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So far, we have looked at “algebraic” objects, where the geometry is
precisely defined, and the only question is in thickening.

For topological objects, such as the knot, we also have to choose
the geometry...

(or not, if we print a flexible design!)
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Strategies for choosing geometry

1. Manual - using whatever design software is available to build
the object by hand.

2. Parametric/implicit - generating the desired geometry using a
parametrisation or implicit description of the object.

3. Iterative - numerically solving an optimisation problem.



Manual trefoil

Cubic Trefoil Knot Pendant by Vertigo Polka



Parametric trefoils



Iterative trefoils

KnotPlot by Robert Scharein

Minimal rope length by Jason Cantarella
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Even more trefoils, by Laura Taalman



Aesthetic choices

How should we choose a geometrical representation of a topological
object?

1. Make as few choices as possible.
2. Be as faithful as possible.

What we really want is a canonical geometric structure on a
topological object.

mathematics canonical−−−−−→
structure

computer model 3D−−−−→
printing

physical object
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Example: Möbius ladders

Mobius Bangle by Denzyl

Basterfield

Double Trouble by Tones3-D

Square Mobius Ribbed by Vertigo

Polka

linked mobius by Zorink

Interlocking Möbius Ladders by

Schleimer and Segerman
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In our version, the rungs meet the poles at right angles.

It is parametrised in
S3 = {(w , x , y , z) ∈ R4 | w2 + x2 + y2 + z2 = 1} by

f (θ, τ) = (cos(θ) cos(τ), cos(θ) sin(τ), sin(θ) cos(τ/2), sin(θ) sin(τ/2))

for θ in a small interval and 0 ≤ τ < 2π.

Then fθ ⊥ fτ , and their images after stereographic projection from
S3 to R3 are also perpendicular, since stereographic projection is
conformal.
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Stereographic projection





Iterative Seifert surfaces

SeifertView, by Jarke J. van Wijk, http://www.win.tue.nl/~vanwijk/seifertview/.

http://www.win.tue.nl/~vanwijk/seifertview/


Parametric Seifert surfaces via Milnor fibers
(joint work with Saul Schleimer)

w3 + z3 = 0 arg(w3 + z3) = 0
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Borromean rings
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Example: Hypercube



Parallel projection of a cube



Parallel projection of a hypercube

Hypercube B by Bathsheba Grossman.



Perspective projection of a cube
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Perspective projection of a hypercube

Hypercube A by Bathsheba Grossman.



A better method: radially project the cube to the sphere...
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...then stereographically project to the plane
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Do the same thing one dimension up for a hypercube
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More regular 4-dimensional polytopes

16-cell

24-cell

Half of a 120-cell

Half of a 600-cell



Quintessence (joint work with Saul Schleimer)



More fun than a hypercube of monkeys
(joint work with Will Segerman)







http://monkeys.hypernom.com
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Triple gear (joint work with Saul Schleimer)

https://skfb.ly/IuUI

https://skfb.ly/IuUI


Photo credit: Bill Beaty Photo credit: meladramos of reddit.

Three pairwise meshing gears are usually frozen...

A challenge: Find a triple of pairwise meshing gears that moves!
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“Umbilic Rolling Link” by Helaman Ferguson. “Knotted Gear” by Oskar van Deventer.

Our solution is inspired by these “linked” gears.

They have two “gears”; we want to do the same with three.
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We chose the three-component Hopf link as the basis of the design.

We gradually inflate the three rings, letting them bump against
each other while preserving the 3-fold symmetry, until they reach
maximum thickness.



We had hoped that these rings would only be able to rotate along
their axes.

But unfortunately, they can move out of place, and then
there is a little more room to inflate them further.

To stop them moving out of place, we design gear teeth.



We had hoped that these rings would only be able to rotate along
their axes. But unfortunately, they can move out of place, and then
there is a little more room to inflate them further.

To stop them moving out of place, we design gear teeth.



We had hoped that these rings would only be able to rotate along
their axes. But unfortunately, they can move out of place, and then
there is a little more room to inflate them further.

To stop them moving out of place, we design gear teeth.



To design the teeth, we investigate how the rings touch each other.



To design the teeth, we investigate how the rings touch each other.



To design the teeth, we investigate how the rings touch each other.



To design the teeth, we investigate how the rings touch each other.



To design the teeth, we investigate how the rings touch each other.



To design the teeth, we investigate how the rings touch each other.



To design the teeth, we investigate how the rings touch each other.



To design the teeth, we investigate how the rings touch each other.



To design the teeth, we investigate how the rings touch each other.



The “inner” teeth are the images of planes in toroidal coordinates.

The “outer” teeth are determined by “carving”.



The “inner” teeth are the images of planes in toroidal coordinates.
The “outer” teeth are determined by “carving”.



The “inner” teeth are the images of planes in toroidal coordinates.
The “outer” teeth are determined by “carving”.



The “inner” teeth are the images of planes in toroidal coordinates.
The “outer” teeth are determined by “carving”.



The “inner” teeth are the images of planes in toroidal coordinates.
The “outer” teeth are determined by “carving”.



The “inner” teeth are the images of planes in toroidal coordinates.
The “outer” teeth are determined by “carving”.



The “inner” teeth are the images of planes in toroidal coordinates.
The “outer” teeth are determined by “carving”.





Alternative solutions



Developing fractal curves
(joint work with Geoffrey Irving)













Mobiles (joint work with Marco Mahler)
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Hinged negatively curved surfaces
(joint work with Geoffrey Irving)













Hinged flat torus



Topology Joke (joint work with Keenan Crane)



Conformal Chmutov (joint work with Saul Schleimer)
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Klein quartic (joint work with Saul Schleimer)



Book: Visualizing Mathematics with 3D Printing

http://3dprintmath.com

http://3dprintmath.com


Dice design (joint work with Robert Fathauer)

http://thedicelab.com

http://thedicelab.com


Skew dice (joint work with Robert Fathauer)

http://thedicelab.com

http://thedicelab.com


d120 (joint work with Robert Fathauer and Bob Bosch)

http://thedicelab.com

http://thedicelab.com
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