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Section 2.1 The Bisection Method

@ Starting from this section, we study the most basic mathematics
problem: root-finding problem

f(z)=0.

@ The first numerical method, based on the Intermediate Value
Theorem (IVT), is called the Bisection Method.

@ Suppose that f(x) is continuous on [a, b]. f(a) and f(b) have
opposite sign. By IVT, there exists a number p € (a,b) such that
f(p) =0. Thatis, f(x) has aroot in (a,b).

@ Idea of Bisection Method: repeatedly halve the subinterval of
[a, b], and at each step, locating the half containing the root.
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Chapter 2. Solutions of Equations in One Variable 2.1 The Bisection Method

@ Seta; < a, by « b. Calculate the midpoint p; + %3,
’

UORS

Sp) +

S(p2) +
@) +

@ If f(p1) =0, then p < py, done.
o If f(p1) # 0, then f(p1) has the same sign as either f(a) or f(b).

o If f(p1) and f(a) have the same sign, then p € (p1,b1).
Set a9 < P1, and by < by.

o If f(p1) and f(b) have the same sign, then p € (a1,p1).
Set as < aq, and by — p1-

@ Repeat the process on [az, b].
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Chapter 2. Solutions of Equations in One Variable 2.1 The Bisection Method

ALGORITHM - Bisection (Preliminary Version)

USAGE: to find a solution to f(z) = 0 on the interval [a, b].
p = bisect0 (f,a,b)

Forn=1,2,3,---,20, do the following
@ Step1 Setp=(a+0b)/2;
@ Step 2 Calculate FA = f(a), FB = f(b), and FP = f(p).
@ Step3 If FA-FP > 0,seta=p

If FB-FP >0,setb=p.
Go back to Step 1.

This above algorithm will perform 20 times bisection iterations. The
number 20 is artificial.
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Chapter 2. Solutions of Equations in One Variable 2.1 The Bisection Method

Show that f(x) = 23 + 42% — 10 = 0 has a root in [1, 2] and use the
Bisection method to find the approximation root.

Because f(1) = —5 and f(2) = 14, the IVT ensures that this
continuous function has a root in [1, 2].

To proceed with the Bisection method, we write a simple MATLAB
code.

A,
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Chapter 2. Solutions of Equations in One Variable 2.1 The Bisection Method

Matlab Code for Bisection (Pr nary Version)

function p = bisect@(fun,a,b)
% This is a preliminary version of Bisection Method

for n = 1:20 % Set max number of iterations to be 20
p = (a+b)/2;
FA = fun(a);
FB = fun(b);
FP = fun(p);
if FA%FP > 0@
a=p;
elseif FBxFP > @
b =p;
end
end

A “Driver” File

% Driver File: Example 2.1.1 in the Textbook

| A

%% Inputs

fun = @(x) x"3+4%x"2-10;
a
b

2;

%% Call the subroutine: bisect@.m
p = bisect@(fun,a,b)

v
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Chapter 2. Solutions of Equations in One Variable 2.1 The Bisection Method

@ After 20 iterations, we obtain the solution p ~ 1.365229606628418.
@ To display more information from the whole iteration process, we
modify the MATLAB subroutine file.

Matlab Code for Bisection (Preliminary Version with more outputs)

function p = bisectl(fun,a,b)
% This is a preliminary version of Bisection Method
% This version displays intermediate outputs nicely

disp('Bisection Methods"')

disp("’ )
disp(' n a_n b_n p_n f(p_n)')
disp("’ "

formatSpec = '%2d % .9f % .9f % .9f % .9f \n';

for n = 1:20 % Set max number of iterations to be 20
p = (a+b)/2;
FA = fun(a);
FB = fun(b);
FP = fun(p);
fprintf(formatSpec, [n,a,b,p,fun(p)]) % Printing output
if FAxFP > 0@

a=p;
elseif FBxFP > @
b =p;
end
end
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Some Remarks on Bisection Method

@ To start, an interval [a, b] must be found with f(a) - f(b) < 0.
Otherwise, there may be no solutions in that interval.

@ It is good to set a maximum iteration number “maxit”, in case the
the iteration enters an endless loop.

@ Itis good to set a tolerance or stopping criteria to avoid
unnecessary computational effort, such as

Q1 iy

2
9 |pn - pn+1| < tol
e |pn _pn+1| < tol
|pn|

Q £ (pa)| < tol
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apter 2. Solutions of Equations in One ble 2.1 The Bisection Method

re robust Matlab code for Bisection method

function [p,flag]l = bisect(fun,a,b,tol,maxIt)
%% This is a more robust version of Bisection Method than bisectl.m

flag = 0; % Use a flag to tell if the output is reliable

if fun(a)*fun(b) > @ % Check f(a) and f(b) have different sign
error('f(a) and f(b) must have different signs');

end

disp('Bisection Methods")

disp("’ Y
disp(' n a_n b_n p_n f(p_n)"')
disp("’ "

formatSpec = '%2d % .9f % .9f % .Of % .9f \n';

for n = 1l:maxIt

p = (a+b)/2;
FA = fun(a);
FP = fun(p);

fprintf(formatSpec, [n,a,b,p,fun(p)]) % Printing output
if abs(FP) <= 10~(-15) || (b-a)/2 < tol

flag = 1;
break; % Break out the for loop.
else
if FAxFP > 0
a=p;
else
b = p;
end

end
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Chapter 2. Solutions of Equations in One Variable 2.1 The Bisection Method

Use Bisection method to find a root of f(z) = 2® + 422 — 10 = 0 in the
interval [1, 2] that is accurate to at least within 10~4.

v
@ We write a Matlab driver file for this test problem
% Example 2.1.1 in the Textbook

[p,flag]l = bisect(fun,a,b,tol,maxIt);

@ In this driver file, we
o specify all five inputs: fun, a, b, tol, maxlt
e call the Bisection method code bisect.m.

