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Abstract
We construct CRmappings between spheres that are invariant under actions of finite unitary groups. In particular, we combine
a tensoring procedure with D’Angelo’s construction of a canonical group-invariant CR mapping to obtain new invariant
mappings. We also explore possible gap phenomena in this setting.
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1 Introduction

Let S2n−1 be the unit sphere in Cn . When N , n ≥ 2, a long-
standing problem in several complex variables is to classify
CR mappings from S2n−1 to S2N−1. Much is known about
this problem (see [5,6,19] and the references therein). In
particular, the solution depends on the assumed regularity.
Forstnerič proved that a sufficiently smooth CR mapping
between spheres must be rational. Thus, in this paper, we
restrict our attention to rational mappings (see D’Angelo
[5] for an extensive discussion of the rational case). When
N < n, there is only the constant map. Alexander [1] proved
in the equidimensional setting (n = N ) that all non-constant
maps are automorphisms and hence are spherically equiva-
lent to the linear embedding. In fact, for 3 ≤ n ≤ N < 2n−1,
all smooth CRmaps are spherically equivalent to z �→ (z, 0)
(see [16,25,26,29]). These intervals of values for N where no
newmaps appear are referred to as “gaps”.When N = 2n−1
this first gap terminates. For example, when n = 3 and
N = 2n − 1 = 5, we have aWhitney map

(z1, z2, z3) �→ (z1, z2, z1z3, z2z3, z
2
3)

along with the linear embedding. There has been extensive
progress studying rigidity and gap phenomena for sphere
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maps in recent years, and we refer the reader to [4,9,14,15,
24–27] and the references therein. As the codimension N−n
gets larger, there are many inequivalent maps. Thus, it is
natural to impose additional conditions.

In this paper, we impose a natural symmetry condition
(see [12,13] for more on symmetries of CR mappings of
spheres). Suppose � is a finite subgroup of U (n). We study
non-constant, smooth, CR mappings f : S2n−1 → S2N−1

such that f ◦ γ = f for all γ ∈ �. In this setting, D’Angelo
and Lichtblau [6,10] proved that the only finite subgroups
of U (n) that admit non-constant, smooth, CR mappings to
some sphere are equivalent to one of the following:

• 〈ωIn〉 where ω is a primitive p-th root of unity,
• 〈ωIk ⊕ω2 In−k〉 where ω is a primitive p-th root of unity
for p odd,

• 〈ωI j ⊕ ω2 Ik ⊕ ω4 In− j−k〉 where ω is a primitive 7-th
root of unity;

we refer to such subgroups as admissible subgroups. For
any fixed-point-free, finite subgroup �, D’Angelo gives a
construction of a canonical group-invariant CR mapping
from a sphere to a hyperquadric. In general, it is difficult
to determine the exact target hyperquadric (see [20,21,23]
for more in this direction). However, in the case of an admis-
sible subgroup, the target is a sphere. Let N (�) denote the
dimension of the target of D’Angelo’s map (see Sect. 2 for a
detailed construction). In the present paper, we fix an admis-
sible subgroup � and construct non-constant CR mappings
f : S2n−1/� → S2N−1. For each �, we then study possible
minimal embedding dimensions N . In particular, we show
that beyond some point, there are no more gaps.

Theorem 1 If � is an admissible subgroup and N ≥
N (�)2 − 2N (�) + 2, then there exists a smooth CR map-
ping f : S2n−1/� → S2N−1 for which N is the minimal
embedding dimension.

Our result and proof are inspired by D’Angelo and Lebl’s
proof [9] of gap termination in the non-invariant setting. In
particular, we follow their clever approach using tensoring
and the solution of the postage stamp problem. The new con-
tribution of this paper is to apply their tensoring procedure
in the group-invariant setting. When n = 2, we can improve
our bound for N .

Theorem 2 If � is an admissible subgroup and N ≥
2N (�)−1, then there is a smooth CRmapping f : S3/� →
S2N−1 for which N is the minimal embedding dimension.

