Math 109 - Homework Assignment 2 Due Friday, April 20

1. Excercise 4.1. Prove by contradiction that there do not exist integers m and n such that $14 m+21 n=100$.
2. (cf. Exercise 4.4)
(a) Let P, Q, R be three statements. Draw a truth table for $P \Rightarrow(Q \vee R)$ and also for $(P \wedge(\neg Q)) \Rightarrow R$. Conclude that

$$
[P \Rightarrow(Q \vee R)] \Leftrightarrow[(P \wedge(\neg Q)) \Rightarrow R]
$$

(b) Use the above observation to prove that if a is a real number and $a^{2} \geq 7 a$, then $a \leq 0$ or $a \geq 7$. In other words, prove the desired implication by showing that if a is a real number with $a^{2} \geq 7 a$ and $a>0$, then $a \geq 7$.
3. Exercise 4.7. Prove that, for real numbers a and b,

$$
|a+b| \leq|a|+|b|
$$

Give a necessary and sufficient condition for equality.
4. Exercise 5.1. Prove by induction that, for positive integers $n, n^{3}-n$ is divisible by 3 .
5. Exercise 5.6. For non-negative integers n define the number u_{n} inductively as follows. Let

$$
\begin{aligned}
u_{0} & =0 \\
u_{k+1} & =3 u_{k}+3^{k} \quad \text { for } k \geq 0
\end{aligned}
$$

Prove that $u_{n}=n 3^{n-1}$ for all non-negative integers n.
6. Problem I.8. Prove the following statements concerning a real number x.
(i) $x^{2}-x-2=0 \Leftrightarrow x=-1$ or $x=2$.
(ii) $x^{2}-x-2>0 \Leftrightarrow x<-1$ or $x>2$.
7. Problem I.11. Prove by contradiction that there does not exist a smallest positive real number.
8. Problem I.12. Prove by induction on n that, for all positive integers $n, 3$ divides $4^{n}+5$.
9. Problem I.19. Prove that

$$
\prod_{i=2}^{n}\left(1-\frac{1}{i^{2}}\right)=\frac{n+1}{2 n}
$$

for integers $n \geq 2$. Note: Given a natural number n and real numbers $a_{1}, a_{2}, \ldots a_{n}$, the product $a_{1} a_{2} \cdots a_{n}$ is denoted $\prod_{i=1}^{n} a_{i}$. If $n \geq 2$, then $\prod_{i=2}^{n} a_{i}$ simply means the product $a_{2} \cdots a_{n}$.
10. Problem I.25. Let F_{n} denote the $n^{\text {th }}$ Fibonacci number (Definition 5.4.2). Prove, by induction on n (without using the Binet formula), that

$$
F_{m+n}=F_{m-1} F_{n}+F_{m} F_{n+1}
$$

for all natural numbers m and n (take $F_{0}=0$).
Deduce, again using induction on n, that for natural numbers m and n, F_{m} divides $F_{n m}$.

