in this case imply that cn = S′′(xn)/2 = 0 and that

0 = S′′(x0) = 2c0 + 6d0(x0 − x0),

so c0 = 0. The two equations c0 = 0 and cn = 0 together with the equations in (3.21)
produce a linear system described by the vector equation Ax = b, where A is the (n+ 1)×
(n+ 1) matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............

0

h0 2(h0 + h1) h1

...........

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

h1 . . . . . . . . . . . . . . . . . . . . .

2(h1 . . . . . . . . . . . . . . . . . .

+ h2) h2 . . . . . . . . . . . . . . . . . . . . . .
0

hn−2 2(hn−2 + hn−1) hn−1

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and b and x are the vectors

b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
3

h1
(a2 − a1)− 3

h0
(a1 − a0)

...
3

hn−1
(an − an−1)− 3

hn−2
(an−1 − an−2)

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and x =

⎡
⎢⎢⎢⎣

c0

c1
...

cn

⎤
⎥⎥⎥⎦ .

The matrix A is strictly diagonally dominant, that is, in each row the magnitude of the
diagonal entry exceeds the sum of the magnitudes of all the other entries in the row. A linear
system with a matrix of this form will be shown by Theorem 6.21 in Section 6.6 to have a
unique solution for c0, c1, . . . , cn.

The solution to the cubic spline problem with the boundary conditions S′′(x0) =
S′′(xn) = 0 can be obtained by applying Algorithm 3.4.

ALGORITHM

3.4
Natural Cubic Spline

To construct the cubic spline interpolant S for the function f , defined at the numbers
x0 < x1 < · · · < xn, satisfying S′′(x0) = S′′(xn) = 0:

INPUT n; x0, x1, . . . , xn; a0 = f (x0), a1 = f (x1), . . . , an = f (xn).

OUTPUT aj, bj, cj, dj for j = 0, 1, . . . , n− 1.

(Note: S(x) = Sj(x) = aj + bj(x − xj)+ cj(x − xj)
2 + dj(x − xj)

3 for xj ≤ x ≤ xj+1.)

Step 1 For i = 0, 1, . . . , n− 1 set hi = xi+1 − xi.

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Xu Zhang (Oklahoma State University) MATH 4513 Numerical Analysis Fall 2020 59 / 92



Chapter 3. Interpolation and Polynomial Approximation 3.4 Cubic Spline Interpolation

The matrix A is strictly diagonally dominant, that is,

|aii| >
n∑

j=1

|aij |, for all i = 1, 2, · · · , n.

The matrix A is nonsingular and the linear system Ax = b has a
unique solution(more in Chapter 6).

To solve the linear system Ax = b with Matlab, we can use the
command “backslash”:

x = A \ b.
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Matlab File for Natural Spline Coefficient9/14/20 3:08 PM /Users/xuzhang/Dr.../natural_spline_coef.m 1 of 1

function [a,b,c,d] = natural_spline_coef(dataX,dataY)
%% Cubic Spline (Natual Boundary) Interpolation 
%  On each sub-interval, generate four coefficients aj, bj, cj, and dj
%       Sj(x) = aj + bj(x-xj) + cj(x-xj)^2 + dj(x-xj)^3.
%  
%  Inputs: dataX dataY are row vectors of same dimension.
%  Output: a is the collum vector that stores {aj} for j=1,2,...,n+1
%          b is the collum vector that stores {bj} for j=1,2,...,n+1
%          c is the collum vector that stores {cj} for j=1,2,...,n+1
%          d is the collum vector that stores {dj} for j=1,2,...,n+1
 
%% Initialize h
n = length(dataX) - 1;
h = zeros(1,n);
for j = 1:n 
    h(j) = dataX(j+1) - dataX(j);
end
%% Prepare for Matrix A
A = zeros(n+1,n+1);
A(1,1) = 1; A(n+1,n+1) = 1;
for j = 2:n
    A(j,j-1) = h(j-1);
    A(j,j+1) = h(j);
    A(j,j) = 2*(h(j-1)+h(j));
end
%% Prepare for vector bb
bb = zeros(n+1,1);
for j = 2:n
    bb(j) = 3/h(j)*(dataY(j+1)-dataY(j)) - 3/h(j-1)*(dataY(j)-dataY(j-1));
end
%% Solve A*c = bb
c = A\bb;
%% Find a,b,d.
a = reshape(dataY(1:n+1),n+1,1);
b = zeros(n,1);
d = zeros(n,1);
for j = 1:n
    b(j) = 1/h(j)*(a(j+1)-a(j)) - h(j)/3*(2*c(j)+c(j+1));
    d(j) = (c(j+1) - c(j))/(3*h(j));
end
%% Remove the last entries of a and c
a(n+1) = [];
c(n+1) = [];
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Matlab File for Natural Spline Interpolation9/14/20 3:13 PM /Users/xuzhang/Dropbox.../natural_spline.m 1 of 1

function y = natural_spline(dataX,dataY,x)
%% Cubic Spline (Natual Boundary) Interpolation 
%  On each sub-interval, generate four coefficients aj, bj, cj, and dj
%       Sj(x) = aj + bj(x-xj) + cj(x-xj)^2 + dj(x-xj)^3.
%  
%  Inputs: dataX dataY are row vectors of same dimension.
%          x is the query point(s). 
%  Output: y is the value of spline interpolation y=S(x) at query points x
 