We conclude the introduction by outlining the rest of the
paper. In Sect. 2, we introduce D’Angelo’s construction and
the relevant background material. In Sect. 3, we combine the
canonical invariant mapping with a tensorial construction to

generate new invariant mappings to spheres. In Sect. 4, we
present examples with n = 3 that suggest a better bound is
possible in Theorem 1. Finally, in Sect. 5, we discuss future
directions for this work.

This project began as part of the Mathematics Research
Community (MRC) program on “New Problems in Several
Complex Variables.” We would like to thank the American
Mathematical Society for creating this wonderful program
and supporting our continued collaboration.

2 Background and setup

Let Q(a, b) denote the hyperquadric with a positive and b
negative terms in its defining equation; namely,

Q(a, b) =
⎧
⎨

⎩
z ∈ C

a+b :
a∑

j=1

|z j |2 −
a+b∑

j=a+1

|z j |2 = 1

⎫
⎬

⎭
.

Of course, S2n−1 = Q(n, 0).
Let � be a fixed-point-free, finite subgroup of the unitary

groupU (n).We define the following real-valued,�-invariant
polynomial:

��(z, z̄) = 1 −
∏

γ∈�

(1 − 〈γ z, z〉). (2.1)

Expanding the product in (2.1) gives

��(z, z̄) =
∑

α,β

cαβ z
α z̄β.

Because �� is real valued, the matrix of coefficients (cαβ)

is Hermitian. We define the rank of �� to be the rank of
this underlying coefficient matrix. Furthermore, we define
N+(�) to be the number of positive eigenvalues of (cαβ) and
N−(�) to be the number of negative eigenvalues of (cαβ).
Define N (�) = N+(�) + N−(�).

Diagonalizing the matrix of coefficients, we get

��(z, z̄) = ‖F(z)‖2 − ‖G(z)‖2 (2.2)

where F and G are �-invariant, holomorphic polynomial
mappings with linearly independent components. Therefore,
from �� , we get an associated �-invariant CR mapping

φ� = F ⊕ G : S2n−1/� → Q(N+, N−).

We call this mapping the canonical group-invariant CRmap-
ping associated with the subgroup �. When N− = 0, we get
a non-constant CR mapping to the sphere S2N (�)−1.

We next reformulate our problem in terms of real poly-
nomials. Suppose φ : Cn → C

N and φ(S2n−1) ⊆ S2N−1.
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Thus, ‖φ(z)‖2 = 1 when ‖z‖2 = 1. Furthermore, suppose φ

is a monomial mapping (i.e., the components are monomi-
als). Then φ(z) = (. . . , cαzα, . . .). Thus,

∑

α

|cα|2|zα|2 = 1 when
n∑

j=1

|z j |2 = 1.

Setting x j = |z j |2, we get

∑

α

|cα|2xα = 1 when
n∑

j=1

x j = 1.

Thus,wehave a correspondencebetweenmonomialCRmap-
pings φ of spheres and real polynomials p with non-negative
coefficients such that

p(x1, . . . , xn) = 1 when x1 + · · · + xn = 1. (2.3)

If φ is additionally �-invariant, then p is also �-invariant.
In the monomial setting, we define f�(x1, . . . , xn) to be the
polynomial associated with the canonical mapping, namely,

f�(x1, . . . , xn) = f�(|z1|2, . . . , |zn|2) = ��(z, z̄).

Finally, observe that the rank of�� is the number of indepen-
dent monomials in f� . We work with the real polynomials
for the proofs of the main results.

We briefly pause to give examples. Suppose n = 2. Then
according to D’Angelo and Lichtblau, there are two groups
we need to consider: 〈ωI2〉 and 〈ωI1 ⊕ ω2 I1〉. First, let
�(p, 1) = 〈ωI2〉 where ω is a primitive p-th root of unity.
The canonical mapping φ�(p,1) : S3/�(p, 1) → S2(p+1)−1

is given by

(z, w) �→
(

z p,

√(
p

1

)

z p−1w, · · · ,

√(
p

p − 1

)

zw p−1, w p

)

.

(2.4)

The corresponding real polynomial f p,1 is given by

f p,1(x, y) := f�(p,1)(x, y) =
p∑

k=0

(
p

k

)

x p−k yk = (x + y)p.