A,
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Chapter 2. Solutions of Equations in One Variable 2.1 The Bisection Method

Outputs from the Matlab Command Window

>> ex2_11
Bisection Methods

n a_n b_n p_n f(p_n)

1 1.000000000 2.000000000 1.500000000 2.375000000
2 1.000000000 1.500000000 1.250000000 -1.796875000
3 1.250000000 1.500000000 1.375000000 0.162109375
4 1.250000000 1.375000000 1.312500000 -0.848388672
5 1.312500000 1.375000000 1.343750000 -0.350982666
6 1.343750000 1.375000000 1.359375000 -0.096408844
7 1.359375000 1.375000000 1.367187500 0.032355785
8 1.359375000 1.367187500 1.363281250 -0.032149971
9 1.363281250 1.367187500 1.365234375 0.000072025
10 1.363281250 1.365234375 1.364257812 -0.016046691
11 1.364257812 1.365234375 1.364746094 -0.007989263
12 1.364746094 1.365234375 1.364990234 -0.003959102
13 1.364990234 1.365234375 1.365112305 -0.001943659
14 1.365112305 1.365234375 1.365173340 —-0.000935847

4
Vv

The approximation p,, converges to the true solution p = 1.365230013...
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Chapter 2. Solutions of Equations in One Variable 2.1 The Bisection Method

Theorem 3 (Convergence of Bisection Method).

Suppose that f € Cla,b] and f(a) - f(b) < 0. The Bisection method
generates a sequence {p, }>>, approximating a zero p of f with

b—a
[pn —pl < 5=, whenn >1.

Forn > 1, we have p € (ay,,b,) and
(b—a).

bn —an = 357
Since p, = 3(a, + by) for all n > 1, then
b—a

1
lpn —p| < i(bn —ay) = Ton
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Chapter 2. Solutions of Equations in One Variable 2.1 The Bisection Method
Example 4.

Determine the number of iteration necessary to solve
f(z) = 23 + 422 — 10 = 0 with accuracy 10~3 using a; = 1 and b; = 2.

v

By the convergence theorem (Theorem 2.3), we have

b—a 1 _
[pn —pl < == = 55 <10 5,

That is
log 10

~ 9.96.
log 2

M>10° = n>3

Hence, 10 iterations are required.
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2.2 Fixed-Point lteration

A fixed point for a function is a number at which the value of the function
does not change when the function is applied.

Definition 5 (fixed point).

The point p is a fixed point for a function g(z), if g(p) = p.

Root-finding problems and fixed-point problems are equivalent:

@ Given a root-finding problem f(p) = 0, we can define functions g(x) with
a fixed point at p in many ways such as

N ) R
o) == f(&),  gla) =z~ g5, () A0

@ Given a function g has a fixed point at p, the function f defined by

flx) =g(z) -

has a root at p.
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Chapter 2. Solutions of Equations in One Variable 2.2 Fixed-Point lteration

Example 6.

Determine any fixed points of the function g(z) = 22 — 2

@ If pis a fixed point of g, then
p=p"-2 = p’-p-2=(p-2)(p+1)=0
@ g(z) has two fixed points p = —1 and p = 2.

y

BN oW A~ O
P M
"

<

I

o

@ The fixed point of g(z) is the intersection of y = g(z) and y = .
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Theorem 7 (Sufficient Conditions for Fixed Points).

@ (i) (Existence) Ifg € Cla,b] and g(z) € [a,b] for all z € [a, b], then g
has at least one fixed point in [a, b].
@ (ii) (Uniqueness) If, in addition, ¢'(x) exists and satisfies

lg'(x)| < k<1, forallz € (a,b),

for some positive constant k, there is exactly one fixed-point in [a, b].

¥

b

p=28p) T

Note: the proof of existence uses the Intermediate Value Theorem, and

the proof of uniqueness uses the Mean Value Theorem.
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Chapter 2. Solutions of Equations in One Variable 2.2 Fixed-Point lteration
Example 8.

Show that g(z) = %(xz — 1) has a unique fixed-point on [—1, 1].

v

Proof (1/2)

(1. Existence). We show that g(z) has at least a fixed point p € [—1, 1].

@ Taking the derivative,
2 . . 1
g (z) = ?m, only one critical point z =0, ¢(0) = —3

@ At endpoints, x = —1 and 1, we have g(—1) =0, and g(1) = 0.
@ Then we have the global extreme values

1
i =——, and =0
L g() 3 e g()

@ Therefore, g(x) € [-1,0] C [-1,1]. By the first part of Theorem 2.7, the

function g has at least one fixed-point on [-1, 1].

o
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Chapter 2. Solutions of Equations in One Variable 2.2 Fixed-Point lteration

Proof (2/2)

(2. Uniqueness). We show that g(z) has exactly one fixed point.

@ Note that
2x
3

@l=|2| <3, Vee(-11).

@ By part (i) of Theorem 2.7, g has a unique fixed-point on [—1, 1].

v

@ Infact, p = % is the fixed-point on the interval [—1, 1].
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Chapter 2. Solutions of Equations in One Variable 2.2 Fixed-Point lteration

@ The function g has another fixed point ¢ = %ﬁon the interval
[3,4]. However, it does not satisfy the hypotheses of Theorem 2.7
(why? exercise).

