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Fractal curves, 4-dimensional puzzles and unlikely gears



Developing Fractal Curves (joint with Geoffrey Irving)



Fractal curves



L-systems

An L-system grammar consists of an alphabet, an axiom and a set
of replacement rules. For example:

Gterdragon = ({F ,−,+},F , {F 7→ F−F+F})

Start with the axiom, and repeated apply the rule:

F

F − F + F
F − F + F − F − F + F + F − F + F
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Now interpret the strings as “turtle graphics” instructions:

F move forward one unit
− turn right 120◦

+ turn left 120◦

F
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F − F + F − F − F + F + F − F + F
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Now arrange these in space rather than time!













4-dimensional puzzles (joint with Saul Schleimer)



Projecting a cube into R2

Radial projection Stereographic projection

R3 r {0} → S2

(x , y , z) 7→ (x , y , z)
|(x , y , z)|

S2 r {N} → R2

(x , y , z) 7→
(

x
1− z

,
y

1− z

)
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Vertex-centered versus cell-centered projection
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Do the same one dimension up to see a hypercube



Another 4-dimensional polytope: the 120-cell

The 120–cell has
I 120 dodecahedral cells,
I 720 pentagonal faces,
I 1200 edges, and
I 600 vertices.

We use radial projection followed by stereographic projection to
help us visualise the 120–cell.

R4 r {0} → S3 ⊂ R4

(w , x , y , z) 7→ (w , x , y , z)
|(w , x , y , z)|

S3 r {N} → R3

(w , x , y , z) 7→
(
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This is the
cell-centered projection
of the 120-cell; it has
dodecahedral symmetry
in R3.



The vertex-centered
projection has tetrahedral
symmetry in R3 and so has
fewer possibilities for
puzzle making.

Other choices have even
less symmetry, and so have
even fewer interesting ways
to combine pieces.



Spherical layers in the 120–cell

A first way to understand the
combinatorics of the 120–cell is to look
at the layers of dodecahedra at fixed
distances from the central
dodecahedron.

I 1 central dodecahedron
I 12 dodecahedra at distance π/5
I 20 dodecahedra at distance π/3
I 12 dodecahedra at distance 2π/5
I 30 dodecahedra at distance π/2

The pattern is mirrored in the last four layers.

1+ 12+ 20+ 12+ 30+ 12+ 20+ 12+ 1 = 120
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Hopf fibers in the 120–cell
A second way to
understand the 120–cell is
via a combinatorial version
of the Hopf fibration.

Each fiber is a “ring” of 10
dodecahedra.

The rings wrap around
each other.

Each ring is surrounded by
five others.

These six rings make up half of the 120–cell. The other half
consists of five more rings that wrap around these, and one more
ring “dual” to the original grey one.

1+ 5+ 5+ 1 = 12 = 120/10
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We wanted to 3D print all six of the inner rings together; it seems
this cannot be done without them touching each other. (Parts
intended to move must not touch during the printing process.)







To print all five we use a trick...

don’t print the whole ring. We call
part of a ring a rib.
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Dc30 Ring puzzle



Another decomposition, with even shorter ribs.
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Dc45 Meteor puzzle



Six kinds of ribs

spine

inner 6 outer 6

inner 4 outer 4 equator



These make many puzzles, which we collectively call Quintessence.



Theorem
I At most six inner ribs are used in any puzzle.
I At most six outer ribs are used in any puzzle.
I At most ten inner and outer ribs are used in any puzzle.

Proof.
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Further possibilities: vertex centered projection
Dv30 Asteroid puzzle



Further possibilities: other polytopes

The 600-cell works, although the ribs now have handedness.

Tv270 Meteor puzzle

The other regular polytopes seem to have too few cells to make
interesting puzzles.
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Unlikely gears (joint with Saul Schleimer)





Manchester Metroshuttle advertisement, photo
credit: Bill Beaty

Cooperative learning logo from the University of
Saskatchewan.

Three pairwise meshing gears are usually frozen...

A challenge: Find a triple of pairwise meshing gears that moves!
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“Umbilic Rolling Link” by Helaman Ferguson. “Knotted Gear” by Oskar van Deventer.

Our solution is inspired by these “linked” gears.

They have two “gears”; we want to do the same with three.

But we need to say what “the same” means...
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“Umbilic Rolling Link” by Helaman Ferguson. “Knotted Gear” by Oskar van Deventer.

In both examples the gears are

Tracked: The gears can move relative to each other, but basically
in only one way.



“Knotted Gear” by Oskar van Deventer. A wheel on an axle.

Also they have no “gearbox”; everything is a gear.

For a wheel on an axle, the axle acts as a gearbox.

We rule this out via

Epicyclic: The movement of one gear in the frame of reference of
another is not a rotation.
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Axioms

So far we have

I Tracked: The gears in the mechanism can move relative to
each other, but basically in only one way.

I Epicyclic: The movement of one gear in the frame of reference
of another is not a rotation.

To simplify our search, we also impose

I Symmetry: Any of the gears may be taken to any other by a
rigid motion preserving the mechanism.

We want to construct a mechanism with three gears that satisfies
these axioms.
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If the gears could be separated, there would be too many ways for
them to move - violating Tracked. So they have to be linked
somehow.

They also have to be rings, that is round, so that when they rotate
their shapes don’t change too much.

In fact there is only one
symmetric way to do this:
the three component Hopf
link.

Try it! Take three round
key-rings and link them all
pairwise. Then you will
have made the three-
component Hopf link.
Nothing else is possible!
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To satisfy Tracked, the gears must remain in contact. To enforce
this, we gradually inflate the three rings, letting them bump against
each other while preserving the 3-fold symmetry, until they reach
maximum thickness.



We had hoped that these rings would only be able to rotate along
their axes.

But unfortunately, they can move out of place, and then
there is a little more room to inflate them further.

To stop them moving out of place, we design gear teeth.
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The “inner” teeth are the images of planes in toroidal coordinates.

The “outer” teeth are determined by “carving”.
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The gears can be powered by a central helical axle.



The axle is connected to a motor in the base. Thanks to Adrian
Goldwaser for initial prototyping, and to Stuart Young for much
more prototyping and construction of the base.



Alternate non-frozen arrangements of three gears

Three helical gears can also pairwise mesh, and they can all move.



Alternate non-frozen arrangements of three gears

It can even be done with gears with parallel axes!



Alternate non-frozen arrangements of three gears

A similar mechanism with three “racks” - objects with gear teeth
that move linearly rather than by rotating.



Future directions

I Do the same with the 4-component Hopf link.
I Other configurations of rings?

More generally, we are exploring mechanisms that move in unusual
ways.



Thanks!

segerman.org

math.okstate.edu/∼segerman/

youtube.com/user/henryseg

shapeways.com/shops/henryseg
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