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Section 2.1 The Bisection Method

Starting from this section, we study the most basic mathematics
problem: root-finding problem

f(x) = 0.

The first numerical method, based on the Intermediate Value
Theorem (IVT), is called the Bisection Method.

Suppose that f(x) is continuous on [a, b]. f(a) and f(b) have
opposite sign. By IVT, there exists a number p ∈ (a, b) such that
f(p) = 0. That is, f(x) has a root in (a, b).

Idea of Bisection Method: repeatedly halve the subinterval of
[a, b], and at each step, locating the half containing the root.
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Set a1 ← a, b1 ← b. Calculate the midpoint p1 ← a1+b1
2 .

2.1 The Bisection Method 49
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ALGORITHM

2.1
Bisection

To find a solution to f (x) = 0 given the continuous function f on the interval [a, b], where
f (a) and f (b) have opposite signs:

INPUT endpoints a, b; tolerance TOL; maximum number of iterations N0.

OUTPUT approximate solution p or message of failure.

Step 1 Set i = 1;
FA = f (a).

Step 2 While i ≤ N0 do Steps 3–6.

Step 3 Set p = a+ (b− a)/2; (Compute pi.)
FP = f ( p).

Step 4 If FP = 0 or (b− a)/2 < TOL then
OUTPUT (p); (Procedure completed successfully.)
STOP.

Step 5 Set i = i + 1.

Step 6 If FA · FP > 0 then set a = p; (Compute ai, bi.)
FA = FP

else set b = p. (FA is unchanged.)

Step 7 OUTPUT (‘Method failed after N0 iterations, N0 =’, N0);
(The procedure was unsuccessful.)
STOP.

Other stopping procedures can be applied in Step 4 of Algorithm 2.1 or in any of
the iterative techniques in this chapter. For example, we can select a tolerance ε > 0 and
generate p1, . . . , pN until one of the following conditions is met:
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If f(p1) = 0, then p← p1, done.

If f(p1) 6= 0, then f(p1) has the same sign as either f(a) or f(b).
If f(p1) and f(a) have the same sign, then p ∈ (p1, b1).
Set a2 ← p1, and b2 ← b1.
If f(p1) and f(b) have the same sign, then p ∈ (a1, p1).
Set a2 ← a1, and b2 ← p1.

Repeat the process on [a2, b2].
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ALGORITHM – Bisection (Preliminary Version)
USAGE: to find a solution to f(x) = 0 on the interval [a, b].

p = bisect0 (f, a, b)

For n = 1, 2, 3, · · · , 20, do the following
Step 1 Set p = (a+ b)/2;
Step 2 Calculate FA = f(a), FB = f(b), and FP = f(p).
Step 3 If FA · FP > 0, set a = p

If FB · FP > 0, set b = p.
Go back to Step 1.

Remark
This above algorithm will perform 20 times bisection iterations. The
number 20 is artificial.
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Example 1.

Show that f(x) = x3 + 4x2 − 10 = 0 has a root in [1, 2] and use the
Bisection method to find the approximation root.

Solution.
Because f(1) = −5 and f(2) = 14, the IVT ensures that this
continuous function has a root in [1, 2].

To proceed with the Bisection method, we write a simple MATLAB
code.
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Matlab Code for Bisection (Preliminary Version)8/21/19 5:28 PM /Users/xuzhang/Dropbox/Teachi.../bisect0.m 1 of 1

function p = bisect0(fun,a,b)
% This is a preliminary version of Bisection Method
 
for n = 1:20 % Set max number of iterations to be 20
    p = (a+b)/2;
    FA = fun(a);
    FB = fun(b);
    FP = fun(p);
    if FA*FP > 0
        a = p;
    elseif FB*FP > 0
        b = p;
    end
end
 

A “Driver” File8/21/19 5:28 PM /Users/xuzhang/Dropbox/Teachi.../ex2_1_0.m 1 of 1

% Driver File: Example 2.1.1 in the Textbook
 
%% Inputs
fun = @(x) x^3+4*x^2-10;
a = 1;
b = 2;
 
%% Call the subroutine: bisect0.m
p = bisect0(fun,a,b)
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After 20 iterations, we obtain the solution p ≈ 1.365229606628418.
To display more information from the whole iteration process, we
modify the MATLAB subroutine file.

Matlab Code for Bisection (Preliminary Version with more outputs)8/21/19 5:39 PM /Users/xuzhang/Dropbox/Teachi.../bisect1.m 1 of 1

function p = bisect1(fun,a,b)
% This is a preliminary version of Bisection Method
% This version displays intermediate outputs nicely
 
disp('Bisection Methods')
disp('-----------------------------------------------------------------')
disp(' n     a_n             b_n             p_n             f(p_n)')
disp('-----------------------------------------------------------------')
formatSpec = '%2d    % .9f    % .9f    % .9f    % .9f \n';
 
for n = 1:20 % Set max number of iterations to be 20
    p = (a+b)/2;
    FA = fun(a);
    FB = fun(b);
    FP = fun(p);
    fprintf(formatSpec,[n,a,b,p,fun(p)]) % Printing output
    if FA*FP > 0
        a = p;
    elseif FB*FP > 0
        b = p;
    end
end
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Some Remarks on Bisection Method
To start, an interval [a, b] must be found with f(a) · f(b) < 0.
Otherwise, there may be no solutions in that interval.

It is good to set a maximum iteration number “maxit”, in case the
the iteration enters an endless loop.

It is good to set a tolerance or stopping criteria to avoid
unnecessary computational effort, such as

1
bn − an

2
< tol

2 |pn − pn+1| < tol

3
|pn − pn+1|
|pn|

< tol

4 |f(pn)| < tol
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A more robust Matlab code for Bisection method8/27/19 12:00 AM /Users/xuzhang/Dropbox/Teachi.../bisect.m 1 of 1

function [p,flag] = bisect(fun,a,b,tol,maxIt)
%% This is a more robust version of Bisection Method than bisect1.m

flag = 0; % Use a flag to tell if the output is reliable
if fun(a)*fun(b) > 0 % Check f(a) and f(b) have different sign
    error('f(a) and f(b) must have different signs');
end

disp('Bisection Methods')
disp('-----------------------------------------------------------------')
disp(' n     a_n             b_n             p_n             f(p_n)')
disp('-----------------------------------------------------------------')
formatSpec = '%2d    % .9f    % .9f    % .9f    % .9f \n';

for n = 1:maxIt
    p = (a+b)/2;
    FA = fun(a);
    FP = fun(p);    
    fprintf(formatSpec,[n,a,b,p,fun(p)]) % Printing output
    if abs(FP) <= 10^(-15) || (b-a)/2 < tol 

flag = 1; 
break; % Break out the for loop.

    else
if FA*FP > 0

a = p;
else

b = p;
end

    end    
end
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Example 2.

Use Bisection method to find a root of f(x) = x3 + 4x2 − 10 = 0 in the
interval [1, 2] that is accurate to at least within 10−4.

