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Ideal triangulations of 3-manifolds

Let M be an orientable 3-manifold. A triangulation of M is a
decomposition of M into tetrahedra.

Now suppose M has torus boundary.
Remove the vertices from the tetrahedra to get an ideal
triangulation, the boundary is where the vertices were.

Alternatively we can think of the tetrahedra as truncated, and the
truncated ends glue to form the boundary tori.
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Ex: Figure 8 knot complement



Ex: Figure 8 knot complement is a punctured torus bundle

(T 2 − {point})× I

Glue the bottom to
the top via(

2 1
1 1

)
∈ SL2Z.

Let’s call this triangulation Tfig8.
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Geometric

Defn: A triangulation of a hyperbolic 3-manifold M is geometric if
we can give the tetrahedra positive volume ideal hyperbolic shapes
which fit together to give the complete hyperbolic structure on M.



Tfig8 is geometric

In Tfig8, all (both) edges are
degree six. Set both
tetrahedron shapes to the
regular ideal tetrahedron,
which has all dihedral angles
π/3.

Conjecture: (Everyone) Every
hyperbolic 3-manifold with
torus boundary components
has a geometric triangulation.
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Angle structures
Defn: Associate angles (real numbers) to the edges of the
tetrahedra of T , so that:

1. In each tetrahedron, angles at
opposite edges are the same.

2. In each tetrahedron,
α1 + α2 + α3 = π.

3. Around each edge of T ,∑
α = 2π.

If all angles are in (0, π) then this is a strict angle structure on T .

If all angles are in {0, π} then this is a taut angle structure on T .

Observation:
Geometric =⇒ admits a strict angle structure.

Theorem: (Casson, Thurston)
Strict angle structure =⇒ M is hyperbolic.
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Tfig8 admits both strict and taut angle structures

Since Tfig8 is geometric, it
also admits a strict angle
structure
(all angles are π/3).

Tfig8 also admits a taut
angle structure – we can
see this from the layered
construction.
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Veering structures
Defn: A veering structure on an oriented triangulation is a taut
angle structure, with the property that the edges of the
triangulation can be coloured red and blue so that the 0-angle
edges of each tetrahedron are coloured as below.
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History

Theorem: (Agol, 2010) Every pseudo-Anosov surface bundle, drilled
along singular points of the stable and unstable foliations, has an
ideal triangulation with a veering structure.

Theorem: (Hodgson-Rubinstein-S-Tillmann, 2011) Triangulations
with veering structures admit strict angle structures. Also, there are
many triangulations with veering structures not coming from Agol’s
construction (found by random computer search).
(Futer-Guéritaud, 2013) give explicit strict angle structures.

We hoped that veering =⇒ geometric...

Theorem: (Hodgson-Issa-S, 2015) There exist non-geometric
triangulations with veering structures. (Found by implementing
Agol’s construction, smallest example with 13 tetrahedra. Current
record is 9 tetrahedra.)
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Veering Dehn surgery (Schleimer-S)

I Construction to make new veering triangulations from old.
I First systematic method since Agol’s construction.

As applications:
I We construct the first infinite family of non-geometric

triangulations with veering structures.
I We construct the first infinite family of non-layered

triangulations with veering structures. (In fact the associated
branched surface carries no surface at all.)

In a layered triangulation, the branched
surface carries a cyclic sequence of fiber
surfaces, built out of triangles of the
triangulation.

“Flipping” such a surface up through the
tetrahedra moves it around the cycle.
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1. We start with a triangulation with a veering structure, and that
contains a Möbius strip triangle.

2. Unglue this triangle, producing a punctured torus boundary to
the manifold. (“Drill out a loop”.)

3. Glue onto this a single tetrahedron, glued to
itself to form a solid torus. (“Dehn fill”.)

It turns out to always be possible to assign 0, π
angles to the new tetrahedron so that we get a
veering structure on the new triangulation.
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The solid torus has another Möbius strip
triangle at its core, so we can repeat the
operation to construct a sequence of veering
triangulations of different manifolds.

Starting with a non-geometric triangulation with a veering
structure, we found a non-geometric sequence.

(The drilled but unfilled manifold has a triangulation closely related
to our sequence, which is non-geometric. Away from the surgery,
tetrahedron shapes in our sequence of triangulations approach the
drilled triangulation’s non-geometric shapes.)
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Starting with a triangulation of a non-fibered manifold with a
veering structure, we expected to find a sequence of triangulations
of non-fibered manifolds with veering structures. But we didn’t –
instead we got fibered manifolds, but the veering triangulations are
all non-layered.

+
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Surfaces carried by the branched surface
associated to a taut angle structure
correspond to positive “face vectors” in
the kernel of the edge equation matrix.

The columns of the edge equation matrix correspond to the faces
of the triangulation, the rows to the edges, with faces on opposite
sides of an edge appearing with different signs.

Using Farkas’ lemma, the existence of certain positive “edge
vectors” rule out positive face vectors, showing that the branched
surface carries no surfaces.



Questions:

Are there other ways to construct veering triangulations?

How can we find more veering triangulations of non-fibered
manifolds?

What is the geometric significance of non-layered veering
triangulations?



Thanks!


