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Chapter 3. Interpolation and Polynomial Approximation 3.1 Interpolation and Lagrange Polynomials

3.1 Interpolation and Lagrange Polynomials
@ One of the most useful classes of functions is polynomials:
P,(x) = apx™ + 12" P+ -+ ayz + ap.

where n is a nonnegative integer and ay, a1, - - -, a,, are real
constants.

@ One reason is that any continuous function can be approximated
by a polynomial arbitrarily close. By this we mean that given any
continuous function, there exists a polynomial that is as “close” to
the given function as desired. (see Theorem 1)

@ Another important reason for considering the class of polynomials
in the approximation of functions is that the derivative and
indefinite integral of a polynomial are easy to determine and are
also polynomials.

Xu Zhang (Oklahoma State University) MATH 4513 Numerical Analysis Fall 2020 3/92



Chapter 3. Interpolation and Polynomial Approximation 3.1 Interpolation and Lagrange Polynomials

Theorem 1 (Weierstrass Approximation Theorem).

Suppose f € Cla,bl]. For each e > 0, there exists a polynomial P(x)

such that
|f(z) — P(z)| <,

for all x € [a,b].

LY =flx) + ¢
7y =P
e y=f)

Y =/tx) — ¢
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Chapter 3. Interpolation and Polynomial Approximation 3.1 Interpolation and Lagrange Polynomials

@ A typical example for polynomial approximations is the Taylor polynomial.

Po(z) = f(xo)+f’(wo)($—$o)+@(x—

Z‘o)2+"

+

S (xo)

n!

@ For example, using Taylor polynomials at xy = 0 to approximate

f(z) = €%, we obtain

Po(.l?):l,
Pl(l'):l-i-.'l,‘,

22
P2(33)11+$+?7

2 28
P. =1 — 4+ —
3 () tat o+ o

2 3 gt
P, =1 — 4+ — 4+ =
4(£E) +x+ 9 + 6 +24,

22 g3 gt 5
P, =1 — =4+ =4+ —
5(9c) +$+2+6+24+120’
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Chapter 3. Interpolation and Polynomial Approximation 3.1 Interpolation and Lagrange Polynomials

'Y
20+
ok -V = Py(x)
y=e/[:
71y = Pyx)
15+ e

y = Pax)
¥ = Pyx)

y=Pi(x)

= Po)

=Y

Note that even for higher-degree polynomials, error becomes
progressively worse as we move away from the point xg = 0.

£(3) = 20.0855
Pi(3) =4, Py(3) =85, P3(3)=13, P4(3)=16.375.
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Chapter 3. Interpolation and Polynomial Approximation 3.1 Interpolation and Lagrange Polynomials

Remark on Taylor Polynomials

@ For Taylor polynomials, all information used in the approximation
is concentrated at the single number z(, so these polynomials will
generally give inaccurate approximations as we move away from
xo. This limits Taylor polynomial approximation to the situation in
which approximations are needed only at numbers close to x.

@ A good interpolation polynomial needs to provide a relatively
accurate approximation over an entire interval, and Taylor
polynomials do not generally do this.

@ It is usually more efficient to develop methods that use
information spreaded at various points.
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Chapter 3. Interpolation and Polynomial Approximation 3.1 Interpolation and Lagrange Polynomials

Lagrange Interpolation Polynomials

@ Suppose that a function f(z) passes through two points (xg, yo) and
(z1,v1). Define the following linear Lagrange polynomials

Tr — X T — X

LQ(I‘) Ll(IIZ) =

.’1?0—331’ .Tl—xo'

@ It is easy to verify that
Lo(xo) = 1, Lo(l‘l) = 07

Ll(xo) = 07 Ll(l'l) =1.

@ The linear Lagrange interpolating polynomial through (z¢, yo) and
(xla yl) |S
T — T T — Xo

P(z) =yoLo(z) + y1Li(z) = pe—— Yo + - axoyl'

@ It can be verified that P(z() = yo and P(x1) = y1. (Exercise)
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Chapter 3. Interpolation and Polynomial Approximation 3.1 Interpolation and Lagrange Polynomials

Determine the linear Lagrange interpolating polynomial that passes
through the points (2,4) and (5, 1).

v

@ In this case, we have

z—9 1 z—2 1
Lo(z) = — :—g(:c—f)), and Li(x) = — :§(:1:—2).

@ Then, the linear Lagrange interpolating polynomial is

y
P(.I') = yoLO(x) + ylLl (l’) A

1 1

— _S(z—5)-4+(z-2)-1 3t
gle=9)4+3(@-2) Nl
4 n 20 n 1 2 A =)= = 4 G

= == —_— —-r — —
3 3 3 3 T T T T T

= —x + 6. 12 3 4 5

WV
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Chapter 3. Interpolation and Polynomial Approximation 3.1 Interpolation and Lagrange Polynomials

@ To generalize the concept of linear interpolation, consider the
construction of a polynomial of degree at most n that passes
through the following n + 1 points:

(o, f(20)), (21, f(x1)); -+ (@, f2n).
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Chapter 3. Interpolation and Polynomial Approximation 3.1 Interpolation and Lagrange Polynomials

@ Construct for each £ =0,1,--- ,n, a function L,, ;(x) such that

1 ifi=k

@) =0k =0 i

@ To satisfy L, ;(x;) = 0 for each i # k requires the numerator of
L, i (z) contains
(z—a0) (& — wp1) (& — )+ (2 — )
@ To satisfy L,, ;(z;) = 1 requires the denominator of L,, ;(x) must

be this same term but evaluated at x;,

(w, —20) - -+ (2 — Tp—1) (T — Tpy1) - (T — )

Xu Zhang (Oklahoma State University) MATH 4513 Numerical Analysis Fall 2020 11/92



3.1 Interpolation and Lagrange Polynomials
Definition 3 (Lagrange Interpolating Polynomials).

The n-th Lagrange interpolating polynomials are defined by
(x —m0) - (2 — wp—1) (@ — Tpg1) -+ (2 — )
L, =
) = = 20) - (o = zi1) @ — 2] - (@n — 27)
:1_[M foreach k=0,1,---,n.
T (z — 1)
=0 )
Ln,k(-x) A

We may write L,, ;(x) simply as Lj(x) when there is no confusion as to
its degree.
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Chapter 3. Interpolation and Polynomial Approximation 3.1 Interpolation and Lagrange Polynomials

Theorem 4.

If xg, 21, - -+, x, @ren + 1 distinct numbers and f is a function whose

values are given at these numbers, then a unique polynomial P(z) of
degree at most n exists with

f(zx) = P(xy), foreach k=0,1,---,n.

This polynomial is given by

P(l‘) = f(l’())Ln’()(l‘) +eee f(xn)Ln,n(x) = f(xk)Ln,k(x)a
k=0
where foreachk =0,1,--- ,n
Lox(z) = (x—z0) (T — 2p-1)(T — Tpt1) - - (T — Tn)

(s — @) <> o (@ — B By — B ) o oo (@3 — T

:1_[M foreach k=0,1,--- ,n.
i (zk — i)
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Chapter 3. Interpolation and Polynomial Approximation 3.1 Interpolation and Lagrange Polynomials

Use the numbers (called nodes) =y = 2, z; = 2.75, and x5 = 4 to find the
second-degree Lagrange interpolating polynomial P»(x) for the function

1 . . . 1
f(z) = . Then use this polynomial to approximate f(3) = 3"

Solution (1/2)

@ The Lagrange polynomials associated with zo = 2, z; = 2.75, and x5 = 4

are
Lo(z) = g:;ig;gm jll)) §($—2.75)($—4).
L) = 22l B g6y

(2.75 — 2)(2.75 — 4) 15

_ (z—=2)(xz—-2.75) 2
L@ = gm—ga—am ~ 5@ 220
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Chapter 3. Interpolation and Polynomial Approximation 3.1 Interpolation and Lagrange Polynomials
Solution (2/2)

@ Also,
1 4 1
f(xo) = f(2) = 5 f(x1) = f(2.75) = 11 and f(z2) = f(4) = 1
@ So the second-degree Lagrange Interpolating polynomial is
2
Py(z) = Y flzx)Li(x)
k=0
1 2 16
1 2
+ 5(1‘ —2)(z — 2.75)
_ i 2 § e @
- 2" T8 u
@ Use P, () to approximate f(z) atz =3
f(3) = Py(3) = % =0.32955. |f(3) — P2(3)] = 0.03418
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Chapter 3. Interpolation and Polynomial Approximation 3.1 Interpolation and Lagrange Polynomials

For the error bound of the Lagrange interpolation, we have the
following result.