%% Generate Spline Coefficient [ai,bi,ci,di] on each interval.
[a,b,c,d] = natural_spline_coef(dataX,dataY);
 
%% Evaluate the query points
y = zeros(size(x));
for n = 1:length(x)
    for j = 1:length(dataX)-1
        if dataX(j) <= x(n) && dataX(j+1) >= x(n)
            k = j;
            break
        end
    end    
    xk = dataX(k);
    y(n) = a(k) + b(k)*(x(n)-xk) + c(k)*(x(n)-xk)^2 + d(k)*(x(n)-xk)^3;
end
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Example 15.
At the beginning of Chapter 3, we gave some Taylor polynomial to
approximate the exponential function f(x) = ex. Use the data points

x 0 1 2 3

f(x) 1 e e2 e3

to form a natural cubic spline S(x) that approximates f(x) = ex.

Solution (1/3)
Since this problem involves extensive calculation, we write a Matlab
code to solve this problem
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Solution (2/3)
The MATLAB driver file for this example
9/14/20 3:41 PM /Users/xuzhang/Dropbox/Teachi.../ex3_4_1.m 1 of 1

% ex 3.4.1
clc
dataX = [0,1,2,3];
dataY = [exp(0),exp(1),exp(2),exp(3)];
 
%% generate coefficient of natural spline
[a,b,c,d] = natural_spline_coef(dataX,dataY);
disp('    a         b         c         d')
disp('-----------------------------------------')
disp([a,b,c,d])
 
%% query point x
x = 0:0.01:3;
y = natural_spline(dataX,dataY,x);
 
%% plot 
figure(1)
plot(dataX,dataY,'r*','linewidth',2)
hold on
plot(x,exp(x),'b-','linewidth',2)
plot(x,y,'k-.','linewidth',2)
lgd = legend('data points','y = e^x','y = S(x)');
hold off
grid on
lgd.FontSize = 16;
lgd.Location = 'NorthWest';
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Solution (3/3)

S(x) =


1.0000 + 1.4660x+ 0.2523x3, on [0, 1],

2.7183 + 2.2229(x− 1) + 0.7569(x− 1)2 + 1.69107(x− 1)3, on [1, 2],

7.3891 + 8.8098(x− 2) + 5.8301(x− 2)2 − 1.9434(x− 2)3, on [2, 3].

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

14

16

18

20

data points

y = ex

y = S(x)
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Clamped Splines

The clamped spline is another type of cubic splines that use
different boundary conditions.
Comparing with the free boundary condition in the natural spline,

S′′(a) = 0, S′′(b) = 0,

the clamped spline specifies the slope at the endpoints, i.e.,

S′(a) = f ′(a), S′(b) = f ′(b).

So, the clamped spline requires additional information:

x0 x1 x2 · · · xn
f(x0) f(x1) f(x2) · · · f(xn)

f ′(x0) f ′(xn)

The rest of conditions are exactly the same as the natural splines.
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Example 16.

We revisit Example 14, and this time we construct a clamped spline that
passes through the points (1, 2), (2, 3), and (3, 5) that has S′(1) = 2 and
S′(3) = 1.

Solution (1/2)

There are two pieces in the spline S(x):

S0(x) = a0 + b0(x− 1) + c0(x− 1)2 + d0(x− 1)3, on [1, 2]

S1(x) = a1 + b1(x− 2) + c1(x− 2)2 + d1(x− 2)3, on [2, 3].

Most conditions (6 out of 8) are the same as the natural spline,

f(1) = 2 =⇒ a0 = 2, S0(2) = 3 =⇒ b0 + c0 + d0 = 1.

f(2) = 3 =⇒ a1 = 3, S1(3) = 5 =⇒ b1 + c1 + d1 = 2.

s′0(2) = s′1(2) =⇒ b0 + 2c0 + 3d0 = b1.

s′′0(2) = s′′1(2) =⇒ 2c0 + 6d0 = 2c1.
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Solution (2/2)
The clamped boundary conditions yield

s′0(1) = 2 =⇒ b0 = 2,

s′1(3) = 1 =⇒ b1 + 2c1 + 3d1 = 1.

Solve the system for eight unknowns, we have

S(x) =


2 + 2(x− 1)− 5

2
(x− 1)2 +

3

2
(x− 1)3, on [1, 2],

3 +
3

2
(x− 1) + 2(x− 2)2 − 3

2
(x− 2)3, on [2, 3].
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Construction of a clamped cubic spline
Define the cubic polynomial on each interval to be

Sj(x) = aj+bj(x−xj)+cj(x−xj)2+dj(x−xj)3 j = 0, 1, · · · , n−1.

The coefficients {aj}, {bj}, and {dj} are define as (3.1) and (3.2).

For j = 1, 2, · · · , n− 1 we have the following equations for cj

hj−1cj−1+2(hj−1+hj)cj+hjcj+1 =
3

hj
(aj+1−aj)−

3

hj−1
(aj−aj−1).