Solution.
We write a Matlab driver file for this test problem
8/14/18 2:17 PM /Users/zhang/Dropbox/Teaching.../ex2_1_1.m 1 of 1

% Example 2.1.1 in the Textbook
 
fun = @(x) x^3+4*x^2-10;
a = 1;
b = 2;
tol = 1E-4;
maxIt = 40;
 
[p,flag] = bisect(fun,a,b,tol,maxIt);
 

In this driver file, we
specify all five inputs: fun, a, b, tol, maxIt
call the Bisection method code bisect.m.
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Outputs from the Matlab Command Window8/27/19 12:08 AM MATLAB Command Window 1 of 1

>> ex2_1_1
Bisection Methods
-----------------------------------------------------------------
 n     a_n b_n p_n f(p_n)
-----------------------------------------------------------------
 1     1.000000000     2.000000000     1.500000000     2.375000000 
 2     1.000000000     1.500000000     1.250000000    -1.796875000
 3     1.250000000     1.500000000     1.375000000     0.162109375
 4     1.250000000     1.375000000     1.312500000    -0.848388672
 5     1.312500000     1.375000000     1.343750000    -0.350982666
 6     1.343750000     1.375000000     1.359375000    -0.096408844
 7     1.359375000     1.375000000     1.367187500     0.032355785
 8     1.359375000     1.367187500     1.363281250    -0.032149971
 9     1.363281250     1.367187500     1.365234375     0.000072025
10     1.363281250     1.365234375     1.364257812    -0.016046691
11     1.364257812     1.365234375     1.364746094    -0.007989263
12     1.364746094     1.365234375     1.364990234    -0.003959102
13     1.364990234     1.365234375     1.365112305    -0.001943659
14     1.365112305     1.365234375     1.365173340    -0.000935847
>>

The approximation pn converges to the true solution p = 1.365230013...
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Theorem 3 (Convergence of Bisection Method).

Suppose that f ∈ C[a, b] and f(a) · f(b) < 0. The Bisection method
generates a sequence {pn}∞n=1 approximating a zero p of f with

|pn − p| ≤
b− a
2n

, when n ≥ 1.

Proof.
For n ≥ 1, we have p ∈ (an, bn) and

bn − an =
1

2n−1
(b− a).

Since pn = 1
2(an + bn) for all n ≥ 1, then

|pn − p| ≤
1

2
(bn − an) =

b− a
2n

.
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Example 4.
Determine the number of iteration necessary to solve
f(x) = x3 + 4x2 − 10 = 0 with accuracy 10−3 using a1 = 1 and b1 = 2.

Solution.
By the convergence theorem (Theorem 2.3), we have

|pn − p| ≤
b− a
2n

=
1

2n
< 10−3.

That is
2n > 103 =⇒ n > 3

log 10

log 2
≈ 9.96.

Hence, 10 iterations are required.
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2.2 Fixed-Point Iteration
A fixed point for a function is a number at which the value of the function
does not change when the function is applied.

Definition 5 (fixed point).

The point p is a fixed point for a function g(x), if g(p) = p.

Root-finding problems and fixed-point problems are equivalent:

Given a root-finding problem f(p) = 0, we can define functions g(x) with
a fixed point at p in many ways such as

g(x) = x− f(x), g(x) = x− f(x)

f ′(x)
, if f ′(p) 6= 0.

Given a function g has a fixed point at p, the function f defined by

f(x) = g(x)− x

has a root at p.
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Example 6.

Determine any fixed points of the function g(x) = x2 − 2

Solution
If p is a fixed point of g, then

p = p2 − 2 =⇒ p2 − p− 2 = (p− 2)(p+ 1) = 0

=⇒ p = −1 or p = 2.

g(x) has two fixed points p = −1 and p = 2.
2.2 Fixed-Point Iteration 57

Figure 2.3
y

x�3 �2 2 3

1

�3

2

3

4

5 y � x2 � 2

y � x

The following theorem gives sufficient conditions for the existence and uniqueness of
a fixed point.

Theorem 2.3 (i) If g ∈ C[a, b] and g(x) ∈ [a, b] for all x ∈ [a, b], then g has at least one fixed
point in [a, b].

(ii) If, in addition, g′(x) exists on (a, b) and a positive constant k < 1 exists with

|g′(x)| ≤ k, for all x ∈ (a, b),

then there is exactly one fixed point in [a, b]. (See Figure 2.4.)

Figure 2.4
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Proof

(i) If g(a) = a or g(b) = b, then g has a fixed point at an endpoint. If not, then
g(a) > a and g(b) < b. The function h(x) = g(x)−x is continuous on [a, b], with

h(a) = g(a)− a > 0 and h(b) = g(b)− b < 0.
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The fixed point of g(x) is the intersection of y = g(x) and y = x.
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Theorem 7 (Sufficient Conditions for Fixed Points).

(i) (Existence) If g ∈ C[a, b] and g(x) ∈ [a, b] for all x ∈ [a, b], then g
has at least one fixed point in [a, b].
(ii) (Uniqueness) If, in addition, g′(x) exists and satisfies

|g′(x)| ≤ k < 1, for all x ∈ (a, b),

for some positive constant k, there is exactly one fixed-point in [a, b].

2.2 Fixed-Point Iteration 57
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Note: the proof of existence uses the Intermediate Value Theorem, and
the proof of uniqueness uses the Mean Value Theorem.
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Example 8.

Show that g(x) =
1

3
(x2 − 1) has a unique fixed-point on [−1, 1].

Proof (1/2)

(1. Existence). We show that g(x) has at least a fixed point p ∈ [−1, 1].

Taking the derivative,

g′(x) =
2x

3
, only one critical point x = 0, g(0) = −1

3
.

At endpoints, x = −1 and 1, we have g(−1) = 0, and g(1) = 0.

Then we have the global extreme values

min
x∈[−1,1]

g(x) = −1

3
, and max

x∈[−1,1]
g(x) = 0.

Therefore, g(x) ∈ [− 1
3 , 0] ⊂ [−1, 1]. By the first part of Theorem 2.7, the

function g has at least one fixed-point on [−1, 1].
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Proof (2/2)

(2. Uniqueness). We show that g(x) has exactly one fixed point.

Note that

|g′(x)| =
∣∣∣∣2x3

∣∣∣∣ ≤ 2

3
, ∀x ∈ (−1, 1).

By part (ii) of Theorem 2.7, g has a unique fixed-point on [−1, 1].

Remark

In fact, p =
3−
√
13

2
is the fixed-point on the interval [−1, 1].
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Remark

The function g has another fixed point q = 3+
√
13

2 on the interval
[3, 4]. However, it does not satisfy the hypotheses of Theorem 2.7
(why? exercise).
The hypotheses in Theorem 2.7 are sufficient but not necessary.

2.2 Fixed-Point Iteration 59
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Example 3 Show that Theorem 2.3 does not ensure a unique fixed point of g(x) = 3−x on the interval
[0, 1], even though a unique fixed point on this interval does exist.

Solution g′(x) = −3−x ln 3 < 0 on [0, 1], the function g is strictly decreasing on [0, 1]. So

g(1) = 1

3
≤ g(x) ≤ 1 = g(0), for 0 ≤ x ≤ 1.

Thus, for x ∈ [0, 1], we have g(x) ∈ [0, 1]. The first part of Theorem 2.3 ensures that there
is at least one fixed point in [0, 1].

However,

g′(0) = − ln 3 = −1.098612289,

so |g′(x)| �≤ 1 on (0, 1), and Theorem 2.3 cannot be used to determine uniqueness. But g is
always decreasing, and it is clear from Figure 2.6 that the fixed point must be unique.

Figure 2.6
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Fixed-Point Iteration

If g(x) is continuous, we can approximate the fixed point of g (if any) by

Step 1 choose an initial approximation p0
Step 2 for n ≥ 1,do pn = g(pn−1)

If {pn} converges to a number p, then

p = lim
n→∞

pn = lim
n→∞

g(pn−1) = g
(
lim
n→∞

pn−1

)
= g(p).

Thus, the number p is a fixed-point of g.

60 C H A P T E R 2 Solutions of Equations in One Variable

Fixed-Point Iteration

We cannot explicitly determine the fixed point in Example 3 because we have no way to
solve for p in the equation p = g( p) = 3−p. We can, however, determine approximations
to this fixed point to any specified degree of accuracy. We will now consider how this can
be done.

To approximate the fixed point of a function g, we choose an initial approximation p0

and generate the sequence { pn}∞n=0 by letting pn = g( pn−1), for each n ≥ 1. If the sequence
converges to p and g is continuous, then

p = lim
n→∞ pn = lim

n→∞ g( pn−1) = g
(

lim
n→∞ pn−1

)
= g( p),

and a solution to x = g(x) is obtained. This technique is called fixed-point, or functional
iteration. The procedure is illustrated in Figure 2.7 and detailed in Algorithm 2.2.

