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Abstract

Conformal geometry has its origins in the classical theory of holomorphic plane map-
pings in complex analysis. The study of conformal geometry in both two and higher
dimensions is strongly motivated by physics and by geometric analysis. Closely related
is (hypersurface type) CR geometry, which arises in several complex variables analysis
as the geometry of real hypersurfaces in complex n-space preserved by ambient biholo-
morphisms. In this thesis we present work on the calculus and local curvature the-
ory of submanifolds in conformal and (nondegenerate hypersurface type) CR manifolds.
The main contribution is the development of a complete local theory for CR embedded
submanifolds of CR manifolds, which parallels the standard Ricci calculus treatment of
Riemannian submanifold theory. This is based on adapting the well established tractor
calculus of conformal hypersurfaces to the more difficult CR setting. We also extend
this conformal hypersurface calculus to the higher codimension case and relate it to the
work of Burstall and Calderbank. The treatments of conformal and CR embeddings are
parallel, and the conformal case serves to illustrate and elucidate the more technical CR
case.
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1 Introduction

This thesis presents work on the calculus and local curvature theory of submanifolds
in conformal and (nondegenerate hypersurface type) CR manifolds. The main contri-
bution is the development of a complete local theory for CR embedded submanifolds of
CR manifolds, which parallels the standard Ricci calculus treatment of Riemannian sub-
manifold theory. Our approach is to generalise the established local theory of conformal
hypersurfaces obtained using conformal tractor calculus [7, 21, 90, 128, 141] to the CR
setting. This is accomplished using the direct construction of the CR tractor bundle and
connection in [79], and turns out to be much more delicate than the conformal case.
Though independent, this work is closely related to the approach developed in [144, 54]
for the study of rigidity of CR immersions into the sphere. In several ways we go beyond
the work of [144, 54], in particular by providing a more conceptual approach and one
which easily enables the construction of local invariants and invariant operators. The
latter is the test of completeness for any local theory.

Since CR embedded submanifolds of CR manifolds are necessarily of higher real codi-
mension than hypersurfaces, their local theory is more closely related to that of higher
codimension submanifolds in conformal manifolds. The conformal standard tractor bun-
dle and connection have already been employed in the study of general conformally em-
bedded submanifolds in [23] (cf. [22]) which gives a unifying approach to the classical
theory of submanifolds in the conformal sphere. We independently develop and present
the basic calculus of conformally embedded submanifolds in conformal manifolds in the
manner of [7, 21, 90, 128, 141]. Our approach is shown to be consistent with the abstract
approach of [23] (which uses different terminology and notation), and yields a more
direct construction of the basic calculus.

Invariant Theory and Tractor Calculus

In Riemannian geometry the classical Ricci calculus built from the Levi-Civita connec-
tion and Riemannian curvature tensor enables one to construct all possible invariant
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Chapter 1

(i.e. well-defined) differential operators and all invariant tensors. This is well under-
stood through Weyl’s classical invariant theory of the orthogonal group [145, 5], which
relies heavily on the reductive nature of the group. The Levi-Civita calculus extends in
a fairly straightforward way to a calculus for invariant differential operators and invari-
ant tensors on a Riemannian submanifold. The key step here is to introduce the second
fundamental form via the Gauss formula, relating the ambient and intrinsic Levi-Civita
connections; coupling the submanifold Levi-Civita connection with the normal connec-
tion induced by the ambient Levi-Civita connection one can invariantly differentiate the
second fundamental form. These are the basic ingredients necessary for the local theory
of Riemannian submanifolds.

It is well known that conformal and CR geometries are parabolic geometries, meaning
that they admit an equivalent description in terms of a Cartan geometry of type (G,P )
where G is a semisimple Lie group and P is a parabolic subgroup of G [33]. In Rie-
mannian geometry the remaining freedom for coordinate changes between Riemannian
normal coordinates at a given point is the orthogonal group (and one can construct in-
variants from the orthogonal group invariants of the coefficients in the Taylor expansion
of the metric). In conformal and CR geometry the corresponding group is the parabolic
P , which is not reductive. This links the problem of constructing conformal and CR in-
variants with deep questions in representation theory and invariant theory. This prob-
lem was taken up in the CR setting by Fefferman in [63], initiating a programme of
parabolic invariant theory.

In previous groundbreaking work in CR geometry Fefferman [62] gave an explicit con-
struction of a Lorentzian conformal structure on the trivial circle bundle over a strictly
pseudoconvex domain Ω ⊂ Cn (this was later developed in the abstract setting by Lee
[103], cf. [60]). Fefferman’s approach involved constructing (formally along ∂Ω×C∗) a
Lorentzian Kähler metric on Ω× C∗. Motivated by this Fefferman and Graham [64, 66]
gave a formal construction of a Ricci flat signature (p + 1, q + 1) metric extending the
metric cone Q of a signature (p, q) conformal structure. (For even dimensional confor-
mal structures this construction is obstructed at finite order.) This ambient metric con-
struction (and the related Poincaré metric construction [64, 66]) represented a significant
advance in the invariant theory for conformal structures. In particular, in the case of odd
dimensional real analytic conformal manifolds the formal series for the ambient metric
converges to a real analytic metric and the local conformal invariants can be obtained
from semi-Riemannian invariants. More generally the ambientmetric construction gives
a framework in which one can apply algebraic results in parabolic invariant theory to
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Introduction

the local invariant theory of conformal (and CR) manifolds.

Themodel parabolic invariant theory problem of Fefferman [63] arising fromCR geome-
trywas completely solved in [8], alongwith a conformal analogue (see [9] for exceptional
invariants in the conformal case). Via the ambient metric this gives a complete descrip-
tion of local scalar invariants for odd dimensional conformal manifolds. However for CR
manifolds and even dimensional conformal manifolds this gives very restricted results
because the ambient metric is obstructed at finite order depending on the dimension. In
particular, for conformal manifolds in dimension 4 one obtains essentially no results.

Another well known parabolic geometry is projective (differential) geometry. This is the
study of manifolds equipped with an equivalence class of affine connections having the
same unparametrised geodesics. The work of [8] relied on ideas of Gover from the anal-
ogous projective problem [71] (see [72] for exceptional invariants). This work has been
applied to give a complete theory of local invariants for projective manifolds in [73]
using the projective tractor calculus of [7].

Tractor calculi exist for any parabolic geometry [27] and provide a natural analogue of
the Riemannian Ricci calculus. (In the conformal and projective cases the main ideas go
back to work of Tracey Thomas in the 1920’s [134, 135, 136, 137].) The conformal tractor
calculus [7, 26] can be used to replace the ambient metric construction in the application
of parabolic invariant theory to the construction of local conformal invariants [75]. This
leaves only a finitely generated ‘window’ (in terms of conformal density weight and
principal degree) in which not all conformal invariants are known. In low dimensions
this ‘window’ is very small. In n ≥ 6 dimensions the results of [75] are complemented
in low degree by [8]. The tractor calculi for conformal and CR geometry are intimately
connected with the ambient metric constructions of Fefferman and Graham [64] and
Fefferman [62] respectively [28, 29].

The tractor calculus can also be seen to underlie the general construction of invariant
differential operators between irreducible bundles on parabolic geometries, organised
into Bernstein-Gelfand-Gelfand (BGG) sequences [35, 25]. These sequences extend the
(generalised) BGG resolutions of [17, 106] to the curved case (where they are no longer
complexes). Many of the ideas of [35, 25] originated in work of Eastwood and Rice in the
conformal case [52], and were developed in subsequent work of Baston [11, 12, 13]. The
general method for producing invariant differential operators introduced in [35, 25] has
come to be known as the ‘BGG machinery’ [34]. Of particular importance are the first
operators arising in these sequences, termed ‘first BGG operators’. These are always

7



Chapter 1

overdetermined and include many important and well known operators. For example,
in conformal geometry these include the conformal-to-Einstein operator, the conformal
Killing operator, and the conformal Killing form operator [7, 77, 82], and in projective
geometry these include the Killing operator and operators governing the existence of
metrics, Ricci-flat metrics, and non-Ricci flat Einstein metrics whose Levi-Civita con-
nection is in the projective class [30, 51].

Parabolic Submanifold Theory

In seeking to develop the local theory of submanifolds in conformal and CR manifolds it
is natural to work within the framework of parabolic geometries and the corresponding
invariant theory and calculus. Conformal submanifold theory is by now fairly well un-
derstood from this point of view [7, 21, 22, 23, 78, 90, 128, 141]. However, submanifold
geometry in parabolic geometries more generally is currently not very well developed.
Some ideas have been put forward in [22], where submanifolds in the conformal sphere
are discussed as a model case, but little is said about the general case beyond raising
some technical issues which need to be resolved.

Insight into the submanifolds in parabolic geometries can also be gained from the study
of stratifications of parabolic geometries arising from so called ‘normal solutions’ of first
BGG operators (coming from the varying algebraic type of the solution) [31, 32]. In con-
formal geometry all solutions to the conformal-to-Einstein equation are ‘normal’, and
the zero locus of a solution is the conformal infinity of an Einstein metric defined on the
open dense region where the solution is nonzero. In the case of a negative Einstein met-
ric the conformal infinity is forced to be a smooth nondegenerate hypersurface [78, 44].
Not every nondegenerate hypersurface in a conformal manifold arises as the conformal
infinity of a negative Einstein metric (this would force it to be umbilic), but it turns out
that every nondegenerate conformal hypersurface can be realised as the conformal in-
finity of a negative constant scalar curvature metric (formally, up to order the dimension
of the ambient space) [3, 84]. This leads to an alternative ‘holographic’ construction of
conformal hypersurface invariants from Riemannian invariants of the resulting (formal)
metric [84]. Higher codimension submanifolds may arise as the common intersection of
the zero loci of a family of solutions to the conformal-to-Einstein equations [105, 4]. This
provides a starting point for related developments in the study of higher codimension
conformal submanifolds.
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Conformally Embedded Submanifolds

Understanding the local curvature theory of submanifolds is basic to the understand-
ing of any geometry. Just as in classical surface theory the intrinsic Gauss curvature is
understood as the product of the extrinsic principal curvatures, so in conformal geom-
etry intrinsic invariants may be best understood via some ambient space construction
[64, 98]. Further motivation for the study of local theory in conformal submanifolds
comes from physics, in particular from string (and brane) theory and the AdS/CFT cor-
respondence [89, 121]. Local invariant theory for conformal hypersurfaces is especially
important in geometric analysis because of its role in formulating and studying con-
formally invariant boundary value problems [38, 19, 20]. In major recent progress in
geometric analysis Marques and Neves have solved the Willmore conjecture of [146]
stating that the Clifford torus is the unique minimiser of the conformally invariant Will-
more energy among immersed tori in the round 3-sphere [112].

In Chapter 3 of this thesis we develop and present the basic calculus of conformally
embedded submanifolds in conformal manifolds in the manner of [7, 21, 90, 128, 141].
Thoughwe present some original calculations for the basic invariants this chapter should
be seen as mainly expository, and serves the dual purpose of:

(1) showing that the approaches of Gover et al. [7, 21, 90, 128, 141] and Burstall and
Calderbank [22, 23] are consistent, and

(2) providing a treatment of the tractor calculus and local theory of conformal em-
beddings which parallels the treatment of CR embeddings in Chapter 5, for ease
of reference and comparison.

For expository purposes, we discuss the hypersurface case in §3.1 and §3.2 before mov-
ing to the general case in §3.3.

Our approach relies on the construction of the conformal standard tractor bundle and
connection of [7]. This is presented in Chapter 2 which is intended to give an accessible
exposition of the basic conformal tractor calculus and some of its applications. As in [7]
we use a choice of metric in the conformal class to split the standard tractor bundle TM
of (M, c) as a direct sum, which after trivialising the density bundles is simply

R⊕ TM ⊕ R,

where R is the trivial line bundle M × R. We retain the density line bundles in our
presentation for a more direct comparison with the CR case, where the corresponding
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density bundles play a more important role. Splitting the tractor bundle using a choice
of metric g ∈ c corresponds in the general theory of parabolic geometries to using ex-
act Weyl structures (rather than arbitrary Weyl structures) to reduce the Cartan frame
bundle to a reductive structure group, and thereby split the tractor bundle(s) [33]. In
conformal geometry a ‘Weyl structure’ simply corresponds to a choice of Weyl connec-
tion for the conformal class, and we are restricting to those Weyl connections which are
the Levi-Civita connection of some metric g ∈ c. This is the standard approach in con-
formal geometry. The invariant constructions of tractor calculus can be done in terms of
a choice of metric, with invariance being checked by straightforward calculations. Once
the basic tractor calculus is established to be invariant in this way it can be employed to
construct tensors and differential operators which are manifestly invariant. The abstract
general picture is therefore left in the background.

Given a conformal embedding ι : Σ ↪→ M between conformal manifolds (Σm, cΣ) of
(Mn, c) with n > m ≥ 2 the key first step in the geometric part of the invariant theory
is to construct what we term the standard tractor map

T ι : T Σ → TM,

by analogywith the tangentmapTι of the embedding. This is accomplished in §§§3.3.2.2
(cf. §§3.2.2) using Lemma 3.3.2:

Lemma. Given any metric gΣ ∈ cΣ there exists a metric g ∈ c extending gΣ (i.e. such that
gΣ = ι∗g) for which the mean curvature vector of Σ vanishes.

Such ambient metrics are called minimal scales. If we use a minimal scale g ∈ c to
split the ambient tractor bundle, and the corresponding metric gΣ = ι∗g to split the
submanifold tractor bundle, then the obvious map

(id, T ι, id) : R|Σ ⊕ TΣ⊕ R|Σ → R⊕ TM ⊕ R

corresponds to a map T Σ → TM which does not depend on the choice of such g ∈ c.
The ambient tractor bundle therefore splits along Σ as an orthogonal direct sum

TM |Σ = T Σ⊕N , (∗)

where N is the normal tractor bundle.
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The splitting (∗) of TM |Σ allows us to decompose the (normal) tractor connection ∇
on TM along Σ in §§§3.3.2.7 as

ι∗∇ =

(
D + S −LT

L ∇N

)
on

T Σ
⊕
N

where D is the (normal) standard tractor connection of Σ, S is the difference tractor of
§§§3.3.2.3 (cf. §§3.2.3), and L is the tractor second fundamental form of §§§3.3.2.5 (cf.
§§3.2.4). This enables us to show, in an extended remark (Remark 3.3.13), that(

0 −LT

L 0

)

satisfies the algebraic normalisation condition of [23], verifying consistency with their
approach. This also allows us to straightforwardly compute tractor Gauss, Codazzi and
Ricci equations (or ‘fundamental equations’) for the submanifold, §§§3.3.2.8.

With this setup established it becomes fairly straightforward to construct conformal
invariants of submanifolds quite generally following the approach of [75, 141]. We dis-
cuss this only briefly, §§§3.3.2.9 (cf. §§3.2.6 and §§2.7.7). (See also §6.4 for the case of
CR embeddings where invariant theory and the practical construction of invariants is
treated in more detail.) Further developments of the local and global invariant theory
for conformal submanifolds are work in progress.

CR Embedded Submanifolds in CR Manifolds

The study of local theory for CR embedded submanifolds in CR manifolds is strongly
motivated by problems in several complex variables analysis. By developing basic as-
pects of the local theory of CR embeddings Webster [144] established the rigidity of real
codimension 2 CR embeddings into the unit sphere in Cn for n ≥ 4. Webster then ap-
plied the work of [144] to show that the only proper holomorphic maps Bn−1 → Bn

which are suitably regular at the boundary are given, up to automorphism of the do-
main and target, by the linear embedding [143]. This result sparked many subsequent
developments in the study and classification of proper holomorphic maps between balls
in different dimensions which extend (in a suitable sense) smoothly to the boundary
[58, 59, 93, 94, 95, 96]. The basic local theory developed in [144] by Webster was ex-
tended to higher codimension CR embeddings by Ebenfelt, Huang, and Zaitsev in [54]
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(cf. [99, 111]). This is applied in [54] to prove that rigidity holds for any CR immersion
of a CR manifold Σ2m+1 into the CR sphere S2n+1 provided d = n − m < m/2. The
authors also discuss the implications of this work for Milnor links of isolated hyper-
surface singularities. (For further developments regarding CR rigidity phenomena see
[55, 10, 97, 53] and the references therein.)