Theorem 6 (Lagrange Interpolation Error Theorem).

Suppose xq, 1, -+, x, are distinct numbers in the interval [a,b] and
f € C"*La,b]. Then, for each z € [a,b], there exists a number ¢(x)
between min{xg, z1 - - - ,,} and max{xg,x; ---z,}, and hence in [a, ],
such that

FE)

£(@) = Pla) + o

(z —z0)(z — 1) (T — Z0),

where P(x) is the interpolating polynomial of f(x).

Xu Zhang (Oklahoma State University) MATH 4513 Numerical Analysis Fall 2020 16/92



Chapter 3. Interpolation and Polynomial Approximation 3.1 Interpolation and Lagrange Polynomials

Comparison of Lagrange polynomials and Taylor polynomials

@ The nth-degree Taylor polynomial around z, concentrates all the
known information at z, and has an error term of the form

Fe(9)

(n+1)! e

(x — xp

@ The nth-degree Lagrange polynomial uses information at distinct
numbers zg, =1, - - -, Zn, and, in place of (z — x¢)", its error
formula uses a product of the n + 1 terms:

S
W(SE —xzo)(x —x1) -+ (T — xp).

Xu Zhang (Oklahoma State University) MATH 4513 Numerical Analysis Fall 2020 17/92



Chapter 3. Interpolation and Polynomial Approximation 3.1 Interpolation and Lagrange Polynomials

Example 7.

In Example 5, we found the 2nd-degree Lagrange polynomial P5(z) for
f(z) = % on [2,4] using the nodes z¢ = 2,2, = 2.75, 22 = 4 Determine the
error form of this polynomial, and the maximum error when the polynomial is
used to approximate f(z) for z € [2,4].

Solution (1/2)

| A

@ Since f(z) = 1, we have
fll@)=—a=% f'@)=2"% [f"()=-62""
@ By Theorem 6, we have on the interval [2, 4],

" —4
@) - )l = |50 = % l0ta)l = la(o)] < fgloto)

where, g(z) = (z — 2)(z — 2.75)(z — 4) = 2% — 3222 + Dy — 22,

v
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Chapter 3. Interpolation and Polynomial Approximation 3.1 Interpolation and Lagrange Polynomials
Solution (2/2)

@ We now need to determine the maximum value of |g(x)| on z € [2,4].

) 35 49 1
e i i (22 - 7).
d(z) = 32° 7Tt 2(336 (2x —T7)

" . 7 7
@ The critical points are z; = 3 and zo = o The global extrema are
among the critical points and endpoints x = 2 and « = 4.

7 25 7 9

= L) = =t 4) = 0.
) 9(3) T g(4)=0
@ Hence, the maximum error is

max _|f(z) — P(x) ~ 0.0351526.

we[2,4] _16‘ 16' 256

Note that in Example 5, we found the error at z = 3 is
|£(3) — Py(3)| = 0.03418 < 0.0351526 = max |f(x) — Pa(x)|.
2<z<4
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Chapter 3. Interpolation and Polynomial Approximation 3.1 Interpolation and Lagrange Polynomials
Coding Exercise (1/2)

Write a MATLAB subroutine
L = LagPoly(dataX, k, x)

to realize the evaluation of the Lagrange polynomial

_ (@—m) (@ —mp)@—mpp1) (@ —2) 17 ()
Ly(z) = = )
(e —@0) -+ (T — Th—1)(@k — Th41) - Tk — ) 1o (@ — 75)
@ the input dataX = [xg, 1, - ,z,] contains n + 1 distinct points.

@ the input % is the index of the Lagrange polynomial.
@ the input x is the point you want to evaluate.

@ the output L is the value of Ly (z).
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Chapter 3. Interpolation and Polynomial Approximation 3.1 Interpolation and Lagrange Polynomials
Coding Exercise (2/2)

Write a second MATLAB subroutine
y = LagInterp(dataX, dataY, x)

to realize the evaluation of the Lagrange interpolating polynomial

P(z) = yLi(z)
k=1

@ the input dataX = [z, 1, - ,z,] stores n + 1 distinct points.
@ the input dataY = [yo,y1,- - ,yn] StOres n + 1 y-values.

@ the input z is the point you want to evaluate.

@ the output y is the value of P(z).

@ for evaluation of Ly (), you can call the first subroutine

L = LagPoly(dataX, k, x)
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Interpolation and Pol ial Approximation 3.1 Interpolation and Lagrange Polynomials

A census of the population of the United States is taken every 10 years. The
following table lists the population, in thousands of people, from 1950 to
2000, and the data are also represented in the figure.

Year ‘ 1950 ‘ 1960 ‘ 1970 ‘ 1980 ‘ 1990 ‘ 2000

Population 151,326 179,323 203,302 226,542 249,633 281,422
(in thousands)

P(1)
@ In reviewing these data, we might ask

L whether they could be used to provide a
L reasonable estimate of the population,
2y say, in 1975 or even in the year 2020.

3 X108

@ We can construct the Lagrange
Lty interpolation on these given data to
generate a fifth degree polynomial.

Population

15;50 19%0 15;70 15;80 1950 zt;oo t @ Then use the interpolation ponnomiaI
Year fOr predICtIOI’l

Xu Zhang (Oklahoma State University) MATH 4513 Numerical Analysis Fall 2020 22/92



3.2 Divided Differences

Recall the n-th Lagrange Interpolation P, (x) of the function f(xz) atn +1
distinct points zg, x1 -+ , 2.

k=0
where
(- )
Ln’k(l') =
];,[ (zk - 171)
=0
Question: What if we have one more data point available

(Tnt1, f(Tns1)), then how to construct a new n + 1-th degree
interpolation P, 11 (z)?

Answer: We have to abandon all Lagrange polynomial L,, (), and
reconstruct new Lagrange polynomials L, 11 x(z).

Question: Is there a more efficient way for adding more data points?

Xu Zhang (Oklahoma State University) MATH 4513 Numerical Analysis Fall 2020 23/92



Chapter 3. Interpolation and Polynomial Approximation 3.2 Divided Differences

@ Although the interpolation polynomial P, (x) is unique, there are
alternative representations that are useful in certain situations.

@ In fact, we can write P, () in the following form
P, (z) =ao+ ar1(x —x0) + az(x — xo)(x — 1) + -+
+an(x—x0)(x—21) - (T — Tp1),
for appropriate constants ag, a1, - - -, ay.
@ Note that
— ag = f(ajo)
Py(x1) = f(xr1) =  ai(x1 —x0) = f(x1) — f(20)
=

f(z1) — f(@o)

1 — X0

ayp =

flz2) — fl21)  fla1) — f(@o)
To — X1 r1 — X0
T2 — X0

Xu Zhang (Oklahoma State University) MATH 4513 Numerical Analysis Fall 2020 24/92



Chapter 3. Interpolation and Polynomial Approximation 3.2 Divided Differences

We now introduce the divided-difference notation, which will be very useful
in determine the values of q;.

Definition 8 (Divided Difference).