In addition, we have the clamped boundary conditions:

2h0c0 + h0c1 =
3

h0
(a1 − a0)− 3f ′(a)

hn−1cn−1 + 2hn−1cn = 3f ′(b)− 3

hn−1
(an − an−1)
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The clamped spline defined on a = x0 < x1 < · · · < xn = b is
unique. {cn} satisfies the linear system Ax = b where

3.5 Cubic Spline Interpolation 155

determine the linear system Ax = b, where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2h0 h0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............

0

h0 2(h0 + h1) h1

...........

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

h1 . . . . . . . . . . . . . . . . . . . . . .

2(h1 . . . . . . . . . . . . . . . . . . .

+ h2) h2 . . . . . . . . . . . . . . . . . . . . . . .
0

hn−2 2(hn−2 + hn−1) hn−1

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0 hn−1 2hn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
h0
(a1 − a0)− 3f ′(a)

3
h1
(a2 − a1)− 3

h0
(a1 − a0)

...
3

hn−1
(an − an−1)− 3

hn−2
(an−1 − an−2)

3f ′(b)− 3
hn−1

(an − an−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and x =

⎡
⎢⎢⎢⎣

c0

c1
...

cn

⎤
⎥⎥⎥⎦ .

This matrix A is also strictly diagonally dominant, so it satisfies the conditions of
Theorem 6.21 in Section 6.6. Therefore, the linear system has a unique solution for
c0, c1, . . . , cn.

The solution to the cubic spline problem with the boundary conditions S′(x0) = f ′(x0)

and S′(xn) = f ′(xn) can be obtained by applying Algorithm 3.5.

ALGORITHM

3.5
Clamped Cubic Spline

To construct the cubic spline interpolant S for the function f defined at the numbers x0 <

x1 < · · · < xn, satisfying S′(x0) = f ′(x0) and S′(xn) = f ′(xn):

INPUT n; x0, x1, . . . , xn; a0 = f (x0), a1 = f (x1), . . . , an = f (xn); FPO = f ′(x0);
FPN = f ′(xn).

OUTPUT aj, bj, cj, dj for j = 0, 1, . . . , n− 1.

(Note: S(x) = Sj(x) = aj + bj(x − xj)+ cj(x − xj)
2 + dj(x − xj)

3 for xj ≤ x ≤ xj+1.)

Step 1 For i = 0, 1, . . . , n− 1 set hi = xi+1 − xi.

Step 2 Set α0 = 3(a1 − a0)/h0 − 3FPO;
αn = 3FPN− 3(an − an−1)/hn−1.

Step 3 For i = 1, 2, . . . , n− 1

set αi = 3

hi
(ai+1 − ai)− 3

hi−1
(ai − ai−1).

Step 4 Set l0 = 2h0; (Steps 4,5,6, and part of Step 7 solve a tridiagonal linear system
using a method described in Algorithm 6.7.)

μ0 = 0.5;
z0 = α0/l0.

Step 5 For i = 1, 2, . . . , n− 1
set li = 2(xi+1 − xi−1)− hi−1μi−1;
μi = hi/li;
zi = (αi − hi−1zi−1)/li.
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determine the linear system Ax = b, where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2h0 h0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............

0

h0 2(h0 + h1) h1

...........

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

h1 . . . . . . . . . . . . . . . . . . . . . .

2(h1 . . . . . . . . . . . . . . . . . . .

+ h2) h2 . . . . . . . . . . . . . . . . . . . . . . .
0

hn−2 2(hn−2 + hn−1) hn−1

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0 hn−1 2hn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
h0
(a1 − a0)− 3f ′(a)

3
h1
(a2 − a1)− 3

h0
(a1 − a0)

...
3

hn−1
(an − an−1)− 3

hn−2
(an−1 − an−2)

3f ′(b)− 3
hn−1

(an − an−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and x =

⎡
⎢⎢⎢⎣

c0

c1
...

cn

⎤
⎥⎥⎥⎦ .

This matrix A is also strictly diagonally dominant, so it satisfies the conditions of
Theorem 6.21 in Section 6.6. Therefore, the linear system has a unique solution for
c0, c1, . . . , cn.

The solution to the cubic spline problem with the boundary conditions S′(x0) = f ′(x0)

and S′(xn) = f ′(xn) can be obtained by applying Algorithm 3.5.

ALGORITHM

3.5
Clamped Cubic Spline

To construct the cubic spline interpolant S for the function f defined at the numbers x0 <

x1 < · · · < xn, satisfying S′(x0) = f ′(x0) and S′(xn) = f ′(xn):

INPUT n; x0, x1, . . . , xn; a0 = f (x0), a1 = f (x1), . . . , an = f (xn); FPO = f ′(x0);
FPN = f ′(xn).

OUTPUT aj, bj, cj, dj for j = 0, 1, . . . , n− 1.

(Note: S(x) = Sj(x) = aj + bj(x − xj)+ cj(x − xj)
2 + dj(x − xj)

3 for xj ≤ x ≤ xj+1.)

Step 1 For i = 0, 1, . . . , n− 1 set hi = xi+1 − xi.

Step 2 Set α0 = 3(a1 − a0)/h0 − 3FPO;
αn = 3FPN− 3(an − an−1)/hn−1.