@ The hypotheses in Theorem 2.7 are sufficient but not necessary.

Y Y
x2—-1 -1
4+ y="7 4+ y=""3
3 34
y=x y=x
2+ 21
1” l,,
N e N RN
—/1 2 3 4 X —/1 2/ 3 4 X
T - Vi) A - Vi) LT RV A6+ V)
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Fixed-Point lteration

@ If g(x) is continuous, we can approximate the fixed point of g (if any) by
Step 1
Step 2

choose an initial approximation pg
for n > 1,d0 Pn = 9(]97171)
@ If {p,} converges to a number p, then

p= Jim po = i (1) = g (i pui) = 9(0)
Thus, the number p is a fixed-point of g.

y

y=x
_ (P2 p) y=sl)
Pa = g(p2)
P2 = &(py) (P2 p2)
(po» P1)
1= &(po) (pu p1)
Po P P2 x

Xu Zhang (Oklahoma State University)
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v y=x
(p1, P2)
P2 =28(p) (P2 P2
Ps = &(p2) ( )
1= g(po) P Py (o, 1)
v =gk
P1 P3s P2 Po x
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Chapter 2. Solutions of Equations in One Variable 2.2 Fixed-Point lteration

Matlab Code of Fixed-Point Iteration

function [p,flag]l = fixedpoint(fun,p@,tol,maxIt)
n=1; flag = 0; % Initialization

disp('Fixed Point Iteration')
disp("
disp(' n p f(p_n)")
disp("
formatSpec = '%2d % .9f % .9
fprintf(formatSpec, [n-1,p0, fun(pd)

fA\n';
1) % printing output

while n <= maxIt
p = fun(p@);
fprintf(formatSpec, [n,p, fun(p)]) % printing output
if abs(p-p@) < tol
flag = 1;
break;
else
n = n+l;
po = p;
end
end

Note: unlike Bisection method, we don’t need to input an interval [a, ]
to start the fixed-point iteration, but we need an initial guess pg.
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Chapter 2. Solutions of Equations in One Variable 2.2 Fixed-Point lteration

Example 9.

The equation 23 + 422 — 10 = 0 has a unique solution in [1, 2]. There
are many ways to change the equation to a fixed-point problem
x = g(x). For example,

@ gi(x) =x— 23— 422 + 10

° gg(x)zw/leo—llfl;

1
@ g3(z) = 5\/10 — 3

10
® g4) = 4+

23+ 422 - 10
° 5@ =T m

Which one is better?
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of Equations ble 2.2 Fixed-Point lteration

a Matlab driver file for this example

% Example 2.2.1 in the Textbook

% Compare the convergence of fixed point iteration for five functions
clc % clear the command window

fun = @(x) x*3+4xx"2-10;

funGl = @(X) X—Xx"3-4%x"2+10;

funG2 = @(x) sqrt(10/x-4%x);

funG3 = @(x) (1/2)*sqrt(10-x~3);

funG4 = @(x) sqrt(10/(4+x));

funG5 = @(x) X—(x"3+4%x"2-10)/ (3*kx 2+8%Xx) ;
po = 1.5;

tol = 1E-9;

maxIt = 40;

disp("' Test #1 ')
[p1, flagl] = fixedpoint(funG1,p@,tol, maxIt)
disp(’ Test #2 ")
[p2,flag2] = fixedpoint(funG2,p0,tol, maxIt),
disp("' Test #3

[p3,flag3] = fixedpoint(funG3,po,tol, maxIt),
disp("' Test #4 ")
[p4,flag4] = fixedpoint(funG4,p@,tol, maxIt)
disp("’ Test #5

[p5,flag5] = fixedpoint(funG5,p0,tol,maxIt);

disp(' ')
disp('Converge or Not')
disp([flagl,flag2,flag3, flag4, flag5])

Xu Zhang (Oklahoma State University) MATH 4513 Numerical Analysis Fall 2020

24/70



s of Equations

able

2.2 Fixed-Point lteration

olut 2/2)

Iterations of g; and g, diverge. lterations of g3, g4, and g5 converge:

Fixed Point Iteration

nop

f(p_n)

0 1.500000000
1 1.286953768
2 1.402540804
3 1.345458374
4 1.375170253
5 1.360094193
6 1.367846968
7 1.363887004
8 1.365916733
9 1.364878217
10 1.365410061
11 1.365137821
12 1.365277209
13 1.365205850
14 1.365242384
15 1.365223680
16 1.365233256
17 1.365228353
18 1.365230863
19 1.365229578
20 1.365230236
21 1.365229899
22 1.365230072
23 1.365229984
24 1.365230029
25 1.365230006
26 1.365230017
27 1.365230011
28 1.365230014
29 1.365230013
30 1.365230014

1.286953768
1.402540804
1.345458374
1.375170253
1.360094193
1.367846968
1.363887004
1.365916733
1.364878217
1.365410061
1.365137821
1.365277209
1.365205850
1.365242384
1.365223680
1.365233256
1.365228353
1.365230863
1.365229578
1.365230236
1.365229899
1.365230072
1.365229984
1.365230029
1.365230006
1.365230017
1.365230011
1.365230014
1.365230013
1.365230014
1.365230013

Fixed Point Iteration

=

p

f(p_n)

1.500000000
1.348399725
1.367376372
1.364957015
1.365264748
1.365225594
1.365230576
1.365229942
1.365230023
1.365230012
1.365230014
1.365230013

RPOORNOURWNRL S

B

1.348399725
1.367376372
1.364957015
1.365264748
1.365225594
1.365230576
1.365229942
1.365230023
1.365230012
1.365230014
1.365230013
1.365230013

Fixed Point Iteration

n p f(p_n)

0 1.500000000 1.373333333
1 1.373333333 1.365262015
2 1.365262015 1.365230014
3 1.365230014 1.365230013
4 1.365230013 1.365230013

Converge or Not
0 0

Xu Zhang (Oklah

State University)
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Chapter 2. Solutions of Equations in One Variable 2.2 Fixed-Point lteration

@ Why do iterations g; and g, diverge? but g3, g4, and g5 converge?