@ The zeroth divided difference of the function f at z; is
flz:i] = f(2i)
@ The first divided difference of f at x; and z;1; is

1 = dEen] = flai
f[xz,$z+1] - Tipl — T
@ The second divided difference of f at x;, ;.1 and x; .2 is

_ flzit1, Tita] — flTi, Tita]
Fl#s, Tig1, Tiyo] = .
Tiyo — T

@ In general, the k-th divided difference of f at z;, 11, - -+, T;1p IS

_ fmi, Tives - Tigk] — % Tivrs 0 Tie]
f[xia Tij41y" " axi-‘rk}} — .
Titk — T4

Xu Zhang (Oklahoma State University) MATH 4513 Numerical Analysis Fall 2020 25/92



Chapter 3. Interpolation and Polynomial Approximation 3.2 Divided Differences

@ |t can be seen that

ap = [f(zo) = flzol,
f(z1) = f(20)

aqg = — = f[x073:1]
1 — o
flx2)=f(z1) _ flz1)—f(zo0)
az = —2H B = flwo, w1, 22)]
T9 — Xg

@ In general, we have

ak:f[xo,x1,~--,xk], for all k=0,1,--- ,n.
Interpolation with Newton’s Divided Difference
The Lagrange interpolation P, (x) of f(z) at z¢, =1, - -, x,, can be
written as
Po(z) = flzo] + Y flwo, -+, zxl(x — 20) -+ (x — Tp—1)-
k=1

v
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Chapter 3. Interpolation and Polynomial Approximation 3.2 Divided Differences

Divided Difference Table

First Second Third
x fx) divided differences divided differences divided differences
X0 flxol
St = T = ol
X1 —Xo
g flnl flxo.x1, 0] = W
2 T A0
ORSER L L e = AR T ]
S 3 = Xo
x flxl ol = W
3= A
flt ) = TE1Z Te) = A o]
T 4 — X
% [l ] = W
| 4 — X2
flx,xl = w flx2,x3, X4, %5] = W
4 T A3 5 — X
- Sl flxs, x4, %5] = W
5 T A3
_ Sl = flu]
Sflxa, xs] = F—
% flxs]
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Chapter 3. Interpolation and Polynomial Approximation 3.2 Divided Differences
Example 9.

Compute a divided difference table for these function values:

z ||3]1]5]6
f@)1]-3]2]4

Then determine the Newton interpolation polynomial.

Solution (1/2)

Arrange the table vertically to have
i |z | fla] | fleimt,x)  floi—o, mim1, @] flaies, o, Ti—1, T4
0| 3
1] 1 -3 2
2] 5] 2 5/4 ~3/8
3] 6| 4 2 3/20 7740

v
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Chapter 3. Interpolation and Polynomial Approximation 3.2 Divided Differences
Solution (2/2)

Note that the values marked in red and blue will be used for constructing the
interpolating polynomial

i 2 | fles] flwic,z] fleioo, i1, %] flri—s, T2, Ti—1, )
0 3

1| 1 -3 2

51 5] 2 5/4 —3/8

376 4 D) 3/20 7740

The Newton interpolation polynomial is
P(z) = flxo] + flwo, z1](z — z0) + flz0, 71, 22](T — 20) (T — 71)
+flxo, 1, 22, T3|(z — T0) (T — 1) (% — T2)

1+2(x73)+72($—3)(m7 1)+ 410(x—3)(zf 1)(x —5)

1
EWS — 7822 + 301z — 350)

Xu Zhang (Oklahoma State University) MATH 4513 Numerical Analysis Fall 2020 29/92



Chapter 3. Interpolation and Polynomial Approximation 3.2 Divided Differences

Comparison of Lagrange and Newton

@ Lagrange Interpolation is sometimes said to require less work,
and is sometimes recommended for problems in which it's known,
in advance, from previous experience, how many terms are
needed for sufficient accuracy.

@ The Newton’s Interpolation has the advantage that more data
points can be added, for improved accuracy, without re-doing the
whole problem.

Xu Zhang (Oklahoma State University) MATH 4513 Numerical Analysis Fall 2020 30/92



Algorithm for Generating Divided Differences Table

@ Inputs: dataX = [zg, z1, 22, - - ,z,], data¥ = [yo,y1,92, " , Yn]
@ Output: C = [¢;j] isan (n+ 1) x (n + 1) divided difference matrix.

C = divdifTable(dataX,dataY)
For j=1:n

For i=0:n—j
Cit1,j—1 — Cij—1

Cij=—"—"""— (note: Cij = f[;rz, IBailg 0 ©© 71'i+j])
Litj = Tg
End
End
xo Yo €00 Col Co2 €03 - Com—1 Con
X Y1 €10 €11 €12 €13 - Cin-—1

x2 Y2 €20 C21 C22 C23

Tn—1 Yn—1 | Cpn—1,0 Cn-1,1
Tn Yn Cn0

note: ¢;o = y;, for i =0,1,--- ,n.

Xu Zhang (Oklahoma State University) MATH 4513 Numerical Analysis Fall 2020 31/92



Chapter 3. Interpolation and Polynomial Approximation 3.2 Divided Differences

Properties of Divided Difference

@ If 29,21, , 2, is @ permutation of zg, z1,- -+ , x,, then

f[207zl7"' 7Zn] :f[$07$17"' ,CCn].

(Hint: consider the leading coefficient of P, (x).)

@ Suppose that f € C"[a,b] and zg, z1, - - - , z,, are distinct numbers
in [a, b]. Then there exists a number ¢ € (a,b) with

(n)
oy o) = L2060

(Hint: use the generalized Rolle’s theorem.)

Xu Zhang (Oklahoma State University) MATH 4513 Numerical Analysis Fall 2020 32/92



Chapter 3. Interpolation and Polynomial Approximation 3.3 Hermite Interpolation

3.3 Hermite Interpolation

@ In previous sections, we introduced the interpolation P(x) of a
continuous function f(z) at some given points

i) ‘ T ‘ X9 ‘ ‘ In

f (o) ‘ fx) ‘ f(z2) ‘ ‘f(xn)

@ In some applications, we want not only the interpolation function P(x) to
match with f(z) at some points, but also the derivatives of P(z) to match
with the derivatives of f(x) at those points. These interpolating
polynomials are called osculating polynomials.

@ In particular, we look for a polynomial P(x) of the least degree such that
P(z) and P’(z) agrees with f and its derivative f” at n + 1 distinct points
T, L1y 5 Tny Ies

P(x;) = f(x;)
P'(z;) = f' ()
This is called Hermite interpolation.

Xu Zhang (Oklahoma State University) MATH 4513 Numerical Analysis Fall 2020 33/92
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Chapter 3. Interpolation and Polynomial Approximation 3.3 Hermite Interpolation

@ Recall the nth-degree Lagrange interpolating polynomials:

n(x— )
Ln,k(x): m k:0’1’~.. 7n.
itk k [
=0

They satisfy L,, (z;) = dik-

Construction of Hermite Interpolation (1/3)
Define n + 1 polynomials:

Ap(z) = (1 9z — xk)L;L,k(xk))Lijk(x) k=01, .n.

It can be verified that
@ The degree of Ay is 2n + 1.
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Construction of Hermite Interpolation (2/3)

@ Also, the derivative of Ay (x) is

A (@) = (=2Ln 1(@0) ) 22 1 (@) + (1= 2@ —20) L, 4 (08) ) 2L (@)Ll ().

@ Thus,
Al (zr) = —2L5 (xx) + 2L (z;) = 0,

and
Al (z;) =0, fori+#k.

@ In summary, we have

Ak(xz) e 51‘1@7 A;C(xl) =0.
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Chapter 3. Interpolation and Polynomial Approximation 3.3 Hermite Interpolation

Construction of Hermite Interpolation (3/3)
Define another n + 1 polynomials:

By(z) = (x — xk)LZ)k(x) k=0,1,--- ,n.
It can be verified that
@ The degree of By (z) is 2n + 1.
® Bi(z;) = (w; —ax)L] p(x;) =0 k=0,1,-- ,n.
The derivative of By (z) is
Byi(z) = Lj, i () + 2(x — @) Ln k() L7, ().

Thus, so that By (z1) = 1, and By (z;) = 0, for i # k. Hence,
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Chapter 3. Interpolation and Polynomial Approximation 3.3 Hermite Interpolation

Hermite Interpolation

If f € C'a,b] and xg,z1--- , 7, € [a,b] are distinct, the unique
polynomial of least degree agreeing with f and f’ at zg,z1--- ,z, is
the Hermite polynomial of degree at most 2n + 1 given by

Hony1 (@ fok Ag(z +Zf (zk) Br(2).

where
Axw) = (1-20 - 2Ll elaw) ) L (o),
Bp(z) = (z—zp)L2 (2),
5 = 5 (z— )
and Ly (z) 1;{ lon—ad)
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Chapter 3. Interpolation and Polynomial Approximation 3.3 Hermite Interpolation
Example 10.