Figure 2.7
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ALGORITHM

2.2
Fixed-Point Iteration

To find a solution to p = g( p) given an initial approximation p0:

INPUT initial approximation p0; tolerance TOL; maximum number of iterations N0.

OUTPUT approximate solution p or message of failure.

Step 1 Set i = 1.

Step 2 While i ≤ N0 do Steps 3–6.

Step 3 Set p = g( p0). (Compute pi.)

Step 4 If | p− p0| < TOL then
OUTPUT ( p); (The procedure was successful.)
STOP.

Step 5 Set i = i + 1.

Step 6 Set p0 = p. (Update p0.)
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Chapter 2. Solutions of Equations in One Variable 2.2 Fixed-Point Iteration

Matlab Code of Fixed-Point Iteration8/28/19 11:02 PM /Users/xuzhang/Dropbox/Te.../fixedpoint.m 1 of 1

function [p,flag] = fixedpoint(fun,p0,tol,maxIt)

n = 1; flag = 0; % Initialization

disp('Fixed Point Iteration')
disp('----------------------------------')
disp(' n     p               f(p_n)')
disp('----------------------------------')
formatSpec = '%2d    % .9f    % .9f \n';
fprintf(formatSpec,[n-1,p0,fun(p0)]) % printing output

while n <= maxIt
    p = fun(p0);
    fprintf(formatSpec,[n,p,fun(p)]) % printing output
    if abs(p-p0) < tol

flag = 1; 
break;

    else
n = n+1;
p0 = p;

    end
end

Note: unlike Bisection method, we don’t need to input an interval [a, b]
to start the fixed-point iteration, but we need an initial guess p0.
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Chapter 2. Solutions of Equations in One Variable 2.2 Fixed-Point Iteration

Example 9.

The equation x3 + 4x2 − 10 = 0 has a unique solution in [1, 2]. There
are many ways to change the equation to a fixed-point problem
x = g(x). For example,

g1(x) = x− x3 − 4x2 + 10

g2(x) =

√
10

x
− 4x

g3(x) =
1

2

√
10− x3

g4(x) =

√
10

4 + x

g5(x) = x− x3 + 4x2 − 10

3x2 + 8x

Which one is better?
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Chapter 2. Solutions of Equations in One Variable 2.2 Fixed-Point Iteration

Solution(1/2): Write a Matlab driver file for this example8/28/19 11:11 PM /Users/xuzhang/Dropbox/Teach.../ex2_2_1.m 1 of 1

% Example 2.2.1 in the Textbook
% Compare the convergence of fixed point iteration for five functions 

clc % clear the command window
fun = @(x) x^3+4*x^2-10; 

funG1 = @(x) x-x^3-4*x^2+10;
funG2 = @(x) sqrt(10/x-4*x);
funG3 = @(x) (1/2)*sqrt(10-x^3);
funG4 = @(x) sqrt(10/(4+x));
funG5 = @(x) x-(x^3+4*x^2-10)/(3*x^2+8*x);

p0 = 1.5;
tol = 1E-9;
maxIt = 40;

disp('--------------Test #1--------------')
[p1,flag1] = fixedpoint(funG1,p0,tol,maxIt);
disp('--------------Test #2--------------')
[p2,flag2] = fixedpoint(funG2,p0,tol,maxIt);
disp('--------------Test #3--------------')
[p3,flag3] = fixedpoint(funG3,p0,tol,maxIt);
disp('--------------Test #4--------------')
[p4,flag4] = fixedpoint(funG4,p0,tol,maxIt);
disp('--------------Test #5--------------')
[p5,flag5] = fixedpoint(funG5,p0,tol,maxIt);

disp(' ')
disp('Converge or Not')
disp([flag1,flag2,flag3,flag4,flag5])
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Chapter 2. Solutions of Equations in One Variable 2.2 Fixed-Point Iteration

Solution(2/2)

Iterations of g1 and g2 diverge. Iterations of g3, g4, and g5 converge:8/14/18 3:54 PM MATLAB Command Window 1 of 2

----------------------------------
Fixed Point Iteration
----------------------------------
 n    p               f(p_n)
----------------------------------
 0    1.500000000     1.286953768 
 1    1.286953768     1.402540804 
 2    1.402540804     1.345458374 
 3    1.345458374     1.375170253 
 4    1.375170253     1.360094193 
 5    1.360094193     1.367846968 
 6    1.367846968     1.363887004 
 7    1.363887004     1.365916733 
 8    1.365916733     1.364878217 
 9    1.364878217     1.365410061 
10    1.365410061     1.365137821 
11    1.365137821     1.365277209 
12    1.365277209     1.365205850 
13    1.365205850     1.365242384 
14    1.365242384     1.365223680 
15    1.365223680     1.365233256 
16    1.365233256     1.365228353 
17    1.365228353     1.365230863 
18    1.365230863     1.365229578 
19    1.365229578     1.365230236 
20    1.365230236     1.365229899 
21    1.365229899     1.365230072 
22    1.365230072     1.365229984 
23    1.365229984     1.365230029 
24    1.365230029     1.365230006 
25    1.365230006     1.365230017 
26    1.365230017     1.365230011 
27    1.365230011     1.365230014 
28    1.365230014     1.365230013 
29    1.365230013     1.365230014 
30    1.365230014     1.365230013 
----------------------------------
Fixed Point Iteration
----------------------------------
 n    p               f(p_n)
----------------------------------
 0    1.500000000     1.348399725 
 1    1.348399725     1.367376372 
 2    1.367376372     1.364957015 
 3    1.364957015     1.365264748 
 4    1.365264748     1.365225594 
 5    1.365225594     1.365230576 
 6    1.365230576     1.365229942 
 7    1.365229942     1.365230023 
 8    1.365230023     1.365230012 
 9    1.365230012     1.365230014 
10    1.365230014     1.365230013 
11    1.365230013     1.365230013 
----------------------------------
Fixed Point Iteration
----------------------------------
 n    p               f(p_n)
----------------------------------

8/14/18 3:57 PM MATLAB Command Window 1 of 1

----------------------------------
Fixed Point Iteration
----------------------------------
 n    p               f(p_n)
----------------------------------
 0    1.500000000     1.348399725 
 1    1.348399725     1.367376372 
 2    1.367376372     1.364957015 
 3    1.364957015     1.365264748 
 4    1.365264748     1.365225594 
 5    1.365225594     1.365230576 
 6    1.365230576     1.365229942 
 7    1.365229942     1.365230023 
 8    1.365230023     1.365230012 
 9    1.365230012     1.365230014 
10    1.365230014     1.365230013 
11    1.365230013     1.365230013 
----------------------------------
Fixed Point Iteration
----------------------------------
 n    p               f(p_n)
----------------------------------
 0    1.500000000     1.373333333 
 1    1.373333333     1.365262015 
 2    1.365262015     1.365230014 
 3    1.365230014     1.365230013 
 4    1.365230013     1.365230013 
 
Converge or Not
     0     0     1     1     1
 
>> 
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Chapter 2. Solutions of Equations in One Variable 2.2 Fixed-Point Iteration

Questions

Why do iterations g1 and g2 diverge? but g3, g4, and g5 converge?

Why do g4 and g5 converge more rapidly than g3?

Theorem 10 (Fixed-Point Theorem).

Let g ∈ C[a, b] and g(x) ∈ [a, b] for all x ∈ [a, b]. Suppose that g′ exists on
(a, b) and that a constant 0 < k < 1 exists with

|g′(x)| ≤ k < 1, ∀x ∈ (a, b).