(2.5)

Next, let �(p, 2) = 〈ωI1 ⊕ ω2 I1〉 for ω a primitive p-th
root of unity for p odd. The canonical mapping φ�(p,2) :
S3 → S p+2 is given by

(z, w) �→
(

z p,
√
c1z

p−2w, · · · ,
√
c p−1

2
zw

p−1
2 , w p

)

where

ck = p

p − k

(
p − k

k

)

for 1 ≤ k ≤ p−1
2 . As before, the corresponding real polyno-

mial f p,2 is given by

f p,2(x, y) := f�(p,2)(x, y) = x p + c1x
p−2y + · · · +

c p−1
2
xy

p−1
2 + y p. (2.6)

When n = 3, there are 4 inequivalent possibilities for �:
〈ωI3〉 for ω any primitive p-th root of unity, 〈ωI2 ⊕ω2 I1〉 or
〈ωI1 ⊕ ω2 I2〉 for ω a primitive p-th root of unity for p odd,
or 〈ωI1 ⊕ ω2 I1 ⊕ ω4 I1〉 for ω a primitive 7-th root of unity.
For the first case, we get

f〈ωI3〉(x1, x2, x3) = (x1 + x2 + x3)
p.

For cases 2 and 3, we get

f〈ωI2⊕ω2 I1〉(x1, x2, x3) = f p,2(x1 + x2, x3)

f〈ωI1⊕ω2 I2〉(x1, x2, x3) = f p,2(x1, x2 + x3).

In the last case, we give the canonical mapping. Let

�(7, 2, 4) = 〈ωI1 ⊕ ω2 I1 ⊕ ω4 I1〉 =
〈⎛

⎝
ω 0 0
0 ω2 0
0 0 ω4

⎞

⎠

〉

where ω is a primitive 7-th root of unity. The canonical map-
ping φ�(7,2,4) : S5 → S33 associated to �(7, 2, 4) is given
by

(z1, z2, z3) �→ (z71,
√
7z51z2,

√
14z31z

2
2,

√
7z1z

3
2, z

7
2,

√
7z31z3,√

14z1z2z3,
√
7z21z

4
2z3,

√
7z52z3,

√
7z41z2z

2
3,√

7z21z
2
2z

2
3,

√
14z32z

2
3,

√
14z21z

3
3,√

7z2z
3
3,

√
7z1z

2
2z

4
3,

√
7z1z

5
2, z

7
3),

with corresponding polynomial

f7,2,4(x1, x2, x3) = x71 + 7x51 x2 + 14x31 x
2
2 + 7x1x

3
2

+ x72 + 7x31 x3 + 14x1x2x3

+ 7x21 x
4
2 x3 + 7x52 x3 + 7x41 x2x

2
3

+ 7x21 x
2
2 x

2
3 + 14x32 x

2
3 + 14x21 x

3
3

+ 7x2x
3
3 + 7x1x

2
2 x

4
3 + 7x1x

5
2 + x73 .

We conclude this section with an example of using tensor-
ing to construct new maps from old maps. Consider n = 2,
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p = 3, and q = 2. Then

f3,2(x, y) = x3 + 3xy + y3.

Now we multiply y3 by f3,2(x, y) to get another �(3, 2)-
invariant polynomial with non-negative coefficients that is 1
on x + y = 1. Thus, we get

x3 + 3xy + y3(x3 + 3xy + y3)

= x3 + 3xy + x3y3 + 3xy4 + y6,

and hence the corresponding CR mapping from S3 to S9 is
given by

(z, w) �→ (z3,
√
3zw, z3w3,

√
3zw4, w6).

3 Proofs of themain results

In this section,we proveTheorems 1 and 2. In viewof the cor-
respondence discussed in Sect. 2, we work entirely with real
polynomials. Because the number of independentmonomials
in a real polynomial g is the same as the number of indepen-
dent components of the corresponding monomial mapping,
this number is called the rank of g and is denoted by rank(g).
The proof of Theorem1 follows theD’Angelo andLebl proof
in the non-invariant setting from [9].

Theorem 1 If � is an admissible subgroup and N ≥
N (�)2 − 2N (�) + 2, then there exists a smooth CR map-
ping f : S2n−1/� → S2N−1 for which N is the minimal
embedding dimension.