Determine the Hermite polynomial that interpolates the data below

a® 1 2
flx) | 1 |-3
fll@) || -1 2

v

Solution(1/2)

@ First compute the Lagrange polynomials of the point zy = 1 and x; = 2.
Lo(z)=—(z—2), Li(z)=2—1

@ Next, we compute third-order polynomials (n = 1, 2n + 1 = 3).

Ao(z) = (1 = 2(z — Y(-D)(z - 2)® = 2z — 1)(z — 2)°
Ai(z)=(1-2(z-2)(z—1)? = —(2z —5)(x —1)2
By(z) = (z —1)(z - 2)*,

Bi(z) = (z — 2)(x — 1)?

.
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Chapter 3. Interpolation and Polynomial Approximation 3.3 Hermite Interpolation

Solution (2/2)

Then, the Hermite interpolating polynomial is

Hy(z) = f(zo)Ao(x) + f(x1)A1(x) + f'(x0)Bo(z) + f'(21)Bi(x)
= 1-2z—1)(z—2)?+(-3) - —(2z — 5)(z — 1)
+(=1)-(z-1)(=z—-2)%2+2 - (z —2)(z — 1)?
= 923 — 3922 + 50z — 19.
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Chapter 3. Interpolation and Polynomial Approximation 3.3 Hermite Interpolation

@ There is an alternative approach to construct Hermite
interpolation using Newton’s divided differences.

@ Since each data point z; is associated with two values f(z;) and

f'(x;). We denote

20i = 22i41 = x;, 1=0,1,---n.

and conduct the divided difference table using zo, 21, - - -, 22n41-

@ Since z9; = 22,41 = x4, We cannot define f[zo; = 22,11 by the
standard first-divided difference formula
flz2ig1] — fleail

flz2i, 22i+1] = ,
20541 — 22

but instead, the reasonable substitution is

flz2i; 22i41) = f'(24).
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Chapter 3. Interpolation and Polynomial Approximation 3.3 Hermite Interpolation

@ The original data table

ZTo I ) In
fzo) | flz1) | f2) f(zn)
f(@o) | f/(@1) | f(22) f'(@)
can be represented by z;, 0 <i <2n+1
T T x1 x1 T2 Tp—1 Tp Ty
) Z1 Z2 z3 2 Z22n—1 Z2n 22n41
f(20) | f(z1) | f(z2) | f(23) | f(z4) f(zan—1) | f(220) | f(22n41)
f(@o) | f(zo) | flz1) | fz1) | flz2) f(@n1) | flzn) | f(2n)

@ The only difference is that the first divided difference

flz1] = flzo]  flwo] — flwo]

fleo. 2] = n-z T

= f'(z0).

@ Similar argument applies for f[zo, 23], f[24,25], - - -, fl22n, 22n+1]-

Xu Zhang (Oklahoma State University)
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Chapter 3. Interpolation and Pol ial Approximation 3.3 Hermite Interpolation

Divided-Difference Table for Hermite Polynomial

V.

First divided Second divided
z f(@ differences differences
20 =Xo flzol = f(x0)
flzo,z1] = f,(xo)
a=x  flul=f@) flaaal=L [Z"Zz] — f . 2]
2 T L0
flan ]l = flze] = flzi]
o ezl = fla 2]
2 =X flzal = f(x1) f[21,22723]=%
3— 21
flz2, 231 = f'(x1) i i
3 =X flzl = f(a) flz,z3,24] = w
4 — 22
fles 2] = flzal = flzsl
e Flzszs] = flzsn 2l
w=x  flal=f®) Flag ] = = — =
5 — 23
Slza,25] = f'(x2)
5 =Xz flzs] = f(x)
2n—+1
Hopt1(z) Z flz0, 21, s 2)(z — 20)(z — 21) -+ (& — 2—1)-
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Chapter 3. Interpolation and Polynomial Approximation 3.3 Hermite Interpolation
Example 11.

Determine the Hermite polynomial that interpolates the data below

T 1 2
fx) 1 |3
frl@) || -1] 2

using Newton’s divided differences table.

The divided difference table is

z20 = flzo] =1 flzo,21] = =1 flz0,21,22] = =3  flz0,21,22,23] =9
z1=1 fla]=1 flz1,22] = =4 flz1,22,23] =6
22=2 flo]=-3 fl2,z2]=2

[

Then the 3rd-degree Hermite interpolating polynomial is
H3y(z)=1—(x—1)—3(x—1)2+9(z-1)%}(z-2)
= 92% — 3922 + 502 — 19.

v
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Chapter 3. Interpolation and Polynomial Approximation 3.3 Hermite Interpolation

For the error bound of the Hermite interpolation, we have the following
result.

Theorem 12 (Hermite Interpolation Error Theorem).

Suppose xq,x1,- - ,x, are distinct numbers in the interval [a,b] and
f € C?"*2[q, b]. Then, for each = € [a,b], there exists a number & in
(a,b) (generally unknown), such that

Fe 2 (g)

(2n + 2)! (z —z0)(z —z1)2 - (z — zn)?,

f(z) = Hapy1(z) +

where Ps,11(x) is the Hermite interpolating polynomial of f(x).
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Chapter 3. Interpolation and Polynomial Approximation 3.3 Hermite Interpolation

Example 13.

A baseball pitcher throws a fastball from the pitcher’s mound to the catcher.
Although the distance from the mound to the home plate is 60 feet 6 inches,
the ball typically travels about 55 feet 6 inches. Suppose the initial velocity of
the ball is 95 miles per hour (mph), and the terminal velocity is 92 mph.
Construct a Hermite interpolating polynomial for the data

Time ¢ (in seconds) || 0 | 04
Distance d (in feet) || 0 | 55.5
Speed (in mph) 95 | 92

@ Use the derivative of Hermite polynomial to estimate the speed of the
baseball in mph at ¢t = 0.2 seconds.

@ Does the maximum velocity of the ball occur at ¢ = 0, or does the
derivative of the Hermite polynomial have a maximum exceeding 95
mph? If so, does this seem reasonable?
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Chapter 3. Interpolation and Polynomial Approximation 3.3 Hermite Interpolation
Solution (1/3)

@ Convert “miles per hour” to “feet per second” (note 1 mph = 1.46667 fps).

@ Rewrite the table as follow

Time ¢ (in seconds) 0 0.4
Distance d(t) (in feet) 0 55.5
Speed s(t) = d'(¢)(in fps) || 139.33 | 134.93

@ Generate the Div-Diff table

[to] =0 flto,t1] = 139.33  flto,t1,t2] = —1.456  flto,t1,t2,t3] = —20.25
t1 = flt1] =0 flt1,t2] = 138.75  flt1,t2,t3] = —9.55
to =04 flte] =55.5 f[t2,t3] = 134.93
t3 =04 flts] = 55.5

@ The Hermite interpolating polynomial is

d(t) = 0+ 139.33(t — 0) — 1.45(¢ — 0)(t — 0) — 20.25(¢ — 0)(t — 0)(¢ — 0.4)
= —20.25¢% + 6.65¢2 + 139.33¢.

v
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Chapter 3. Interpolation and Polynomial Approximation 3.3 Hermite Interpolation

Solution (2/3)

@ The speed can be approximated by

d(t) = —20.25¢> + 6.65¢> + 139.33¢
s(t) = d'(t) = —60.75t> + 13.3t + 139.33

The speed at t = 0.2 is s(0.2) = 139.56 fps = 95.15 mph.

@ To find the maximum speed, we consider the acceleration
a(t)=s'(t) = —121.5t + 133 =0 = t=0.1095

The maximum speed is s, = 140.06 fps = 95.49 mph, occurs at
t = 0.1095 second.
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Chapter 3. Interpolation and Polynomial Approximation 3.3 Hermite Interpolation

Solution (3/3)

95.5

953

©
&
o

©
3

Speed s(t) in mph

@
N
o

92

L L L I
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

91.5 - -

Time t in seconds
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3.4 Cubic Spline Interpolation

@ In previous sections, we introduced the approximation of arbitrary
functions on closed intervals using a single polynomial.

@ However, high-degree polynomials can oscillate erratically, that is, a
minor fluctuation over a small portion of the interval can induce large
fluctuations over the entire range.