Then for any number p0 ∈ [a, b], the sequence

pn = g(pn−1), n ≥ 1

converges to the unique fixed point p in [a, b].
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Chapter 2. Solutions of Equations in One Variable 2.2 Fixed-Point Iteration

Proof
The function g satisfies the hypotheses of Theorem 2.7, thus g has a
unique fixed-point p in [a, b]. By Mean Value Theorem,

|pn − p| = |g(pn−1)− g(p)|
= |g′(ξ)||pn−1 − p|
≤ k|pn−1 − p|
≤ · · ·
≤ kn|p0 − p|.

Since 0 < k < 1, then

lim
n→∞

|pn − p| ≤ lim
n→∞

kn|p0 − p| = 0.

Hence, the sequence {pn} converge to p.
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Chapter 2. Solutions of Equations in One Variable 2.2 Fixed-Point Iteration

Remark
The rate of convergence of the fixed-point iteration depends on the
factor k. The smaller the value of k, the faster the convergence.
To be more precise, we have the following error bounds (Corollary
2.5 in textbook)

|pn − p| ≤ knmax{p0 − a, b− p0}.

and
|pn − p| ≤

kn

1− k
|p1 − p0|.

We will see more in Section 2.4.
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Proof (read if you like)

Since p ∈ [a, b], then

|pn − p| ≤ kn|p0 − p| ≤ knmax{p0 − a, b− p0}.

For n ≥ 1,

|pn+1 − pn| = |g(pn)− g(pn−1)| ≤ k|pn − pn−1| ≤ · · · ≤ kn|p1 − p0|.

For m ≥ n ≥ 1,

|pm − pn| = |pm − pm−1 + pm−1 − · · · − pn+1 + pn+1 − pn|
≤ |pm − pm−1|+ |pm1 − pm−2|+ · · ·+ |pn+1 − pn|
≤ km−1|p1 − p0|+ km−2|p1 − p0|+ · · · kn|p1 − p0|
≤ kn|p1 − p0|

(
1 + k + k2 + km−n−1

)
.
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Proof (2/2) (read if you like)
Let m→∞, we have

|p− pn| = lim
m→∞

|pm − pn|

≤ lim
m→∞

kn|p1 − p0|
(
1 + k + k2 + km−n−1

)
= kn|p1 − p0|

∞∑
i=0

ki

=
kn

1− k
|p1 − p0|.

The last equality is because of the convergence of geometric series
when 0 < k < 1.
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A revisit of the fixed-point schemes g1 to g5 in Example 2.9.

For g1(x) = x− x3 − 4x2 + 10, we know that

g1(1) = 6, and g2(2) = −12,

so g1 does not map [1, 2] into itself. Moreover,

|g′1(x)| = |1− 3x2 − 8x| > 1, for all x ∈ [1, 2].

There is no reason to expect convergence.

For g2(x) =
√

10

x
− 4x, it does not map [1, 2] into [1, 2]. Also, there

is no interval containing the fixed point p ≈ 1.365 such that
|g′2(x)| < 1, because |g′2(p)| ≈ 3.4 > 1. There is no reason to
expect it to converge.
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A revisit of the fixed-point schemes g1 to g5 in Example 2.9.

For g3(x) =
1

2

√
10− x3, we have

g′3(x) = −
3

4
x2(10− x3)−1/2 < 0, on [1, 2]

so g3 is strictly decreasing on [1, 2]. If we start with p0 = 1.5, it suffices to
consider the interval [1, 1.5]. Also note that

1 < 1.28 ≈ g3(1.5) ≤ g3(x) ≤ g3(1) = 1.5,

so g3 maps [1, 1.5] into itself. Moreover, it is also true that

|g′3(x)| ≤ g′3(1.5) ≈ 0.66,

on the interval [1, 1.5], so Theorem 2.10 guarantees its convergence.
(k ≈ 0.66)
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A revisit of the fixed-point schemes g1 to g5 in Example 2.9.

For g4(x) =
√

10

4 + x
, it maps [1, 2] into itself. Moreover,

|g′4(x)| ≤ |
√
10

2
(4+x)−3/2| ≤

√
10

2
·5−3/2 =

1

5
√
2
< 0.15, for all x ∈ [1, 2].

So g4 converges much more rapidly than g3 (k ≈ 0.15).

For g5(x) = x− x3 + 4x2 − 10

3x2 + 8x
, it converges much more rapidly than

other choices. This choice of the g5(x) is in fact the Newton’s Method,
and we will see where this choice came from and why it is so effective in
the next section.
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Concluding Remark
Question How can we find a fixed-point problem that produces a

sequence that reliably and rapidly converges to a solution
to a given root-finding problem?

Answer Manipulate the root-finding problem into a fixed point
problem that satisfies the conditions of Fixed-Point
Theorem (Theorem 2.10) and has a derivative that is as
small as possible near the fixed point.
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2.3 Newton’s Method and Its Extensions

In this section, we introduce one of the most powerful and well-known
numerical methods for root-finding problems, namely Newton’s method
(or Newton-Raphson method).
Suppose f ∈ C2[a, b]. Let p0 ∈ (a, b) be an approximation to a root p such
that f ′(p0) 6= 0. Assume that |p− p0| is small. By Taylor expansion,

f(p) = f(p0) + (p− p0)f ′(p0) +
(p− p0)2

2
f ′′(ξ)

where ξ is between p0 and p.
Since f(p) = 0,

0 = f(p0) + (p− p0)f ′(p0) +
(p− p0)2

2
f ′′(ξ)

Since p− p0 is small, we drop the high-order term involving (p− p0)2,

0 ≈ f(p0) + (p− p0)f ′(p0) =⇒ p ≈ p0 −
f(p0)

f ′(p0)
≡ p1.
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Newton’s Method
Given an initial approximation p0, generate a sequence {pn}∞n=0 by

pn = pn−1 −
f(pn−1)

f ′(pn−1)
, for n ≥ 1.68 C H A P T E R 2 Solutions of Equations in One Variable

Figure 2.8

xx

y

(p0, f (p0))

(p1, f (p1))

p0

p1
p2

p Slope f �(p0)

y � f (x)Slope f �(p1)

ALGORITHM

2.3
Newton’s

To find a solution to f (x) = 0 given an initial approximation p0:

INPUT initial approximation p0; tolerance TOL; maximum number of iterations N0.

OUTPUT approximate solution p or message of failure.

Step 1 Set i = 1.

Step 2 While i ≤ N0 do Steps 3–6.

Step 3 Set p = p0 − f ( p0)/f
′( p0). (Compute pi.)

Step 4 If | p− p0| < TOL then
OUTPUT (p); (The procedure was successful.)
STOP.

Step 5 Set i = i + 1.

Step 6 Set p0 = p. (Update p0.)

Step 7 OUTPUT (‘The method failed after N0 iterations, N0 =’, N0);
(The procedure was unsuccessful.)
STOP.

The stopping-technique inequalities given with the Bisection method are applicable to
Newton’s method. That is, select a tolerance ε > 0, and construct p1, . . . pN until

| pN − pN−1| < ε, (2.8)

| pN − pN−1|
| pN | < ε, pN �= 0, (2.9)

or

|f ( pN )| < ε. (2.10)
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Note that pn is the x-intercept of the tangent line to f at (pn−1, f(pn−1)).

An animation:
https://upload.wikimedia.org/wikipedia/commons/e/e0/NewtonIteration_Ani.gif
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Chapter 2. Solutions of Equations in One Variable 2.3 Newton’s Method and Its Extensions

To program the Newton’s method, the inputs should contain f , p0, tol,
maxit, as used in the fixed-point methods.

In addition, we also need to include the derivative f ′ as an input.