@ Why do g4 and g5 converge more rapidly than g3?

v

Theorem 10 (Fixed-Point Theorem).

Letg € Cla,b] and g(x) € [a,b] for all x € [a,b]. Suppose that g’ exists on
(a,b) and that a constant 0 < k < 1 exists with

lg'(z)] <k <1, Vzé€/(a,b).
Then for any number p, € [a, b], the sequence

Pn=9g(Pn-1), n=>1

converges to the unique fixed point p in [a, b].

N
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Chapter 2. Solutions of Equations in One Variable 2.2 Fixed-Point lteration

The function g satisfies the hypotheses of Theorem 2.7, thus g has a
unique fixed-point p in [a, b]. By Mean Value Theorem,

[pn — pl = |9(Pn-1) — 9(p)|

=19'(©)||pn-1 — Dl
S k‘pn—l _p’

S .

< k"|po —p|-

Since 0 < k < 1, then

lim |p, —p| < lim k"|py — p| = 0.
n—oo n—o0

Hence, the sequence {p,} converge to p.
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Chapter 2. Solutions of Equations in One Variable 2.2 Fixed-Point lteration

@ The rate of convergence of the fixed-point iteration depends on the
factor k. The smaller the value of k, the faster the convergence.

@ To be more precise, we have the following error bounds (Corollary
2.5 in textbook)

Ipn — p| < k" max{po — a,b—po}.

and

n

k
lpn — p| < m‘pl — pol-

@ We will see more in Section 2.4.
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Chapter 2. Solutions of Equations in One Variable 2.2 Fixed-Point lteration

Proof (read if you like)
Since p € [a, b], then

lpn, — p| < k™|po — p| < k" max{po — a,b — po}.

For n > 1,
[Pnt+1 = ol = |9(pn) = 9(pn—1)| < klpn — Pp—1| < - < k"|p1 — pol.
Form >n>1,
‘pm - pn| = |pm —Pm—1+TPm—1—"""—DPntl +Pnr1 — pn|

< [pm — Pm—-1| + [Pm; — Pm—2| + - + |Pnt1 — pul
< k™ Yp1 — pol + K™ *|p1 — pol + -+ - K*|p1 — pol
<k'lp1 —pol (L +k+ K +E" 1),
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Chapter 2. Solutions of Equations in One Variable 2.2 Fixed-Point lteration

Proof (2/2) (read if you like)
Let m — oo, we have

[p = pnl = lim |pp — pnl
m—00
< lim k"|p1 —pol (1 +k+ K>+ k™71
m—ro0

o0
= k"[p1 —pol Y K
i=0

n

=11~ pol-

The last equality is because of the convergence of geometric series
when 0 < k < 1.
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Chapter 2. Solutions of Equations in One Variable 2.2 Fixed-Point lteration

A revisit of the fixed-point schemes g; to g5 in Example 2.9.

@ For gi(z) = x — 2® — 42> + 10, we know that
g1(1) =6, and g¢2(2) =—12,
so ¢g; does not map [1, 2] into itself. Moreover,
lg1(x)] = |1 —32% — 8z > 1, forall z € [1,2].
There is no reason to expect convergence.

@ For go(z) = w/% — 4z, it does not map [1, 2] into [1, 2]. Also, there

is no interval containing the fixed point p ~ 1.365 such that
|g5(x)| < 1, because |g5(p)| ~ 3.4 > 1. There is no reason to
expect it to converge.
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A revisit of the fixed-point schemes g; to g5 in Example 2.9.

1
@ For g3(z) = =v/10 — z3, we have
2

3
gh(z) = —Zx2(10 — 2372 <0, on[1,2]

SO gs is strictly decreasing on [1, 2]. If we start with p, = 1.5, it suffices to
consider the interval [1,1.5]. Also note that

1 <1.28 = g3(1.5) < gs(z) < g3(1) = 1.5,
so g3 maps [1, 1.5] into itself. Moreover, it is also true that
l95(x)| < g5(1.5) ~ 0.66,

on the interval [1,1.5], so Theorem 2.10 guarantees its convergence.
(k ~ 0.66)
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Chapter 2. Solutions of Equations in One Variable 2.2 Fixed-Point lteration

A revisit of the fixed-point schemes g; to g; in Example 2.9.

1 . L
@ For g4(z) = 1/4+—Ox, it maps [1, 2] into itself. Moreover,

VI, ey < VIO

194(2)| < | =~ (4+2) 5 575 < 0.15, forallz e [1,2].

So g4 converges much more rapidly than gs; (k =~ 0.15).

3 4 2 _ 1
@ Forgs(z) = — % it converges much more rapidly than
X X
other choices. This choice of the g5 (z) is in fact the Newton’s Method,
and we will see where this choice came from and why it is so effective in

the next section.
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Chapter 2. Solutions of Equations in One Variable 2.2 Fixed-Point lteration

Concluding Remark

Question How can we find a fixed-point problem that produces a
sequence that reliably and rapidly converges to a solution
to a given root-finding problem?