Step 3 For i = 1, 2, . . . , n− 1

set αi = 3

hi
(ai+1 − ai)− 3

hi−1
(ai − ai−1).

Step 4 Set l0 = 2h0; (Steps 4,5,6, and part of Step 7 solve a tridiagonal linear system
using a method described in Algorithm 6.7.)

μ0 = 0.5;
z0 = α0/l0.

Step 5 For i = 1, 2, . . . , n− 1
set li = 2(xi+1 − xi−1)− hi−1μi−1;
μi = hi/li;
zi = (αi − hi−1zi−1)/li.
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Matlab File for Clamped Spline Coefficient9/14/20 5:14 PM /Users/xuzhang/Dr.../clamped_spline_coef.m 1 of 1

function [a,b,c,d] = clamped_spline_coef(dataX,dataY,dFa,dFb)
%% Cubic Spline (Clamped Boundary) Interpolation 
%  On each sub-interval, generate four coefficients aj, bj, cj, and dj
%       Sj(x) = aj + bj(x-xj) + cj(x-xj)^2 + dj(x-xj)^3.
%  
%  Inputs: dataX dataY are row vectors of same dimension.
%  Output: a is the collum vector that stores {aj} for j=1,2,...,n+1
%          b is the collum vector that stores {bj} for j=1,2,...,n+1
%          c is the collum vector that stores {cj} for j=1,2,...,n+1
%          d is the collum vector that stores {dj} for j=1,2,...,n+1
 
%% Initialize h
n = length(dataX) - 1;
h = zeros(1,n);
for j = 1:n 
    h(j) = dataX(j+1) - dataX(j);
end
 
%% Prepare for Matrix A
A = zeros(n+1,n+1);
A(1,1) = 2*h(1); A(1,2) = h(1); % Clamped Boundary Condition 
A(n+1,n) = h(n); A(n+1,n+1) = 2*h(n); % Clamped Boundary Condition 
for j = 2:n 
    A(j,j-1) = h(j-1);
    A(j,j+1) = h(j);
    A(j,j) = 2*(h(j-1)+h(j));
end
%% Prepare for vector bb
bb = zeros(n+1,1);
bb(1) = 3/h(j)*(dataY(2)-dataY(1)) - 3*dFa; % Clamped Boundary Condition 
bb(n+1) = 3*dFb - 3/h(n)*(dataY(n+1)-dataY(n)); % Clamped Boundary Condition 
for j = 2:n
    bb(j) = 3/h(j)*(dataY(j+1)-dataY(j)) - 3/h(j-1)*(dataY(j)-dataY(j-1));
end
%% Solve A*c = bb
c = A\bb;
%% Find a,b,d.
a = reshape(dataY(1:n+1),n+1,1);
b = zeros(n,1);
d = zeros(n,1);
for j = 1:n
    b(j) = 1/h(j)*(a(j+1)-a(j)) - h(j)/3*(2*c(j)+c(j+1));
    d(j) = (c(j+1) - c(j))/(3*h(j));
end
a(n+1) = [];
c(n+1) = [];
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Matlab File for Clamped Spline Interpolation9/14/20 5:15 PM /Users/xuzhang/Dropbox.../clamped_spline.m 1 of 1

function y = clamped_spline(dataX,dataY,dFa,dFb,x)
%% Cubic Spline (Clamped Boundary) Interpolation 
%  On each sub-interval, generate four coefficients aj, bj, cj, and dj
%       Sj(x) = aj + bj(x-xj) + cj(x-xj)^2 + dj(x-xj)^3.
%  
%  Inputs: dataX dataY are row vectors of same dimension.
%          x is the query point(s). 
%  Output: y is the value of spline interpolation y=S(x) at query points x
 
%% Generate Spline Coefficient [ai,bi,ci,di] on each interval.
[a,b,c,d] = clamped_spline_coef(dataX,dataY,dFa,dFb);
 
%% Evaluate the query points
y = zeros(size(x));
for n = 1:length(x)
    for j = 1:length(dataX)-1
        if dataX(j) <= x(n) && dataX(j+1) >= x(n)
            k = j;
            break
        end
    end    
    xk = dataX(k);
    y(n) = a(k) + b(k)*(x(n)-xk) + c(k)*(x(n)-xk)^2 + d(k)*(x(n)-xk)^3;
end
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Example 17.
We revisit the spline interpolation of f(x) = ex at the following points

x 0 1 2 3

f(x) 1 e e2 e3.

This time we use the clamped spline with the additional information
f ′(0) = 1, and f ′(3) = e3. Then, compare the accuracy with the natural
spline interpolation.