@ The following is a 20th degree Lagrange interpolation approximating the
back of a duck. Clearly this does not reflect the profile of the back.
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Chapter 3. Interpolation and Polynomial Approximation 3.4 Cubic Spline Interpolation

@ In this section, we introduce the interpolation using piecewise
polynomials. This will effectively prevent the oscillation.

@ The simplest piecewise-polynomial approximation is piecewise-linear
interpolation. Consider a set of data points:

v | o | a ||

Slxo) | flz) | flao) | -+ | flzn)

@ The following is a piecewise linear polynomial interpolation of a smooth
curve.
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Chapter 3. Interpolation and Polynomial Approximation 3.4 Cubic Spline Interpolation

@ The disadvantage of using piecewise linear approximation is that
the approximation function is not "smooth”, i.e., it is not
differentiable at nodes z;.

@ Often it is clear from physical conditions that smoothness is
required, so the approximating function must be continuously
differentiable.

@ Using Hermite polynomials could be a choice, however this
requires the known of the derivative values at nodes.
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Chapter 3. Interpolation and Polynomial Approximation 3.4 Cubic Spline Interpolation

The goal in this section is to develop a new interpolation so that
@ it uses piecewise polynomials (to avoid oscillation).

@ it is continuously differentiable over the entire domain (to ensure
the smoothness).

@ it requires no specific derivative information of the original
function, except perhaps at the two endpoints of the interval
(minimum information from original function).
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Chapter 3. Interpolation and Polynomial Approximation 3.4 Cubic Spline Interpolation

@ The most common piecewise-polynomial approximation is called
cubic spline interpolation.

@ The interpolation uses piecewise cubic polynomials, and globally
second-order differentiable (S € C?([x, z,]))-

S(x) &
S/'(xj+1) :f(x/+1) = Sj+1(x/'+l)
S/{(-’?,'H) = S}a(xj41)
§7(j01) = Sfialxjia)
} } } } } } } } } »
T T T T T T T T T bl
Xo X1 X2 X; Xj+1 Xj+2 Xp—2 Xp-1 Xy X

Xu Zhang (Oklahoma State University) MATH 4513 Numerical Analysis Fall 2020 53/92



Chapter 3. Interpolation and Polynomial Approximation 3.4 Cubic Spline Interpolation

Cubic Spline Interpolation (Natural Spline)

Consider a set of data points:

i) ‘ T ‘ xZ9 ‘ ‘ In

flxo) | flzr) | fla2) |- | flzn)

We construct a cubic spline interpolant S(x) for f satisfies

@ On each subinterval [z, z;41], S(x) is a cubic polynomial,
denoted by S;(z) for j =0,1,--- ,n— 1.

Q Si(zj) = f(z;) and Sj(z41) = f(zjs1) forj=0,1,--- ,n—1.

Q 51 (xj41) = Sji(xjp) forj=0,1,--- ,n 2.
(%) Sé'l_;_l(xj—l—l) = S;‘/(xj-l-l) forj =0,1,---,n—2.

@ the natural boundary conditions, S”(z) = S”(z,) = 0.
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Chapter 3. Interpolation and Polynomial Approximation 3.4 Cubic Spline Interpolation
Example 14.

Construct a natural spline that passes through the points (1, 2), (2, 3), and
(3,5).

v

Solution (1/2)

@ This spline consists of two cubics. The two subintervals are [1,2] and
[2, 3]. We write the piecewise cubic polynomial as follows

S(a) = So(x) = ag + bo(x — 1) + co(x — 1)® + do(z — 1)3, on[1,2]
S Si(@) =ay +bi(x—2) +er(x—2)2 +di(z —2)%, on[2,3].

@ There are eight constants to be determined, which requires 8 conditions.
Four conditions come from nodal values:

So(1)=2 = ap=2,
S0(2) =3 = bot+c+dy=1,
$1(2)=3 = a1 =3,
513)=5 = bi+c+d =2,
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Chapter 3. Interpolation and Polynomial Approximation 3.4 Cubic Spline Interpolation
Solution (2/2)

@ Two conditions come from derivatives at interior nodes z; = 2.

56(2) = 51(2) = by + 2co + 3dy = by,
56/(2) Si’(2) = 2¢g + 6dy = 2cy.

@ The last two conditions are from the natural boundary conditions

Sj(1)=0 = 2cy=0,
S7(3)=0 = 2c¢;+6d; =0.

@ Solve this system of the eight equations gives the spline

2+§(m—1)+i(w—1)3, on [1,2],
S(z) = 3 3 1
3+ 5(@—2)+ (@ 2)? — G 2)3, on [2,3].

v
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Chapter 3. Interpolation and Polynomial Approximation 3.4 Cubic Spline Interpolation

Construction of a natural cubic spline

@ Assume the following n + 1 distinct points

v | m | o || m

Flao) | fla1) | flz2) [+ | flzn)

subdivide the interval [z, x,,] into n subintervals: I; = [z}, z;41],
j=0,1,--,n—1.

@ The cubic spline S(z) restricted on the interval I; is a cubic
polynomial S;(z) foreach 0 < j <n —1:

S(@)lr; = Sj(x) = aj + bj(x — x5) + ¢j(z — x;)* + dj(x — x5)°.

@ There are 4n constants a;, b;, c;, and d; to be determined.
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Chapter 3. Interpolation and Polynomial Approximation 3.4 Cubic Spline Interpolation

@ Ontheinterval [x;,x;,1], denote the length h; = x4 — z;. We
note that

Sj(x) = aj +bj(x — xj) + ¢j(x — xj)Q +dj(x — xj)?’.

@ ltis easy to see that
aj = f(z;), j=0,1,---,n—1 (3.1)

o If we also let a,, = f(z,), then by some calculations we can
represent b; and d; in terms of ¢; for0 < j <n — 1:

1 h;

bj = 1-(aj+1 - ;) = 3](2%‘ +¢j+1),
J
1

dj = 37%(0%1 = ¢j)-

(3.2)

Here, we also use the definition ¢,, = S//(xz,)/2.
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Chapter 3. Interpolation and Polynomial Approximation 3.4 Cubic Spline Interpolation

@ We obtain a linear systemforc;, 1 <j <n —1:

hj-1¢j-142(hj-1+hj)cj+hjcja =

@ Write it as a linear system Ax = b where

1
ho
0.
A=
0...
b=

3 3
ﬁ(aﬂl—aj)—h.i(aj—
J j—1
0 T RRRREES 0
2ho+h) T :
L 2 th) k. :
T ey 20 e )
........................ 0 0 1
0
%(tlz—al)—%(al — ao) co |
1
: and x=| .
2 (an — an1) — 72 (an1 — an—2) :
1 n n— T2 n—1 n—2 Cn
0
MATH 4513 Numerical Analysis Fall 2020
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Chapter 3. Interpolation and Polynomial Approximation 3.4 Cubic Spline Interpolation

@ The matrix A is strictly diagonally dominant, that is,

n
|ai;| > Z|aij|’ forall i=1,2,--- ,n.
j=1

@ The matrix A is nonsingular and the linear system Ax = b has a
unique solution(more in Chapter 6).