Ourwork on the local theory of CR embedded submanifolds in CRmanifolds is presented
in Chapters 4, 5 and 6 which reproduce the preprint [45] (with only minor changes). Our
approach relies on the construction of the CR standard tractor bundle and (normal) trac-
tor connection of [79], using the direct sum decomposition of the tractor bundles induced
by a choice of pseudohermitian contact form. We work with Tanaka-Webster connec-
tions rather than ‘Weyl connections’ as the former are standard in the CR literature.
(The relation of the approach of [79] to the approach of the general theory using Weyl
structures is discussed in [33].) Chapter 4 gives a detailed introduction to this work.

The theory we develop is considerably more subtle technically than in the conformal
case. There are two main reasons for this. Firstly, in CR geometry the relevant parabolic
subgroup P of SU(p + 1, q + 1) has nilpotent part P+ which is no longer Abelian. In
practical terms this simply means we have a non-trivial filtration of the tangent budle to
deal with; in this case one simply has the usual CR contact distribution. The problems
resulting from the filtration of the tangent bundle are resolved without much appar-
ent drama in Chapter 6 because of the convenient fact that admissible ambient contact
forms (in the sense of [54]) are equivalently the ambient contact forms for which the CR
embedded submanifold has vanishing pseudohermitian mean curvature (see §§6.2.1). In
brief admissibility is equivalent to minimality. Admissible ambient contact forms play a
role analogous to minimal scales in conformal geometry. The relation between admis-
sibility and minimality is key to establishing the relation between the submanifold and
ambient standard tractor bundles of Theorem 6.2.6. The second major technical issue re-
solved was relating the submanifold and ambient CR density bundles. This is discussed
in Chapter 4. These issues are representative of the general case of geometric embed-
dings between parabolic geometries. Our work therefore gives a template for dealing
with other kinds of embeddings.

Our treatment is complete in the sense that we solve the geometric part of the invariant
theory, and set up a practical and general construction of invariants. This can be applied,
e.g., to produce biholomorphic invariants of Milnor links. Another potential application
lies in work on the geometric reflection principle for holomorphic mappings in several
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complex variables [102]. A natural question which remains is whether one can produce
intrinsic CR invariants whose vanishing characterises the embeddability of a given ab-
stract CR manifold into the CR sphere or hyperquadric (cf. [149, 99]). Motivation for this
work also included establishing a framework for the study of ‘CR infinities’ of Sasakian
and (η-)Sasaki-Einstein manifolds. This is work in progress.

We refer the reader to Chapter 4 for further introductory details.

Real Hypersurfaces in CR Manifolds

We wish to indicate here that the ideas of Chapters 4–6 can be applied to submanifolds
in CR manifolds more generally, and in particular to real hypersurfaces in CR manifolds.
Preliminary work on this has been excluded from the thesis because of constraints of
time and space. The case where the ambient space is the CR sphere (or Heisenberg
group H1) is already of great interest. The author has observed that on surfaces in 3-
dimensional CRmanifolds, away from the singular set where the surface is tangent to the
contact distribution, there is canonical ‘normal tractor’ analogous to the normal tractor
of a conformal hypersurface [7]. This is defined using the (weighted) normal in the
contact direction and the p-mean curvature of [39, 40]. Taking the tractor covariant
derivative of this normal tractor tangentially along the surface defines a notion of ‘tractor
second fundamental form’ (or ‘tractor shape operator’) once again analogous to the case
of conformal hypersurfaces (see, e.g., [141]). This provides a starting point for the local
CR invariant theory (cf. [42] where pseudohermitian invariant theory is developed in
this setting). We aim to apply this to the study of CR invariant boundary problems on
domains in 3-dimensional CR manifolds.

This work is naturally related to the study of codimension 2 CR structures [114, 56, 125].
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2 Conformal Geometry

Conformal Riemannian geometry is the study of manifolds with a Riemannian metric
defined only up to scale at each point. Geometrically this means that angles between
curves, but not lengths of curves, are well-defined. One can also define conformal ge-
ometry in the semi-Riemannian setting, and we will take this broader point of view. Two
semi-Riemannianmetrics g and ĝ on a smoothmanifold are called conformally equivalent
if there is a positive smooth function Ω such that

ĝ = Ω2g.

In this case we often call ĝ a conformal rescaling of g. Conformal geometry is the study of
manifolds equipped with a semi-Riemannian metric up to conformal equivalence, and
of their mappings.

In this chapter we give the necessary technical background in conformal geometry for
our treatment of submanifolds in Ch. 3. We start with some general background on
conformal geometry in two and higher dimensions.

2.1 Conformal Geometry in Two Dimensions

Conformal geometry in two dimensions is intimately connected with single variable
complex analysis, and has been a major part of mathematics since the 19th century.
A conformal mapping between plane domains is one which does not distort the shape
of very small figures; more precisely, a conformal mapping is one which preserves the
angle between any pair of intersecting curves. Holomorphic mappings between plane
domains with nonzero derivative are conformal, and orientation preserving conformal
mappings are holomorphic. (Orientation reversing conformal mappings are ‘antiholo-
morphic’, i.e. holomorphic in z̄ rather than z.) Moving to abstract surfaces we note that a
complex structure is therefore equivalent to a conformal structure (and an orientation).
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A surface equipped with a complex structure is called a Riemann surface. The study
of Riemann surfaces has become one of the major areas of modern mathematics, with
strong connections to a large number of other parts of mathematics and mathematical
physics. In many applications the Riemann surfaces one is interested in are embedded
in some higher dimensional manifold, which is often the true object of study.

The real part of a holomorphic function on a plane domain is always a harmonic func-
tion. Conversely, on a simply connected domain any harmonic function is the real part
of some holomorphic function. This links complex analysis, and therefore conformal
geometry, with harmonic analysis and potential theory in the plane. (This can also be
seen as the starting point for elliptic regularity theory, since holomorphic functions are
necessarily smooth.) With the strong connection between the Cauchy-Riemann equa-
tions (governing orientation preserving conformal mappings) and the Laplace equation
in two dimensions, it should not be surprising that on an abstract Riemannian surface
(M, g) the Laplacian ∆g is conformally covariant, in the sense that if ĝ = e2Υg for some
smooth Υ then

∆ĝ = e−2Υ∆g.

Potential theory can be used to establish the Riemann mapping theorem, a fundamental
result in the theory of conformal mappings which states that any proper simply con-
nected open subset U of C can be mapped conformally onto the unit disc. This is a
remarkable theorem when one considers the large class of domains U it covers, includ-
ing domains with fractal boundary! In the context of Riemann surfaces the Riemann
mapping theorem is generalised by the uniformisation theorem, which states that the
universal cover of any Riemann surface must be conformally equivalent to the Riemann
sphere, the complex plane, or the unit disc. One way to prove this theorem is to pick any
metric g representing the conformal structure of the given surfaceM and then solve the
equation

−∆gΥ+Kg = ce2Υ (2.1.1)

for some constant c equal to 1, 0 or−1, whereKg is the Gaussian curvature of g and∆g

is the (negative spectrum) Laplacian. This allows one to find a metric ĝ = e2Υg on the
surface which has constant Gaussian curvature c. The surface (M, ĝ) then has universal
cover isometric to the round sphere, Euclidean space, or hyperbolic space depending on
whether c equals 1, 0 or −1, and the conformal structures of these correspond to the
Riemann sphere, the complex plane, and the disc respectively.
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2.2 Conformal Geometry in Higher Dimensions

2.2 Conformal Geometry in Higher Dimensions

Conformal geometry in higher dimensions is no longer closely connected with complex
analysis, and exhibits a rigidity unlike the two dimensional case. The strong connection
between Riemannian signature conformal geometry and elliptic PDE continues however.
In particular, although the Laplace operator is no longer conformally covariant in n ≥ 3

dimensions, the operator

Lg = −∆g +
n− 2

4(n− 1)
Rg (2.2.1)

is conformally covariant, where Rg is the scalar curvature of g. The operator Lg is
known as the conformal Laplacian. Many problems in Riemannian geometry involve
conformally rescaling the metric. An analogue of (2.1.1) in higher dimensions is the
Yamabe problem of finding a metric in the conformal class or a (compact) Riemannian
manifold with constant scalar curvature. This amounts to solving the PDE

Lgu = cu
n+2
n−2 (2.2.2)

for some real constant c, which is a ‘nonlinear eigenvalue problem’ with the critical
Sobolev exponent n+2

n−2
. This problem was solved through the successive works of Yam-

abe, Trudinger, Aubin, and Schoen [148, 139, 6, 124] and represents an important devel-
opment in nonlinear elliptic PDE theory.

Conformal invariance has also proved to be a deeply important phenomenon in physics.
Indeed, the operator Lg seems first have appeared in the Lorentzian geometric setting of
spacetime as the conformal wave operator [46, 140]. Conformal invariance is something
of a governing principle for the operators appearing in fundamental (particle) physics.
Consider for example the Dirac, Maxwell andWeyl operators, pertaining to the free field
theories for the electron, photon, and neutrino respectively. Each of these operators is
conformally covariant (and hence conformally invariant when interpreted correctly).
Conformal geometry also plays an important role in general relativity. The conformal
structure of spacetime precisely encodes the causal structure, i.e. the relation on space-
time which says which events may be influenced by which other events. This is because
light paths (null geodesics) depend only on the conformal structure, and collectively
they determine the both the conformal and causal structure via the ‘light cone’ at each
event. The notion of ‘conformal infinity’ [117, 68] has proven to be important in gen-
eral relativity for the study of isolated systems, allowing for rigorous definitions of mass
and angular momentum, and for the study of gravitational radiation emitted by isolated
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systems (recently detected for the first time [1]). Moreover, since Einstein’s field equa-
tions specify the Ricci curvature of spacetime in terms of the stress-energy tensor of the
matter content, it is only the conformal (Weyl) curvature which propagates in empty
space. Naturally conformal symmetry plays an important role in many of the theories
which seek to combine high energy particle physics and general relativity, notably in
Penrose’s twistor theory [118] and in string theory via, e.g., the AdS/CFT correspon-
dence (or ‘gauge/gravity duality’) of Maldacena [110, 147].

The importance of conformally invariant (linear) differential operators in physics has
motivated considerable study of the ‘spectrum’ of such operators available on confor-
mal manifolds. On Euclidean (or pseudo-Euclidean) space classifying the conformally
invariant operators is an algebraic problem. This was solved explicitly for 4-dimensional
Minkowski space in [52], the necessary representation theory for treating the general
case being already well established [106, 15, 16]; in [52] Eastwood and Rice then use the
conformal Cartan (or ‘local twistor’, or ‘tractor’) connection to show that, in almost all
cases, corresponding conformally invariant differential operators exist on any confor-
mal 4-manifold. This work is generalised to conformal manifolds of dimension n ≥ 3

in [11, 12]. Exceptional cases include the ‘conformal powers of the Laplacian’ which
exist on conformally flat manifolds, but in even dimensions do not exist on conformally
curved manifolds beyond the order of the dimension [87, 80]. Closely related to the
problem of constructing invariant operators is the problem of constructing conformally
invariant scalar and tensor quantities. Important tools for the study of conformal invari-
ants are the ambient metric and Poincaré (or ‘Poincaré-Einstein’)metric constructions of
[64, 66]. A Poincaré metric for a conformal manifold is a negative Einstein metric with
the givenmanifold as conformal infinity; this is the basic situation to which the AdS/CFT
correspondence applies [2, 91], generating a lot of interest in these metrics in their own
right (see, e.g., [65, 78, 88, 104, 122]). Another key tool for the construction of conformal
invariants is the conformal tractor calculus [7, 75] described in more detail in §2.7. The
conformal tractor calculus is closely related to the Ricci calculus of the ambient metric
[28], and avoids the technical issues occurring with the ambient metric construction in
even dimensions. The tractor calculus and the associated ‘Bernstein-Gelfand-Gelfand
machinery’ of [35, 25] (which generalise [52, 11, 12]) are intimately connected with the
study of natural overdetermined PDE in parabolic (Cartan) geometry, and in particular
in conformal geometry. For example in conformal geometry the conformal-to-Einstein
equation and the conformal Killing equation can be prolonged (i.e. written as a closed
first order system) in terms of the normal tractor connection on the standard tractor
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bundle and the adjoint tractor bundle respectively [7, 77].

2.3 Conformal Manifolds

A conformal manifold (M, c) is a smooth n ≥ 2 dimensional manifold M equipped
with a conformal equivalence class c of semi-Riemannian metrics (necessarily of fixed
signature). One may alternatively describe the conformal structure onM in terms of the
bundle of metricsQ, a ray subbundle of S2T ∗M (with nondegenerate sections). From this
point of view c = Γ(Q), the space of smooth global sections of Q. A third approach is
to think of a signature (p, q) conformal structure onMn as a reduction G0 of the frame
bundle FM to the structure group

G0 = CO(p, q) = {A ∈ GL(n,R) : AT Ip,qA = λIp,q, for some λ ∈ R+}.

On a conformal manifold (M, c) a frame for TxM is conformally orthonormal if it is
orthonormal for some choice of metric in Qx . The bundle G0 is simply the bundle of
conformally orthonormal frames for (M, c).

A smooth map f :M0 →M between conformal manifolds (M0, c0) and (M, c) is called
conformal if one (equivalently any) metric g ∈ c pulls back to a metric f ∗g ∈ c0.

2.3.1 Conformal Densities

Density bundles on a smooth n-manifold M are roots and powers of the oriented line
bundle ⊗2ΛnT ∗M . Conformal density bundles arise in conformal geometry as a kind
of bookkeeping tool for dimensional analysis. If we rescale a metric g by Ω2 to give
ĝ = Ω2g, we rescale ‘lengths’ by a factor Ω and ‘volumes’ by a factor of Ωn. Informally,
on a conformal manifold (M, c) a section of the conformal density bundle E [w] is simply
a smooth function, given with respect to some metric g ∈ c, that transforms by a factor
of Ωw to give f̂ = Ωwf when g is rescaled to ĝ = Ω2g.

It is conventional to think of the ray bundle Q → M as a principal R+-bundle with
principal action given by rs(gx) = s2gx for s ∈ R+ and gx ∈ Qx. The conformal density
bundle of weight w is the associated bundle

E [w] = Q×R+,ρw R
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where the R+-action on R is given by ρw(s)t = s−wt. This means that the total space
E [w] is the quotient of Q × R by the equivalence relation (gx, t) ∼ (s2gx, s

wt) for any
s ∈ R+, and the bundle projection E [w] → M is [(gx, t)] 7→ x. A choice of metric
g ∈ c trivialises each of the density bundles E [w], and the weight w tells us how the
different trivialisations for different metrics in c are related. Of course, E [0] is the trivial
line bundle.

On an oriented conformal n-manifold there is a well-defined top form ϵ taking values
in the line bundle E [n]. Trivialising E [n] with a metric g ∈ c, the top form ϵ is given
by the Riemannian volume form ϵ of g. Since ĝ = Ω2g implies ϵ̂ = Ωnϵ we see that ϵ is
well-defined. The E [n]-valued top form ϵ defines an isomorphism

ΛnTM → E [n],

and dually ΛnT ∗M ∼= E [−n]. In the case of non-oriented manifolds we do not have the
above displayed isomorphism, but we do have ⊗2ΛnTM ∼= E [2n] and ⊗2ΛnT ∗M ∼=
E [−2n]. Thus conformal densities may be identified with the usual density bundles on
smooth manifolds.

Conformal density bundles provide us with the right way to think about conformally
covariant operators, namely as conformally invariant operators between weighted bun-
dles. For example, the conformal Laplacian L = −∆ + n−2

4(n−1)
R has the conformal co-

variance property
L̂ ◦ Ω1−n

2 = Ω−1−n
2 ◦ L

when ĝ = Ω2g, and therefore L can be thought of as a conformally invariant operator

L : E [1− n

2
] → E [−1− n

2
].

Conformal densities arise naturally in the study of conformally invariant operators and
conformal invariants more generally.

Remark 2.3.1. Note that one can lift the R+-action ρw on R to G0 = CO(p, q) =

R+SO(p, q) by making SO(p, q) act trivially. This allows one to think of the density
bundles as associated bundles to the conformal orthonormal frame bundle G0, which is
the point of view taken in parabolic theory [33]. This point of view makes it clear that
the Levi-Civita connection of each metric g ∈ c acts naturally on conformal densities
(since the Levi-Civita connection may be thought of as a principal connection on G0).
This point of view also clarifies the relation between the conformal density bundles to
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2.4 Ricci Calculus and Conformal Rescalings

the usual density bundles (which are associated to the linear frame bundle by powers of
the determinant representation).