Solution (1/3)
Since it involved extensive calculation, we solve the problem using
Matlab programing.
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Solution (2/4)9/14/20 5:24 PM /Users/xuzhang/Dropbox/Teachi.../ex3_4_2.m 1 of 1

% ex 3.4.2
clc
dataX = [0,1,2,3];
dataY = [exp(0),exp(1),exp(2),exp(3)];
 
%% generate coefficient of natural spline
[a,b,c,d] = natural_spline_coef(dataX,dataY);
[a2,b2,c2,d2] = clamped_spline_coef(dataX,dataY,exp(0),exp(3));
disp('Natural Spline')
disp('    a         b         c         d')
disp('-----------------------------------------')
disp([a,b,c,d])
disp('Clamped Spline')
disp('    a         b         c         d')
disp('-----------------------------------------')
disp([a2,b2,c2,d2])
 
%% query point x
x = 0:0.01:3;
y = natural_spline(dataX,dataY,x);
y2 = clamped_spline(dataX,dataY,exp(0),exp(3),x);
 
%% plot 
figure(1)
plot(dataX,dataY,'r*','linewidth',2)
hold on
plot(x,exp(x),'b-','linewidth',2)
plot(x,y,'k-.','linewidth',2)
plot(x,y2,'g-.','linewidth',2)
lgd = legend('data points','y = e^x','Natural','Clamped');
hold off
grid on
lgd.FontSize = 16;
lgd.Location = 'NorthWest';
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Solution (3/4)

The natural spline is

S(x) =


1.0000 + 1.4660x+ 0.2523x3, on [0, 1],

2.7183 + 2.2229(x− 1) + 0.7569(x− 1)2 + 1.6911(x− 1)3, on [1, 2],

7.3891 + 8.8098(x− 2) + 5.8301(x− 2)2 − 1.9434(x− 2)3, on [2, 3].

The clamped spline is

S(x) =


1.0000 + 1.0000x+ 0.4447x2 + 0.2736x3, on [0, 1],

2.7183 + 2.7102(x− 1) + 1.2655(x− 1)2 + 0.6951(x− 1)3, on [1, 2],

7.3891 + 7.3265(x− 2) + 3.3509(x− 2)2 + 2.0191(x− 2)3, on [2, 3].
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Solution (4/4)

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

14

16

18

20

data points

y = ex

Natural
Clamped

From the plot, we can see that the clamped spline is more accurate than
the natural spline.

This is not surprise since the boundary conditions for the clamped spline
are exact.
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Theorem 18 (Error bound for Clamped Cubic Splines).

Let f ∈ C4[a, b] with
max
a≤x≤b

|f (4)(x)| =M.

If S(x) is the unique clamped cubic spline interpolation to f with respect to
the nodes a = x0 < x1 < · · · < xn = b, then for all x ∈ [a, b],

|f(x)− S(x)| ≤ 5M

384
max

0≤j≤n−1
(xj+1 − xj)4.

Remark

A fourth-order error bound also holds in the case of natural spline
interpolation, but it is more difficult to express.

There are other cubic spline interpolations that do not require the
derivative of f . For example, the popular “not-a-knot spline” requires that
the third-order derivative S′′′(x) is continuous at x1 and xn−1.
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Example 19.

In this example, we approximate the top profile of the duck using cubic spline
interpolation.

158 C H A P T E R 3 Interpolation and Polynomial Approximation

Illustration Figure 3.11 shows a ruddy duck in flight. To approximate the top profile of the duck, we
have chosen points along the curve through which we want the approximating curve to pass.
Table 3.18 lists the coordinates of 21 data points relative to the superimposed coordinate
system shown in Figure 3.12. Notice that more points are used when the curve is changing
rapidly than when it is changing more slowly.

Figure 3.11

Table 3.18

x 0.9 1.3 1.9 2.1 2.6 3.0 3.9 4.4 4.7 5.0 6.0 7.0 8.0 9.2 10.5 11.3 11.6 12.0 12.6 13.0 13.3

f (x) 1.3 1.5 1.85 2.1 2.6 2.7 2.4 2.15 2.05 2.1 2.25 2.3 2.25 1.95 1.4 0.9 0.7 0.6 0.5 0.4 0.25

Figure 3.12
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Using Algorithm 3.4 to generate the natural cubic spline for this data produces the coeffi-
cients shown in Table 3.19. This spline curve is nearly identical to the profile, as shown in
Figure 3.13.
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In general, the more points we use, the better approximation we can expect.
We choose 21 data points as depicted above and shown below in the table.
Note that more points are placed where the curve is changing more rapidly.
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Using Algorithm 3.4 to generate the natural cubic spline for this data produces the coeffi-
cients shown in Table 3.19. This spline curve is nearly identical to the profile, as shown in
Figure 3.13.
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Solution (1/4)

Since we don’t have derivative information, we use the natural spline
interpolation.

We write a Matlab driver file for this example.
9/14/20 6:15 PM /Users/xuzhang/Dropbox/Teachi.../ex3_5_i.m 1 of 1

% ex 3.5.illustration
clear; clc;
 
%% Input
dataX = [0.9 1.3,1.9 2.1 2.6 3.0 3.9 4.4 4.7 5.0 6.0 7.0 8.0 ...
    9.2 10.5 11.3 11.6 12.0 12.6 13.0 13.3];
dataY = [1.3 1.5 1.85 2.1 2.6 2.7 2.4 2.15 2.05 2.1 2.25 2.3 2.25 ...
    1.95 1.4 0.9 0.7 0.6 0.5 0.4 0.25];
[a,b,c,d] = natural_spline_coef(dataX,dataY); % coefficent of cubic spline
 
