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1 Introduction

I am a mathematician and a mathematical artist, currently a research fellow in the Department of Mathemat-
ics and Statistics at the University of Melbourne, Australia. My mathematical research is in 3-dimensional
geometry and topology, and concepts from those areas often appear in my work. Other artistic interests
involve procedural generation, self reference, ambigrams and puzzles.

All of the sculptures in this article were fabricated by the 3D printing service Shapeways. The material
used is nylon plastic (PA 2200, Selective-Laser-Sintered) for all of the sculptures apart from “Knotted Cog”,
which is made from stainless steel infused with bronze. I design my sculptures in Rhinoceros, which is
a NURBS based modelling tool, often using the python scripting interface. In designing sculptures using
scripting and then producing them using 3D printing, it is possible to get very close to mathematically pre-
cise geometry, which is often difficult to achieve by other means.

Sections 2, 3 and 4 of this article are on the themes of fractal graphs, surfaces native to the 3-dimensional
sphere, and 4-dimensional polytopes. Finally, section 5 is a miscellany of other designs.

2 Fractal graphs

These are part of a series of sculptures exploring graphs embedded in R3 with a fractal structure analogous to
that found in constructions of space filling curves. Starting from a simple initial graph, we repeatedly apply a
substitution move. The substitution move replaces each vertex of the graph from step i with a small graph in
step i+1, and it replaces each edge of the graph from step i with some number of parallel edges connecting
the small graphs in step i + 1 corresponding to the endpoints of the vertices in step i. This construction is
explored in detail in [1].

Octahedron Fractal Graph This is a graph embedded in R3 as a subset of an “octahedral lattice”,
which is related to the tessellation of space using octahedra and tetrahedra. See Figure 1b for the construction
rule: Each vertex at each step of the construction is degree 4, and is replaced at the next step by a small
octahedron. For each edge at the previous step (shown in blue) we remove the two red edges that intersect it,
and add in the two green edges parallel to it. We begin the construction with the first step being the edges of
an octahedron. After the first substitution, we get an outer shell around a small octahedron. We discard this
small octahedron (otherwise the object would not be connected) and continue. This is the result at the fourth
step.

Fractal Graph 3 This is a graph embedded in 3-dimensional space as a subset of the cubic lattice.
Each vertex at each step of the construction is degree 3, and has the incident edges arranged either in a ‘T’
formation, or like a corner of a cube. The vertex is replaced at the next step by a subgraph of a 3 × 3 ×
3 cubical grid, the choice determined by whether the edges meeting at the vertex are in the ‘T’ or ‘corner’
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(a) The sculpture. (b) The substitution move.

Figure 1: Octahedron Fractal Graph, 2010, 10.3×10.3×10.3 cm.

shape. Each edge is replaced at the next step by four parallel edges, joining to the midpoints of the sides of
each 3× 3 face of the 3× 3× 3 cubical grid. We begin the construction with the first step being three edges
meeting in a corner formation, and this is the result at the fourth step.

(a) A view from ‘outside the corner’. (b) Reverse view.

Figure 2: Fractal Graph 3, 2011, 10.6×10.6×10.6 cm.

3 Surfaces in S3

These designs are based on various parametric surfaces, given by trigonometric functions in the 3-sphere, S3,
viewed as the set of points at distance 1 from the origin in R4. We use stereographic projection from S3 to
R3 to get an object that can be printed in our universe. When the surface goes through the point from which



we stereographically project, the image would go off to infinity in R3. To save on costs, I have removed the
parts that would require an infinite amount of plastic to print.

Hopf fibration The surface here is a torus (in fact, the image of a Clifford torus in S3), with a disk
removed around infinity. Although it is possible to choose a projection that does not go through infinity, the
result wouldn’t have the same symmetries in R3. In particular, the torus cuts R3 into two pieces, and these
can only be congruent if the torus goes through infinity. I came to this design through trying to represent
the Hopf fibration. The Hopf fibration describes S3 as being a union of fibres, each fibre being a circle, and
with one fibre for each point of the 2-sphere. Each of the corner curves of the square cross-section tubes is
a circular fibre of the fibration. The pair of tubes going in the transverse direction to all of the others come
from the mirror image fibration, and are necessary to keep the sculpture connected.

(a) A 2-fold symmetry axis. (b) A generic viewpoint.

Figure 3: Hopf Fibration, 2010, 10.8×10.8×3.4 cm.

Round Möbius Strip The usual version of a Möbius strip has as its single boundary curve an unknotted
loop. This unknotted loop can be deformed into a round circle, with the strip deformed along with it. This
shows one possible way to do this (sometimes called the “Sudanese Möbius strip”). The boundary of the strip
is the circle in the middle. The other boundary of the design is the cut out around infinity, so strictly speaking
this is a punctured Sudanese Möbius strip. Again, the choice of a projection that goes through infinity makes
the sculpture particularly symmetric. This was designed with the assistance of Saul Schleimer, who is a
mathematician at the University of Warwick.