Proof We show that for any n ≥ 2, any finite subgroup � of
U (n) in the D’Angelo–Lichtblau list, and any N ≥ N (�)2−
2N (�)+ 2, there is a �-invariant, real polynomial with non-
negative coefficients, satisfying (2.3), and of rank N .

Let f� denote the real polynomial corresponding to the
squared-norm of the canonical CR mapping φ� . Then, there
exists p ∈ N such that, in multi-index notation,

f�(x) =
∑

|α|≤p

cαx
α, (3.1)

where c(p,0,...,0) > 0. Note that rank( f�) = N (�).
Now, given a�-invariant, real polynomial g of total degree

d, satisfying (2.3) and containing a pure top-degree mono-
mial in x1, say cxd1 , define

(Vg)(x) = g(x) + c

2
xd1 (−1 + f�(x)) , (3.2)

(Wg)(x) = g(x) + cxd1 (−1 + f�(x)) . (3.3)

Then,Vg andWg are�-invariant polynomials of degree d+p
that satisfy (2.3) and contain a pure top-degree monomial in
x1. Further, if g has non-negative coefficients, so do Vg and
Wg, and

rank(Vg) = rank(g) + N (�),

rank(Wg) = rank(g) + N (�) − 1.

Viewing V and W as operators, we use the notation V jWkg
to denote the k-times iterated application of W , followed by
the j-times iterated application of V to g. Thus,

rank(V jWk f�) = j N (�) + k(N (�) − 1) + N (�).

The result now follows by invoking Sylvester’s solution to
the postage stamp problem, which says that for any co-prime
positive integers A, B, any integer N ≥ AB − A − B + 1
can be written as j A + kB for some non-negative integers
j and k. In our case, A = N (�), B = N (�) − 1, and, thus,
AB − A− B + 1 = N (�)2 − 3N (�)+ 2. Hence, every rank
at least N (�)2 − 2N (�) + 2 is possible. ��

We now prove Theorem 2.

Theorem 2 If � is an admissible subgroup and N ≥
2N (�)−1, then there is a smooth CRmapping f : S3/� →
S2N−1 for which N is the minimal embedding dimension.

Proof From [10], we have that � is equivalent to �(p, 1) or
�(p, 2). From [21], we have that the minimal embedding
dimension is preserved under a change of coordinates. Thus,
we can assume without loss of generality that � is either
�(p, 1) or �(p, 2).

For convenience, we switch our notation from (x1, x2)
to (x, y) to denote the coordinates of a point in R

2. First,
suppose � = �(p, 1) for any fixed p ≥ 2. In this case,
N (�) = p + 1, and the real polynomial corresponding to
�� is

f p,1(x, y) = (x + y)p =
p∑

k=0

ckx
p−k yk,

s where ck = (p
k

)
. Let

g1(x, y) = f p,1(x, y) + x p(−1 + f p,1(x, y))

=
p∑

k=0

ckx
2p−k yk +

p∑

k=1

ckx
p−k yk . (3.4)

Then, g1 is a �-invariant, real polynomial with non-negative
coefficients, satisfying (2.3) and of rank 2p+1 = 2N (�)−1.
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Now, for each j with 2 ≤ j ≤ p, wemultiply the (N (�)+
j)-th term of g1 by f p,1 to obtain

g j (x, y) = g1(x, y) + c j x
p− j y j (−1 + f p,1(x, y)

)

=
p∑

k=0

ckx
2p−k yk

+
p∑

k=0

c j ck x
2p− j−k y j+k +

p∑

k=1
k �= j

ck x
p−k yk .

Observe that the terms in the second sumon the last line above
are monomials of the form x2p−( j+k)y j+k . When j+k ≤ p,
or, equivalently, k ≤ p − j , such monomials also appear in
the first sum on the last line above. Thus, collecting like
terms, we see that for j = 2, . . . , p, g j is a �-invariant, real
polynomial with non-negative coefficients, satisfying (2.3)
and of rank

(p + 1) + j + (p − 1) = 2N (�) − 2 + j .

We have obtained invariant polynomials of ranks 2N (�) −
1, ..., 2N (�) − 1 + p − 1 = 3N (�) − 3.