%% Display Outputs
disp('---------------------------------------------------')
disp(' j      a           b           c           d')
disp('---------------------------------------------------')
formatSpec = '%2i    % .5f    % .5f    % .5f    % .5f   \n';
fprintf(formatSpec,[(0:length(dataX)-2)',a,b,c,d]')
 
%% Plot Spline
x = 0.9:0.01:13.3; % query points
y = natural_spline(dataX,dataY,x);
figure(1)
clf;
plot(x,y,'r-','linewidth',2)
hold on
plot(dataX,dataY,'b*','linewidth',2)
axis([0,14,-6,4])
grid on
hold off
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Solution (2/4)

Plotting the natural spline interpolation, we observe that the spline curve
is accurately recovers the top profile of the duck.
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Using Algorithm 3.4 to generate the natural cubic spline for this data produces the coeffi-
cients shown in Table 3.19. This spline curve is nearly identical to the profile, as shown in
Figure 3.13.
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To use a clamped spline we would need derivative approximations for
the endpoints. Even if these approximations were available, we could
expect little improvement because of the close agreement of the natural
cubic spline to the curve of the top profile.
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Solution (3/4)

For comparison, we also use Lagrange Interpolation.9/14/20 6:23 PM /Users/xuzhang/Dropbox/Teach.../ex3_5_i2.m 1 of 1

% Duck Interpolation Comparison
clear; clc;
 
%% Input
dataX = [0.9 1.3,1.9 2.1 2.6 3.0 3.9 4.4 4.7 5.0 6.0 7.0 8.0 ...
    9.2 10.5 11.3 11.6 12.0 12.6 13.0 13.3];
dataY = [1.3 1.5 1.85 2.1 2.6 2.7 2.4 2.15 2.05 2.1 2.25 2.3 2.25 ...
    1.95 1.4 0.9 0.7 0.6 0.5 0.4 0.25];
 
%% Find Spline and Lagrange Interpolation
x = 0.9:0.01:13.3; % query points
y = natural_spline(dataX,dataY,x);
yy = LagrangeInterpolation(dataX,dataY,x);
 
%% Plot Interpolations
figure(1)
clf;
plot(dataX,dataY,'b*','linewidth',2)
hold on
plot(x,y,'r-','linewidth',2)
plot(x,yy,'k-','linewidth',2)
axis([0,14,-2,7])
hold off
grid on
lgd = legend('Data Point','Natural Spline','Lagrange');
lgd.FontSize = 16;
lgd.Location = 'NorthWest';
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Solution (4/4)

Plotting the Lagrange interpolation, we observe that the 20th-degree
polynomial oscillates wildly. It produces a very strange illustration of the
back of a duck.
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To use a clamped spline to approximate this curve we would need derivative approxima-
tions for the endpoints. Even if these approximations were available, we could expect little
improvement because of the close agreement of the natural cubic spline to the curve of the
top profile. �

Constructing a cubic spline to approximate the lower profile of the ruddy duck would
be more difficult since the curve for this portion cannot be expressed as a function of x, and
at certain points the curve does not appear to be smooth. These problems can be resolved
by using separate splines to represent various portions of the curve, but a more effective
approach to approximating curves of this type is considered in the next section.

The clamped boundary conditions are generally preferred when approximating func-
tions by cubic splines, so the derivative of the function must be known or approximated
at the endpoints of the interval. When the nodes are equally spaced near both end-
points, approximations can be obtained by any of the appropriate formulas given in
Sections 4.1 and 4.2. When the nodes are unequally spaced, the problem is considerably
more difficult.

To conclude this section, we list an error-bound formula for the cubic spline with
clamped boundary conditions. The proof of this result can be found in [Schul], pp. 57–58.

Theorem 3.13 Let f ∈ C4[a, b] with maxa≤x≤b |f (4)(x)| = M. If S is the unique clamped cubic spline
interpolant to f with respect to the nodes a = x0 < x1 < · · · < xn = b, then for all x in
[a, b],

|f (x)− S(x)| ≤ 5M

384
max

0≤j≤n−1
(xj+1 − xj)

4.

A fourth-order error-bound result also holds in the case of natural boundary conditions,
but it is more difficult to express. (See [BD], pp. 827–835.)

The natural boundary conditions will generally give less accurate results than the
clamped conditions near the ends of the interval [x0, xn] unless the function f happens
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This example shows the superiority of the cubic spline interpolation.
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Remark

158 C H A P T E R 3 Interpolation and Polynomial Approximation

Illustration Figure 3.11 shows a ruddy duck in flight. To approximate the top profile of the duck, we
have chosen points along the curve through which we want the approximating curve to pass.
Table 3.18 lists the coordinates of 21 data points relative to the superimposed coordinate
system shown in Figure 3.12. Notice that more points are used when the curve is changing
rapidly than when it is changing more slowly.
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Using Algorithm 3.4 to generate the natural cubic spline for this data produces the coeffi-
cients shown in Table 3.19. This spline curve is nearly identical to the profile, as shown in
Figure 3.13.
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Constructing a cubic spline to approximate the lower profile of the duck
would be more difficult since the curve for this portion cannot be
expressed as a function of x, and at certain points the curve does not
appear to be smooth.

