Math 109 - Homework Assignment 3 Due Friday, April 27

Notation: (cf. Exercise 6.1.) Let a, b be real numbers with $a<b$. Then the open interval from a to b, denoted (a, b), is defined by

$$
(a, b)=\{x \in \mathbb{R} \mid a<x<b\} .
$$

1. Exercise 6.2. Prove that
(i) $\left\{x \in \mathbb{R} \mid x^{2}+x-2=0\right\}=\{1,-2\}$,
(ii) $\left\{x \in \mathbb{R} \mid x^{2}+x-2<0\right\}=(-2,1)$,
(iii) $\left\{x \in \mathbb{R} \mid x^{2}+x-2>0\right\}=\{x \in \mathbb{R} \mid x<-2\} \cup\{x \in \mathbb{R} \mid x>1\}$.
2. Exercise 6.4. By using a truth table prove that $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$. Draw a Venn diagram to illustrate the proof.
3. Exercise 6.5. Prove that
(i) $A \subseteq B \Leftrightarrow A \cup B=B$,
(ii) $A \subseteq B \Leftrightarrow A \cap B=A$.
4. Exercise 6.6. Prove by contradiction that, if $A \cap B \subseteq C$ and $x \in B$, then $x \notin A-C$. [Work from the definitions of ' $A \cap B$ ', ' $A-C^{\prime}$, and ' \subseteq '.]
5. Exercise 6.7. Using the fact that an implication is equivalent to its contrapositive, prove that, for subsets of a universal set $U, A \subseteq B$ if and only if $B^{c} \subseteq A^{c}$.
6. Problem II.4. Prove by contradiction or otherwise that for sets A, B, C,

$$
A \cap B=A \cap C \text { and } A \cup B=A \cup C \Leftrightarrow B=C .
$$

The following problems are not assigned for this week, but will be on Homework Assignment 4. You may want to start thinking about them this week.

- Problem II.6. Use the distributivity law to prove that

$$
(A \cap B) \cup(B \cap C) \cup(C \cap A)=(A \cup B) \cap(B \cup C) \cap(C \cup A) .
$$

[Hint: There is a similar problem worked out in the book. See the proof Proposition 6.3.5 on page 72.]

- Problem II.7. For subsets of a universal set U prove that $B \subseteq A^{c}$ if and only if $A \cap B=\emptyset$ By taking complements deduce that $A^{c} \subseteq B$ if and only if $A \cup B=U$. Deduce that $B=A^{c}$ if and only if $A \cap B=\emptyset$ and $A \cup B=U$.
- Problem II.8. Let X be a set. Given sets $A, B \in \mathcal{P}(X)$, their symmetric difference $A \Delta B$ is defined by

$$
A \Delta B=(A-B) \cup(B-A)=(A \cup B)-(A \cap B) .
$$

Prove that
(i) the symmetric difference is associative, $(A \Delta B) \Delta C=A \Delta(B \Delta C)$ for all $A, B, C \in \mathcal{P}(X)$,
(ii) there exists a unique set $N \in \mathcal{P}(X)$ such that $A \Delta N=A$ for all $A \in \mathcal{P}(X)$
[Hint: Guess what N is!],
(iii) for each $A \in \mathcal{P}(X)$, there exists a unique $A^{\prime} \in \mathcal{P}(X)$ such that $A \Delta A^{\prime}=N$, (iv) for each $A, B \in \mathcal{P}(X)$, there exists a unique set C such that $A \Delta C=B$.

- Problem II.9. Using the notation in the previous problem, prove that for sets $A, B, C, D \in$ $\mathcal{P}(X)$

$$
A \Delta B=C \Delta D \Leftrightarrow A \Delta C=B \Delta D
$$

