Math 109 - Homework Assignment 4 Due Friday, May 4

1. Problem II.6. Use the distributivity law to prove that

$$
(A \cap B) \cup(B \cap C) \cup(C \cap A)=(A \cup B) \cap(B \cup C) \cap(C \cup A) .
$$

[Hint: There is a similar problem worked out in the book. See the proof Proposition 6.3.5 on page 72.]
2. Problem II.7. For subsets of a universal set U prove that $B \subseteq A^{c}$ if and only if $A \cap B=\emptyset$. By taking complements deduce that $A^{c} \subseteq B$ if and only if $A \cup B=U$. Deduce that $B=A^{c}$ if and only if $A \cap B=\emptyset$ and $A \cup B=U$.
3. Problem II.8. Let X be a set. Given sets $A, B \in \mathcal{P}(X)$, their symmetric difference $A \Delta B$ is defined by

$$
A \Delta B=(A-B) \cup(B-A)=(A \cup B)-(A \cap B) .
$$

Prove that
(i) the symmetric difference is associative, $(A \Delta B) \Delta C=A \Delta(B \Delta C)$ for all $A, B, C \in \mathcal{P}(X)$,
(ii) there exists a unique set $N \in \mathcal{P}(X)$ such that $A \Delta N=A$ for all $A \in \mathcal{P}(X)$ [Hint: Guess what N is!],
(iii) for each $A \in \mathcal{P}(X)$, there exists a unique $A^{\prime} \in \mathcal{P}(X)$ such that $A \Delta A^{\prime}=N$,
(iv) for each $A, B \in \mathcal{P}(X)$, there exists a unique set C such that $A \Delta C=B$.
4. Problem II.9. Using the notation in the previous problem, prove that for sets $A, B, C, D \in$ $\mathcal{P}(X)$

$$
A \Delta B=C \Delta D \Leftrightarrow A \Delta C=B \Delta D .
$$

5. Exercise 7.4. Prove or disprove the following statements.
(i) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x+y=0$.
(ii) $\exists y \in \mathbb{R}, \forall x \in \mathbb{R}, x+y=0$.
(iii) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x y=0$.
(iv) $\exists y \in \mathbb{R}, \forall x \in \mathbb{R}, x y=0$.
(v) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x y=1$.
(vi) $\exists y \in \mathbb{R}, \forall x \in \mathbb{R}, x y=1$.
(vii) $\forall n \in \mathbb{N}$, (n is even or n is odd).
(viii) $(\forall n \in \mathbb{N}, n$ is even) or ($\forall n \in \mathbb{N}, n$ is odd).

Comment: It is a good idea to make sure you can also do Problem II.11., but Problem II.11. is not assigned as homework to be turned in.
6. Exercise 8.2. Define functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=x^{3}$ and $g(x)=1-x$. Find the functions (i) $f \circ f$, (ii) $f \circ g$, (iii) $g \circ f$, (iv) $g \circ g$.

List the elements of the set $\{x \in \mathbb{R} \mid f \circ g(x)=g \circ f(x)\}$.
7. Exercise 8.3. Find functions $f_{i}: \mathbb{R} \rightarrow \mathbb{R}$ with images as follows:
(i) $\operatorname{Im} f_{1}=\mathbb{R}$;
(ii) $\operatorname{Im} f_{2}=\mathbb{R}^{+}$, where \mathbb{R}^{+}denotes the positive real numbers;
(iii) $\operatorname{Im} f_{3}=\mathbb{R}-\mathbb{Z}$;
(iv) $\operatorname{Im} f_{4}=\mathbb{Z}$.

Notation: Here $\operatorname{Im} f_{i}=f_{i}(\mathbb{R})$.
8. Problem II.15. Let X be a set. Given $A \in \mathcal{P}(X)$ define the characteristic function $\chi_{A}: X \rightarrow$ $\{0,1\}$ by

$$
\chi_{A}(x)= \begin{cases}0, & \text { if } x \in X-A \\ 1, & \text { if } x \in A .\end{cases}
$$

Suppose that A and B are subsets of X.
(i) Prove that the function $x \mapsto \chi_{A}(x) \chi_{B}(x)$ (multiplication of integers) is the characteristic function of the intersection $A \cap B$.
(ii) Find the subset C whose characteristic function is given by

$$
\chi_{C}(x)=\chi_{A}(x)+\chi_{B}(x)-\chi_{A}(x) \chi_{B}(x) .
$$