These problems can be resolved by using separate splines to represent
various portions of the curve, but a more effective approach to
approximating curves of this type is considered in the next section.
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3.5 Parametric Curves

The techniques we developed so far in this chapter cannot be used to
generate curves of the form shown below because this curve cannot be
expressed as a function y = f(x).

3.6 Parametric Curves 165

on computer graphics will show how this technique can be extended to represent general
curves and surfaces in space. (See, for example, [FVFH].)

Figure 3.15
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A straightforward parametric technique for determining a polynomial or piecewise
polynomial to connect the points (x0, y0), (x1, y1), . . ., (xn, yn) in the order given is to use
a parameter t on an interval [t0, tn], with t0 < t1 < · · · < tn, and construct approximation
functions with

xi = x(ti) and yi = y(ti), for each i = 0, 1, . . . , n.

The following example demonstrates the technique in the case where both approximat-
ing functions are Lagrange interpolating polynomials.

Example 1 Construct a pair of Lagrange polynomials to approximate the curve shown in Figure 3.15,
using the data points shown on the curve.

Solution There is flexibility in choosing the parameter, and we will choose the points
{ti}4i=0 equally spaced in [0,1], which gives the data in Table 3.20.

Table 3.20 i 0 1 2 3 4

ti 0 0.25 0.5 0.75 1
xi −1 0 1 0 1
yi 0 1 0.5 0 −1

This produces the interpolating polynomials

x(t) = (((64t − 352
3

)
t + 60

)
t − 14

3

)
t−1 and y(t) = (((− 64

3 t + 48
)

t − 116
3

)
t + 11

)
t.

Plotting this parametric system produces the graph shown in blue in Figure 3.16. Although
it passes through the required points and has the same basic shape, it is quite a crude ap-
proximation to the original curve. A more accurate approximation would require additional
nodes, with the accompanying increase in computation.
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In this section we will see how to represent general curves (even some
hand-drawn curves) using parametric forms.

This technique can be extended to represent general curves/surfaces in
computer graphics.
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Given a set of data points

x0 x1 x2 · · · xn
y0 y1 y2 · · · yn

we can use a parameter t, and construct polynomial or piecewise
polynomial approximation for

x = x(t), and y = y(t).

To do this, we specify an interval [t0, tn], with t0 < t1 < · · · < tn, and
construct two approximation functions with

xi = x(ti), and yi = y(ti), i = 0, 1, · · · , n.
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Example 20.

Construct a pair of Lagrange polynomials to approximate the curve show
below

3.6 Parametric Curves 165

on computer graphics will show how this technique can be extended to represent general
curves and surfaces in space. (See, for example, [FVFH].)
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A straightforward parametric technique for determining a polynomial or piecewise
polynomial to connect the points (x0, y0), (x1, y1), . . ., (xn, yn) in the order given is to use
a parameter t on an interval [t0, tn], with t0 < t1 < · · · < tn, and construct approximation
functions with

xi = x(ti) and yi = y(ti), for each i = 0, 1, . . . , n.

The following example demonstrates the technique in the case where both approximat-
ing functions are Lagrange interpolating polynomials.

Example 1 Construct a pair of Lagrange polynomials to approximate the curve shown in Figure 3.15,
using the data points shown on the curve.

Solution There is flexibility in choosing the parameter, and we will choose the points
{ti}4i=0 equally spaced in [0,1], which gives the data in Table 3.20.

Table 3.20 i 0 1 2 3 4

ti 0 0.25 0.5 0.75 1
xi −1 0 1 0 1
yi 0 1 0.5 0 −1

This produces the interpolating polynomials

x(t) = (((64t − 352
3

)
t + 60

)
t − 14

3

)
t−1 and y(t) = (((− 64

3 t + 48
)

t − 116
3

)
t + 11

)
t.

Plotting this parametric system produces the graph shown in blue in Figure 3.16. Although
it passes through the required points and has the same basic shape, it is quite a crude ap-
proximation to the original curve. A more accurate approximation would require additional
nodes, with the accompanying increase in computation.
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Solution (1/3)

There are five points, so we choose the points {ti}4i=0 equally spaced in [0,1]:

i 0 1 2 3 4
ti 0 0.25 0.5 0.75 1
xi 1 0 1 0 −1
yi −1 0 0.5 1 0
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Solution (2/3)

We write a MATLAB Driver file for this example9/15/20 3:06 PM /Users/xuzhang/Dropbox/Teachi.../ex3_6_1.m 1 of 1

% ex3_6_1
dataT = [0,0.25,0.5,0.75,1];
dataX = [-1,0,1,0,1];
dataY = [0,1,0.5,0,-1];
 
qt = 0:0.001:1;
qx = LagrangeInterpolation(dataT,dataX,qt);
qy = LagrangeInterpolation(dataT,dataY,qt);
 
figure(1); clf
plot(dataX,dataY,'r*','linewidth',2)
hold
plot(qx,qy,'b-.','linewidth',2)
grid on
lgd = legend('Data Point','Lagrange');
lgd.FontSize = 16;
lgd.Location = 'NorthEast';
 
 

The Interpolation polynomials are

x(t) = 64t4 − 352

3
t3 + 60t2 − 14

3
t− 1,

y(t) = −64

3
t4 + 48t3 − 116

3
t2 + 11t.

