Math 109 – Homework Assignment 3 Due Friday, April 27

Notation: (cf. Exercise 6.1.) Let a, b be real numbers with a < b. Then the open interval from a to b, denoted (a, b), is defined by

$$(a, b) = \{ x \in \mathbb{R} \, | \, a < x < b \}.$$

- 1. Exercise 6.2. Prove that
 - (i) $\{x \in \mathbb{R} \mid x^2 + x 2 = 0\} = \{1, -2\},\$
 - (ii) { $x \in \mathbb{R} | x^2 + x 2 < 0$ } = (-2, 1),
 - (iii) $\{x \in \mathbb{R} \mid x^2 + x 2 > 0\} = \{x \in \mathbb{R} \mid x < -2\} \cup \{x \in \mathbb{R} \mid x > 1\}.$
- 2. Exercise 6.4. By using a truth table prove that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$. Draw a Venn diagram to illustrate the proof.
- 3. Exercise 6.5. Prove that
 - (i) $A \subseteq B \Leftrightarrow A \cup B = B$,
 - (ii) $A \subseteq B \Leftrightarrow A \cap B = A$.
- 4. Exercise 6.6. Prove by contradiction that, if $A \cap B \subseteq C$ and $x \in B$, then $x \notin A C$. [Work from the definitions of $A \cap B'$, A C', and \subseteq' .]
- 5. Exercise 6.7. Using the fact that an implication is equivalent to its contrapositive, prove that, for subsets of a universal set $U, A \subseteq B$ if and only if $B^c \subseteq A^c$.
- 6. Problem II.4. Prove by contradiction or otherwise that for sets A, B, C,

 $A \cap B = A \cap C$ and $A \cup B = A \cup C \iff B = C$.

The following problems are not assigned for this week, but will be on Homework Assignment 4. You may want to start thinking about them this week.

• Problem II.6. Use the distributivity law to prove that

 $(A \cap B) \cup (B \cap C) \cup (C \cap A) = (A \cup B) \cap (B \cup C) \cap (C \cup A).$

[Hint: There is a similar problem worked out in the book. See the proof Proposition 6.3.5 on page 72.]

- Problem II.7. For subsets of a universal set U prove that $B \subseteq A^c$ if and only if $A \cap B = \emptyset$ By taking complements deduce that $A^c \subseteq B$ if and only if $A \cup B = U$. Deduce that $B = A^c$ if and only if $A \cap B = \emptyset$ and $A \cup B = U$.
- Problem II.8. Let X be a set. Given sets $A, B \in \mathcal{P}(X)$, their symmetric difference $A\Delta B$ is defined by

$$A\Delta B = (A - B) \cup (B - A) = (A \cup B) - (A \cap B).$$

Prove that

- (i) the symmetric difference is associative, $(A\Delta B)\Delta C = A\Delta(B\Delta C)$ for all $A, B, C \in \mathcal{P}(X)$,
- (ii) there exists a unique set $N \in \mathcal{P}(X)$ such that $A\Delta N = A$ for all $A \in \mathcal{P}(X)$ [Hint: Guess what N is!],
- (iii) for each $A \in \mathcal{P}(X)$, there exists a unique $A' \in \mathcal{P}(X)$ such that $A \Delta A' = N$,
- (iv) for each $A, B \in \mathcal{P}(X)$, there exists a unique set C such that $A\Delta C = B$.
- Problem II.9. Using the notation in the previous problem, prove that for sets $A, B, C, D \in \mathcal{P}(X)$

 $A\Delta B = C\Delta D \iff A\Delta C = B\Delta D.$