2.3.2 Densities and Scales

On any conformal manifold (M, c) there is a (tautological) E [2]-valued nondegenerate
bilinear form g, given with respect to the trivialisation of E [2] coming from g ∈ c by g
itself. We call g the conformal metric of (M, c). If σ is a nowhere vanishing section of
the line bundle E [1] then

g = σ−2g

is a metric in c. This gives rise to a 1-1 correspondence between positive sections of the
(naturally oriented) line bundle E [1] and metrics in c. We refer to σ > 0 as the scale
corresponding to g if g = σ−2g. It is common to refer to a choice of positive section σ
of E [1], or correspondingly a metric g ∈ c, as a choice of scale for the manifold (M, c).

2.4 Ricci Calculus and Conformal Rescalings

Fixing a scale g on a conformal manifold allows one to compute in terms of the associated
Ricci calculus (Levi-Civita connection, Riemannian curvature, etc.). One then must con-
sider how the resulting expression transforms under conformal rescalings. Proceeding
this way it is difficult to produce more than a few basic conformal invariants and invari-
ant operators. However, the Ricci calculus can also be used to explicitly construct the
natural conformally invariant calculus on conformal manifolds, namely the conformal
tractor calculus. Here we present some of the necessary background for this construc-
tion.

2.4.1 Abstract Index Notation

In the following, when convenient, wewill make use of abstract index notation for tensor
calculus (formalised in [119]). We introduce the alternate notation Ea for the tangent
bundle of a given smooth manifoldM , allowing for the use of abstract indices from the
beginning of the (lower case) Latin alphabet. We also denote the cotangent bundle by Ea.
Correspondingly we may write a (tangent) vector field V onM as V a (or V b or V c) and a
1-form ω as ωa (or ωd). We denote tensor products of the tangent and cotangent bundles
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(i.e. tensor bundles) by appending appropriate indices to the symbol E . For example,
⊗2T ∗M is denoted by Eab and (⊗2T ∗M) ⊗ TM by Eabc. The symbols for elements (or
sections) of these bundles are also appended with the corresponding indices, thus Γabc

denotes an element (or section) of Eabc. Tensor products are indicated by concatenation
(with indices made distinct), so that V ⊗ ω is written as V aωb and ω ⊗ Γ is written
as ωaΓbcd. Tensor contractions are then indicated by repeated indices, so that ω(V ) is
written as ωaV a (or as V aωa) and cont(ω ⊗ Γ) as ωaΓbca. Symmetrisation over a set of
covariant or contravariant indices is denoted by enclosing them with round brackets, so
that, e.g.,

T(ab) :=
1

2
(Tab + Tba) .

Similarly antisymmetrisation is indicated by square brackets, so that, e.g.,

T[ab] :=
1

2
(Tab − Tba) .

The purpose of the indices is to indicate the type of the tensor and to make contrac-
tions (and symmetrisations) more explicit. Working with abstract indices also helps to
eliminate extraneous vector fields which appear in standard tensorial expressions, thus
clarifying their content.

If∇ is an affine connection on our manifoldM and V ∈ X(M) then the endomorphism
∇V of TM is written using abstract indices as∇aV

b, so that∇VW would be written as
V a∇aW

b. More generally one writes the covariant derivative of T b···cd···e as∇aT
b···c

d···e.
We may also occasionally refer to the connection∇ as∇a.

On a conformal manifold (M, c) we indicate the tensor product of some (unweighted)
vector bundle V → M with the density bundle E [w] by appending [w], i.e. V [w] =

V ⊗ E [w]. The conformal metric g is a section of Eab[2] and is commonly written as
gab. The ‘inverse’ gab of gab is a section of Eab[−2] and satisfies gabgbc = δbc . We will
use gab and gab to raise and lower indices, thus identifying Ea[w] with Eb[w + 2]. Note
that if we choose a scale g ∈ c and use it to trivialise the density bundles then this
identification reduces to the usual isomorphism TM ∼= T ∗M induced by g. Raising and
lowering indices with gab has the advantage of being scale independent (i.e. conformally
invariant). We denote the trace-free symmetric part of a covariant 2-tensor Tab by T(ab)0 .
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2.4.2 The Levi-Civita Connection on Densities

Let (M, c) be a conformal n-manifold, and fix a metric g ∈ c. The Levi-Civita con-
nection ∇ of g acts naturally on sections of ⊗2ΛnTM . This determines an action of
the Levi-Civita connection on sections of the conformal density bundles such that the
identification of ⊗2ΛnTM with E [2n] is parallel. If one trivialises the conformal den-
sity bundles using the metric g then this action of the Levi-Civita connection on sections
(which become functions) is simply given by the exterior derivative. Thus if f is a section
of E [w] then

∇f = σw d
(
σ−wf

)
(2.4.1)

where σ is the scale corresponding to g ∈ c. (The trivialisation of E [w] with respect to
g is given explicitly by E [w] ∋ τ 7→ σ−wτ ∈ E [0].)

Notice that the weight 1 density σ corresponding to g is parallel with respect to the Levi-
Civita connection of g. (Under the trivialisation of E [1] induced by g, σ corresponds to
the constant function 1.) As a consequence of this we observe that

∇g = 0 (2.4.2)

since g can be expressed as σ2g. Thus raising and lowering indices with the conformal
metric commutes with covariant differentiation with respect to the Levi-Civita connec-
tion of anymetric in the conformal class. Note that since σw is a global parallel section of
E [w] for each w the conformal density bundles are all flat for the Levi-Civita connection
of g.

2.4.3 Riemannian Curvature

Let (Mn, c) be a conformal manifold of dimension n ≥ 2. Fix a metric g ∈ c and let ∇
denote its Levi-Civita connection. We define the Riemannian curvature tensor Rab

c
d by

the Ricci identity
(∇a∇b −∇b∇a)V

c = Rab
c
dV

d (2.4.3)

for all sections V c of Ec = TM . The Ricci tensor is

Rab = Rca
c
b (2.4.4)
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and the scalar curvature isR = gabRab. (Since we have fixed a Riemannian metric g ∈ c,
it doesn’t really matter whether we use g or g to raise and lower indices, however stick-
ing with the conformal metric simplifies the conformal transformation laws of §§2.4.4.)
For n ≥ 3 the Riemannian curvature tensor naturally decomposes as

Rabcd = Wabcd + Pacgbd − Pbcgad − Padgbc + Pbdgac (2.4.5)

where the totally trace free tensorWabcd is theWeyl curvature and

Pab =
1

n− 2

(
Rab −

R

2(n− 1)
gab

)
(2.4.6)

is the Schouten tensor. We denote the trace of the Schouten tensor by P = gabPab. In
3-dimensions the Weyl curvature necessarily vanishes. For n = 2 we simply have

Rabcd = K (gacgbd − gbcgad) (2.4.7)

where K = 1
2
R is the Gauss curvature (as weight −2 density).

2.4.4 Conformal Transformations

Let (Mn, c) be a conformal manifold. If we conformally rescale g ∈ c to ĝ = Ω2g then
the respective Levi-Civita connections satisfy the transformation law

∇̂aV
b = ∇aV

b +ΥaV
b − VaΥ

b +ΥcV
cδba (2.4.8)

for any vector field V b, where Υa = Ω−1∇aΩ. (This can be easily seen from the Koszul
formula, or the local coordinate expression for the Christoffel symbols.) From this one
can compute the transformation law for the Riemannian curvature tensor. One obtains

R̂abcd = Rabcd − Ξacgbd + Ξbcgad + Ξadgbc − Ξbdgac (2.4.9)

where
Ξab = ∇aΥb −ΥaΥb +

1

2
ΥcΥ

cgab.

From (2.4.5) when n ≥ 3 one therefore has that

Ŵabcd = Wabcd (2.4.10)
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and
P̂ab = Pab −∇aΥb +ΥaΥb −

1

2
ΥcΥ

cgab. (2.4.11)

Note that we have lowered the indices on the respective Weyl tensors using the confor-
mal metric, so that Ŵabcd = Wabcd only holds when the Weyl tensorWabcd is thought of
as a section of Eabcd[2]. Tracing (2.4.11) yields

P̂ = P −∇aΥ
a +

(
1− n

2

)
ΥaΥ

a. (2.4.12)

From these one can easily obtain the transformation laws for the Ricci and scalar curva-
tures in n ≥ 3 dimensions. (Note Rab = (n− 2)Pab+Pgab.) When n = 2 we obtain the
Gauss curvature transformation law by tracing (2.4.9)

K̂ = K −∇aΥ
a. (2.4.13)

Remark 2.4.1. If we treat the Gauss curvature as a function (rather than as a conformal
weight −2 density) and write Ω as eΥ so that Υa = ∇aΥ then the transformation law
(2.4.13) becomes the more familiar

Kĝ = e−2Υ (Kg −∆gΥ) , (2.4.14)

cf. (2.1.1). Treating the curvature tensors/scalars as carrying natural density weights has
the effect of eliminating overall rescaling factors in the transformation laws.

It will also be useful to have the transformation law for the Levi-Civita connection on
1-forms

∇̂aωb = ∇aωb −Υaωb − ωaΥb +Υcωcgab (2.4.15)

obtained from (2.4.8) by duality, or by lowering indices using g (noting ∇̂g ̸= 0). We will
also need the transformation law for the Levi-Civita connection on conformal weight w
densities

∇̂af = ∇af + wΥaf (2.4.16)

which follows directly from (2.4.1). Combining (2.4.8) and (2.4.15) with (2.4.16) we have

∇̂aV
b = ∇aV

b + (w + 1)ΥaV
b − VaΥ

b +ΥcV
cδba (2.4.17)

and
∇̂aωb = ∇aωb + (w − 1)Υaωb − ωaΥb +Υcωcgab (2.4.18)
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where V b and ωb are sections of Eb[w] and Eb[w] respectively.

2.5 The Conformal Sphere

Liouville’s theorem in conformal geometry states that any conformal mapping between
connected open sets in Rn for n ≥ 3 is aMöbius transformation, i.e. is given by the com-
position of translations, orthogonal transformations, dilations, and inversions in spheres
[109, 108]. Inversion in the unit sphere is the map

x 7→ x

||x||2

which sends the origin in Rn to the point at infinity. This can be formalised by confor-
mally compactifying Euclidean space using inverse stereographic projection Rn ↪→ Sn.
We therefore think of conformal Rn as a subspace of the conformal sphere on which
the Möbius transformations become globally defined. For this reason we refer to the
sphere Sn with its standard conformal structure c = [ground] as the flat model space for
conformal geometry in dimensions n ≥ 3.

The group of Möbius transformations Möb(n) is naturally isomorphic to PO(n+ 1, 1),
the quotient of O(n + 1, 1) by its (finite) center. The group PO(n + 1, 1) acts on the
n-sphere via the following construction: Let Rn+1,1 denote Rn+2 equipped with the sig-
nature (n + 1, 1) inner product ⟨ · , · ⟩ represented in the standard coordinate basis by
diag(1, . . . , 1,−1). We identify the sphere Sn with the space of null (i.e. isotropic) lines
in the projectivisation of Rn+1,1. The action of O(n + 1, 1) = O(⟨ · , · ⟩) on Rn+1,1 pre-
serves the space of isotropic lines (through the origin) so that O(n + 1, 1) acts on Sn.
The center of O(n + 1, 1) acts trivially on the space of lines through the origin, so the
action descends to PO(n + 1, 1). It is easy to see that PO(n + 1, 1) acts by conformal
diffeomorphisms and hence by Möbius transformations. Writing the action explicitly
one can see that PO(n+ 1, 1) = Möb(n).

By the construction above PO(3, 1) acts conformally on the Riemann sphere S2 = C ∪
{∞}. Up to complex conjugation the action of an element of PO(3, 1) on the sphere is
given by a (holomorphic) Möbius transformation

z 7→ az + b

cz + d
(2.5.1)

where a, b, c, and d are complex numbers with ad − bc ̸= 0. However, the Liouville
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2.6 2D Möbius Structures

theorem does not hold in 2 dimensions; biholomorphic maps between open sets in the
plane form an infinite dimensional pseudogroup, whereas the group of Möbius transfor-
mations is 6-dimensional.

One way to obtain a Liouville-type theorem in 2 dimensions is to endow the Riemann
sphere with additional structure. The space of circles in S2 maps under stereographic
projection to the space of circles and lines in C. Specifying the space of (standard)
circles gives additional structure to the Riemann sphere; the 2-sphere with this struc-
ture is known as the Möbius sphere. Realising the 2-sphere as the celestial sphere (space
of null lines through the origin in R3,1) naturally endows it with the structure of the
Möbius sphere (circles are defined by intersecting the light cone in R3,1 with transverse
3-dimensional subspaces). It is well known that the only (orientation preserving) confor-
mal mappings between plane domains which preserve the space of lines and circles are
the Möbius transformations (2.5.1), so that a Liouville-type theorem holds for domains
in the Möbius sphere.

2.6 2D Möbius Structures

Möbius structures can be defined on conformal surfaces more generally. We define a
Möbius structure ([24], cf. [123]) on a conformal surface (M, c) to be a second order
linear differential operator

Dab : E [1] → E(ab)0 [1]

with the property that Dab − ∇(a∇b)0 is of order zero, where ∇ is the Levi-Civita con-
nection of any metric in c. Given a metric g ∈ c on a Möbius surface (M, c,D) we may
define a trace-free symmetric 2-tensor Pab by

Pabσ =
(
Dab −∇(a∇b)0

)
σ (2.6.1)

for any section σ of E [1]. One then computes using (2.4.16) and (2.4.18) that under the
conformal rescaling ĝ = Ω2g

P̂ab = Pab −∇aΥb +ΥaΥb +
1

2
(∇cΥ

c)gab −
1

2
ΥcΥ

cgab (2.6.2)
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where Υa = Ω−1∇aΩ. We define the symmetric 2-tensor

Pab = Pab +
1

2
Kgab. (2.6.3)

Recalling (2.4.13), i.e. K̂ = K −∇aΥ
a, we get that

P̂ab = Pab −∇aΥb +ΥaΥb −
1

2
ΥcΥ

cgab, (2.6.4)

cf. (2.4.11). We refer to Pab as the Rho-tensor of g (the Schouten tensor in higher dimen-
sions may also be called the Rho-tensor). A Möbius structure on a conformal surface
(M, c) may alternatively be described as an assignment of a symmetric Rho-tensor Pab
with trace K to each metric g ∈ c, satisfying (2.6.4), since

Dab = ∇(a∇b)0 + P(ab)0 . (2.6.5)

Remark 2.6.1. Prescribing the trace Paa of the Rho-tensor to be K allows us to write

Rabcd = Pacgbd − Pbcgad − Padgbc + Pbdgac. (2.6.6)

This is important in that it ensures the tractor connection constructed from the Möbius
structure, as in §§2.7.4 below, is normal (in the sense of [27]). In [23] a more general
notion of Möbius structure on conformal 2-manifolds is introduced, which amounts to
prescribing a ‘Rho-tensor’ Pab to each g ∈ c transforming according to (2.6.4) but with-
out the condition that Paa = K ; such a Möbius structure gives rise (or corresponds) to a
tractor connection which is normal if and only if Paa = K for some (equivalently any)
metric g ∈ c.

The term ‘Möbius structure’ in conformal geometry often refers to a manifold with atlas
whose transition functions are given byMöbius transformations. Such an atlas naturally
endows the manifold with a conformal structure; in 2-dimensions one can further de-
fine a Möbius structure Dab by defining Pab to be zero for the flat metric corresponding
to each chart. In higher dimensions these are conformally flat manifolds, and in 2 di-
mensions these correspond to what we will call (locally) flat Möbius structures, meaning
those Möbius structures for which the conformally invariant tensor Cabc = 2∇[aPb]c is
identically zero. (One can easily verify these claims using the tractor calculus of §2.7.)
Clearly the Möbius sphere defined in §2.5 has a natural atlas whose transition functions
are Möbius transformations. The Möbius sphere is the (globally) flat model space for
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2.7 The Tractor Calculus

Möbius surfaces.

We will use the term Möbius conformal sphere in n ≥ 2 dimensions to refer to the usual
conformal sphere in the case n ≥ 3 and to the Möbius sphere in the case n = 2.