Answer Manipulate the root-finding problem into a fixed point
problem that satisfies the conditions of Fixed-Point
Theorem (Theorem 2.10) and has a derivative that is as
small as possible near the fixed point.
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Chapter 2. Solutions of Equations in One Variable 2.3 Newton’s Method and Its Extensions

2.3 Newton’s Method and lts Extensions

@ In this section, we introduce one of the most powerful and well-known
numerical methods for root-finding problems, namely Newton’s method
(or Newton-Raphson method).

@ Suppose f € C?[a,b]. Let py € (a,b) be an approximation to a root p such
that f/(po) # 0. Assume that [p — po| is small. By Taylor expansion,

R
F®) = F(20) + (0 - p0) f (oo) + L2 g

where £ is between py and p.
@ Since f(p) =0,

(p - p0)2 f//(g)

0= f(po) + (p—po)f (po) + B

@ Since p — po is small, we drop the high-order term involving (p — py)?,

J(po)
f"(po)

0= f(po) + (0 —po)f'(p0) = p=po— =p;.
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Chapter 2. Solutions of Equations in One Variable 2.3 Newton’s Method and Its Extensions

Newton’s Method

Given an initial approximation py, generate a sequence {p,, }>2, by

f(pn—l)
Pn = Pn—1 7 , forn >1.
f'(Pn-1)
y
Slope /'(p1) y=/)
q (P /(p1)
I
I
i
2o 3 Slope /"(po)
! /172 71 x
I
(Po.f(po))

@ Note that p,, is the z-intercept of the tangent line to f at (pn—1, f(Prn—1))-
@ An animation:

https://upload.wikimedia.org/wikipedia/commons/e/e0/NewtonIteration_Ani.gif
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Chapter 2. Solutions of Equations in One Variable 2.3 Newton’s Method and lts Extensions

@ To program the Newton’s method, the inputs should contain f, pg, tol,
maxit, as used in the fixed-point methods.

@ In addition, we also need to include the derivative f’ as an input.

Matlab Code of Newton’s Method

function [p,flag]l = newton(fun,Dfun,p@,tol,maxIt)

n=0; flag = 0; % Initializaiton

disp(’ )
disp('Newton Method')

disp(’ )
disp(' n p_n f(p_n)")

disp(’ !

formatSpec = '%2d %.10f % .10f \n';
fprintf(formatSpec, [n,p@, fun(pd)]1)

while n<=maxIt
p = p@ - fun(p@)/Dfun(p0);
if abs(p-p@) < tol
flag = 1; break;

else

n = n+l; pd = p;
end
fprintf(formatSpec, [n,p, fun(p)])

end
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Chapter 2. Solutions of Equations in One Variable 2.3 Newton’s Method and lts Extensions

Let f(x) = cos(x) — z. Approximate a root of f using (i) the fixed-point
method with g(z) = cos(z) and (ii) Newton’s method.

Solution (1/3)

(i). Using the fixed-point function g(z) = cos(x), we can start the
fixed-point iteration with py = 7 /4.
Y'Y
y=x
1
y = C0Sx
R
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Chapter 2. Solutions of Equations in One Variable 2.3 Newton’s Method and lts Extensions
Solution (2/3)

(ii). To apply Newton’s method, we calculate f/(z) = —sin(z) — 1. We
again start with pg = 7 /4.

@ A MATLAB driver file for this example

% Example 2.3.1 in the Textbook

fun = @(x) cos(x)-x;

unction f(x)

% F

Dfun = @(x) -sin(x)-1; % Derivative of f(x)
funF = @(x) cos(x); % Function for fixed point iteration
tol 1E-10;

maxIt = 20;

%% Fixed-Point Iteration

po = pi/4;

[pF,flagF] = fixedpoint(funF,p@,tol,maxIt);
disp(' ')

%% Newton Method

po = pi/4;

[p,flag]l = newton(fun,Dfun,pd,tol,maxIt);
disp(' ')

Xu Zhang (Oklahoma State University)
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Solution (3/

Fixed Point Iteration

f(p_n)

n P
0 0.785398163
1 0.707106781
2 0.760244597
3 0.724667481
4 0.748719886
5 0.732560845
6 0.743464211
7 0.736128257
8 0.741073687
9 0.737744159

10 0.739987765

11 0.738476809

12 0.739494771

13 0.738809134

14 0.739271021

15 0.738959904

16 0.739169483

17 0.739028311

18 0.739123408

19 0.739059350

20 0.739102501

@ Comparing with the Fixed-point iteration, Newton method gives excellent

0.707106781
0.760244597
0.724667481
0.748719886
0.732560845
0.743464211
0.736128257
0.741073687
0.737744159
0.739987765
0.738476809
0.739494771
0.738809134
0.739271021
0.738959904
0.739169483
0.739028311
0.739123408
0.739059350
0.739102501
0.739073434

Newton Method

p_n

f(p_n)

WN R

0.7853981634
0.7395361335
0.7390851781
0.7390851332

approximation with only three iterations.

Xu Zhang (Oklahoma State University)
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Chapter 2. Solutions of Equations in One Variable 2.3 Newton’s Method and lts Extensions
Remarks on Newton’s Method

@ Newton’s method can provide extremely accurate
approximations with very few iterations.

@ Newton’s method requires the initial approximation to be
sufficiently accurate.