@ To solve the linear system Ax = b with Matlab, we can use the
command “backslash”:
x=A\Db.
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Matlab File for Natural Spline Coefficient

function [a,b,c,d] = natural_spline_coef(dataX,dataY)
%% Cubic Spline (Natual Boundary) Interpolation

Output: a

b
c
d

%% Initializ

On each sub-interval,
Sj(x)

is
is
is
is

e h

generate four coefficients aj, bj, cj, and dj

aj + bj(x—xj) + cj(x-xj)*2 + dj(x-xj)"3

Inputs: dataX dataY are row vectors

the collum vector that
the collum vector that
the collum vector that
the collum vector that

length(dataX) - 1;

n=
h = zeros(1,
for j =

end

n);

1:n
h(j) = dataX(j+1) - dataX(j);

%% Prepare for Matrix A
A = zeros(n+l,n+1);
A(1,1) = 1; A(n+1,n+1) =

(3=1);
i)i
h(] 1)+h(j));

%% Prepare for vector bb
bb = zeros(n+1,1);

for j = 2:n
bb(j) =

end

%% Solve Axc

= A\bb;

%% Find a,b,

of same dimension.

stores {aj} for j=1,2,...,n+l
stores {bj} for j=1,2,...,n+l
stores {cj} for j=1,2,...,n+l
stores {dj} for j=1,2,...,n+l

3/h(j)*(dataY(j+1)-dataY(j)) - 3/h(j-1)*(dataY(j)-dataY(j-1));

d.

bb

a = reshape(dataY(1:n+1),n+1,1);

zeros(n,
d = zeros(n,

1);
1);

()=
d(j) = (c(3+1) - c(3))/(3*h(j));

end

%% Remove the last entries of a and c
[1

a(n+1) = [1;
c(n+l) = [1;

= 1/h(§)%(a(3+1)-a(§)) - h(3)/3x(24c(i)+c(j+1);
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Chapter 3. Interpolation and Polynomial Approximation 3.4 Cubic Spline Interpolation

Matlab File for Natural Spline Interpolation

function y = natural_spline(dataX,datayY,x)
% Cubic Spline (Natual Boundary) Interpolation

Sj(x) = aj + bj(x-xj) + cj(x=xj)* 2 + dj(x-xj)"3.

Inputs: dataX dataY are row vectors of same dimension.
X is the query point(s).

%% Generate Spline Coefficient [ai,bi,ci,di]l on each interval.
[a,b,c,d] = natural_spline_coef(dataX,dataY);

%% Evaluate the query points
y = zeros(size(x));
for n = 1:1length(x)
for j = 1:length(dataX)-1
if dataX(j) <= x(n) && dataX(j+1) >= x(n)
k=7;
break
end
end
xk = dataX(k);

y(n) = a(k) + b(k)*x(x(n)-xk) + c(k)*x(x(n)-xk)*2 + d(k)*(x(n)-xk)"3;

end

On each sub-interval, generate four coefficients aj, bj, cj, and dj

Output: y is the value of spline interpolation y=S(x) at query points x
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Chapter 3. Interpolation and Polynomial Approximation 3.4 Cubic Spline Interpolation

At the beginning of Chapter 3, we gave some Taylor polynomial to
approximate the exponential function f(z) = e*. Use the data points
z |0]1]2]3
f(ac)‘l‘e‘e”e3

to form a natural cubic spline S(z) that approximates f(z) = e”.

Solution (1/3)

Since this problem involves extensive calculation, we write a Matlab
code to solve this problem

.
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Chapter 3. Interpolation and Polynomial Approximation 3.4 Cubic Spline Interpolation

[0,1,2,31;
[exp(@),exp(1),exp(2),exp(3)];

<%
Q
=3
Q
>
mnn

%% generate coefficient of natural spline
[a,b,c,d] = natural_spline_coef(dataX,dataY);
disp(’ a b c d')

disp([a,b,c,d])

%% query point x
X = 0:0.01:3;
y = natural_spline(dataX,dataY,x);

%% plot

figure(1)

plot(dataX,dataY, 'r*', ' linewidth',2)

hold on

plot(x,exp(x), 'b-", ' linewidth',2)
plot(x,y, 'k-."', 'linewidth',2)

lgd = legend('data points','y = e”x','y = S(x)');

hold off

grid on

lgd.FontSize = 16;
lgd.Location = 'NorthWest';
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Solution (3/3)
1.0000 + 1.4660x + 0.25232>, on [0, 1],

S(z) = { 2.7183 + 2.2229(z — 1) + 0.7569(z — 1)? + 1.69107(x — 1), on [L,2],
7.3891 + 8.8098(z — 2) + 5.8301(z — 2)? — 1.9434(x — 2)3, on[2,3].

20 T
¢ data points
18 - X 44
y=e Y/
- 7,
161777y = S(X) /
'/
14 /l
;

s,

12 - l/
7
y
10 /'
sl
sl
o"
&
4 =
ok
0 . . . . .
0 0.5 1 15 2 25 3

v
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Clamped Splines

@ The clamped spline is another type of cubic splines that use
different boundary conditions.

@ Comparing with the free boundary condition in the natural spline,
S"(a) =0, S"(b)=0,
the clamped spline specifies the slope at the endpoints, i.e.,

§'(a) = f'(a), S'(b) = f'(b).

@ So, the clamped spline requires additional information:

i) I T2 In
fwo) | flar) | fwa) |-~ | f(xn)
(o) f'(@n)

@ The rest of conditions are exactly the same as the natural splines.

Xu Zhang (Oklahoma State University) MATH 4513 Numerical Analysis Fall 2020 66/92



Chapter 3. Interpolation and Polynomial Approximation 3.4 Cubic Spline Interpolation

Example 16.

We revisit Example 14, and this time we construct a clamped spline that
passes through the points (1, 2), (2, 3), and (3, 5) that has S’(1) = 2 and
S'(3) = 1.

v

Solution (1/2)

@ There are two pieces in the spline S(x):

So(x) = ag + bo(x — 1) + co(x — 1)® + do(z — 1)3, on[1,2]
Si(z) = ay +bi(x —2) +cr(x —2)* + di(z —2)%, on[2,3]

@ Most conditions (6 out of 8) are the same as the natural spline,
f(l):2 = ap = 2, 50(2):3 = by+co+dy=1.
f2)=3 = a1 =3, S1(8)=5 = bi+teci+d=2.

50(2) = 51(2) = bo +2co + 3do = b1.
50(2) = 51(2) = 2co + 6do = 2c;.
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Solution (2/2)

@ The clamped boundary conditions yield
86(1) =2 = by= 2,

8’1(3) =1 = b1 +2c +3d1 =1.

@ Solve the system for eight unknowns, we have

» 2+2(a:—1)—g(x—1)2+;(x—1)3, on [1,2],
S(x) =
34 2@ 1) +2(c—27 — (@27 on 23]
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Construction of a clamped cubic spline
@ Define the cubic polynomial on each interval to be

Si(z) = a;+bj(xr—x;)+cj(x—xj)? +dj(x—2;)® j=0,1,--- ,n—1.
The coefficients {a;}, {b;}, and {d;} are define as (3.1) and (3.2).

@ Forj=1,2,---,n—1we have the following equations for c;

3 3
hj_1cj—14+2(hj_1+hj)cj+hjci1 = —(aj1—aj) ——(a;—aj_1).
hj hj_l

@ In addition, we have the clamped boundary conditions:
3 /
2hoco + hoey = %(al —ag) — 3f'(a)

3

hn—1cn—1+2hy_1c, = 3f/(b) - h
n—1

(an - anfl)
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Chapter 3. Interpolation and Polynomial Approximation 3.4 Cubic Spline Interpolation

@ The clamped spline definedona =29 <21 <--- <z, =bis
unique. {c,} satisfies the linear system Ax = b where

2ho ho P ERRRRRREs 0
ho 2(ho + hi) moo e :
0.. hy.. 20 +h) hy..
A= T T T i
: : ) e 0
: s 2+ b)) Ry
PR ) s 2h
i %(01 —ag) —3f'(a) ]
%((12 —a) — h%(al — ap) o
C1
b= : , and x=| .
ﬁ(an — ay—1) ; ﬁ(anfl — ay—2) C:n
3f(b) — m(an —ap_1)
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Matlab File for Clamped Spline Coefficient

function [a,b,c,d] = clamped_spline_coef(dataX,dataY,dFa,dFb)

s%% Cubic Spline (Clamped Boundary) Interpolation

On each sub-interval, generate four coefficients aj, bj, cj, and dj
Sj(x) = aj + bj(x-xj) + cj(x-xj)*2 + dj(x-xj)"3.

Inputs: dataX dataY are row vectors of same dimension.