2.7 The Tractor Calculus

The (Möbius) conformal sphere arises naturally as the space of null lines in the projec-
tivisation of Rn+1,1. It therefore comes naturally equipped with a flat vector bundle of
rank n+ 2, the standard tractor bundle T Sn. A standard tractor at a point x ∈ Sn corre-
sponding to a null line ℓ ∈ P(Rn+1,1) is a constant vector field in Rn+1,1 along ℓ. Parallel

Rn+1,1

future null
cone C+

ℓ

a tractor
at x = ℓ

Figure 2.7.1: An element of TxSn is a homogeneous of degree zero vector field along
the line ℓ ∈ P(Rn+1,1) corresponding to x.

transport in T Sn is simply given by the affine space structure of Rn+1,1. This obser-
vation is the starting point for the development of the conformal tractor calculus, which
originated in the work of Tracey Thomas [135, 136, 137] and in the later independent ‘re-
discovery’ of Bailey, Eastwood and Gover [7]. The tractor calculus is closely connected
to the canonical conformal Cartan connection of [36] (for expositions see [100, 126, 33]),
being the natural calculus on associated bundles (see [26, 27], cf. [69]).

Here we present the basics of the tractor calculus for (Möbius) conformal manifolds,
following the style of [7, 50, 44].

2.7.1 The Standard Tractor Bundle

Let (M, c) be a conformal n-manifold, n ≥ 3. The standard tractor bundle of (M, c) is a
rank n+2 vector bundle T onM , also denoted EA (we use capital Latin abstract indices
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from the start of the alphabet); given a choice of metric g ∈ c it may be identified with
the direct sum bundle

[EA]g = E [1]⊕ Ea[−1]⊕ E [−1]; (2.7.1)

we write vA g
= (σ, µa, ρ),

vA
θ
=

 σ

µa

ρ

 , or [vA]g =

 σ

µa

ρ


if an element or section of EA is represented by (σ, µa, ρ) with respect to this iden-
tification; the identifications given by two metrics g and ĝ = Ω2g are related by the
transformation law

[EA]g ∋

 σ

µa

ρ

 ∼

 1 0 0

Υa δab 0

−1
2
ΥbΥb −Υb 1


 σ

µb

ρ

 ∈ [EA]ĝ (2.7.2)

whereΥa = Ω−1∇aΩ. It is easy to check that∼ is an equivalence relation on the disjoint
union of the spaces [EA]g, so that EA is well-defined as the quotient of the disjoint union
of the [EA]g over g ∈ c by (2.7.2).

On a 2-dimensional conformal manifold we may also define the bundle EA as above.
However this bundle is not a ‘tractor bundle’ in the sense that EA does not carry a canon-
ical ‘tractor connection’. (The term ‘tractor bundle’ indicates a bundle with specific addi-
tional structure [26, 27], much like the notion of a ‘G-bundle’.) If the conformal structure
is supplemented with a Möbius structure then there is a canonical ‘tractor connection’
(see (2.7.7)) and in this case we refer to EA as the standard tractor bundle.

Remark 2.7.1. The term ‘standard’ in ‘standard tractor bundle’ refers not to canonicity,
but to the standard representation Rn+2 (also denoted Rp+1,q+1) of the conformal group
G = O(p + 1, q + 1) to which the standard tractor bundle corresponds; T is the vector
bundle induced from the Cartan frame bundle by the representationRn+2 (see [26]). The
representation Λ2(Rn+2)∗ of G can be identified with the adjoint representation g and
the corresponding induced bundle E[AB] is called the adjoint tractor bundle. The standard
tractor bundle is fundamental in that any irreducible representation ofG can be obtained
as an irreducible subspace of ⊗kRn+2 for some k by imposing tensor symmetries.
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2.7 The Tractor Calculus

2.7.2 Splitting Tractors

Here we introduce some convenient notation for working with tractors.

From (2.7.2) it is clear that there is an invariant inclusion of E [−1] into EA given with
respect to any g ∈ c by the map

ρ 7→

 0

0

ρ

 .

Correspondingly there is an invariant sectionXA of EA[1] such that the above displayed
map is given by ρ 7→ ρXA. The weight 1 canonical tractor XA can be written as

XA =

 0

0

1


with respect to any choice of metric g. Note that XA dually gives a map EA → E [1]
sending vA to XAvA.

Given a fixed metric g, we also get the corresponding splitting tractors of [81]

ZA
b

g
=

 0

δab
0

 and Y A g
=

 1

0

0


which both have weight −1. A standard tractor vA g

= (σ, µa, ρ) may instead be written
as vA = σY A+ZA

b µ
b+ρXA where we understand that Y A and ZA

b are defined in terms
of the splitting induced by g. If ĝ = Ω2g then by (5.3.3) we have

ẐA
b = ZA

b +ΥbX
A, (2.7.3)

Ŷ A = Y A −ΥbZA
b − 1

2
ΥbΥ

bXA. (2.7.4)
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2.7.3 The Tractor Metric

The standard tractor bundle EA carries a canonical tractor metric gAB . If vA
g
= (σ, µa, ρ)

then

gABv
AvB = ( σ µa ρ )

 0 0 1

0 gab 0

1 0 0


 σ

µb

ρ

 = 2σρ+ µaµ
a. (2.7.5)

We use the tractor metric gAB to raise and lower tractor indices, identifying the standard
tractor bundle EA with its dual EA. The various contractions of the splitting tractors (for
a given g ∈ c) using the tractor metric are described by the table:

Y A ZA
a XA

YA 0 0 1

ZAb 0 gab 0

XA 1 0 0

(2.7.6)

2.7.4 The Tractor Connection

Let (M, c) be a conformal manifold of dimension n ≥ 3. In terms of a metric g ∈ c

the (normal) standard tractor connection ∇T (or simply ∇) is defined by the following
formula

∇a

 σ

µb

ρ

 =

 ∇aσ − µa

∇aµ
b + Pa

bσ + δbaρ

∇aρ− Pabµ
b

 . (2.7.7)

If a section of EA is given by [vA]g = (σ, µa, ρ) then if ĝ = Ω2g by (2.7.2) we have
[vA]ĝ = (σ̂, µ̂a, ρ̂) where σ̂

µ̂a

ρ̂

 =

 σ

µa +Υaσ

ρ−Υaµ
a − 1

2
ΥaΥ

aσ

 (2.7.8)
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2.7 The Tractor Calculus

with Υa = ∇a log Ω. To see that the tractor connection ∇ is well-defined, we just need
to check that ∇̂aσ̂ − µ̂a

∇̂aµ̂
b + P̂a

bσ̂ + δbaρ̂

∇̂aρ̂− P̂abµ̂
b

 =

 1 0 0

Υb δbc 0

−1
2
ΥcΥc −Υc 1


 ∇aσ − µa

∇aµ
c + Pa

cσ + δcaρ

∇aρ− Pacµ
c


(2.7.9)

using the transformation laws (2.4.16) and (2.4.17) for the Levi-Civita connection and
the transformation law (2.4.11) for the Schouten tensor. (The explicit calculation can be
found in [50].)

Since the conformal transformation law (2.6.4) for the Rho-tensor of a 2-dimensional
conformal Möbius structure is formally the same as the conformal transformation law
(2.4.11) for the Schouten tensor in higher dimensions, the tractor connection (2.7.7) is
also well-defined for 2-dimensional Möbius structures with Pab given by the Rho-tensor
of g.

It is often useful to differentiate expressions such as ηaZa
AY

B using the Leibniz rule,
where ZA

a and Y A are splitting tractors determined by g ∈ c. To do this we couple
the tractor connection ∇ with the Levi-Civita connection of g. By differentiating the
expression σY B + µbZB

b + ρY B using the Leibniz rule and comparing with (2.7.7) one
obtains that

∇aX
B = ZB

a , (2.7.10)

∇aZ
B
b = −PabXB − gabY

B, (2.7.11)

and
∇aY

B = PabZ
Bb. (2.7.12)

Noting that gAB = 2X(AYB) + gabZ
a
AZ

b
B these formulae give an easy way to check that

∇agBC = 0. (2.7.13)

2.7.5 The Tractor Curvature

Coupling the tractor connection with any torsion free affine connection the tractor cur-
vature κabCD satisfies the Ricci-type identity

(∇a∇b −∇b∇a)v
C = κabCDvD. (2.7.14)
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Coupling the tractor connection with the Levi-Civita connection of some metric g ∈ c

one may straightforwardly calculate (using (2.4.5)) that

(∇a∇b −∇b∇a)

 σ

µc

ρ

 =

 0 0 0

Cab
c Wab

c
d 0

0 −Cabd 0


 σ

µd

ρ

 (2.7.15)

where Cabc = 2∇[aPb]c is the Cotton tensor of g. In three dimensions the Weyl curvature
vanishes and the Cotton tensor is conformally invariant. In the case of a 2-dimensional
Möbius structure the same result (2.7.15) holds withWab

c
d replaced by zero (because of

(2.6.6)), and with Cabc = 2∇[aPb]c defined in terms of the Rho-tensor of g.

Remark 2.7.2. From this one can easily see that, starting with the (Möbius) conformal
sphere, the construction of §§2.7.1–§§2.7.4 yields a globally flat tractor bundle; this is
consistent with our discussion of tractors on the model in our introduction to §2.7. One
can then reinterpret objects such as the tractor metric gAB and canonical tractor XA.
It is easy to see that in the model case the tractor metric corresponds to the constant
metric coming from Rn+1,1. Also, in the model case a point x ∈ Sn defines a line ℓ ⊂
TxSn ∼= Rn+1,1, giving rise to a canonical line subbundle T 0Sn of T Sn. By considering
sections of the future null cone C+ and the induced metrics on them (noting §§2.3.2) one
may naturally identify T 0Sn with E [−1], and this gives rise to the canonical inclusion
E [−1] ↪→ EA. On the model sphere sections of the density bundle E [w] can be identified
with functions on the null cone C ⊂ Rn+1,1 which are homogeneous of degree w. The
canonical tractor XA can therefore be identified with the Euler vector field of Rn+1,1

restricted to C. For more details on the correspondence between the two constructions
in the model case see [44].

2.7.6 Invariant Tractor Operators

Differential splitting operators play an important role in tractor calculus, e.g., in the
‘BGG machinery’ of [35, 25] (see [127] for a treatment of the conformal case using the
tractor formalism as presented here). Here we present some of the most basic and impor-
tant families of such operators. The following applies in the usual setting of conformal
manifolds with dimension n ≥ 3, but note that one also obtains corresponding opera-
tors, mutatis mutandis, in the case of 2-dimensional Möbius structures.
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2.7 The Tractor Calculus

2.7.6.1 The tractor D-operator(s)

Let EΦ denote any tensor product of copies of EA and EA (we refer to such bundles, and
any subbundles obtained by imposing tensor symmetries, as tractor bundles).

Definition 2.7.3. On a conformal n-manifold (M, c) the tractor D-operator of [136, 7]

DA : EΦ[w] → EA ⊗ EΦ[w − 1] (2.7.16)

is defined by

DAf
Φ = w(n+ 2w − 2)YAf

Φ + (n+ 2w − 2)Za
A∇af

Φ −XA(∆ + wP )fΦ (2.7.17)

where we calculate with respect to some metric g ∈ c, so∇ denotes the tractor connec-
tion coupled with the Levi-Civita connection and ∆ = gab∇a∇b.

Using the transformation laws of §§2.4.4 one can easily check directly that DA does not
depend on the choice of metric used to define it (an explicit calculation can be found
in [50]). A key property of the tractor D-operator is that it can be iterated to produce
higher order invariants associated to a given weighted tractor. Note that the tractor D-
operator fails to be a splitting operator (i.e. to have a linear bundle map as left inverse)
at the critical weights w = 0 and w = 1− n

2
. At the critical weight w = 1− n

2
we have

DAf
Φ = XALf

Φ (2.7.18)

where L is the (tractor twisted) conformal Laplacian

L = −∆+
n− 2

4(n− 1)
R. (2.7.19)

The tractorD-operator can be used to produce further invariant operators. In particular,
we note that if f is section of E [2− n

2
] then

LDA = XAP4f (2.7.20)
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where P4 is the Paneitz operator [116]

P4f = ∆2f +∇a

[(
4P ab − (n− 2)Pgab

)
∇bf

]
+

(n− 4)

4

[
−2∆P − 4PabP

ab + nP 2
]
f. (2.7.21)

Continuing along these lines one may use the tractor D-operator to produce explicit
(Ricci calculus) formulae [81] for the ‘conformally invariant powers of the Laplacian’ (or
‘GJMS operators’) P2k of [87].

Related to the tractor D-operator is the g dependent operator D̃A given by wfΦYA +

(∇af
Φ)Za

A on a section fΦ of EΦ[w]. The operator

DABf
Φ = 2X[AD̃B]f

Φ (2.7.22)

does not depend on the choice of metric g ∈ c and is known as the double-D-operator.
The double-D-operator is closely related to the ‘fundamental D-operator’ of [27]. The
relationships between the various ‘D-operators’ are expounded in [26]. In particular,
the tractor D-operator can be derived from the double-D-operator by noting [74] that

gADDA(BDC)0Df
Φ = X(BDC)0f

Φ (2.7.23)

for any weighted tractor field fΦ and that the map vA 7→ X(AvB)0 is injective.

2.7.6.2 Middle operators

Here we present some members of a class of important conformally invariant first or-
der operators, used by Eastwood to produce conformally invariant operators by ‘curved
translation’ (see, e.g., [50]).

Definition 2.7.4. Themiddle operator acting on weighted covector fields is the operator
Ma
A : Ea[w] → EA[w − 1] given with respect to a choice of g ∈ c by

Ma
Aτa = (n+ w − 2)Za

Aτa −XA∇aτa. (2.7.24)

To see that the operator defined by (2.7.24) is well-defined one simply observes that
(2.4.18) implies (when ĝ = Ω2g and Υa = Ω−1∇aΩ)

∇̂aτa = ∇aτa + (n+ w − 2)Υaτa (2.7.25)
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for τa of weight w, whereas from (2.7.3) we have that Ẑa
A = Za

A + ΥaXA. The operator
Ma
A is a splitting operator except when w = 2 − n, in which case τa 7→ ∇aτa is an

invariant operator.

One can similarly define a middle operator on weighted differential forms [127]. In
particular, on weighted 2-forms we may define the operatorMab

AB given by

Mab
ABτab = (n+ w − 4)Za

AZ
b
Bτab − 2X[AZ

b
B]∇aτab. (2.7.26)

Again it is straightforward to verify the invariance of this operator. By considering
simple sections ω[bηc] of E[bc][w] where ωb has weight 0 and ηc has weight w one obtains
from (2.4.18) and the Leibniz rule the transformation law

∇̂aτbc = ∇aτbc + (w − 1)Υaτbc + 2τa[bΥc] − 2Υdga[bτc]d. (2.7.27)

Tracing one obtains that

∇̂aτab = ∇aτab + (n+ w − 4)Υaτab (2.7.28)

for τab a 2-form of weight w. Noting that Za
AZ

b
Bτab = Za

[AZ
b
B]τab since τab = τ[ab], the

invariance ofMab
AB then follows immediately from (2.7.3).

2.7.7 The Curvature Tractor

Themiddle operatorMab
AB is strongly invariant, meaning that it can be applied toweighted

tractor valued 2-forms by coupling the Levi-Civita connection appearing in the defini-
tion ofMab

AB with the tractor connection. ApplyingMab
AB to the tractor curvature κabCD

yields the curvature tractor (or ‘W -tractor’) of [75] (cf. [127])

WABCD = Mab
ABκabCD. (2.7.29)

ComputingWABCD explicitly with respect to a metric g ∈ c one obtains

WABCD = (n− 4)
(
ZA

aZB
bZC

cZD
dWabcd − 2ZA

aZB
bX[CZD]

dCabd

− 2X[AZB]
bZC

cZD
dCcdb

)
+ 4X[AZB]

bX[CZD]
dBdb (2.7.30)
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where Bdb is the Bach tensor

Bab = ∇cCcba + P dcWdacb. (2.7.31)

Remark 2.7.5. (1) In [75], motivated by consideration of the action of the commutator
[DA,DB] on standard tractors, the curvature tractorWABCD was defined as

3

n− 2
DE
(
X[EZ

a
AZ

b
B]κabCD

)
.

Computing this explicitly with respect to g ∈ c yields (2.7.30) so the two definitions are
equivalent. Note that by (2.7.3) X[EZ

a
AZ

b
B] is an invariant object, so that this is also a

manifestly invariant definition.