@ In practical applications, an initial approximation can be obtained
by other methods, such as bisection method. After the
approximation is sufficient accurate, Newton’s method is applied
for rapid convergence.

@ Newton’s method requires evaluation of the derivative f’ at each
step. Usually f’ is far more difficult to calculate than f.
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Chapter 2. Solutions of Equations in One Variable 2.3 Newton’s Method and lts Extensions

Player A will shut out (win by a score of 21-0) player B in a game of
racquetball with probability

| +p » 21
pP= ,
2 1—p+p?

where p denotes the probability A will win any specific rally
(independent of the server). Determine the minimum value of p that
will ensure that player A will shut out player B in at least half the
matches they play.
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Chapter 2. Solutions of Equations in One Variable 2.3 Newton’s Method and lts Extensions

@ The player A winning at least half of the matches means P is at
least 0.5. We consider the root-finding problem

_1+p p 21
fp) = —5 (1_p+p2> 0.5.

@ The derivative f’ is (verify by yourself)

1 p 291 p 0 p?
/
72) 2<1—p+p2> 3 p)<1—p+p2 (1—p+p?)?

@ Using Newton’s method with po = 0.75, and

f(pn—l)
n=Pn-1— =, forn>1
P =Pt = )

we find that p ~ 0.8423 in three iterations.

v
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Chapter 2. Solutions of Equations in One Variable 2.3 Newton’s Method and lts Extensions

@ In last example, we see that the finding the derivative f’(z) is not
easy, and the evaluation of f’(x) also requires more arithmetic
operations than the evaluation of f(z) itself.

@ To circumvent this problem, we introduce a variation of Newton’s
method that does require the evaluation of derivative f.

@ Recall that in Newton’s method we have

f(pn—1)

n=Dn-1— "=, forn>1
P Pt f/(pn—l)
@ By the definition of derivative,

f(x) = f(pn-1) f(pn—2) — f(pn-1)

~
~

f/(pn—l) = lim
T—Pn—1 T — Pn—1 Pn—2 — Pn—1

since p,,_» is close to p,_1.
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Secant Method

@ Replacing the derivative f'(p,—1) in the Newton’s formula by the
difference quotient, we have

f(pn—l)
o= Pn f/(pn—l)
Pt — f(pn—1)
" f(pn—Q) - f(pn—l)
Pn—2 — Pn—1
= Pn1— J(Pn—1)(Pn—2 — pn-1) n
" f(pn—2) — f(pn-1) N

Q
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Secant Method

Given initial approximations py and p;, generate a sequence {p, }°>
by
f(pn—l)(pn—Q - pn—l)
Pn = Pn—1 —
' fon2) — fa) |
@ The Secant method requires two initial approximations.
@ However, it does not require the evaluation of the derivative.

n > 2.

4
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Chapter 2. Solutions of Equations in One Variable 2.3 Newton’s Method and Its Extensions

@ An illustration of Secant method

Y

@ Starting with two initial approximations py and p1, the value p, is
the z-intercept of the line joining (po, f(po)) and (p1, f(p1)).

@ The approximation ps is the z-intercept of the line joining
(p1, f(p1)) and (p2, f(p2)) and so on.
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2.3 Newton’s Method and Its Extensions
Matlab Code of Secant Method

function [p,flag] = secant(fun,p@,pl,tol,maxIt)

n=1; flag = 0; % Initializaiton
q0 = fun(p@); ql = fun(pl);

disp(" ')
disp('Secant Method')

disp("’ ")
disp(' n p_n f(p_n)")

disp("’ ")

formatSpec = '%2d %.10f % .10f \n';
fprintf(formatSpec, [n-1,p0, fun(p@)])
fprintf(formatSpec, [n,pl, fun(pl)])

while n<=maxIt
p = pl - gqlx(pl-p@)/(ql-q0);
if abs(p-p0) < tol
flag = 1; break;

else
n = n+l;
po = pl; q@ = ql; pl = p; ql = fun(p);
end
fprintf(formatSpec, [n,p, fun(p)l)
end
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Use the Secant method for find a solution to = = cos(x), and compare
with the approximation with those given from Newton’s method.

Solution (1/2)

Write a MATLAB driver file

% Example 2.3.2 in the Textbook

fun = @(x) cos(x)-x;
Dfun = @(x) -sin(x)-1;

tol = 1E-10;

maxIt = 40;

%% Newton

po = pi/4;

[pN, flagN] = newton(fun,Dfun,p0,tol,maxIt);
disp(' ')

po = 0.5; pl = pi/4;
[pS, flagS] = secant(fun,p@,pl,tol,maxIt);
disp(' ')

v
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>> ex2_3_2

Newton Method

n

p_n

f(p_n)

WN R

0.7853981634
0.7395361335
0.7390851781
0.7390851332

-0.0782913822
-0.0007548747
-0.0000000751
-0.0000000000

Secant Method

n p_n f(p_n)

(] 0.5000000000 0.3775825619
1 0.7853981634 —0.0782913822
2 0.7363841388 0.0045177185
3 0.7390581392 0.0000451772
4 0.7390851493 —-0.0000000270
5 0.7390851332 0.0000000000
6 0.7390851332 0.0000000000

@ Secant method requires 5 iterations comparing with 3 iteration
used in Newton’s method.
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Example 14.

A revisit of Example (Recquetball Winning Probability) use Secant
method.

@ The root-finding problem is

_1+p p 21

@ Use Secant method with po = 0.5, and p; = 1, we can find
p ~ 0.8423 within accuracy of 10~9 in five iterations.