For N ≥ 3N (�) − 2, we describe an iterative procedure
for obtaining an invariant polynomial of rank N . For a fixed
N ≥ 3N (�) − 2, let j be the unique integer between 1 and
N (�)−1 such that N − (2N (�)−2) ≡ j (mod N (�)−1).
Thus,

N = 2N (�) − 2 + j + d(N (�) − 1)

for some integer d ≥ 1. We construct the desired polynomial
iteratively. Let g(0)

j = g j . Let

g(1)
j (x, y) = g(0)

j (x, y) + x2p(−1 + f p,1(x, y)).

Then, g(1)
j is an invariant polynomial, satisfying (2.3) and

consisting of exactly 2N (�)−2+ j+N (�)−1 independent
monomials. This is because the polynomial x2p( f p,1(x, y))
consists of exactly N (�)monomials, all of degree at least 2p
in x , and all the terms of g(0)

j (x, y)−x2p are of degree strictly

less than 2p in x . Since g(1)
j contains the term x3p, we can

repeat this process. Repeating this process d − 1 times gives
an invariant polynomial satisfying (2.3), and consisting of
N = 2N (�)−2+ j+d(N (�)−1) independent monomials.
This completes the case of � = �(p, 1).

Next, suppose � = �(p, 2) for any fixed odd p ≥ 3. The
construction is quite similar to the previous case. In this case,
the invariant real polynomial corresponding to �� is

f p,2(x, y) =
N (�)−2∑

k=0

ckx
p−2k yk + y p,

for some positive constants ck . Once again, let

g1(x, y) = f p,2(x, y) + x p(−1 + f p,2(x, y))

=
N (�)−2∑

k=0

ckx
2p−2k yk

+x p y p +
N (�)−2∑

k=1

ckx
p−2k yk + y p.

Then g1 is a �-invariant, real polynomial with non-negative
coefficients, satisfying (2.3) and of rank 2N (�) − 1. Now,
for each j with 1 ≤ j ≤ N (�) − 2, let

g j+1(x, y) = g1(x, y) + c j x
p−2 j y j (−1 + f p,2(x, y)

)

=
N (�)−2∑

k=0

ckx
2p−2k yk + x p y p

+
N (�)−2∑

k=0

c j ck x
2p−2 j−2k y j+k

+ c j x
p−2 j y p+ j

+
N (�)−2∑

k=1
k �= j

ck x
p−2k yk + y p. (3.5)

Once again, the second sum in (3.5) involves monomials of
the form x2p−2( j+k)y j+k that coincide with the monomials
occurring in the first sum whenever j + k ≤ N (�) − 2, or
k ≤ N (�) − 2 − j . Thus, for j = 1, .., N (�) − 2, g j+1 is a
�-invariant, real polynomial with non-negative coefficients,
satisfying (2.3) and of rank

N (�) + (N (�) − 1) − (N (�) − 1 − j)

+1 + N (�) − 3 + 1 = 2N (�) − 1 + j .

We have produced invariant polynomials of ranks 2N (�) −
1, ..., 3N (�) − 3. For N ≥ 3N (�) − 2, we apply the same
procedure as in the case of �(p, 1). ��
Remark 3 The bound found in Theorem 2 can be written as
N ≥ 2p + 1 for � = 〈ωI2〉 and N ≥ p + 2 for � =
〈ωI1 ⊕ ω2 I1〉.

4 Discussion and examples

Theorem 1 gives a rather simple argument to show that
beyond a certain critical value, all natural numbers N are
possible minimal embedding dimensions for group-invariant
sphere maps. However, the bound on N is likely far from
optimal. Theorem 2 is a refinement for the two-dimensional
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3,2( 1+ 2 3)

rank 7 1
rank 14 2
(split at 3

1
)

rank 16 4
(at 2

1 2)

rank 18 0
(at 1

2

2
)

rank 13 1
(at 3

1
)

rank 15 3
(at 2

1 2)

rank 17 5
(at 1

2

2
)

Fig. 1 Possible ranks for polynomials invariant under � = 〈ωI2 ⊕
ω2 I1〉 for ω a primitive cube root of unity

case, showing that all N ≥ 2N (�) − 1 are minimal embed-
ding dimensions. It is natural to ask whether this better result
holds for n > 2. Although we do not answer this question
in this paper, we give some examples for n = 3 that indicate
that many of the apparent gaps in possible minimal embed-
ding dimension can be filled using other more sophisticated
schemes.