Output: a is the collum vector that stores {aj} for j= oo+l

b is the collum vector that stores {bj} for j= N+l

c is the collum vector that stores {cj} for j= N+l

% d is the collum vector that stores {dj} for j= va, N4l

%% Initialize h
n = length(dataX) - 1;
h = zeros(1,n);
for j = 1in

h(j) = dataX(j+1) - dataX(j);
end

%% Prepare for Matrix A

A = zeros(n+l,n+1);

A(1,1) = 2%h(1); A(1,2) = h(1); % Clamped Boundary Condition
A(n+1,n) = h(n); A(n+1,n+1) = 2xh(n); % Clamped Boundary Condition

h(j-1);

h(j);

*(h(5-1)+h(3));

end

%% Prepare for vector bb

bb = zeros(n+1,1);

bb(1) = 3/h(j)*(dataY(2)-dataY(1)) - 3*dFa; % Clamped Boundary Condition
bb(n+1) = 3xdFb - 3/h(n)*(dataY(n+l)-dataY(n)); % Clamped Boundary Condition

for j = 2:n
bb(j) = 3/h(j)*(dataY(j+l)-dataY(j)) - 3/h(j-1)*(dataY(j)-dataY(j-1));
end
%% Solve Axc = bb
¢ = A\bb;
Find a

,b,d.
reshape(dataY(1:n+1),n+1,1);
zeros(n,1);
zeros(n,1);

j = 1in
b(j) = 1/h(j)*(a(j+1)-a(j)) - h(j)/3*(2kc(j)+c(j+1));
d(j) = (c(j+1) - c(3))/(3*h(j));

end

a(n+1) = [];

c(n+l) = [I;
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Chapter 3. Interpolation and Polynomial Approximation 3.4 Cubic Spline Interpolation

Matlab File for Clamped Spline Interpolation

function y = clamped_spline(dataX,dataY,dFa,dFb,x)

%% Cubic Spline (Clamped Boundary) Interpolation

On each sub-interval, generate four coefficients aj, bj, cj, and dj
Sj(x) = aj + bj(x—xj) + cj(x-xj)*2 + dj(x-xj)"3.

Inputs: dataX dataY are row vectors of same dimension.
x is the query point(s).
Output: y is the value of spline interpolation y=S(x) at query points x

o° o° o° of o° of°

%% Generate Spline Coefficient [ai,bi,ci,di] on each interval.
[a,b,c,d] = clamped_spline_coef(dataX,dataY,dFa,dFb);

%% Evaluate the query points
= zeros(size(x));
or n = 1:length(x)
for j = 1:length(dataX)-1
if dataX(j) <= x(n) && dataX(j+1) >= x(n)
k =73;

end

xk = datax(k);

y(n) = a(k) + b(k)*x(x(n)-xk) + c(k)*x(x(n)-xk)"2 + d(k)*x(x(n)-xk)*3;
end

Xu Zhang (Oklahoma State University) MATH 4513 Numerical Analysis Fall 2020 72/92



Chapter 3. Interpolation and Polynomial Approximation 3.4 Cubic Spline Interpolation

Example 17.

We revisit the spline interpolation of f(x) = e* at the following points
z [0]1]2]3
f(a:)‘l‘e‘ez‘e?’.
This time we use the clamped spline with the additional information

f'(0) =1, and f’(3) = . Then, compare the accuracy with the natural
spline interpolation.

| A\

Solution (1/3)

Since it involved extensive calculation, we solve the problem using
Matlab programing.

A\
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3.4 Cubic Spline Interpolation

[0,1,2,3];
[exp(@),exp(1),exp(2),exp(3)];

%% generate coefficient of natural spline

[a,b,c,d] = natural_spline_coef(dataX,dataY);

[a2,b2,c2,d2] = clamped_spline_coef(dataX,dataY,exp(@),exp(3));
disp('Natural Spline')

disp("' a b c d')

disp("' )
disp([a,b,c,d])

disp('Clamped Spline')
disp(' a b c d')
disp("’ ")

disp([a2,b2,c2,d2])

%% query point x

0:0.01:3;

natural_spline(dataX,dataY,x);

2 = clamped_spline(dataX,dataY,exp(0),exp(3),x);

X
y
y

%% plot
figure(1)
plot(dataX,datay, 'r*', ' linewidth',2)

hold on

plot(x,exp(x), 'b-", " 'linewidth',2)
plot(x,y, 'k-.", 'linewidth"',2)

plot(x,y2,'g-.", 'linewidth',2)

1lgd = legend('data points','y = e~x','Natural','Clamped');
hold off
grid on
lgd.FontSize
1gd.Location

16;
'NorthWest"';
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Chapter 3. Interpolation and Polynomial Approximation 3.4 Cubic Spline Interpolation

Solution (3/4)

@ The natural spline is
1.0000 4 1.4660z + 0.252323, on [0
S(z) = ¢ 2.7183 + 2.2229(x — 1) + 0.7569(x — 1)* 4 1.6911(z — 1)®, on [l
7.3891 + 8.8098(x — 2) + 5.8301(x — 2)® — 1.9434(x — 2)3, on [2,3].

@ The clamped spline is
1.0000 + 1.0000z + 0.44472% + 0.273623, on [0, 1],
S(z) = ¢ 2.7183 + 2.7102(x — 1) + 1.2655(x — 1)* 4 0.6951(z — 1)3, on [1,2],
7.3891 + 7.3265(z — 2) + 3.3509(z — 2)% +2.0191(z — 2)3, on [2,3].
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Chapter 3. Interpolation and Polynomial Approximation 3.4 Cubic Spline Interpolation
Solution (4/4)

20 F T T T
* data points

18 X

y=e
16 L|===-Natural

Clamped
14+
12
10
sk
6l

7
ne o 1
J’}d’
2 7%"""’”"/ g
o . . . . .
0 05 1 15 2 25 3

@ From the plot, we can see that the clamped spline is more accurate than
the natural spline.

@ This is not surprise since the boundary conditions for the clamped spline
are exact.

v
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Theorem 18 (Error bound for Clamped Cubic Splines).

Let f € C*[a,b] with

max |f@(z)| = M.

a<z<b

If S(z) is the unique clamped cubic spline interpolation to f with respect to
the nodes a = xg < z1 < --- < x,, = b, then for all x € [a, b],

5M 4

— < o — )R

@ A fourth-order error bound also holds in the case of natural spline
interpolation, but it is more difficult to express.

@ There are other cubic spline interpolations that do not require the
derivative of f. For example, the popular “not-a-knot spline” requires that
the third-order derivative S”’(z) is continuous at z; and x,,_.

v
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Chapter 3. Interpolation and Polynomial Approximation 3.4 Cubic Spline Interpolation
Example 19.

In this example, we approximate the top profile of the duck using cubic spline
interpolation.

J&)

4
3
2
1

In general, the more points we use, the better approximation we can expect.
We choose 21 data points as depicted above and shown below in the table.
Note that more points are placed where the curve is changing more rapidly.

x [09[13[19 [2.1]26]3.0[39]44 [47 [50[60 [7.0[80 [92 [105[113[116]120[126[130[133
Fw|13[15]185]2.1]2.6(27|2.4|2.15]2.05|2.1|2.25[2.3|225] 1.95] 14| 09] 07 0.6] 05| 0.4] 025

V.
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apter 3. Interpolation and Pol al Approxima 3.4 Cubic Spline Interpolation
lution (1/4)

@ Since we don'’t have derivative information, we use the natural spline
interpolation.

@ We write a Matlab driver file for this example.

% ex 3.5.illustration
clear; clc;

%% Input
dataX = [0.9 1.3,1.9 2.1 2.6 3.0 3.9 4.4 4.7 5.0 6.0 7.0 8.0 ...
9.2 10.5 11.3 11.6 12.0 12.6 13.0 13.3];
dataY = [1.3 1.5 1.85 2.1 2.6 2.7 2.4 2.15 2.05 2.1 2.25 2.3 2.25 ...
1.95 1.4 0.9 0.7 0.6 0.5 0.4 0.25];
[a,b,c,d] = natural_spline_coef(dataX,dataY); % coefficent of cubic spline
%% Display Outputs
disp("' )
disp(' j a b c d')
disp("* ")

formatSpec = '%2i % .5F % .5F % .5F % .5F \n';
fprintf(formatSpec, [(0:length(dataX)-2)',a,b,c,d]")

%% Plot Spline
X = 0.9:0.01:13.3; % query points

y = natural_spline(dataX,dataY,x);
figure(1)

clf;

plot(x,y,'r-', " 'linewidth',2)

hold on
plot(dataX,dataY, 'b*', ' linewidth',2)
axis([0,14,-6,4])

grid on

hold off
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Chapter 3. Interpolation and Polynomial Approximation 3.4 Cubic Spline Interpolation
Solution (2/4)

@ Plotting the natural spline interpolation, we observe that the spline curve
is accurately recovers the top profile of the duck.