Xu Zhang (Oklahoma State University) MATH 4513 Numerical Analysis Fall 2020 87 / 92



Chapter 3. Interpolation and Polynomial Approximation 3.5 Parametric Curves

Solution (3/3)

Plotting the parametric system produced the graph below:

3.6 Parametric Curves 165

on computer graphics will show how this technique can be extended to represent general
curves and surfaces in space. (See, for example, [FVFH].)

Figure 3.15
y

x1

1

�1

�1

A straightforward parametric technique for determining a polynomial or piecewise
polynomial to connect the points (x0, y0), (x1, y1), . . ., (xn, yn) in the order given is to use
a parameter t on an interval [t0, tn], with t0 < t1 < · · · < tn, and construct approximation
functions with

xi = x(ti) and yi = y(ti), for each i = 0, 1, . . . , n.

The following example demonstrates the technique in the case where both approximat-
ing functions are Lagrange interpolating polynomials.

Example 1 Construct a pair of Lagrange polynomials to approximate the curve shown in Figure 3.15,
using the data points shown on the curve.

Solution There is flexibility in choosing the parameter, and we will choose the points
{ti}4i=0 equally spaced in [0,1], which gives the data in Table 3.20.

Table 3.20 i 0 1 2 3 4

ti 0 0.25 0.5 0.75 1
xi −1 0 1 0 1
yi 0 1 0.5 0 −1

This produces the interpolating polynomials

x(t) = (((64t − 352
3

)
t + 60

)
t − 14

3

)
t−1 and y(t) = (((− 64

3 t + 48
)

t − 116
3

)
t + 11

)
t.

Plotting this parametric system produces the graph shown in blue in Figure 3.16. Although
it passes through the required points and has the same basic shape, it is quite a crude ap-
proximation to the original curve. A more accurate approximation would require additional
nodes, with the accompanying increase in computation.
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Remark
For this example, we can also use the natural cubic Spline interpolation for
the parametric system.9/15/20 3:18 PM /Users/xuzhang/Dropbox/Teac.../ex3_6_1_2.m 1 of 1

% ex3_6_1_2
dataT = [0,0.25,0.5,0.75,1];
dataX = [-1,0,1,0,1];
dataY = [0,1,0.5,0,-1];
 
qt = 0:0.001:1;
 
qx = LagrangeInterpolation(dataT,dataX,qt);
qy = LagrangeInterpolation(dataT,dataY,qt);
 
qxS = natural_spline(dataT,dataX,qt);
qyS = natural_spline(dataT,dataY,qt);
 
figure(1); clf
plot(dataX,dataY,'r*','linewidth',2)
hold
plot(qx,qy,'b-.','linewidth',2)
plot(qxS,qyS,'k-.','linewidth',2)
grid on
lgd = legend('Data Point','Lagrange','Natural Spline');
lgd.FontSize = 16;
lgd.Location = 'NorthEast';
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Example 21.

In this example, we demonstrate using natural cubic spline to interpolate
arbitrary hand-drawn curve. We need to use the graphic input MATLAB
command

[X,Y]=ginput(N)

to get N points from the click of the mouse.
(for more details, type help ginput in MATLAB command window)

Xu Zhang (Oklahoma State University) MATH 4513 Numerical Analysis Fall 2020 90 / 92



Chapter 3. Interpolation and Polynomial Approximation 3.5 Parametric Curves

A MATLAB Driver File for Parametric Curve9/15/20 3:45 PM /Users/xuzhang/Dropbox/Teachi.../ex3_6_2.m 1 of 1

% ex3_6_2
clc
clear
close all
 
%% Input Points on a region [0,1] X [0,1]
figure(1)
grid on
axis([0,1,0,1])
N = 20;
dataX = zeros(N,1); dataY = zeros(N,1); 
dataT = (0:1/(N-1):1)';
 
for n = 1:N
    [X,Y] = ginput(1);
    plot(X,Y,'r*'); 
    text(X,Y,int2str(n));
    grid on
    axis([0,1,0,1])
    hold on
    dataX(n) = X; dataY(n) = Y;
end
disp(' ')
disp('       I      dataT     dataX     dataY')
disp('---------------------------------------')
disp([(1:N)',dataT,dataX,dataY])
 
%% Query Points
qt = 0:0.001:1; % use 1000 query points
qx = natural_spline(dataT,dataX,qt);
qy = natural_spline(dataT,dataY,qt);
 
figure(2);clf
plot(dataX,dataY,'r*',qx,qy,'k-','linewidth',2)
grid on
axis([0,1,0,1])
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Remarks
Applications in computer graphics require the rapid generation of
smooth curves that can be easily and quickly modified. For both
aesthetic and computational reasons, changing one portion of
these curves should have little or no effect on other portions of the
curves.
This eliminates the use of interpolating polynomials and splines
since changing one portion of these curves affects the whole
curve.
The choice of curve for use in computer graphics is generally a
form of the piecewise cubic Hermite polynomial. Popular graphics
programs using Hermite cubics are described as Bézier
polynomials, which uses the “guidepoint” to compute the
derivatives at the endpoints in each interval.
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