Matlab Code of Newton’s Method9/3/18 11:41 PM /Users/xuzhang/Dropbox/Teachin.../newton.m 1 of 1

function [p,flag] = newton(fun,Dfun,p0,tol,maxIt)

n = 0; flag = 0; % Initializaiton

disp('-----------------------------------')
disp('Newton Method')
disp('-----------------------------------')
disp(' n    p_n             f(p_n)')
disp('-----------------------------------')
formatSpec = '%2d    %.10f    % .10f \n';
fprintf(formatSpec,[n,p0,fun(p0)])

while n<=maxIt
   p = p0 - fun(p0)/Dfun(p0); 
   if abs(p-p0) < tol

flag = 1; break; 
   else

n = n+1; p0 = p;
   end
   fprintf(formatSpec,[n,p,fun(p)])
end
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Example 11.
Let f(x) = cos(x)− x. Approximate a root of f using (i) the fixed-point
method with g(x) = cos(x) and (ii) Newton’s method.

Solution (1/3)
(i). Using the fixed-point function g(x) = cos(x), we can start the
fixed-point iteration with p0 = π/4.

2.3 Newton’s Method and Its Extensions 69

A form of Inequality (2.8) is used in Step 4 of Algorithm 2.3. Note that none of the inequal-
ities (2.8), (2.9), or (2.10) give precise information about the actual error | pN − p|. (See
Exercises 16 and 17 in Section 2.1.)

Newton’s method is a functional iteration technique with pn = g( pn−1), for which

g( pn−1) = pn−1 − f ( pn−1)

f ′( pn−1)
, for n ≥ 1. (2.11)

In fact, this is the functional iteration technique that was used to give the rapid convergence
we saw in column (e) of Table 2.2 in Section 2.2.

It is clear from Equation (2.7) that Newton’s method cannot be continued if f ′( pn−1) =
0 for some n. In fact, we will see that the method is most effective when f ′ is bounded away
from zero near p.

Example 1 Consider the function f (x) = cos x−x = 0. Approximate a root of f using (a) a fixed-point
method, and (b) Newton’s Method

Solution (a) A solution to this root-finding problem is also a solution to the fixed-point
problem x = cos x, and the graph in Figure 2.9 implies that a single fixed-point p lies in
[0,π/2].

Figure 2.9
y

x

y � x

y � cos x

1

1

Table 2.3 shows the results of fixed-point iteration with p0 = π/4. The best we could
conclude from these results is that p ≈ 0.74.

Table 2.3

n pn

0 0.7853981635
1 0.7071067810
2 0.7602445972
3 0.7246674808
4 0.7487198858
5 0.7325608446
6 0.7434642113
7 0.7361282565

Note that the variable in the
trigonometric function is in
radian measure, not degrees. This
will always be the case unless
specified otherwise.

(b) To apply Newton’s method to this problem we need f ′(x) = − sin x − 1. Starting
again with p0 = π/4, we generate the sequence defined, for n ≥ 1, by

pn = pn−1 − f ( pn−1)

f ( p′n−1)
= pn−1 − cos pn−1 − pn−1

− sin pn−1 − 1
.

This gives the approximations in Table 2.4. An excellent approximation is obtained with
n = 3. Because of the agreement of p3 and p4 we could reasonably expect this result to be
accurate to the places listed.

Table 2.4
Newton’s Method

n pn

0 0.7853981635
1 0.7395361337
2 0.7390851781
3 0.7390851332
4 0.7390851332

Convergence using Newton’s Method

Example 1 shows that Newton’s method can provide extremely accurate approximations
with very few iterations. For that example, only one iteration of Newton’s method was
needed to give better accuracy than 7 iterations of the fixed-point method. It is now time to
examine Newton’s method more carefully to discover why it is so effective.
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Solution (2/3)

(ii). To apply Newton’s method, we calculate f ′(x) = − sin(x)− 1. We
again start with p0 = π/4.

A MATLAB driver file for this example
9/2/19 11:23 AM /Users/xuzhang/Dropbox/Teachi.../ex2_3_1.m 1 of 1

% Example 2.3.1 in the Textbook

fun = @(x) cos(x)-x;   % Function f(x)
Dfun = @(x) -sin(x)-1; % Derivative of f(x)
funF = @(x) cos(x);    % Function for fixed point iteration

tol = 1E-10;
maxIt = 20;

%% Fixed-Point Iteration
p0 = pi/4;
[pF,flagF] = fixedpoint(funF,p0,tol,maxIt);
disp(' ')

%% Newton Method
p0 = pi/4;
[p,flag] = newton(fun,Dfun,p0,tol,maxIt);
disp(' ')
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Solution (3/3)

9/2/19 11:34 AM MATLAB Command Window 1 of 1

Home License -- for personal use only.  Not for government,
academic, research, commercial, or other organizational use.

>> ex2_3_1
Fixed Point Iteration
----------------------------------
 n     p f(p_n)
----------------------------------
 0     0.785398163     0.707106781 
 1     0.707106781     0.760244597 
 2     0.760244597     0.724667481 
 3     0.724667481     0.748719886 
 4     0.748719886     0.732560845 
 5     0.732560845     0.743464211 
 6     0.743464211     0.736128257 
 7     0.736128257     0.741073687 
 8     0.741073687     0.737744159 
 9     0.737744159     0.739987765 
10     0.739987765     0.738476809 
11     0.738476809     0.739494771 
12     0.739494771     0.738809134 
13     0.738809134     0.739271021 
14     0.739271021     0.738959904 
15     0.738959904     0.739169483 
16     0.739169483     0.739028311 
17     0.739028311     0.739123408 
18     0.739123408     0.739059350 
19     0.739059350     0.739102501 
20     0.739102501     0.739073434 

-----------------------------------
Newton Method
-----------------------------------
 n    p_n             f(p_n)
-----------------------------------
 0    0.7853981634    -0.0782913822
 1    0.7395361335    -0.0007548747
 2    0.7390851781    -0.0000000751
 3    0.7390851332    -0.0000000000

>>

9/2/19 11:31 AM MATLAB Command Window 1 of 1

Home License -- for personal use only.  Not for government,
academic, research, commercial, or other organizational use.

>> ex2_3_1
Fixed Point Iteration
----------------------------------
 n     p f(p_n)
----------------------------------
 0     0.785398163     0.707106781 
 1     0.707106781     0.760244597 
 2     0.760244597     0.724667481 
 3     0.724667481     0.748719886 
 4     0.748719886     0.732560845 
 5     0.732560845     0.743464211 
 6     0.743464211     0.736128257 
 7     0.736128257     0.741073687 
 8     0.741073687     0.737744159 
 9     0.737744159     0.739987765 
10     0.739987765     0.738476809 
11     0.738476809     0.739494771 
12     0.739494771     0.738809134 
13     0.738809134     0.739271021 
14     0.739271021     0.738959904 
15     0.738959904     0.739169483 
16     0.739169483     0.739028311 
17     0.739028311     0.739123408 
18     0.739123408     0.739059350 
19     0.739059350     0.739102501 
20     0.739102501     0.739073434 

-----------------------------------
Newton Method
-----------------------------------
 n    p_n             f(p_n)
-----------------------------------
 0    0.7853981634    -0.0782913822
 1    0.7395361335    -0.0007548747
 2    0.7390851781    -0.0000000751
 3    0.7390851332    -0.0000000000

>>
Comparing with the Fixed-point iteration, Newton method gives excellent
approximation with only three iterations.
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Remarks on Newton’s Method
Newton’s method can provide extremely accurate
approximations with very few iterations.

Newton’s method requires the initial approximation to be
sufficiently accurate.

In practical applications, an initial approximation can be obtained
by other methods, such as bisection method. After the
approximation is sufficient accurate, Newton’s method is applied
for rapid convergence.