@ Newton’s method uses three iterations to reach this accuracy.
However, it requires evaluations of the derivative f’.

Xu Zhang (Oklahoma State University) MATH 4513 Numerical Analysis Fall 2020 51/70



Chapter 2. Solutions of Equations in One Variable 2.3 Newton’s Method and lts Extensions

@ Secant Method converges slightly slower than Newton Method,
but much faster than other Fixed-point iterations.

@ Newton’s method or the Secant method is often used to refine an
answer obtained by another technique, such as the Bisection
method, since these methods require good first approximations
but generally give rapid convergence.
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2.4 Error Analysis for Iterative Methods

@ In this section we investigate the order of convergence of iteration
schemes.

@ For example, the following sequences all converge to 0 as n — oo

1 1 € 1
n’ n2 |’ en |’ n! |’
Clearly, the “speed” of the convergence is different.

@ We will develop a procedure for measuring how rapidly a
sequence converges.
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Definition 15 (Order of Convergence).

Suppose {p, }22, is a sequence that converges to p, with p,, # p for all n.

o If lim [Pnti =Pl
n—oo |p, — p|

linearly, with asymptotic error constant .

= )\, where X € (0, 1), then {p,, } is said to converge

o If lim Prt1—Pl

n—oo |pn —p|

=0, then {p, } is said to converge superlinearly.

o If lim Zrt1=2l

= 1, then {p, } is said to converge sublinearly.
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Chapter 2. Solutions of Equations in One Variable 2.4 Error Analysis for Ilterative Methods

To further distinguish superlinear convergences, we say the sequence
{pn} converges to p of order a > 1 if

lim !Pn+1 —P\ -

n—»00 ’pn—p‘o‘ -

In particular,
@ o = 2 is called to quadratic convergence.

@ o = 3 is called to cubic convergence.
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Example 16.

The following sequences all converge to 0. Find the convergence order
of each sequence.

o {2} o g o () e {) o )

Solution (1/4)

1 1111
. For § — ¢, the first few terms are 1, -, -, —, —,---
(a). Fo {n},te st few terms are 3 3 B
1
hmw:hm ntl _ g " o
n—»00 |pn—p| n—o00 % n—oco n + 1 .

1 .
The sequence {} converges to 0 sublinearly.
n

.
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Solution (2/4)

1 1 1 1 1
For the first few terms are 1, —, -, —, —
(6)- {n } 49’ 16" 25°
1 9
fig Prt =Pl D2
n—00 |pn p| n—00 # n—00 (n + 1)2 .

1
The sequence {n } converges to 0 sublinearly.

1 111 1 1
For the first few terms are -, —, -, —, —,-
(@) {2 } 2’47 8 16" 32’
1 n
lim |pn+1 ’ — THi on+1 -] 2 :1
n—00 ’pn p| n— 00 2L n—oo 2n+1 2

1 .
The sequence {Qn} converges to 0 linearly.
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Solution (3/4)

1 1 1 1 1
For the first few terms are 1, -, -, —, —,---
(@)- {n} 2767 247 120’
| p| : I n! 1
lim P+t 7 PL = lim (GHEY = lim — = lim =
n—00 ‘pn p’ n—00 % n—00 (n—|—1)| n—oomn + 1

1
The sequence { } converges to 0 superlinearly.
n!

Note that for any a > 1,

_ 1a Na—1
lim [Pnt1 = b = lim ()" = lim (G — 00.
n—00 ’pn p‘a n—00 (n -+ 1)‘ n—oo n + 1

1
The convergence order of {n } is barely 1, but not any more.
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Solution (4/4)

1 1 1 1 1 1
For the first few terms are -
( ) {22"} 4’ 16’ 256" 65536’ 4294967296

on on on 1
lim = lim = lim = lim

n—00 o n—00 22n+1 n—00 22 2n n—00 (22")2 n—oo 22"

22n+1

1
The sequence { 527 } converges to 0 superlinearly.

Moreover, we note that

1 n n
— 50T PN P
lim 7|pn+1 Pl = lim 221“ = lim 7( —7 = lim ( n> =1.
n—00 |pn — p|2 n—00 (72271 )2 n—oo 22 n—o00 (22 )2

1
The sequence {2 } converges to 0 quadratically.

Xu Zhang (Oklahoma State University) MATH 4513 Numerical Analysis Fall 2020 59/70



2.4 Error Analysis for Ilterative Methods
Comparison of Linear and Quadratic Convergences

Linear Convergence Quadratic Convergence
Sequence {p,}2, Sequence {p,}2,

n (0.5)" (0.5)"!

1 5.0000 x 107! 5.0000 x 10~
2 2.5000 x 107! 1.2500 x 10!
3 1.2500 x 107! 7.8125 x 1073
4 6.2500 x 10~2 3.0518 x 1073
5 3.1250 x 1072 4.6566 x 10710
6 1.5625 x 1072 1.0842 x 107"
7 7.8125 x 1073 5.8775 x 107

@ Quadratically convergent sequences are expected to converge
much quicker than those that converge only linearly.

