Math 109 - Homework Assignment 9 Due Friday, June 8

1. Exercise 18.1. Solve the Diophantine equation

$$
7684 m+4148 n=272 .
$$

2. Exercise 18.3. Solve the Diophantine equation

$$
516 m+564 n=6432
$$

Prove that there are unique positive integers satisfying this equation and find these integers.
3. Solve the Diophantine equation

$$
38 x+57 y=133
$$

4. Let p be a prime number. Prove that if $a \in\{1, \ldots, p-1\}$ then there is a unique $x \in\{1, \ldots, p-1\}$ such that

$$
a x \equiv 1 \bmod p .
$$

Hint: Note that by definition $a x \equiv 1 \bmod p$ just means that there exists $y \in \mathbb{Z}$ such that $a x+p y=1$. Find all solutions $(x, y) \in \mathbb{Z}^{2}$ to $a x+p y=1$ and prove that there is only one such solution where $x \in\{0,1, \ldots, p-1\}$. Then prove that for any solution $(x, y) \in \mathbb{Z}^{2}$ to $a x+p y=1, x \neq 0$.

Definition: Let $a, b \in \mathbb{Z}$ and $m \in \mathbb{N}$. We say that a is congruent to b modulo m, written $a \equiv b \bmod m$, if a and b have the same remainder when divided by m. (That is, if $a=q m+r$ and $b=q^{\prime} m+r^{\prime}$ with $q, q^{\prime} \in \mathbb{Z}$ and $r, r^{\prime} \in\{0,1, \ldots, m-1\}$, then $a \equiv b \bmod m$ just means $r=r^{\prime}$.) Equivalently, $a \equiv b \bmod m$ means that $a-b$ is an integer multiple of m, i.e. m divides $a-b$.