Newton’s method requires evaluation of the derivative f ′ at each
step. Usually f ′ is far more difficult to calculate than f .
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Example 12.
Player A will shut out (win by a score of 21-0) player B in a game of
racquetball with probability

P =
1 + p

2

(
p

1− p+ p2

)21

,

where p denotes the probability A will win any specific rally
(independent of the server). Determine the minimum value of p that
will ensure that player A will shut out player B in at least half the
matches they play.
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Solution
The player A winning at least half of the matches means P is at
least 0.5. We consider the root-finding problem

f(p) =
1 + p

2

(
p

1− p+ p2

)21

− 0.5.

The derivative f ′ is (verify by yourself)

f ′(p) =
1

2

(
p

1− p+ p2

)21

+
21

2
(1+p)

(
p

1− p+ p2

)20 1− p2

(1− p+ p2)2
.

Using Newton’s method with p0 = 0.75, and

pn = pn−1 −
f(pn−1)

f ′(pn−1)
, for n ≥ 1

we find that p ≈ 0.8423 in three iterations.
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In last example, we see that the finding the derivative f ′(x) is not
easy, and the evaluation of f ′(x) also requires more arithmetic
operations than the evaluation of f(x) itself.
To circumvent this problem, we introduce a variation of Newton’s
method that does require the evaluation of derivative f ′.
Recall that in Newton’s method we have

pn = pn−1 −
f(pn−1)

f ′(pn−1)
, for n ≥ 1

By the definition of derivative,

f ′(pn−1) = lim
x→pn−1

f(x)− f(pn−1)
x− pn−1

≈ f(pn−2)− f(pn−1)
pn−2 − pn−1

since pn−2 is close to pn−1.
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Secant Method

Replacing the derivative f ′(pn−1) in the Newton’s formula by the
difference quotient, we have

pn = pn−1 −
f(pn−1)

f ′(pn−1)

≈ pn−1 −
f(pn−1)

f(pn−2)− f(pn−1)
pn−2 − pn−1

= pn−1 −
f(pn−1)(pn−2 − pn−1)
f(pn−2)− f(pn−1)

n ≥ 2.
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Secant Method
Given initial approximations p0 and p1, generate a sequence {pn}∞n=0

by

pn = pn−1 −
f(pn−1)(pn−2 − pn−1)
f(pn−2)− f(pn−1)

, n ≥ 2.

Remark
The Secant method requires two initial approximations.
However, it does not require the evaluation of the derivative.

Xu Zhang (Oklahoma State University) MATH 4513 Numerical Analysis Fall 2020 46 / 70



Chapter 2. Solutions of Equations in One Variable 2.3 Newton’s Method and Its Extensions

An illustration of Secant method

2.3 Newton’s Method and Its Extensions 73

The Method of False Position

Each successive pair of approximations in the Bisection method brackets a root p of the
equation; that is, for each positive integer n, a root lies between an and bn. This implies that,
for each n, the Bisection method iterations satisfy

| pn − p| < 1

2
|an − bn|,

which provides an easily calculated error bound for the approximations.
Root bracketing is not guaranteed for either Newton’s method or the Secant method.

In Example 1, Newton’s method was applied to f (x) = cos x− x, and an approximate root
was found to be 0.7390851332. Table 2.5 shows that this root is not bracketed by either p0

and p1 or p1 and p2. The Secant method approximations for this problem are also given in
Table 2.5. In this case the initial approximations p0 and p1 bracket the root, but the pair of
approximations p3 and p4 fail to do so.

The term Regula Falsi, literally a
false rule or false position, refers
to a technique that uses results
that are known to be false, but in
some specific manner, to obtain
convergence to a true result. False
position problems can be found
on the Rhind papyrus, which
dates from about 1650 b.c.e.

The method of False Position (also called Regula Falsi) generates approximations
in the same manner as the Secant method, but it includes a test to ensure that the root is
always bracketed between successive iterations. Although it is not a method we generally
recommend, it illustrates how bracketing can be incorporated.

First choose initial approximations p0 and p1 with f ( p0) · f ( p1) < 0. The approxi-
mation p2 is chosen in the same manner as in the Secant method, as the x-intercept of the
line joining ( p0, f ( p0)) and ( p1, f ( p1)). To decide which secant line to use to compute p3,
consider f ( p2) · f ( p1), or more correctly sgn f ( p2) · sgn f ( p1).

• If sgn f ( p2) · sgn f ( p1) < 0, then p1 and p2 bracket a root. Choose p3 as the x-intercept
of the line joining ( p1, f ( p1)) and ( p2, f ( p2)).

• If not, choose p3 as the x-intercept of the line joining ( p0, f ( p0)) and ( p2, f ( p2)), and
then interchange the indices on p0 and p1.

In a similar manner, once p3 is found, the sign of f ( p3) · f ( p2) determines whether we
use p2 and p3 or p3 and p1 to compute p4. In the latter case a relabeling of p2 and p1 is
performed. The relabeling ensures that the root is bracketed between successive iterations.
The process is described in Algorithm 2.5, and Figure 2.11 shows how the iterations can
differ from those of the Secant method. In this illustration, the first three approximations
are the same, but the fourth approximations differ.

Figure 2.11

y y
y � f (x) y � f (x)

p0 p1

p2 p3

p4p0 p1

p2 p3

p4

Secant Method Method of False Position

xx
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Starting with two initial approximations p0 and p1, the value p2 is
the x-intercept of the line joining (p0, f(p0)) and (p1, f(p1)).
The approximation p3 is the x-intercept of the line joining
(p1, f(p1)) and (p2, f(p2)) and so on.
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Matlab Code of Secant Method
9/4/18 12:36 AM /Users/xuzhang/Dropbox/Teachin.../secant.m 1 of 1

function [p,flag] = secant(fun,p0,p1,tol,maxIt)

n = 1; flag = 0; % Initializaiton
q0 = fun(p0);  q1 = fun(p1);

disp('-----------------------------------')
disp('Secant Method')
disp('-----------------------------------')
disp(' n    p_n             f(p_n)')
disp('-----------------------------------')
formatSpec = '%2d    %.10f    % .10f \n';
fprintf(formatSpec,[n-1,p0,fun(p0)])
fprintf(formatSpec,[n,p1,fun(p1)])

while n<=maxIt
   p = p1 - q1*(p1-p0)/(q1-q0);
   if abs(p-p0) < tol

flag = 1; break; 
   else

n = n+1;
p0 = p1; q0 = q1; p1 = p; q1 = fun(p);

   end
   fprintf(formatSpec,[n,p,fun(p)])
end
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Example 13.
Use the Secant method for find a solution to x = cos(x), and compare
with the approximation with those given from Newton’s method.

Solution (1/2)
Write a MATLAB driver file9/4/18 12:37 AM /Users/xuzhang/Dropbox/Teachi.../ex2_3_2.m 1 of 1

% Example 2.3.2 in the Textbook

fun = @(x) cos(x)-x;
Dfun = @(x) -sin(x)-1;

tol = 1E-10;
maxIt = 40;
%% Newton
p0 = pi/4;
[pN,flagN] = newton(fun,Dfun,p0,tol,maxIt);
disp(' ')

%% Secant
p0 = 0.5; p1 = pi/4;
[pS,flagS] = secant(fun,p0,p1,tol,maxIt);
disp(' ')
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Solution (2/2)9/4/18 12:38 AM MATLAB Command Window 1 of 1

>> ex2_3_2
-----------------------------------
Newton Method
-----------------------------------
 n    p_n f(p_n)
-----------------------------------
 0    0.7853981634    -0.0782913822
 1    0.7395361335    -0.0007548747
 2    0.7390851781    -0.0000000751
 3    0.7390851332    -0.0000000000

-----------------------------------
Secant Method
-----------------------------------
 n    p_n             f(p_n)
-----------------------------------
 0    0.5000000000     0.3775825619 
 1    0.7853981634    -0.0782913822
 2    0.7363841388     0.0045177185
 3    0.7390581392     0.0000451772
 4    0.7390851493    -0.0000000270
 5    0.7390851332     0.0000000000
 6    0.7390851332     0.0000000000

>> Secant method requires 5 iterations comparing with 3 iteration
used in Newton’s method.
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Example 14.
A revisit of Example (Recquetball Winning Probability) use Secant
method.