Round Klein Bottle This is made by gluing two copies of the Round Möbius Strip along their bound-
aries, and so this is actually a doubly punctured Klein bottle. A Klein bottle in 3-dimensional space must
intersect itself, and in this case it intersects along a straight line.

Knotted cog The parametrisation used here would make a Möbius strip with 3 half-twists, if the cog teeth
on the inside linked up across the gap. Instead, the design is a trefoil knot, with near-meshing cogs. In order
for the teeth to mesh rather than collide, there has to be an odd number of teeth around the strip, and in order



(a) A generic viewpoint. (b) A 2-fold symmetry axis.

Figure 4: Round Möbius Strip, 2011, 15.2×10.9×6.2 cm.

to preserve the 3-fold symmetry, the number must also be a multiple of three. This restricted the possibilities
to the extent that it was easy to choose 33 on aesthetic grounds.

4 4-dimensional polytopes

These are representations of the edges of regular 4-dimensional polytopes, also known as polychora. Just
as 3-dimensional polyhedra are named for the number of 2-dimensional faces they have, the 4-dimensional
polychora are named for the number of 3-dimensional cells they have. The polytopes are native to R4, but
can be radially projected onto the unit S3 in R4, where we fatten the edges into tubes of constant radius.
From here, we stereographically project to R3 to produce our sculptures, as with the surfaces in S3.

24-Cell This is the 24-cell, which has 24 octahedral cells. The point from which we stereographically
project is at the centre of one of the octahedra, so the edges do not pass through infinity, and we need not cut
out a region to get a finite sculpture.

Half of a 120-Cell The 120-cell has 120 dodecahedral cells. The dodecahedra are considerably smaller
in S3 than the octahedra of the 24-cell, and so even with the stereographic projection point at the centre of
a dodecahedron, the edges nearest to this point would be very large after projection. The smallest edges are
limited by the resolution of the 3D printer to a minimum diameter of around 1mm, and so unless we altered
the way in which we project, printing the whole object would be prohibitively expensive. The solution, due
to Saul Schleimer, is to print only half of the object, sliced along the equatorial S2 in S3 dual to the projection
point. Reflecting the sculpture across this sphere would recover the whole object.

5 Other works

Archimedean Spire This is a ruled surface, which is a surface that can be made up out of straight line
segments. The grid structure of the sculpture shows the ruling, and is more visually interesting than the filled
in surface would be. Here, the straight line segments are determined by the paths that their endpoints follow.
In this case, one end of the line segment follows one turn of an Archimedean spiral in the x-y plane, while
the other moves up the z-axis at a constant speed.



(a) A generic viewpoint. (b) The 4-fold symmetry axis.

(c) One of the 2-fold symmetry axes. (d) The other 2-fold symmetry axis.

Figure 5: Round Klein Bottle, 2011, 15.2×15.2×10.9 cm.

Sphere Autologlyph An autologlyph is a word written or represented in a way which is described by
the word itself. Here, 20 copies of the word “SPHERE” are tessellated to from the surface of a sphere. The
sculpture has a 10-fold rotational axis, and ten 2-fold axes perpendicular to it, so it has the symmetries of a
regular 10-gon. The form of the sculpture is in some ways forced by the limits of technology: If it had been
easy to (2-dimensionally) print onto the surface of a sphere, then I would have done so, and presumably a
design like that could be realised using the machinery that makes geographic globes. Within the medium
of 3D printing, one could print a solid sphere, with grooves or ridges used to form the letters. This would
be very expensive however. Drawing the letters as a network of tubes solves this problem, although it does
mean that the holes in the “P” and “R” have to be inferred.

Juggling Club Motion This shows (a somewhat idealised version of) the path of a juggling club as it
is thrown from the right hand to the left, making a single spin. The club is shown in a “multiple exposure”
style as it follows a parabolic path while rotating at constant speed.



Figure 6: Knotted Cog, 2011, 3.8×3.4×1.3 cm.
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(a) A generic viewpoint. (b) A 2-fold symmetry axis.

(c) A 3-fold symmetry axis. (d) A 4-fold symmetry axis.

Figure 7: 24-Cell, 2011, 9.0×9.0×9.0 cm.



(a) A generic viewpoint. (b) A 2-fold symmetry axis.

(c) A 3-fold symmetry axis. (d) A 5-fold symmetry axis.

Figure 8: Half of a 120-Cell, 2011, 9.9×9.9×9.9 cm.



Figure 9: Archimedean Spire, 2009, 2011, 7.7×11.0×7.3 cm.

Figure 10: Sphere Autologlyph, 2009, 10.4×10.4×10.4 cm.



(a) A view from behind the juggler. (b) A view from the side. (c) A view from in front of the juggler.

Figure 11: Juggling Club Motion, 2011, 4.5×4.1×6.1 cm.