(2) The curvature tractor has Weyl tensor symmetries. In [81] it is shown to be straight-
forwardly related to the curvature of the (Ricci flat) ambient metric; the exception to
this relation is n = 4 whereWABCD (being equivalent to the Bach tensor) is instead the
obstruction which must vanish for the ambient metric to exist (formally) to all orders.

The curvature tractor and tractor D-operator form the basis for a straightforward con-
struction of all (weighted) scalar conformal invariants in odd dimensions [75] (there is
also a closely related approach [8] using the ambient metric). Essentially, one imitates
the Riemannian case where a generating set of scalar invariants can be constructed
by tensoring together covariant derivatives of the Riemannian curvature tensor and
making complete contractions; in the conformal case one simply replaces Rabcd with
WABCD (orX[EZ

a
AZ

b
B]κabCD) and the covariant derivative∇a with DA (orDAA′). In fact

a slight improvement on this is required, which involves (roughly speaking) the can-
cellation of XA’s (see [75]); this idea is illustrated for the case of invariant operators in
the derivations of the tractor D-operator from the double-D-operator (2.7.23), the con-
formal Laplacian from the tractor D-operator (2.7.18), and of the Paneitz operator from
the tractorD-operator and the conformal Laplacian (2.7.20). The even dimensional case
is much more subtle, and is far from being completely resolved (partial results can be
found in [8, 75]). To produce (weighted) tensor invariants one starts by constructing
weighted tractor invariants in the obvious way as before (now making incomplete con-
tractions); one then uses the natural bundle projections arising from the composition
series structure of EA, for example,

XA : EA[w] → E [w + 1] and X
[A
Z
B]
b : E[AB][w] → Eb[w + 2].
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2.7 The Tractor Calculus

Such a projection may be identically zero in which case another invariant projection is
defined, for example, if XAIA = 0 then Za

AIA is invariant (cf. §§5.3.9).
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3 The Geometry of Conformal
Embeddings

We now turn to the consideration of (nondegenerate) submanifolds in conformal man-
ifolds. We consider the induced conformal structure on such submanifolds as intrinsic,
so that we may equivalently consider a conformal embedding ι : Σ ↪→ M between
conformal manifolds (Σm, cΣ) and (Mn, c) with n > m ≥ 2. A choice of metric g ∈ c

determines a metric gΣ ∈ cΣ by pullback. In seeking to construct local invariants and in-
variant operators on conformally embedded submanifolds it is natural to compute with
respect to the pair of metrics (g, ι∗g) and look for constructions which are invariant un-
der conformal rescalings of g. However, one can only get so far with this naïve approach.
Here we present the basics of the local theory of conformal hypersurfaces in Riemannian
manifolds as developed in [7, 21, 90, 128, 141] using tractor calculus. We then extend this
theory to the case of arbitrary codimension nondegenerate submanifolds in conformal
manifolds. This is consistent with work of Burstall and Calderbank [22, 23].

3.1 Conformal Hypersurfaces and Scales

Herewe recall some basic facts concerning the geometry of hypersurfaces in Riemannian
manifolds, from the point of view of conformal geometry.

3.1.1 Notation

We consider a conformal embedding ι : Σ ↪→ M between Riemannian signature con-
formal manifolds (Σm, cΣ) and (Mn, c), now with n− 1 = m ≥ 2. We retain the usual
abstract index notation Ea for the tangent bundle ofM , and use lower case Latin abstract
indices from the later part of the alphabet (i, j, k, l, etc.) for Σ. So TΣ is alternatively
denoted by E i, and V i denotes a submanifold tangent vector or vector field. We denote
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the weight w submanifold density bundle by EΣ[w] and the ambient density bundle by
E [w]. We denote the conformal metric of (Σ, cΣ) by gij and its inverse by gij .

We identify Σ with its image inM and write Ea|Σ → Σ for the restriction of Ea → M

to fibers over Σ (i.e. for the pullback bundle ι∗TM ). The submanifold density bundle
EΣ[w] can be identified with the restriction E [w]|Σ of the ambient density bundle E [w]
to Σ, since choosing any ambient metric g ∈ c trivialises each of these bundles and the
resulting identification is clearly metric independent.

We denote the tangent map Tι : TΣ → TM , considered as a section of T ∗Σ ⊗ TM |Σ,
by Πa

i . So if U = Tι(V ) then Ua = Πa
i V

i. We define the section Πi
a of T ∗M |Σ ⊗ TΣ to

be the map TM |Σ → TΣ given by orthogonal projection with respect to the conformal
metric (or equivalently any metric in c). Clearly Πi

aΠ
a
j = δij , where δij is the (abstract)

Kronecker delta: δijV j = V i. The composition Πa
iΠ

i
b gives the orthogonal projection

TM |Σ → Tι(TΣ), which we also denote by Πa
b . Note also that

gij = Πa
iΠ

b
jgab (3.1.1)

along the submanifold Σ.

3.1.2 The Unit Normal Field

Given a choice of metric g ∈ c and a (possibly local) orientation of the normal bundle,
one may talk about the unit normal field. However, in conformal geometry it is more
natural to work with the corresponding weight−1 normal field which is normed by the
conformal metric (and hence conformally invariant). We assume a fixed orientation of
the normal bundle, working locally if necessary.

Definition 3.1.1. By the (weighted) unit normal field of a conformal hypersurface we
mean the section Na of Ea[−1]|Σ satisfying gabN

aN b = 1 and compatible with the ori-
entation. We refer to the corresponding sectionNa = gabN

b of Ea[1]|Σ as the (weighted)
unit conormal field.

It is easy to see that

δab = Πa
b +NaNb and gab = gijΠ

i
aΠ

j
b +NaNb (3.1.2)

along Σ.
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3.1 Conformal Hypersurfaces and Scales

3.1.3 Tangential Derivatives

Let g be a metric in c, and let ∇ denote its Levi-Civita connection. Since a connection
can be thought of as differentiating vector fields along curves, by restricting to curves
in Σ the connection ∇ induces a connection on TM |Σ → Σ. We will refer to this
connection as the pullback connection, denoted ι∗∇. When using abstract index notation
we distinguish between∇ and ι∗∇ by denoting them∇a and∇i respectively. One may
equivalently define∇i to act on a section V a of Ea|Σ by

∇iV
b = Πa

i∇aṼ
b (3.1.3)

along Σ, where Ṽ b is any extension of V b toM .

3.1.4 The Submanifold Levi-Civita Connection

If g ∈ c then the Levi-Civita connection∇ of g induces the Levi-Civita connectionD of
gΣ = ι∗g by [101]

DiV
j = Πj

b∇iV
b (3.1.4)

where V b = Πb
kV

k. Dually, on a 1-form ωj we have

Diωj = Πb
j∇iωb (3.1.5)

where ωb = Πk
bωk.

3.1.5 The Second Fundamental Form

Here we establish our convention for the (Riemannian) second fundamental form.

Definition 3.1.2. Given a metric g ∈ cwe define the second fundamental form II by the
Gauss formula

∇XY = DXY + II(X, Y )N (3.1.6)

for all X, Y ∈ X(Σ), where ∇ and D are the Levi-Civita connections of g and ι∗g re-
spectively and N is the (weighted) unit normal field. (As usual we are implicitly using
the pullback connection ι∗∇ on the left hand side.)
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This defines a bilinear form II , which is of conformal weight 1 since N has conformal
weight −1. (So trivialising the density bundles using g one gets the usual second fun-
damental form, with our sign convention.) It is easy to see that the bilinear form II is
symmetric since both∇ and D are torsion free.

In terms of abstract index notation, the Gauss formula can be written as

∇iV
c = Πc

jDiV
j + IIijN

cV j

were V c = Πc
kV

k. Contracting both sides of the above with Nc and using the Leibniz
rule (noting that NcV

c = 0) yields that IIijV j = −V jΠc
j∇iNc for all sections V j of E j .

Thus
IIij = −Πb

j∇iNb. (3.1.7)

3.1.5.1 Conformal Transformations

From the transformation law (2.4.18) for the ambient Levi-Civita connection we have

∇̂iNb = ∇iNb +Πa
iΥ

cNcgab

since the unit conormal has weight 1 and Πa
iNa = 0. Thus from (3.1.7) we have the

conformal transformation law

ÎI ij = IIij −ΥcN
cgij (3.1.8)

for the second fundamental form under the conformal rescaling ĝ = Ω2g, with Υa =

∇a log Ω. Since the transformation law is by trace only we see that the trace free part
II(ij)0 of the second fundamental form is conformally invariant. Denoting II(ij)0 by I̊I ij
we have

IIij = I̊I ij +Hgij (3.1.9)

where H = 1
m
gijIIij is the mean curvature. Observe that the mean curvature has con-

formal weight −1. The mean curvature transforms according to

Ĥ = H −ΥaN
a. (3.1.10)
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3.1 Conformal Hypersurfaces and Scales

3.1.6 The Gauss and Codazzi-Mainardi Equations

Let us recall the well known Gauss and Codazzi-Mainardi equations which express the
components of the ambient curvature along the hypersurface in terms of the intrin-
sic curvature and the second fundamental form. See, e.g., [43, 115] for derivations, cf.
§§6.1.7.

Fix a metric g ∈ c. We denote the full projection Πa
iΠ

b
jΠ

c
kΠ

d
lRabcd of the ambient Rie-

mannian curvature tensor along Σ by Rijkl. The Gauss equation for the hypersurface Σ
is

Rijkl = rijkl + IIilIIjk − IIikIIjl (3.1.11)

where rijlk is the Riemannian curvature tensor of gΣ = ι∗g. Denoting Πa
iΠ

b
jΠ

c
kRabcdN

d

by RijlN the Codazzi-Mainardi equation is

RijkN = −2D[iIIj]k (3.1.12)

where D is the Levi-Civita connection of gΣ.

3.1.7 Minimal Scales

Here we present a useful technical lemma which was observed in, e.g., [21, 78].

Lemma 3.1.3. Given any metric gΣ ∈ cΣ there exists a metric g ∈ c extending gΣ (i.e.
such that gΣ = ι∗g) for which Σ has vanishing mean curvature.

Proof. Fix gΣ ∈ cΣ and let g ∈ c be any metric with gΣ = ι∗g with corresponding
scale σ. The mean curvature H of Σ has conformal density weight −1, so the usual
(Riemannian) mean curvature function is σH . Similarly, the usual (Riemannian) unit
conormal is σ−1Na. Consider a smooth function Υ onM which, in a neighbourhood of
Σ, is given by sσH where s is a normalised defining function forΣ (meaning s|Σ ≡ 0 and
∇as|Σ = σ−1Na). Then the metric ĝ = e2Υg satisfies ι∗ĝ = gΣ and has mean curvature

Ĥ = H −ΥcN
c (3.1.13)

whereΥc = ∇cΥ by (3.1.10). Computing that∇cΥ = HNc along Σ (since∇aσ = 0 and
s|Σ ≡ 0) we obtain Ĥ = 0.
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Definition 3.1.4. We refer to a scale σ (or the corresponding metric g ∈ c) for which
H ≡ 0 as a minimal scale.

Notice that if g and ĝ = Ω2g both correspond to minimal scales then Υa = ∇a log Ω

satisfies
ΥaN

a = 0. (3.1.14)

3.1.8 The Natural Möbius Structure on 2D Conformal
Hypersurfaces

A conformal embedding of a conformal surface (Σ2, cΣ) into a conformal 3-manifold
(M3, c) induces a natural Möbius structure on Σ. The notion we present here is termed
the ‘induced conformal Möbius structure’ in [23].

Definition 3.1.5. The (normal) induced Möbius structure on a conformally embedded
surface is defined by associating to each metric gΣ ∈ cΣ the Rho-tensor

pij = P(ij)0 +
1

2
Kgij (3.1.15)

where Pij is the projection Πa
iΠ

b
jPab of the Schouten tensor of any minimal scale g ∈ c

which extends gΣ.

To see that this gives a well-defined Möbius structure consider any two minimal scales
g, ĝ ∈ c for Σ, with ĝ = Ω2g. By (2.4.11) along with (3.1.5) and (3.1.14) we have

P̂ij = Pij − Πa
iΠ

b
j∇aΥb +ΥiΥj −ΥcΥ

cgij

= Pij −DiΥj +ΥiΥj −ΥkΥ
kgij (3.1.16)

where Υa = Ω−1∇aΩ, Υi := Ω−1DiΩ = Πa
iΥa, and D is the Levi-Civita connection

of gΣ = ι∗g. Thus if ĝΣ = gΣ (i.e. Ω|Σ ≡ 1) then Υi = 0 and P̂ij = Pij , so Pij
does not depend on the choice of minimal scale g ∈ c extending gΣ. By tracing (3.1.16)
we see that Pii has the same conformal transformation law as the Gauss curvature K
(their difference is a weight−2 scalar invariant). The computation therefore shows that
the Rho tensor pij transforms in the appropriate way under conformal rescalings of the
submanifold metric.
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3.1 Conformal Hypersurfaces and Scales

Remark 3.1.6. By (3.1.16) the assignment to each metric g ∈ c of the ‘Rho-tensor’ p̌ij =
Πa
iΠ

b
jPab, where Pab is the Schouten tensor of any minimal scale g ∈ c extending gΣ,

gives rise to a Möbius structure in the more general sense of [23] (cf. Remark 2.6.1).
In [23] this is termed the ‘induced Möbius structure’. This Möbius structure (and the
corresponding tractor connection) was used in the earlier work of [21]. Note that if
g ∈ c is an arbitrary metric extending gΣ then p̌ij = Πa

iΠ
b
jPab + HI̊I ij +

1
2
H2gij (cf.

(3.2.16)).

Proposition 3.1.7. If g ∈ c is an arbitrary metric extending gΣ then

pij = P(ij)0 +HI̊I ij +
1

2
Kgij (3.1.17)

where Pij denotes the projection Πa
iΠ

b
jPab of the ambient Schouten tensor.

Proof. To verify this it suffices to check that the right hand side is unchanged under
conformal rescalings of g to ĝ = e2Υg with Υ|Σ ≡ 0 (since using Lemma 3.1.3 we may
take ĝ to be minimal). Note that under such a rescaling gΣ (and hence K) does not
change. Note also that ∇iΥ = 0 and Υa = ∇aΥ is normal. Writing Υb as (ΥcN

c)Nb

(2.4.11) one then has

P̂(ij)0 = P(ij)0 − Πb
(j∇i)0 [(ΥcN

c)Nb]

= P(ij)0 − (ΥcN
c)Πb

(j∇i)0Nb (since Πb
jNb = 0)

= P(ij)0 + (ΥcN
c)II(ij)0 (by (3.1.7))

as required by the mean curvature transformation law (3.1.10).

(Alternatively, to directly compute (3.1.17) onemay rescale g to a minimal scale ĝ = e2Υg

with ι∗ĝ = gΣ by takingΥ as in the proof of Lemma 3.1.3 and then rewrite P̂(ij)0+
1
2
Kgij

in terms of the metric g.)

In the case where the conformal surface already carries an intrinsic Möbius structure,
wemay define the notion of aMöbius conformal embedding to be a conformal embedding
for which the induced Möbius structure agrees with the intrinsic one. Just as we may
regard the induced conformal structure on a nondegenerate submanifold of a conformal
manifold as intrinsic, we may also regard the (normal) induced Möbius structure on a
conformal surface as intrinsic. Given gΣ ∈ cΣ we may therefore refer to pij as the
intrinsic Rho-tensor.
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3.2 Conformal Hypersurfaces and Tractors

Here we present the basic conformally invariant calculus for hypersurfaces developed in
[7, 21, 90, 128, 141]. As in §3.1 we consider a conformal embedding ι : Σ ↪→M between
Riemannian signature conformal manifolds (Σm, cΣ) and (Mn, c), with n− 1 = m ≥ 2.

We denote the standard tractor bundle ofM by EA as usual, using abstract indices from
the beginning of the alphabet. The standard tractor bundle of Σ will be denoted by EI ,
and we will use abstract indices I , J ,K , L, I ′, etcetera. When using index free notation
we denote the standard tractor bundles ofM and Σ respectively by TM and T Σ.