Solution
The root-finding problem is

f(p) =
1 + p

2

(
p

1− p+ p2

)21

− 0.5.

Use Secant method with p0 = 0.5, and p1 = 1, we can find
p ≈ 0.8423 within accuracy of 10−5 in five iterations.

Remark
Newton’s method uses three iterations to reach this accuracy.
However, it requires evaluations of the derivative f ′.
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Remark
Secant Method converges slightly slower than Newton Method,
but much faster than other Fixed-point iterations.

Newton’s method or the Secant method is often used to refine an
answer obtained by another technique, such as the Bisection
method, since these methods require good first approximations
but generally give rapid convergence.
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2.4 Error Analysis for Iterative Methods

In this section we investigate the order of convergence of iteration
schemes.

For example, the following sequences all converge to 0 as n→∞{
1

n

}
,

{
1

n2

}
,

{
1

en

}
,

{
1

n!

}
.

Clearly, the “speed” of the convergence is different.

We will develop a procedure for measuring how rapidly a
sequence converges.
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Definition 15 (Order of Convergence).

Suppose {pn}∞n=0 is a sequence that converges to p, with pn 6= p for all n.

If lim
n→∞

|pn+1 − p|
|pn − p|

= λ, where λ ∈ (0, 1), then {pn} is said to converge

linearly, with asymptotic error constant λ.

If lim
n→∞

|pn+1 − p|
|pn − p|

= 0, then {pn} is said to converge superlinearly.

If lim
n→∞

|pn+1 − p|
|pn − p|

= 1, then {pn} is said to converge sublinearly.
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Remark
To further distinguish superlinear convergences, we say the sequence
{pn} converges to p of order α > 1 if

lim
n→∞

|pn+1 − p|
|pn − p|α

=M.

In particular,
α = 2 is called to quadratic convergence.
α = 3 is called to cubic convergence.
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Example 16.
The following sequences all converge to 0. Find the convergence order
of each sequence.

(a).

{
1

n

}
(b).

{
1

n2

}
(c).

{
1

2n

}
(d).

{
1

n!

}
(e).

{
1

22n

}

Solution (1/4)

(a). For
{
1

n

}
, the first few terms are 1,

1

2
,
1

3
,
1

4
,
1

5
, · · ·

lim
n→∞

|pn+1 − p|
|pn − p|

= lim
n→∞

1
n+1
1
n

= lim
n→∞

n

n+ 1
= 1.

The sequence
{
1

n

}
converges to 0 sublinearly.
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Solution (2/4)

(b). For
{

1

n2

}
, the first few terms are 1,

1

4
,
1

9
,

1

16
,

1

25
, · · ·

lim
n→∞

|pn+1 − p|
|pn − p|

= lim
n→∞

1
(n+1)2

1
n2

= lim
n→∞

n2

(n+ 1)2
= 1.

The sequence
{

1

n2

}
converges to 0 sublinearly.

(c). For
{

1

2n

}
, the first few terms are

1

2
,
1

4
,
1

8
,

1

16
,

1

32
, · · ·

lim
n→∞

|pn+1 − p|
|pn − p|

= lim
n→∞

1
2n+1

1
2n

= lim
n→∞

2n

2n+1
=

1

2
.

The sequence
{

1

2n

}
converges to 0 linearly.
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Solution (3/4)

(d). For
{

1

n!

}
, the first few terms are 1,

1

2
,
1

6
,

1

24
,

1

120
, · · ·

lim
n→∞

|pn+1 − p|
|pn − p|

= lim
n→∞

1
(n+1)!

1
n!

= lim
n→∞

n!

(n+ 1)!
= lim

n→∞

1

n+ 1
= 0.

The sequence
{

1

n!

}
converges to 0 superlinearly.

Note that for any a > 1,

lim
n→∞

|pn+1 − p|
|pn − p|a

= lim
n→∞

(n!)a

(n+ 1)!
= lim

n→∞

(n!)a−1

n+ 1
→∞.

The convergence order of
{

1

n!

}
is barely 1, but not any more.
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Solution (4/4)

(e). For
{

1

22n

}
, the first few terms are

1

4
,

1

16
,

1

256
,

1

65536
,

1

4294967296
, · · ·

lim
n→∞

1

22n+1

1
22n

= lim
n→∞

22
n

22n+1 = lim
n→∞

22
n

22·2n
= lim

n→∞

22
n

(22n)2
= lim

n→∞

1

22n
= 0.

The sequence
{

1

22n

}
converges to 0 superlinearly.

Moreover, we note that

lim
n→∞

|pn+1 − p|
|pn − p|2

= lim
n→∞

1

22n+1

( 1
22n

)2
= lim

n→∞

(22
n
)2

22n+1 = lim
n→∞

(22
n
)2

(22n)2
= 1.

The sequence
{

1

22n

}
converges to 0 quadratically.
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Comparison of Linear and Quadratic Convergences

80 C H A P T E R 2 Solutions of Equations in One Variable

Table 2.7 illustrates the relative speed of convergence of the sequences to 0 if | p0| = |p̃0| = 1.

Table 2.7 Linear Convergence Quadratic Convergence
Sequence { pn}∞n=0 Sequence { p̃n}∞n=0

n (0.5)n (0.5)2
n−1

1 5.0000× 10−1 5.0000× 10−1

2 2.5000× 10−1 1.2500× 10−1

3 1.2500× 10−1 7.8125× 10−3

4 6.2500× 10−2 3.0518× 10−5

5 3.1250× 10−2 4.6566× 10−10

6 1.5625× 10−2 1.0842× 10−19

7 7.8125× 10−3 5.8775× 10−39

The quadratically convergent sequence is within 10−38 of 0 by the seventh term. At least
126 terms are needed to ensure this accuracy for the linearly convergent sequence. �

Quadratically convergent sequences are expected to converge much quicker than those
that converge only linearly, but the next result implies that an arbitrary technique that
generates a convergent sequences does so only linearly.

Theorem 2.8 Let g ∈ C[a, b] be such that g(x) ∈ [a, b], for all x ∈ [a, b]. Suppose, in addition, that g′ is
continuous on (a, b) and a positive constant k < 1 exists with

|g′(x)| ≤ k, for all x ∈ (a, b).

If g′( p) �= 0, then for any number p0 �= p in [a, b], the sequence

pn = g( pn−1), for n ≥ 1,

converges only linearly to the unique fixed point p in [a, b].

Proof We know from the Fixed-Point Theorem 2.4 in Section 2.2 that the sequence con-
verges to p. Since g′ exists on (a, b), we can apply the Mean Value Theorem to g to show
that for any n,

pn+1 − p = g( pn)− g( p) = g′(ξn)( pn − p),

where ξn is between pn and p. Since { pn}∞n=0 converges to p, we also have {ξn}∞n=0 converging
to p. Since g′ is continuous on (a, b), we have

lim
n→∞ g′(ξn) = g′( p).

Thus

lim
n→∞

pn+1 − p

pn − p
= lim

n→∞ g′(ξn) = g′( p) and lim
n→∞
| pn+1 − p|
| pn − p| = |g

′( p)|.

Hence, if g′( p) �= 0, fixed-point iteration exhibits linear convergence with asymptotic error
constant |g′( p)|.
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Quadratically convergent sequences are expected to converge
much quicker than those that converge only linearly.
It usually takes 5 or 6 iterations for a quadratic convergent
sequence to reach the 64-bit machine precision.
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Convergence Order of Bisection Method
We have shown in Theorem 2.3 that the sequence {pn} of
bisection method satisfies

|pn − p| ≤
b− a
2n

.

