Math 109 - Homework Assignment 7 Due Friday, May 25

1. Exercise 11.4. Prove that, if a and b are non-zero integers with $\operatorname{gcd}(a, b)=d$, then the integers a / d and b / d are coprime (see definition below).
2. Exercise 13.1. Prove that there does not exist a rational number whose square is 3 .

Note: Simply mimic the proof of Theorem 13.2.1. You may use without proof the fact that for integers a, a^{2} is divisible by 3 if and only if a is divisible by 3 (we'll prove this later).
3. Exercise 14.1. Prove that if A is finite and B is denumerable then $A \cup B$ is denumerable.
4. Exercise 14.2. Prove that if A and B are denumerable then $A \cup B$ is denumerable. Hence prove by contradiction that, if X is uncountable and a subset A of X is denumerable, then $X-A$ is uncountable.
5. Exercise 14.3. Prove that if $\left\{A_{n} \mid n \in \mathbb{N}\right\}$ is a denumerable set of pairwise disjoint denumerable sets then the union

$$
\bigcup_{n \in \mathbb{N}} A_{n} \stackrel{\text { def }^{\mathrm{n}}}{=}\left\{x \mid x \in A_{n} \text { for some } n \in \mathbb{N}\right\}
$$

is also denumerable.
Note: In other words, you are asked to prove that a denumerable set of denumerable sets is denumerable. This is the main part of showing that a countable union of countable sets is countable (which is easier to say out loud).
6. Problem III.28. Prove that for each $n \in \mathbb{N}$ the number of polynomials of degree n with rational coefficients is denumerable. Deduce that the set of algebraic numbers (see definition below) is denumerable.
Note: You may use the fact that a polynomial equation $x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{n}=0$ with real coefficients has at most n real roots. Note that the result shows that the set of non-algebraic real numbers (transcendental numbers) is uncountable.

Definition: Two integers a and b, not both zero, are said to be coprime (or relatively prime) when $\operatorname{gcd}(a, b)=1$, i.e. when their only common factors are 1 and -1 .

Definition: A real number is called algebraic if it satisfies a polynomial equation

$$
x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{n}=0
$$

with the coefficients a_{1}, \ldots, a_{n} all rational.
Note: Any rational number q is algebraic, since it is a solution of the degree 1 polynomial equation $x-q=0$. The number $\sqrt{2}$ is also algebraic, since it is a solution to the equation $x^{2}-2=0$. It is possible to show that π and e are not algebraic numbers. Real numbers which are not algebraic are called transcendental numbers.