‘ /&)

4
2 /\’\ 3
2 o
2 ~
1 -

@ To use a clamped spline we would need derivative approximations for
the endpoints. Even if these approximations were available, we could
expect little improvement because of the close agreement of the natural
cubic spline to the curve of the top profile.
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Chapter 3. Interpolation and Polynomial Approximation 3.4 Cubic Spline Interpolation
Solution (3/4)

For comparison, we also use Lagrange Interpolation.

% Duck Interpolation Comparison
clear; clc;

5.0 6.0 7.0 8.0 ...
o5 20l 2025 208 2029 oo
ind Spline and Lagrange Interpolation
.9:0.01:13.3; % query points

X
y atural_spline(dataX,dataY,x);
yy = LagrangeInterpolation(dataX,dataY,x);

nn
> ok

%% Plot Interpolations

figure(1)

clf;
plot(dataX,dataY, 'b*"', ' linewidth',2)
hold on

plot(x,y,'r-','linewidth"',2)
plot(x,yy, 'k-', 'linewidth',2)
axis([0,14,-2,71)

hold off

grid on

1gd = legend('Data Point','Natural Spline', 'Lagrange');
lgd.FontSize = 16;

lgd.Location 'NorthWest"';
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Chapter 3. Interpolation and Polynomial Approximation 3.4 Cubic Spline Interpolation
Solution (4/4)

@ Plotting the Lagrange interpolation, we observe that the 20th-degree
polynomial oscillates wildly. It produces a very strange illustration of the
back of a duck.

&)

NE|
3 Va
, e LA
1

@ This example shows the superiority of the cubic spline interpolation.

Xu Zhang (Oklahoma State University) MATH 4513 Numerical Analysis Fall 2020 82/92



Chapter 3. Interpolation and Polynomial Approximation 3.4 Cubic Spline Interpolation

L} —
_——

1 CSS
S=

@ Constructing a cubic spline to approximate the lower profile of the duck
would be more difficult since the curve for this portion cannot be
expressed as a function of z, and at certain points the curve does not
appear to be smooth.

@ These problems can be resolved by using separate splines to represent
various portions of the curve, but a more effective approach to
approximating curves of this type is considered in the next section.

v
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Chapter 3. Interpolation and Polynomial Approximation 3.5 Parametric Curves

3.5 Parametric Curves

@ The techniques we developed so far in this chapter cannot be used to
generate curves of the form shown below because this curve cannot be

expressed as a function y = f(z).

@ In this section we will see how to represent general curves (even some
hand-drawn curves) using parametric forms.

@ This technique can be extended to represent general curves/surfaces in
computer graphics.
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Chapter 3. Interpolation and Polynomial Approximation 3.5 Parametric Curves

@ Given a set of data points

7o | @1 | ws |- | an
yO‘yl‘?D""‘yn

we can use a parameter ¢, and construct polynomial or piecewise
polynomial approximation for

x=uz(t), and y=y(t).

@ To do this, we specify an interval [to, t,], with tg < ¢; <--- < t,, and
construct two approximation functions with

x; =x(t;), and y;,=y(t;), i=0,1,---,n.
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Chapter 3. Interpolation and Polynomial Approximation 3.5 Parametric Curves

Construct a pair of Lagrange polynomials to approximate the curve show

below

y

Example 20.

V.

Solution (1/3)

There are five points, so we choose the points {¢;}?_, equally spaced in [0,1]:

i | 0] 1] 2] 3] 4
# | 0]025]05075 | 1
z| 1] 0] 1| 0]-1
v |-1| 0]05| 1| 0

v
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Chapter 3. Interpolation and Polynomial Approximation 3.5 Parametric Curves
Solution (2/3)

We write a MATLAB Driver file for this example

% ex3_6_1
dataT = [0,0.25,0.5,0.75,1];
dataX = [-1,0,1,0,1];

dataY [0,1,0.5,0,-1];
qt = 0:0.001:1;
gx = LagrangeInterpolation(dataT,dataX,qt);

qy = LagrangeInterpolation(dataT,dataY,qt);

figure(1); clf

plot(dataX,dataY, 'rx', ' linewidth"',2)
hold

plot(gx,qy, 'b-.", "' linewidth',2)

grid on

lgd = legend('Data Point','Lagrange');
lgd.FontSize = 16;

lgd.Location = 'NorthEast';

The Interpolation polynomials are

2 14
x(t) = 64t* — %t?’ + 60t% — 3t 1L

64 116
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Chapter 3. Interpolation and Polynomial Approximation 3.5 Parametric Curves

Solution (3/3)

Plotting the parametric system produced the graph below:
15 T T T T T
¥y
1
1 // b \\\
I A+ )
T i -
i -
——t—t —t—t—t Y el
-1 1 X of » "_,—-
1 /
1 ,\_ \"\\_\\
-15 -1 0.5 ) 05 1 15 )
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Chapter 3. Interpolation and Polynomial Approximation 3.5 Parametric Curves

For this example, we can also use the natural cubic Spline interpolation for
the parametric system.

% ex3_6_1_2 15 r T T T T
dataT = [0,0.25,0.5,0.75,1]; « Data Point
dataXx = [-1,0,1,0,1]; —_—
dataY = [0,1,0.5,0,-1]; —-—-Ir:la?ranlgg li
.L atural Spline| |

qt = 0:0.001:1;

qx = LagrangeInterpolation(dataT,dataX,qt); !
qy = LagrangeInterpolation(dataT,dataY,qt); 051

gxS = natural_spline(dataT,dataX,qt);
qyS = natural_spline(dataT,dataY,qt);

figure(1); clf
plot(dataX,datayY, 'r+', ' Linewidth',2)

hold

plot(gx,qy, 'b-.", ' linewidth',2) o5k |
plot(gxS,qysS, 'k-."', ' linewidth',2)

grid on

1lgd = legend('Data Point','Lagrange', 'Natural Spline');
lgd.FontSize 16; .
lgd.Location 'NorthEast'; 15
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Chapter 3. Interpolation and Polynomial Approximation 3.5 Parametric Curves

In this example, we demonstrate using natural cubic spline to interpolate
arbitrary hand-drawn curve. We need to use the graphic input MATLAB
command

[X,Y]=ginput(N)

to get IV points from the click of the mouse.
(for more details, type help ginput in MATLAB command window)
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Chapter 3. Interpolation and Polynomial Approximation 3.5 Parametric Curves

A MATLAB Driver File for Parametric Curve

% ex3_6_2
clc

clear
close all

%% Input Points on a region [0,1] X [0,1]

figure(1)
grid on
axis(le,1,0,1])
N = 20;
dataX = zeros(N,1); dataY = zeros(N,1);
dataT = (@:1/(N-1):1)";
for n = 1:N
[X,Y] = ginput(1);

plot(X,Y, 'rk');
text(X,Y,int2str(n));

grid on
axis([e,1,0,1])
hold on
datax(n) = X; dataY(n) =Y;
end
disp(* ')
disp("* I dataT dataX dataYy')
isp(' )

di
disp([(1:N)',dataT,dataX,dataY])

%% Query Points

qt = 0:0.001:1; % use 1000 query points
gx = natural_spline(dataT,dataX,qt);

qy = natural_spline(dataT,dataY,qt);

figure(2);clf
plot(dataX,datayY, 'r+',qx,qy, 'k-', 'linewidth',2)
grid on

axis([0,1,0,1])
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Chapter 3. Interpolation and Polynomial Approximation 3.5 Parametric Curves

@ Applications in computer graphics require the rapid generation of
smooth curves that can be easily and quickly modified. For both
aesthetic and computational reasons, changing one portion of
these curves should have little or no effect on other portions of the
curves.

@ This eliminates the use of interpolating polynomials and splines
since changing one portion of these curves affects the whole
curve.

@ The choice of curve for use in computer graphics is generally a
form of the piecewise cubic Hermite polynomial. Popular graphics
programs using Hermite cubics are described as Bézier
polynomials, which uses the “guidepoint” to compute the
derivatives at the endpoints in each interval.
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