The absolute error en = |pn − p| “behaves” like the sequence

en ≈
1

2n
, lim

n→∞

|en+1|
|en|

≈ 1

2
.

Bisection Method converges linearly with asymptotic constant
1

2
.
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Convergence Order of Newton Method

Newton’s Method pn+1 = pn −
f(pn)

f ′(pn)
.

Let en , pn − p, by Taylor’s theorem

f(p) = f(pn − en) = f(pn)− enf ′(pn) +
e2n
2
f ′′(ξn).

Since f(p) = 0, f ′(p) 6= 0 (so f ′(pn) 6= 0 when pn is close to p), then

0 =
f(pn)

f ′(pn)
− en +

e2n
2f ′(pn)

f ′′(ξn) =
f(pn)

f ′(pn)
− pn + p+

e2n
2f ′(pn)

f ′′(ξn)

=⇒ pn+1 , pn −
f(pn)

f ′(pn)
= p+

e2n
2f ′(pn)

f ′′(ξn)

That is

en+1 =
f ′′(ξn)

2f ′(pn)
e2n =⇒ |en+1| ≤M |en|2, where M =

|f ′′(p)|
2|f ′(p)|

.

Thus, Newton Method converges quadratically.
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Convergence Order of Secant Method

Secant Method pn = pn−1 −
f(pn−1)(pn−1 − pn−2)
f ′(pn−1)− f(pn−2)

.

It can be shown that

|en| ≈ C|en−1|α, where α =

√
5 + 1

2
≈ 1.618

Thus, Secant Method converges superlinearly, with an order of 1.618.

Remark

For a complete proof, see
http://www1.maths.leeds.ac.uk/˜kersale/2600/Notes/appendix_D.pdf

The Secant method converges much faster than Bisection method
but slower than Newton method.
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Convergence Order of Fixed-point Iteration
Recall that a root-finding problem f(x) = 0 can be converted to a
fixed-point iteration g(p) = p.
The fixed-point iteration is given p0,

pn = g(pn−1) for n ≥ 1

It has been shown that

|pn − p| ≤
kn

1− k
|p1 − p0| where 0 < k < 1.

Thus, Fixed-point iteration (if it converges) converges at least
linearly, with asymptotic constant at most k.
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Multiple Roots

Finally we consider problem with repeated roots such as

f(x) = (x− 1)3(x+ 2)(x− 3)2.

When we apply Newton’s method to find a multiple root, we can
still expect convergence, but the convergence order is usually less
than quadratic.

A solution p of f(x) = 0 is a zero of multiplicity m of f if

f(x) = (x− p)mg(x), where g(p) 6= 0.

The function f has a simple zero if and only if f(p) = 0 and
f ′(p) 6= 0.
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Example 17.
Let f(x) = ex − x− 1. (a). Show that f has a zero of multiplicity 2 at
x = 0. (b). Show that Newton’s method with p0 = 1 converges to this
zero but not quadratically.

Solution(1/2)
(a). Note that

f(x) = ex − x− 1, f ′(x) = ex − 1, f ′′(x) = ex.

Thus

f(0) = e0 − 0− 1 = 0, f ′(0) = e0 − 1 = 0, f ′′(0) = e0 = 1.

Thus, the root p = 0 is a zero of multiplicity 2.
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Solution(2/2)

(b). We test the convergence of Newton’s method9/3/20 1:50 AM MATLAB Command Window 1 of 1

>> ex2_4_1
-----------------------------------
Newton Method
-----------------------------------
 n    p_n             f(p_n)
-----------------------------------
 0    1.0000000000     0.7182818285 
 1    0.5819767069     0.2075956900 
 2    0.3190550409     0.0567720087 
 3    0.1679961729     0.0149359105 
 4    0.0863488737     0.0038377257 
 5    0.0437957037     0.0009731870 
 6    0.0220576854     0.0002450693 
 7    0.0110693875     0.0000614924 
 8    0.0055449047     0.0000154014 
 9    0.0027750145     0.0000038539 
10    0.0013881490     0.0000009639 
11    0.0006942351     0.0000002410 
12    0.0003471577     0.0000000603 
13    0.0001735889     0.0000000151 
14    0.0000867970     0.0000000038 
15    0.0000433991     0.0000000009 
16    0.0000216997     0.0000000002 
17    0.0000108499     0.0000000001 
18    0.0000054250     0.0000000000 
19    0.0000027125     0.0000000000 
20    0.0000013563     0.0000000000 
21    0.0000006782     0.0000000000 
22    0.0000003390     0.0000000000 
23    0.0000001700     0.0000000000 
24    0.0000000851     0.0000000000 
25    0.0000000408     0.0000000000 
26    0.0000000190     0.0000000000 
27    0.0000000073     0.0000000000 
 
>> xThe convergence is much slower than quadratic, as we expect from Newton.
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To fix the problem for repeated roots, we consider the function

µ(x) =
f(x)

f ′(x)
.

If p is a zero of f(x) with multiplicity m, then f(x) = (x− p)mg(x),
and

µ(x) =
(x− p)mg(x)

m(x− p)m−1g(x) + (x− p)mg′(x)

= (x− p) g(x)

mg(x) + (x− p)g′(x)
.

Since g(p) 6= 0, then p is a simple zero of µ(x).
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Now to find the zero p, we apply Newton’s method to µ(x),

g(x) = x− µ(x)

µ′(x)

= x− f(x)/f ′(x)

[f ′(x)]2 − f(x)f ′′(x)
[f ′(x)]2

= x− f(x)f ′(x)

[f ′(x)]2 − f(x)f ′′(x)
.

Modified Newton’s Method (for multiple roots)
Given an initial approximation p0, generate a sequence {pn}∞n=0 by

pn = pn−1 −
f(pn−1)f

′(pn−1)

[f ′(pn−1)]2 − f(pn−1)f ′′(pn−1)
, for n ≥ 1.

Note: The modified Newton’ method requires the second-order
derivative f ′′(x).
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Example 18.
Solve f(x) = ex − x− 1 by modified Newton’s method.

Solution
We test the Modified Newton’s method

9/3/20 2:12 AM MATLAB Command Window 1 of 1

>> ex2_4_2
-----------------------------------
Newton Method
-----------------------------------
 n    p_n             f(p_n)
-----------------------------------
 0    1.0000000000     0.7182818285 
 1    0.5819767069     0.2075956900 
 2    0.3190550409     0.0567720087 
 3    0.1679961729     0.0149359105 
 4    0.0863488737     0.0038377257 
 5    0.0437957037     0.0009731870 
 6    0.0220576854     0.0002450693 
 7    0.0110693875     0.0000614924 
 8    0.0055449047     0.0000154014 
 9    0.0027750145     0.0000038539 
10    0.0013881490     0.0000009639 
11    0.0006942351     0.0000002410 
12    0.0003471577     0.0000000603 
13    0.0001735889     0.0000000151 
14    0.0000867970     0.0000000038 
15    0.0000433991     0.0000000009 
16    0.0000216997     0.0000000002 
17    0.0000108499     0.0000000001 
18    0.0000054250     0.0000000000 
19    0.0000027125     0.0000000000 
20    0.0000013563     0.0000000000 
21    0.0000006782     0.0000000000 
22    0.0000003390     0.0000000000 
23    0.0000001700     0.0000000000 
24    0.0000000851     0.0000000000 
25    0.0000000408     0.0000000000 
26    0.0000000190     0.0000000000 
27    0.0000000073     0.0000000000 
 
-----------------------------------
Modified Newton Method
-----------------------------------
 n    p_n               f(p_n)
-----------------------------------
 0     1.0000000000     0.7182818285 
 1    -0.2342106136     0.0254057755 
 2    -0.0084582799     0.0000356706 
 3    -0.0000118902     0.0000000001 
 4    -0.0000000000     0.0000000000 
 
>> 

The quadratic convergence is recovered.
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