@ It usually takes 5 or 6 iterations for a quadratic convergent
sequence to reach the 64-bit machine precision.
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2.4 Error Analysis for Ilterative Methods
Convergence Order of Bisection Method

@ We have shown in Theorem 2.3 that the sequence {p,,} of
bisection method satisfies
b—a
on

lpn — p| <

@ The absolute error e,, = [p, — p

“behaves” like the sequence

. ‘en—i—l‘ 1
en N oy I len] 2

. . . . . 1
@ Bisection Method converges linearly with asymptotic constant 5

v
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Convergence Order of Newton Method

f(pn)
f'(pn)’

Newton’s Method  pp+1 = pp —

@ Lete, £ p, — p, by Taylor's theorem

62
f(p) = f(pn —en) = f(pn) — enfl(pn) + Enfu(fn)
@ Since f(p) =0, f'(p) # 0 (so f'(pn) # 0 when p,, is close to p), then

_ f(pn) e e% 7 - f(pn)
0= Fow) T 2w’ = Fip)

f(pn) - 6721
o) 2T 37 (m)

2
en

57 (o) (&)

—Pnt+p+

(&)

= Dn+1 £ Pn —
@ Thatis

(&)
= S (p) "

Thus, Newton Method converges quadratically.

1" (p)]
2|f' ()|

= |ent1| < Mlen[*, where M =
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2.4 Error Analysis for Ilterative Methods
Convergence Order of Secant Method

J(Pn—1)(Prn—1 — Pn—2)
f/(pn—l) - f(pn—2)

Secant Method p, =pn_1 —

It can be shown that

len| = Clen—1]|%, where a = — 1.618

Thus, Secant Method converges superlinearly, with an order of 1.618.
@ Fora Complete proof, see
http://wwwl.maths.leeds.ac.uk/~kersale/2600/Notes/appendix_D.pdf

@ The Secant method converges much faster than Bisection method
but slower than Newton method.

v
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Chapter 2. Solutions of Equations in One Variable 2.4 Error Analysis for Ilterative Methods

Convergence Order of Fixed-point Iteration

@ Recall that a root-finding problem f(x) = 0 can be converted to a
fixed-point iteration g(p) = p.
@ The fixed-point iteration is given po,

Pn = g(pn_1) forn>1

@ It has been shown that

n

1-k

lpn, — p| < lp1 — po| where 0 <k < 1.

@ Thus, Fixed-point iteration (if it converges) converges at least
linearly, with asymptotic constant at most .
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Multiple Roots

@ Finally we consider problem with repeated roots such as
flz) = (z— 13z +2)(z — 3)2

@ When we apply Newton’s method to find a multiple root, we can
still expect convergence, but the convergence order is usually less
than quadratic.

@ A solution p of f(z) = 0 is a zero of multiplicity m of f if

f(@) = (z—p)"g(z), where g(p)#0.

@ The function f has a simple zero if and only if f(p) = 0 and

f'(p) #0.
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Chapter 2. Solutions of Equations in One Variable 2.4 Error Analysis for Ilterative Methods

Let f(z) = e* — 2 — 1. (a). Show that f has a zero of multiplicity 2 at
x = 0. (b). Show that Newton’s method with py = 1 converges to this
zero but not quadratically.

Solution(1/2)

(a). Note that

FO)=e"—0-1=0, f(0)=e"—1=0, f(0)=e’=1.

Thus, the root p = 0 is a zero of multiplicity 2.
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s of Equations ne Variable 2.4 Error Analysis for Ilterative Methods

(b). We test the convergence of Newton’s method

>> ex2_4_1

Newton Method

n p_n f(p_n)
0 1.0000000000 0.7182818285
1 0.5819767069 0.2075956900
2 0.3190550409 0.0567720087
3 0.1679961729 0.0149359105
4 0.0863488737 0.0038377257
5 0.0437957037 0.0009731870
6 0.0220576854 0.0002450693
7 0.0110693875 0.0000614924
8 0.0055449047 0.0000154014
9 0.0027750145 0.0000038539
10 0.0013881490 0.0000009639
11 0.0006942351 0.0000002410
12 0.0003471577 0.0000000603
13 0.0001735889 0.0000000151
14 0.0000867970 0.0000000038
15 0.0000433991 0.0000000009
16 0.0000216997 0.0000000002
17 0.0000108499 0.0000000001
18 0.0000054250 0.0000000000
19 0.0000027125 0.0000000000
20 0.0000013563 0.0000000000
21 0. 0.
22 0.0000003390 0.0000000000
23 0.0000001700 0.0000000000
24 0. 51 0.
25 0. 0.
26 0. 190 0.
27 0. 73 0.

The convergence is much slower than quadratic, as we expect from Newton.

v
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Chapter 2. Solutions of Equations in One Variable 2.4 Error Analysis for Iterative Methods

@ To fix the problem for repeated roots, we consider the function

_ f@)
He) = ey
@ If pis azero of f(x) with multiplicity m, then f(z) = (z — p)"g(x),
and
_ (z —p)"y(z)
M) = = Tg) + (2 — P @)
g(z)

Since g(p) # 0, then p is a simple zero of u(x).
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@ Now to find the zero p, we apply Newton’s method to u(z),

g(z) = x—

Modified Newton’s Method (for multiple roots)
Given an initial approximation py, generate a sequence {p,}:>, by

f(pn—l)fl(pn—l)

forn > 1.

P = P = T )P = f(Pe) /" (1)’

Note: The modified Newton’ method requires the second-order
derivative f”(x).
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Example 18.
Solve f(z) = e* — x — 1 by modified Newton’s method.

We test the Modified Newton’s method

Modified Newton Method

n p_n f(p_n)

0 1.0000000000 0.7182818285
1 -0.2342106136 0.0254057755
2 -0.0084582799 0.0000356706
3 -0.0000118902 0.0000000001
4 -0.0000000000 0.0000 00

The quadratic convergence is recovered.
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