3.2.1 The Normal Tractor

Following [7] we define the (unit) normal tractor ofΣ to be the sectionNA of EA|Σ given
by

NA g
=

 0

Na

H

 (3.2.1)

for any g ∈ c where H is the mean curvature of Σ with respect to g. Comparing the
transformation law (3.1.13) for the mean curvature with the tractor transformation law
(2.7.8) we see that NA is well-defined. Clearly NANA = 1. Note that if g is a minimal
scale then

NA g
=

 0

Na

0

 . (3.2.2)

Remark 3.2.1. The normal tractor is closely related to the conformal Robin operator δN ,
which supplies the conformal Laplacian with self adjoint elliptic boundary conditions
(see, e.g., [21]). The conformal Robin operator can be defined on ambient densities of
any weight (not just 1− n

2
) and is given by

δNf = Na∇af + wHf (3.2.3)

along Σ for any section f of E [w].

The normal tractor allows us to split the standard tractor bundle of M along Σ as an
orthogonal direct sum

TM |Σ = N⊥ ⊕N (3.2.4)
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3.2 Conformal Hypersurfaces and Tractors

whereN is the real line bundle spanned by the normal tractor (the ‘normal tractor bun-
dle’). We write

ΠA
B = δAB −NANB (3.2.5)

for the orthogonal projection TM |Σ → N⊥.

3.2.2 Relating Tractor Bundles

The following theoremwas implicit in [21] andmade explicit in [90] (for the casem ≥ 3)
cf. [78].

Theorem 3.2.2. The hypersurface standard tractor bundle T Σ is canonically isomorphic
to the orthogonal complement N⊥ of the normal tractor bundle by a metric and filtration
preserving bundle isomorphism. The isomorphism T Σ → N⊥ is given explicitly by

vI
gΣ=

 σ

µi

ρ

 ΠA
I7−−→ vA

g
=

 σ

µa

ρ

 (3.2.6)

where µa = Πa
i µ

i and g is any minimal scale extending gΣ.

Proof. Let us start by fixing gΣ ∈ cΣ and g a minimal scale for which ι∗g = gΣ. We
need to show that the above map is unchanged if we replace g by ĝ = Ω2g and gΣ by
ĝΣ = Ω2gΣ, with ĝ a minimal scale. IfΥa = Ω−1∇aΩ andΥi = Ω−1DiΩ (= Πa

iΥa) then
by (3.1.14) along Σ we have

Υa = Πi
aΥi.

From this we see that the following diagram

[EI ]gΣ −→ [EA]g|Σ 1 0 0

Υj δji 0

−1
2
ΥkΥk −Υi 1

 y y
 1 0 0

Υb δba 0

−1
2
ΥcΥc −Υa 1


[EJ ]ĝΣ −→ [EB]ĝ|Σ
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commutes, where the horizontal maps have respective matrix representations 1 0 0

0 Πa
i 0

0 0 1

 and

 1 0 0

0 Πb
j 0

0 0 1

 .

Therefore the map (3.2.6) is well-defined.

If g ∈ c is an arbitrary metric (with corresponding scale σ) and gΣ = ι∗g then the map
(3.2.6) of Theorem 3.2.2 is given by (cf. [78, 90])

vI
gΣ=

 σ

µi

ρ

 ΠA
I7−−→ vA

g
=

 σ

µa −HNaσ

ρ− 1
2
H2σ

 . (3.2.7)

This can be seen by rescaling g to a minimal scale ĝ with the same induced metric gΣ
as in the proof of Lemma 3.1.3 and then using the ambient tractor transformation law
(2.7.8).

We refer to the map ΠA
I : EI → EA|Σ as the standard tractor map of the conformal

embedding. In index free notation we write this map as

T ι : T Σ → TM. (3.2.8)

Using the identifications of the respective standard tractor bundles with their duals given
by the respective tractor metrics, one may define a map ΠI

A : EI → EA|Σ (whose image
annihilates NA). In other words we define ΠI

A to be gABΠB
J g

IJ , where gIJ denotes the
‘inverse’ hypersurface tractor metric. We will often think of ΠA

I and ΠI
A as sections of

EI ⊗ EA|Σ and EI ⊗ EA|Σ respectively, allowing for a flexibility of interpretation.

3.2.3 Relating Tractor Connections on T Σ

The standard tractor map allows us to define a connection ∇̌ on the submanifold tractor
bundle T Σ induced by the ambient tractor connection. Given a standard tractor field vJ

we define
∇̌iv

J = ΠJ
B∇i(Π

B
Kv

K) (3.2.9)
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3.2 Conformal Hypersurfaces and Tractors

where ∇ denenotes the ambient tractor connection (and ∇i denotes the pullback con-
nection ι∗∇).

Using Theorem 3.2.2 and (3.1.4) it is easy to see that if g ∈ c is a minimal scale then,
splitting EJ using gΣ = ι∗g, we have

∇̌i

 σ

µj

ρ

 =

 Diσ − µi

Diµ
j + Pi

jσ + δji ρ

Diρ− Pijµ
j

 (3.2.10)

where D is the Levi-Civita connection of gΣ and Pij is the projection Πa
iΠ

b
jPab of the

ambient Schouten tensor. (The fact that we are differentiating densities does not com-
plicate the use of (3.1.4) in the computation; one may trivialise the density bundles using
g and gΣ for simplicity.)

3.2.3.1 The Difference Tractor

Compare (3.2.10) with the corresponding formula

Di

 σ

µj

ρ

 =

 Diσ − µi

Diµ
j + pi

jσ + δji ρ

Diρ− pijµ
j

 (3.2.11)

for the intrinsic tractor connection of Σ, where pij is the intrinsic Rho tensor (Schouten
form ≥ 3). One can easily see that

∇̌iv
J = Div

J + Si
J
Kv

K (3.2.12)

where

Si
J
K

gΣ=

 0 0 0

Pi
j − pi

j 0 0

0 pij − Pij 0

 . (3.2.13)

The End(T Σ) valued 1-form S is referred to as the difference tractor. Using the splitting
tractors corresponding to gΣ we have

SiJK = (Pij − pij)
(
Zj
JXK − Zj

KXJ

)
. (3.2.14)
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Noting that 2Z j
[JXK] is conformally invariant by the intrinsic version of (2.7.3) we see

that
Fij = Pij − pij (3.2.15)

is independent of the choice of metrics gΣ ∈ cΣ and g ∈ c minimal with ι∗g = gΣ. We
refer to the invariant Fij as the Fialkow tensor.

3.2.3.2 Computing the Fialkow Tensor

If one repeats the above calculation (of §§§3.2.3.1) removing the assumption that g be a
minimal scale then one arrives at the expression

Fij = Pij − pij +HI̊I ij +
1

2
H2gij (3.2.16)

of [128] for the Fialkow tensor. Now by considering the ‘Ricci decomposition’ of the
Gauss equation (3.1.11) whenm ≥ 3 one readily obtains that

Fij =
1

m− 2

(
WiNjN + I̊I2ij −

I̊IklI̊Ikl
2(m− 1)

gij

)
(3.2.17)

whereWiNjN denotes Πa
iΠ

b
jWacbdN

cNd and I̊I2ij = I̊I ikI̊I
k
j (cf. Proposition 3.3.10).

Remark 3.2.3. The manifestly invariant formula (3.2.17) for the Fialkow tensor was first
calculated by the author, and pointed out to Gover and Vyatkin (see [43, 141], cf. [98]).
It was observed by Vyatkin that such an expression seems to have appeared first in the
study [67] of Fialkow (whence the name ‘Fialkow tensor’).

In the casem = 2 by combining (3.1.17) and (3.2.16) we have

Fij =
1

2
(Pk

k +H2 −K)gij. (3.2.18)

Note that if Σ is a closed surface in Euclidean space then Pii ≡ 0 and Fi
i = H2 − K ,

which is a form of the Willmore energy density [146] (the integral of K over Σ being
the topological invariant 2πχ(Σ) by the Gauss-Bonnet theorem). Substituting (2.4.5) for
the ambient curvature and (2.4.7) for the submanifold curvature in the Gauss equation
(3.1.11) and then contracting with gik we obtain

Pi
igjl = Kgjl + IIilIIj

i − 2HIIjl. (3.2.19)
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Tracing (3.2.19) we obtain

2Pi
i = 2K + IIijII

ij − 4H2

= 2K + I̊I ij I̊I
ij
− 2H2. (3.2.20)

Thus
Fij =

1

4
|I̊I|2gij (3.2.21)

where |I̊I|2 = I̊IklI̊Ikl.

Remark 3.2.4. (1) The tensor QVΣ appearing in [23] is the same as the Fialkow tensor
defined here for any dimension m ≥ 2. In the conformally flat ambient case the above
formulae for the Fialkow tensor can be found in Section 11.4 of [23] by specialising the
formulae there to the case V = VΣ (VΣ being their notation for N⊥ ∼= T Σ).

(2) In [141] the Fialkow tensor for the surface case is defined to be zero. This amounts to
treating the (non normal) induced tractor connection ∇̌ as intrinsic (cf. [21]). We take
the point of view that ∇̌ is extrinsic and the normal (or normalised) tractor connection
D is intrinsic.

3.2.4 The Tractor Gauss Formula

The standard tractor map also allows us to define a conformal tractor analogue of the
(Riemannian) second fundamental form by the following Gauss-type formula

∇iv
B = ΠB

J ∇̌iv
J + LiKNBvK (3.2.22)

for all sections vJ of EJ . The 1-form L takes values in the standard (co)tractor bundle
and is referred to as the tractor second fundamental form (or ‘tractor shape form’). Using
(3.2.12) we obtain the tractor Gauss formula

∇iv
B = ΠB

J

(
Div

J + Si
J
Kv

K
)
+ LiKNBvK . (3.2.23)

Remark 3.2.5. Using T ι to identify T Σ withN⊥ we may write the Gauss formula using
index free notation as

∇Xv = DXv + S(X)v︸ ︷︷ ︸
‘tangential part’

+L(X, v)N︸ ︷︷ ︸
‘normal part’

(3.2.24)
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for any X ∈ X(Σ) and v ∈ Γ(T Σ), where N denotes the normal tractor.

3.2.4.1 Computing the Tractor Second Fundamental Form

By contracting (3.2.22) on both sideswithNB (and using thatNBv
B = 0 impliesNB∇iv

B

equals −vB∇iNB) we see that

LiJ = −ΠB
J∇iNB. (3.2.25)

Note that NB∇iNB = 0 since NBNB = 1, so we also have

LiJΠJ
B = −∇iNB. (3.2.26)

From the formula (2.7.7) for the ambient tractor connection we have that

∇iN
B g
=

 0

∇iN
b +HΠb

i

∇iH − PiN

 (3.2.27)

where PiN = Πa
iPabN

b, and from this (using (3.2.7)) we have

LiJ
ι∗g
=

 0

I̊I ij

−∇iH + PiN

 , (3.2.28)

i.e. LiJ
ι∗g
= (0, I̊I i

j,−∇iH + PiN). By substituting the ambient Ricci decomposition
(2.4.5) into the Codazzi-Mainardi equation (3.1.12) and contracting one can show that

∇iH − PiN =
1

m− 1
Dj I̊I ij (3.2.29)

in any ambient dimension n ≥ 3 [7] (cf. Proposition 3.3.12). From this we see that
I̊I = 0 ⇔ L = 0, so the hypersurface Σ is totally umbilic if and only if the tractor
second fundamental form is identically zero.
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3.2.5 Tractor Gauss and Codazzi-Mainardi Equations

Having established the Gauss formula (3.2.23) relating the intrinsic and ambient trac-
tor connections along the hypersurface one can easily compute tractor analogues of the
Gauss and Codazzi-Mainardi equations for the components of the ambient tractor cur-
vature along Σ.

3.2.5.1 The Tractor Gauss Equation

Let κ̌ denote the curvature of ∇̌, defined in terms of the Ricci-type identity

2∇̌[i∇̌j]v
k = κ̌ijKLvL (3.2.30)

for all vL ∈ Γ(EL) where ∇̌ is coupled with any torsion free affine connection on Σ.
Let κijJK denote the full projection Πa

iΠ
b
jΠ

C
KΠ

D
LκabCD of the ambient tractor curvature

along Σ. We denote the intrinsic tractor curvature of Σ by κΣ.

Noting the formal similarity between (3.2.22) and the Riemannian Gauss formula (3.1.5)
one obtains that

κijKL = κ̌ijKL + LiLLjK − LiKLjL (3.2.31)

by arguing formally in the same manner as for the Gauss equation (3.1.11). From the
relationship (3.2.12) between the two connections ∇̌ and D on T Σ we have

κ̌ijKL = κΣijKL + 2D[iSj]
K
L + Si

K
L′Sj

L′
L − Sj

K
L′Si

L′
L (3.2.32)

where the intrinsic tractor connection D of Σ is coupled with any torsion free affine
connection on Σ. Putting these together we obtain the tractor Gauss formula

κijKL = κΣijKL + 2D[iSj]
K
L + 2S[i|

K
L′S|j]

L′
L − 2L[i

KLj]L. (3.2.33)

Remark 3.2.6. In [141] equation (3.2.31) is termed the ‘tractor Gauss equation’. Our trac-
tor Gauss equation (3.2.33) is consistent with [22] in the flat ambient case (and with
§§6.5.2 in the CR case). Similar comments apply to the discussion of the tractor Codazzi-
Mainardi Equation below.
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3.2.5.2 The Tractor Codazzi-Mainardi Equation

Let κijKD denote the projection Πa
iΠ

b
jΠ

C
KκabCD of the ambient tractor curvature along

Σ. By arguing formally in the same manner as for the Riemannian Codazzi-Mainardi
equation (3.1.12) one has that

κijKDND = −2∇̌[iLj]K (3.2.34)

where ∇̌ is coupled with any torsion free affine connection on Σ. From (3.2.12) we then
have the tractor Codazzi-Mainardi equation

κijKDND = −2D[iLj]K − 2S[i|
K
LL|j]

L (3.2.35)

where D is similarly coupled with any torsion free affine connection on Σ.

3.2.6 Invariants and Invariant Operators

The hypersurface tractorD-operator DI can be extended to act on sections of any ambi-
ent tractor bundle along Σ; more generally, if E Φ̃ is any ambient tractor bundle and EΦ

is any submanifold tractor bundle then

DI : EΦ[w]⊗ E Φ̃|Σ → EI ⊗ EΦ[w]⊗ E Φ̃|Σ (3.2.36)

is defined by the usual formula

DIf
ΦΦ̃ gΣ=

 w(n+ 2w − 2)fΦΦ̃

(n+ 2w − 2)Dif
ΦΦ̃

−(DiDi + wp)fΦΦ̃

 (3.2.37)

where now the Levi-Civita connectionD of gΣ is coupled not only with the hypersurface
(intrinsic) tractor connection, but also with the (pulled back) ambient tractor connection.
Note in particular that this allows us to define iterated ‘derivatives’

DJ · · ·DKN
A (3.2.38)

of the normal tractor NA. One may similarly ‘twist’ the double-D-operator DIJ so as
to act on sections of EΦ[w]⊗ E Φ̃|Σ. As in the case of conformal manifolds (§§2.7.7) one
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3.2 Conformal Hypersurfaces and Tractors

can now proliferate weighted scalar and tensor invariants by mimicking Riemannian
constructions using corresponding tractor objects (for further details see [141, 83]).

Besides constructing invariants the hypersurface tractor calculus can be used to produce
(extrinsic) differential operators. In [21] the calculus is applied to produce self adjoint
elliptic boundary conditions for the ‘conformally invariant powers of the Laplacian’□2k

of [81] (these differ from the GJMS operators P2k of [87] when k ≥ 3) for all k if n is
odd and k < n

2
if n is even. Invariant boundary conditions for the Paneitz operator

in 4-dimensions (the k = n
2
= 2 case) were found in [38], and in n ≥ 4 dimensions

using tractor calculus in [90]. Tractor methods have also been used in attempts to better
understand the structure of the intrinsic GJMS operators (and related Q-curvatures) of
conformal hypersurfaces [98]. In [84] it was shown that on a conformal hypersurface
there exist (extrinsically defined) ‘conformally invariant powers of the Laplacian’ to all
orders.