Consider first � = 〈ωI2 ⊕ ω2 I1〉 for ω a primitive cube
root of unity. The canonical�-invariant polynomial f3,2(x1+
x2, x3) has rank 7. Now, if g is any �-invariant polynomial
of rank ρ with non-negative coefficients taking the value 1
when x1 + x2 + x3 = 1, then if we multiply the term with
the highest degree in x1 by f3,2(x1 + x2, x3), we obtain a
new polynomial satisfying these same conditions and having
rank ρ + 6. Thus, once we obtain such a polynomial of a
certain rank, we can always obtain a polynomial satisfying
these same conditions and having any larger rank that is in
the same congruence class modulo 6.We therefore need only
describe how to construct one polynomial with rank in each
of the 6 congruence classes.

As in the proofs above, we use two kinds of operations
on a polynomial g. For the first, we take a term of g and
simply multiply it by f3,2(x1 + x2, x3). For the second, we
take a term of g and “split” it, writing it as a sum of two
identicalmonomials.We thenmultiply just one of these terms
by f3,2(x1+x2, x3). The number of terms introduced by each
of these operations depends on the monomial at which we

perform the operation because in general some of the terms
generated will combine with terms already appearing in the
polynomial.

Using these operations, we construct a sequence of �-
invariant polynomials taking the value 1when x1+x2+x3 =
1 and having ranks in each of the congruence classes mod-
ulo 6 as follows: Begin with f3,2(x1 + x2, x3). Next, either
multiply by f3,2(x1 + x2, x3) at x31 or “split” and multiply
by f3,2(x1 + x2, x3) at x31 to obtain polynomials with ranks
13 and 14, respectively. We then take these polynomials and
multiply by f3,2(x1 + x2, x3) at the monomial x21 x2 to obtain
polynomials with ranks 15 and 16, and so on. Thus, together
with the process described above, we obtain polynomials of
all ranks greater than or equal to 13 = 2N (�) − 1. See Fig.
1.

We go through a similar process to obtain polynomials
invariant under the action of � = 〈ωI2 ⊕ω2 I1〉 for ω a prim-
itive fifth root of unity. We now begin with f5,2(x1 + x2, x3),
which has rank 13. We must therefore obtain �-invariant
polynomials with ranks in each of the congruence classes
modulo 12. Figure 2 shows the ranks achieved. Note that
we do not obtain all ranks past 25 = 2N (�) − 1 through
this process – rank 27 is missing. However, we do obtain
all ranks greater than or equal to 28. This construction is an
improvement over Theorem 1 which only guarantees that we
can obtain ranks greater than or equal to 145.

5 Future directions

It is an openproblem to determine preciselywhich N aremin-
imal embedding dimensions for non-trivial group-invariant,
smooth, CR mappings from S2n−1 to S2N−1. It is not even
known whether D’Angelo’s canonical mapping gives the
smallest possible such N , i.e., whether there exists a non-
constant, �-invariant, smooth, CR mapping from S2n−1 to
S2N−1 with N less than the minimal embedding dimension
N (�) of D’Angelo’s map. Moreover, when n = 2, our con-
struction shows that the minimal embedding dimension can

Fig. 2 Possible ranks for
polynomials invariant under
� = 〈ωI2 ⊕ ω2 I1〉 for ω a
primitive fifth root of unity
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be any integer at least 2N (�)−1. One naturally wonders if it
is possible to achieve values between N (�) and 2N (�) − 1.

When n > 2, Theorem 1 shows that for every N ≥
N (�)2−2N (�)+2, there exists amonomial, group-invariant
CR mapping from S2n−1 to S2N−1 where N is minimal. The
examples and discussion in Sect. 4 suggest that a better bound
is possible, and it is an interesting problem to determine all
possible minimal embedding dimensions.

Finally,we have focused on spheremappings, but a natural
extension is to generalize to hyperquadric mappings (see [2,
3,22,23] for work in this direction).
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