Remark 3.2.7. In [84] the authors use ideas from tractor calculus developed for the study
of conformally compact Riemannian manifolds [76, 78, 85] which we have not presented
here. (An exposition of these ideas can also be found in [44], with some related de-
velopments.) Using these tools the authors solve formally (along the hypersurface Σ)
the Loewner-Nirenberg boundary problem for a constant mean curvature metric in the
conformal class on M \ Σ with Σ as conformal infinity. This supplies Σ ⊂ M with
a canonical ‘defining density’ σ ∈ Γ(E [1]) (corresponding to a metric go = σ−2g on
M \ Σ) determined up to order n = dimM after which log terms appear in the formal
solution. The authors are then able to give a ‘holographic’ construction of hypersurface
invariants and invariant operators (meaning that they extract well-defined limits on the
hypersurface Σ from quantities defined in terms of the metric go onM \Σ). The coeffi-
cient of the first log term in the formal expansion for σ is termed the ‘ASC obstruction
density’ and is a conformal invariant of the hypersurface. This log term was calculated
already for surfaces in conformal 3-manifolds in [3], and turns out to agree with the well
knownWillmore invariant [84]. The ‘ASC obstruction density’ therefore generalises the
Willmore invariant to hypersurfaces in higher dimensions (for other approaches to gen-
eralising the Willmore invariant cf. [89, 141]). The results of [84] have been applied to
the variational theory of conformal hypersurfaces in [70].
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3.3 Higher Codimension Embeddings

Here we show that the conformally invariant calculus for hypersurfaces of [7, 21, 90,
128, 141] extends straightforwardly to the higher codimension case. (This has in large
part already been accomplished in [23].) The key additional input in our approach is
Lemma 3.3.2 which generalises Lemma 3.1.3. We relate this approach to the work of
Burstall and Calderbank [23] which is also based around the conformal standard trac-
tor bundle and connection (though informally termed the ‘Cartan bundle’ and ‘Cartan
connection’). We also introduce the ‘normal tractor form’ of a conformal submanifold
and show that a submanifold is umbilic if and only if the normal tractor form is parallel
along the submanifold.

We now consider conformal embedding ι : Σ ↪→ M between conformal manifolds
(Σm, cΣ) and (Mn, c) with n > m ≥ 2. Note that we now allow (Σm, cΣ) and (Mn, c)

to have any signature. (Despite the heading we also allow Σ to be a hypersurface.) Our
notation is as in §3.1 and §3.2 whenever this makes sense. Note that as before we may
canonically identify the density bundles E [w]|Σ and EΣ[w].

3.3.1 Submanifolds and Scales

3.3.1.1 The Normal Bundle

We denote the normal bundle of Σ by NΣ ⊂ TM |Σ. We write N for the orthogonal
projection TM |Σ → NΣ so that

δab = Πa
b +Na

b (3.3.1)

along Σ. We let NΣ[w] denote NΣ ⊗ E [w]|Σ. Note that the ambient conformal metric
induces a bundle metric onNΣ[−1]. Given g ∈ cwewrite∇⊥ for the normal Levi-Civita
connection on NΣ (or NΣ[w]). On a normal field Na this is defined by

∇⊥
i N

b = Nb
c∇iN

c. (3.3.2)

The curvature R⊥ of∇⊥ on the normal bundleNΣ is defined by the Ricci-type identity

∇⊥
[i∇⊥

j]N
c = R⊥

ij
c
dN

d (3.3.3)
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3.3 Higher Codimension Embeddings

for any normal field N c.

3.3.1.2 The Second Fundamental Form

Fix g ∈ c and let gΣ = ι∗g. It is well known that the ambient Levi-Civita connection ∇
induces the submanifold Levi-Civita connection D,

DiV
j = Πj

b∇iV
b (3.3.4)

where V b = Πb
kV

k; the second fundamental form IIij
c is then defined by the Gauss

formula
∇iV

c = Πc
jDiV

j + IIij
cV j. (3.3.5)

IfN is any section ofNΣ[w] for any weightw then contracting both sides of (3.3.5) with
Nc (and using that NcV

c = 0) yields

NcIIij
c = −Πc

j∇iNc. (3.3.6)

Remark 3.3.1. If f is a defining function for a hypersurface containing Σ inM then one
may take Nc = ∇cf in (3.3.6) to obtain

NcIIij
c = −Πa

iΠ
b
j∇a∇bf. (3.3.7)

This is one way to see that IIijc = II(ij)
c, since torsion freeness implies∇[a∇b]f = 0.

Of course in the hypersurface case we may trivialise the (weighted) normal bundle using
a unit normal field so that the second fundamental form becomes a (weighted) bilinear
form (§§3.1.5).

From (3.3.6) it follows that under the conformal rescaling of g to ĝ = Ω2g the second
fundamental form transforms according to

ÎI ij
c = IIij

c − gijΥ
dNc

d (3.3.8)

whereΥa = ∇alogΩ. As before we see that I̊I ijc = II(ij)0
c is conformally invariant, and

the mean curvature vector Hc = 1
m
gijIIij

c transforms according to

Ĥa = Ha −ΥbNa
b . (3.3.9)
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3.3.1.3 The Gauss-Codazzi-Ricci Equations

Fixing a metric g ∈ cwe have the Gauss, Codazzi, and Ricci equations along Σ (see, e.g.,
[115]). These may be written, respectively, as

Rijkl = rijkl + 2gcdIIl[i
cIIj]k

d, (3.3.10)

Rij
c
kN

d
c = 2D[iIIj]k

d (3.3.11)

where the submanifold Levi-Civita connectionD is coupled with the normal Levi-Civita
connection ∇⊥, and

Rij
a
bN

c
aN

b
d = R⊥

ij
c
d + 2gklIIl[i

cIIj]kd (3.3.12)

where Rij
a
b = Πc

iΠ
d
jRcd

a
b.

3.3.1.4 Minimal Scales

Here we generalise Lemma 3.1.3 to higher codimension. Note that by our definition the
mean curvature vector has conformal weight −2, whereas the mean curvature covector
has weight 0.

Lemma 3.3.2. Given any metric gΣ ∈ cΣ there exists a metric g ∈ c extending gΣ (i.e.
such that gΣ = ι∗g) for which the mean curvature vector of Σ vanishes.

Proof. By a partition of unity argument it suffices to establish the lemma for a neigh-
bourhood inM of any point in Σ. Let (x1, . . . , xn) be local slice coordinates centered at
any given point in Σ. Then Σ is locally defined by the equations xm+1 = · · · = xn = 0.
Given gΣ ∈ cΣ let g ∈ c be any metric with ι∗g = gΣ. Let Ha = gabH

b denote the
mean curvature covector of Σ with respect to g. On the xm+1 = · · · = xn = 0 slice of
the coordinate chart the mean curvature covector may be written as Hadx

a, using Ein-
stein summation convention with the index a running from 1 to n. Of courseHa = 0 for
a = 1 . . .m (Ha being normal). The functionsHa depend only on the firstm coordinates,
and wemay extendHa to the whole coordinate patch by extending its componentsHa to
be independent of xm+1, . . . , xn. Now let ĝ = e2Υg with Υ = Hax

a. Then dΥ = Hadx
a

along Σ since xa|Σ ≡ 0 for a = m+ 1, . . . , n and Ha ≡ 0 for a = 1, . . . ,m. We rewrite
this as ∇aΥ = Ha along Σ. From (3.3.9) with Υb = gab∇aΥ = Hb we therefore have
Ĥa = Ha −HbNa

b = 0.
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3.3 Higher Codimension Embeddings

Definition 3.3.3. Extending Definition 3.1.7 we refer to an ambient scale σ (or the cor-
responding metric g ∈ c) for which the mean curvature vector identically vanishes as a
minimal scale.

Note that if g and ĝ = Ω2g are both minimal scales then by (3.3.9)Υa = ∇alogΩ satisfies

ΥaN
a
b = 0. (3.3.13)

3.3.1.5 The Natural Möbius Structure on Conformally Embedded Surfaces

We define the (normal) induced Möbius structure precisely as in Definition 3.1.5 from the
n = 3 case; the calculation to show that this is well-defined is formally the same as
(3.1.16) in §§3.1.8. Generalising Proposition 3.1.7 we have:

Proposition 3.3.4. If gΣ ∈ cΣ and g ∈ c is any metric extending gΣ then the Rho-tensor
of gΣ is given by

pij = P(ij)0 +HcI̊I ij
c +

1

2
Kgij (3.3.14)

where Pij is the projection Πa
iΠ

b
jPab of the ambient Schouten tensor.

Proof. By Lemma 3.3.2 to verify this one simply needs to show that the right hand side
of (3.3.14) is unchanged under conformal rescalings of g to e2Υg with Υ|Σ ≡ 0. This is a
straightforward calculation using (2.4.11), (3.3.9) and (3.3.6) with Nc = Hc.

Remark 3.3.5. As before, our definition of the normal induced Möbius structure is con-
sistent with the notion of ‘induced conformal Möbius structure’ in [23]. The ‘induced
Möbius structure’ of [23] corresponds to the assignment of the ‘Rho-tensor’

p̌ij = Πa
iΠ

b
jPab +HcI̊I ij

c +
1

2
HcH

cgij (3.3.15)

to each metric gΣ ∈ cΣ, calculated with respect to any metric g ∈ c extending gΣ; the
‘Rho-tensor’ p̌ij differs from pij only by trace (cf. Remarks 2.6.1 and 3.1.6).

As before we may think of the (normal) induced Möbius structure as being intrinsic,
so that the conformal embedding ι : Σ ↪→ M becomes in a natural sense a Möbius
conformal embedding. We may therefore refer to pij as the intrinsic Rho-tensor.
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3.3.2 Submanifolds and Tractors

3.3.2.1 The Normal Tractor Bundle

Definition 3.3.6. We define the normal tractor bundle N of Σ to be the subbundle of
TM |Σ which is the image of NΣ[−1] under the map NΣ[−1] → TM |Σ given by

Na 7→ NA g
=

 0

Na

HaN
a

 (3.3.16)

where g is any metric in c.

The map (3.3.16) is well-defined by (3.3.9). Note that if g ∈ c is a minimal scale then
(3.3.16) becomes

Na 7→ NA g
=

 0

Na

0

 (3.3.17)

and by (3.3.13) this gives rise to a well-defined (i.e. g-independent) vector bundle iso-
morphismNΣ[−1] ∼= N . We alternatively denoteN byNA. We denote the orthogonal
projection EB|Σ → NA by NA

B and the complementary orthogonal projection by

ΠA
B = δAB − NA

B. (3.3.18)

We write ∇N for the normal tractor connection on NΣ (or NΣ[w]); on a normal tractor
field NA this is defined by

∇N
i N

A = NB
C∇iN

C (3.3.19)

where ∇i denotes the pullback ι∗∇ of the ambient tractor connection. The curvature
κN of the normal tractor connection is defined by the Ricci-type identity

∇N
[i ∇N

j]N
C = κN

ij
C
DN

D (3.3.20)

for any sectionNC ofNC (where∇N
i is coupled with any torsion free affine connection

on Σ).

Remark 3.3.7. In the case whereM is the conformal n-sphere Sn the normal tractor bun-
dle N may be interpreted in terms of the classical notion of a central sphere congruence
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3.3 Higher Codimension Embeddings

[18, 138] (cf. [22]). Choosing a metric g ∈ c at any point x ∈ Σm there is a unique totally
umbilicm-sphere Sx in Sn which is tangent to Σ at x and whose mean curvature vector
agrees with that of Σ at x. By (3.3.9) the sphere Sx does not depend on the choice of
g ∈ c. Realising the conformal n-sphere as the projectivisation PC of the null cone C in
Rn+1,1 (§2.5) them-sphere Sx ⊂ Sn determines a subcone of C which is the intersection
of C with a unique (m + 2)-dimensional subspace Vx in Rn+1,1. The orthogonal com-
plement N⊥

x of Nx is an (m + 2)-dimensional subspace in TxSn. Identifying TxSn with
Rn+1,1 one obtains from N⊥

x ∩ C an m-sphere S′
x ⊂ Sn. The fiber of the normal tractor

bundle of S′
x at x is clearlyNx, in other words S′

x has matching tangent space and mean
curvature vector with Σ at x (for any g ∈ c). Thus S′

x = Sx and N⊥
x = Vx.

3.3.2.2 Relating Tractors

Using Lemma 3.3.2 we now generalise Theorem 3.2.2. (The following theorem alterna-
tively follows from [23], Sections 9.3 and 11.3.)

Theorem 3.3.8. The submanifold standard tractor bundle T Σ is canonically isomorphic
to the orthogonal complement N⊥ of the normal tractor bundle by a metric and filtration
preserving bundle isomorphism. The isomorphism T ι : T Σ → N⊥ is given explicitly by

vI
gΣ=

 σ

µi

ρ

 ΠA
I7−−→ vA

g
=

 σ

µa

ρ

 (3.3.21)

where µa = Πa
i µ

i and g is any minimal scale extending gΣ.

Proof. The proof is as in the hypersurface case, with (3.3.13) replacing (3.1.14).

As in the hypersurface case we refer to T ι as the standard tractor map.

Remark 3.3.9. Relaxing the condition that g be minimal the map (3.3.21) becomes

vI
gΣ=

 σ

µi

ρ

 ΠA
I7−−→ vA

g
=

 σ

µa −Haσ

ρ− 1
2
HaH

aσ

 . (3.3.22)

This can be easily checked using (3.3.9).
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3.3.2.3 Relating Tractor Connections on T Σ

As in §§3.2.3 we define the connection ∇̌ on T Σ by

∇̌iv
J = ΠJ

B∇i

(
ΠB
Kv

K
)

(3.3.23)

for any submanifold standard tractor field vJ . Computing with respect to a minimal
scale g ∈ c (and gΣ = ι∗g) we obtain the explicit expression (3.2.10) for ∇̌ exactly as in
the hypersurface case. Thus if D is the submanifold intrinsic tractor connection then

∇̌iv
J = Div

J + Si
J
Kv

K (3.3.24)

where
SiJK = 2(Pij − pij)Z

j
[JXK] (3.3.25)

with respect to g ∈ c minimal and gΣ = ι∗g. (Here XK denotes the intrinsic canonical
tractor and Zj

J the Z-splitting tractor of gΣ). Since SiJK and 2Zj
[JXK] are manifestly

conformally invariant we see that

Fij = Pij − pij (3.3.26)

does not depend on the choice of pair (g, ι∗g)with g ∈ cminimal. As in the hypersurface
case we term the invariant Fij the Fialkow tensor.

3.3.2.4 Computing the Fialkow Tensor

Here we relate the Fialkow tensor to the ambient Weyl curvature and the trace free part
of the second fundamental form, as in §§§3.2.3.2.

Proposition 3.3.10. In the casem ≥ 3 the Fialkow tensor is given by

Fij =
1

m− 2

(
WicjdN

cd +
WacbdN

abNcd

2(m− 1)
gij + I̊I i

kcI̊Ijkc −
I̊IklcI̊Iklc
2(m− 1)

gij

)
(3.3.27)

where Wicjd denotes the projection Πa
iΠ

b
jWacbd of the ambient Weyl tensor and Nab =

Na
cg

cb. In them = 2 case

Fij =
1

4
|I̊I|2gij (3.3.28)

where |I̊I|2 = I̊I ijcI̊I
ijc.
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Proof. We give the proof for the m ≥ 3 case. The m = 2 case is a straightforward
generalisation of the argument detailed in §§§3.2.3.2.

For simplicity we work with a minimal scale g ∈ c and gΣ = ι∗g. Thus II = I̊I . Apply-
ing the submanifold and ambient Ricci decompositions (2.4.5) in the Gauss equation we
obtain

Wijkl + Pikgjl − Pjkgil − Pilgjk + Pjlgik = wijkl + pikgjl − pjkgil − pilgjk + pjlgik

+ gcdIIli
cIIjk

d − gcdIIlj
cIIik

d

whereWijkl denotes the full projectionΠa
iΠ

b
jΠ

c
kΠ

d
lWabcd of the ambient Weyl curvature,

Pij = Πa
iΠ

b
jPab, and wijkl denotes the submanifold intrinsic Weyl tensor. Applying the

map Tijkl 7→ 1
m−2

(
Tikj

k − Tkl
kl

2(m−1)
gij

)
on both sides of the above display we get

− 1
m−2

(
WicjdN

cd + WacbdN
abNcd

2(m−1)
gij

)
+ Pij = pij +

1
m−2

(
I̊I i

kcI̊Ijkc − I̊Iklc I̊Iklc
2(m−1)

gij

)
noting that gklWikjl = gklΠc

kΠ
d
lWicjd = −N cdWicjd sinceWabcd is trace free, and simi-

larlyWkl
kl = WacbdN

abNcd. The result then follows from (3.3.26).

Remark 3.3.11. As in the hypersurface case, if one repeats the calculation of (3.2.10)
without the restriction that g ∈ c be a minimal scale, one obtains the more general
formula

Fij = Pij − pij +HcI̊I ij
c +

1

2
HcH

cgij (3.3.29)

for the Fialkow tensor in terms of g and gΣ = ι∗g (which holds form ≥ 2).

3.3.2.5 The Tractor Gauss Formula

We define the tractor second fundamental form L by the Gauss-type formula

∇iv
B = ΠB

J ∇̌iv
J + LiKBvK (3.3.30)

for all sections vJ of EJ . The 1-form L takes values in T ∗Σ⊗N where T ∗Σ = (T Σ)∗.
Using (3.3.24) we obtain the tractor Gauss formula

∇iv
B = ΠB

J

(
Div

J + Si
J
Kv

K
)
+ LiKBvK . (3.3.31)
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3.3.2.6 Computing the Tractor Second Fundamental Form

By contracting (3.3.30) on both sides with NB where NA is any section of the normal
tractor bundle we see that

NBLiJB = −ΠB
J∇iNB. (3.3.32)

This formula can be used to give an explicit expression for LiJC in terms of a choice of
ambient metric. For simplicity we compute with respect to a minimal ambient scale.

Proposition 3.3.12. Let g ∈ c be a minimal scale and gΣ = ι∗g. Computing with respect
to g and gΣ we have

LiJC = I̊I ij
cZj

JZ
C
c +

1

m− 1

(
Dj I̊I ij

c − Πb
jWabdeN

aeNcd
)
XJZ

C
c (3.3.33)

where ZC
c and Zi

J are the respective Z-splitting tractors of g and gΣ,XJ is the submanifold
intrinsic canonical tractor, and Nab = gacNb

c.

Proof. Let Na be a weight −1 normal vector field and let NA = NaZA
a . Then by (2.7.7)

(or by (2.7.11)) one has ∇iN
B = (∇iN

b)ZB
b − Πa

iPacN
cXB so that

ΠC
J∇iNC = Πc

j(∇iNc)Z
j
J − Πa

iPacN
cXJ

= −NcIIij
cZj

J − Πa
iPacN

cXJ (3.3.34)

using (3.3.6). Note that II = I̊I by minimality. Since (3.3.34) and (3.3.32) hold for all such
normal fields (noting that LiJCΠD

C = 0 and IIijcΠc
d = 0) we have

LiJC = I̊I ij
cZj

JZ
C
c +Πa

iPadN
cdXJZ

C
c . (3.3.35)

Now by substituting the ambient Ricci decomposition (2.4.5) into the Codazzi equation
(3.3.11) we obtain

Wij
c
kN

d
c + 2P[i

cgj]kN
d
c = 2D[iIIj]k

d

whereWij
c
k = Πa

iΠ
b
jΠ

d
kWab

c
d, Pic = Πa

iPac, and the Levi-Civita connection D of gΣ is
coupled with the normal Levi-Civita connection. Contracting with gik we obtain

Wij
ciNd

c − (m− 1)Pj
cNd

c = DiIIij
d = DiI̊I ij

d. (3.3.36)

Noting that Wij
ci = −Πb

jWab
c
eN

ae since the Wabcd the result follows from (3.3.35) and
(3.3.36).
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3.3 Higher Codimension Embeddings

3.3.2.7 Decomposing the Ambient Tractor Connection

Along Σ we may decompose the ambient standard tractor bundle TM as

TM |Σ = T Σ⊕N . (3.3.37)

If v ∈ Γ(TM |Σ) is given by (v⊤, v⊥)with respect to this decomposition then by (3.3.31),
(3.3.32), and (3.3.19) we have

∇Xv =

(
DX + S(X) −L(X)T

L(X) ∇N
X

)(
v⊤

v⊥

)
(3.3.38)

for any X ∈ X(Σ), where L(X)T is the transpose of L(X) with respect to the ambient
tractor metric. We therefore write

ι∗∇ =

(
D + S −LT

L ∇N

)
on

T Σ
⊕
N

. (3.3.39)

Remark 3.3.13. In [23] Burstall and Calderbank define a ‘Möbius reduction’ to be a rank
(m + 2) subbundle V of TM |Σ containing the rank m + 1 subbundle spanned by the
canonical tractor XA and its covariant derivatives in submanifold tangential directions
(with respect to the tractor connection coupled with the Levi-Civita connection of some,
equivalently any, metric g ∈ c). One then decomposes the ambient tractor connection
along Σ as (using notation similar to the above)

ι∗∇ =

(
∇V −(LV )T

LV ∇V ⊥

)
on

V
⊕
V ⊥

.

The definition of ‘Möbius reduction’ implies that LViJCXJ = 0 and LViJCXC = 0, so
that there is a well-defined projection IIVij c = LViJCZJ

j Z
C
c of LViJC . Burstall and Calder-

bank then define the unique ‘canonical Möbius reduction’ VΣ by imposing an algebraic
normalisation condition on (

0 −(LV )T

LV 0

)
which they denote N V (see Section 9.3 of [23]) similar to the algebraic normalisation
condition imposed on the curvature of the normal Cartan/tractor connection [33, 27].
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This algebraic normalisation condition amounts to the requirement that gijIIV:ijc = 0.
Since by Proposition 3.3.12 the tractor second fundamental form has invariant projection
I̊I ij

c = LiJCZJ
j Z

C
c the ‘canonical Möbius reduction’ VΣ is the same as the orthogonal

complement N⊥ of the normal tractor bundle.

3.3.2.8 Tractor Gauss-Codazzi-Ricci Equations

By writing the curvature ι∗κ of ι∗∇ as

ι∗κ =

(
D + S −LT

L ∇N

)
∧

(
D + S −LT

L ∇N

)
(3.3.40)

one may easily obtain conformal tractor analogues of the Riemannian Gauss, Codazzi,
and Ricci equations (cf. [23], Equations (9.13a) and (9.13b)). By evaluating (3.3.40) on
(v⊤, 0) one obtains (from the T Σ component) the tractor Gauss equation

κijKL = κΣijKL + 2D[iSj]
K
L + 2S[i|

K
L′S|j]

L′
L − 2L[i

KCLj]LC (3.3.41)

where κijKL = Πa
iΠ

b
jκab

C
DΠ

K
CΠ

D
L . From the N component one obtains the tractor

Codazzi equation
κijKDND

E = −2D[iLj]KE − 2S[i|
K
LL|j]

L
E (3.3.42)

(from theN component) whereκijKD = Πa
iΠ

b
jΠ

C
KκabCD andD is coupled with the nor-

mal tractor connection (and also with any torsion free affine connection onΣ). Applying
(3.3.40) to (0, v⊥) and evaluating the N component gives the tractor Ricci equation

κijABNC
AN

B
D = κN

ij
C
D + 2L[i

KCLj]KD (3.3.43)

where κijCD = Πa
iΠ

b
jκab

C
D. Evaluating the T Σ component gives the tractor Codazzi

equation again.

3.3.2.9 Invariants and Invariant Operators

One may extend the submanifold tractor-D operatorDI to act on sections of EΦ[w]⊗E Φ̃

where EΦ[w] is any weighted submanifold tractor bundle and E Φ̃ is any ambient tractor
bundle by using the ambient tractor connection (precisely as in the hypersurface case
§§3.2.6). Working locally if necessary we assume the normal bundle of Σ (equivalently
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3.3 Higher Codimension Embeddings

the normal tractor bundle) to be oriented. We define the normal tractor form NA1···Ad

where d = n−m to be the unique section of EA1···Ad
|Σ satisfying

NA1···Ad
vA1 = 0 for all v ∈ N⊥ and NA1···Ad

NA1···Ad = 1 (3.3.44)

which is compatible with the orientation of the normal bundle. The normal tractor form
may be expressed in terms of a local orthonormal frame NA

1 , . . . , N
A
d for the normal

tractor bundle as NA1···Ad = N
[A1

1 · · ·NAd]
d . The normal tractor form therefore encodes

the normal tractor bundle in terms of a section of EA1···Ad
|Σ.

It is clear that proceeding along the lines of the hypersurface case (see §§3.2.6 and the
references therein) replacing NA with NA1···Ad one obtains a straightforward and very
general construction of submanifold conformal invariants. Specific applications of the
submanifold tractor calculus are being developed in current joint work with A. R. Gover.
In particular we are seeking to develop a ‘holographic’ approach to conformal subman-
ifold theory extending recent developments in the hypersurface case [84, 70]. This is
partly motivated by [89, 86] which gives an alternative approach to the study of (low
order) conformal invariants of submanifolds using ‘Poincaré-Einstein holography’.
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4 Introduction to CR Embedded
Submanifolds of CR Manifolds

Hypersurface type CR geometry is motivated by the biholomorphic equivalence prob-
lem for complex domains, and is rooted in the result of Poincaré that the analogue of
the Riemann mapping theorem fails for domains of complex dimension greater than one
[120]. On the side of geometry key pioneering work was developed by Cartan, Tanaka,
and Chern-Moser, in which it was seen that the structure is invariantly captured by a
prolonged system now known as a Cartan connection [37, 41, 129]. The fundamental
role of CR geometry in analysis was significantly strengthened by the result of Feffer-
man that any biholomorphic map between smoothly bounded strictly pseudoconvex do-
mains in Cn+1 extends smoothly to the boundary, and so induces a CR diffeomorphism
between the boundaries [61]; so Poincaré’s result may be recovered by a simple count-
ing of invariants argument (that was in fact proposed in [120]). This brought to the fore
the role of CR invariants as tools for distinguishing domains. Hypersurface type CR
geometry is an important example in a class of structures known as parabolic geome-
tries that also includes conformal geometry, projective differential geometry, and many
other structures. Seeking to determine the asymptotic expansion of the Bergman kernel,
Fefferman initiated a programme for the explicit construction of CR, and more widely
parabolic, invariants [63]. There has subsequently been much interest and progress on
this [8, 92, 75].

The study of CR embeddings and immersions (in CRmanifolds) is also closely connected
with the study of holomorphic mappings between domains. Although open questions
remain about when proper holomorphic mappings between domains in Cm+1 and Cn+1

extend smoothly [14, 143], if a holomorphic map between smoothly bounded domains
does extend in this way then it induces a CR map between the boundaries. So again CR
invariants of the boundaries play a fundamental role. The Chern-Moser moving frames
approach to the CR Cartan connection has been effectively applied to the study of CR
embeddings and immersions in the important work of Webster [144] on CR rigidity for
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real codimension two embeddings. This theme is significantly extended in the article
[54] of Ebenfelt, Huang and Zaitsev where rigidity is established when the codimension
is not too large. These works have strong applications to the study of proper holomor-
phic maps between balls and to the study of Milnor links of isolated singularities of
analytic varieties [143, 54]. The Chern-Moser approach has also been applied in related
work generalising the Schwarz reflection principle to several complex variables, where
invariant nondegeneracy conditions on CR maps play a key role [57, 102].

Despite the strong specific results mentioned, and geometric studies by several authors
[47, 48, 49, 111, 113, 133], a significant gap has remained in the general theory for CR em-
beddings and immersions. A basic general theory should enable the straightforward con-
struction of local CR invariants, but in fact to this point very few invariants are known.
In particular using existing approaches there has been no scope for a general theory
of invariant construction, as the first step in a Fefferman-type invariants programme cf.
[63]. Closely related is the need to construct CR invariant differential operators required
for geometric analysis. Again no general theory for their construction has been previ-
ously advanced. The aim of this article is to close this gap. We develop a general CR
invariant treatment that on the one hand is conceptual and on the other provides a prac-
tical and constructive approach to treating the problems mentioned. The final package
may be viewed as, in some sense, an analogue of the usual Ricci calculus approach to
Riemannian submanifold theory, which is in part based around the Gauss formula. Our
hope is that this may be easily used by analysts or geometers not already strongly famil-
iar with CR geometry; for this reason we have attempted to make the treatment largely
self contained. The theory and tools developed here may also be viewed as providing a
template for the general problem of treating parabolic submanifolds in parabolic geome-
tries. This is reasonably well understood in the conformal setting [7, 23, 78, 90, 128, 141]
but little is known in the general case. The CR case treated here is considerably more
subtle than the conformal analogue as it involves dealing with a non-maximal parabolic.

4.1 CR Embeddings

Abstractly, a nondegenerate hypersurface-type CRmanifold is a smoothmanifoldM2n+1

equipped with a contact distributionH on which there is a formally integrable complex
structure J : H → H . We refer to suchmanifolds simply asCRmanifolds. ACRmapping
between two CR manifolds is a smooth mapping whose tangent map restricts to a com-
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4.2 Invariant Calculus on CR Manifolds

plex linear bundle map between the respective contact distributions. A CR embedding is
a CR mapping which is also an embedding.

Typically in studying CR embeddings oneworks with an arbitrary choice of contact form
for the contact distribution in the ambient manifold (ambient pseudohermitian structure).
The ambient contact form then pulls back to a pseudohermitian contact form on the sub-
manifold (assuming transversality when the ambient manifold has large signature). As-
sociated with these contact forms are their respective Tanaka-Webster connections, and
these can be used to construct pseudohermitian invariants of the embedding. The task
of finding some, let alone all, pseudohermitian invariants which are in fact CR invariants
(not depending on the additional choice of ambient contact form) is very difficult, unless
one can find a manifestly invariant approach. We give such an approach. Our approach
uses the natural invariant calculus on CR manifolds, the CR tractor calculus. In the CR
tractor calculus the standard tractor bundle and normal tractor (or Cartan) connection play
the role analogous to the (holomorphic) tangent bundle and Tanaka-Webster connection
in pseudohermitian geometry.

4.2 Invariant Calculus on CR Manifolds

Due to the work of Cartan, Tanaka, and Chern-Moser we may view a CR manifold
(M,H, J) as a Cartan geometry of type (G,P ) with G a pseudo-special unitary group
and P a parabolic subgroup of G. The tractor bundles are the associated vector bundles
on M corresponding to representations of G, the standard tractor bundle correspond-
ing to the standard representation. The normal Cartan connection then induces a linear
connection on each tractor bundle [27]. In order to relate the CR tractor calculus to the
Tanaka-Webster calculus of a choice of pseudohermitian contact form we work with the
direct construction of the CR standard tractor bundle and connection given in [79]. This
avoids the need to first construct the Cartan bundle.

To fully treat CR submanifolds one needs to work with CR density line bundles, and
their Tanaka-Webster calculus. From the Cartan geometric point of view the CR density
bundles E(w,w′) onM2n+1 are the complex line bundles associated to one dimensional
complex representations of P , and include the canonical bundle K as E(−n−2, 0). The
bundle E(1, 0) is the dual of an (n+ 2)th root of K and

E(w,w′) = E(1, 0)w ⊗ E(1, 0)
w′
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where w − w′ ∈ Z (and w,w′ may be complex). Since the Tanaka-Webster connection
acts on the canonical bundle it acts on all the density bundles.

4.3 Invariant Calculus on Submanifolds and Main

Results

We seek to extend the CR tractor calculus to the setting of transversally CR embedded
submanifolds of CR manifolds in order to deal with the problem of invariants. Our ap-
proach parallels the usual approach to Riemannian submanifold geometry; of central
importance in the Riemannian theory of submanifolds is the second fundamental form.

4.3.1 Normal tractors and the tractor second fundamental
form

One way to understand the Riemannian second fundamental form is in terms of the
turning of normal fields (i.e. as the shape operator). To define a tractor analogue of the
shape operator one needs a tractor analogue of the normal bundle for a CR embedding
ι : Σ2m+1 →M2n+1.

In §§6.2.1 we use a CR invariant differential splitting operator to give a CR analogue of
the normal tractor of [7] associated to aweighted unit normal field in conformal subman-
ifold geometry. It turns out that this a priori differential splitting gives a canonical bundle
isomorphism between the Levi-orthogonal complement of T 1,0Σ in T 1,0M |Σ, tensored
with the appropriate ambient density bundle, and a subbundleN of the ambient standard
tractor bundle alongΣ (Proposition 6.2.3). The ambient standard tractor bundle carries a
parallel Hermitian metric and the normal tractor bundleN is nondegenerate sinceΣ and
M are required to be nondegenerate, so the ambient tractor connection induces connec-
tions ∇N and ∇N⊥ on N and N⊥ respectively. We therefore obtain (§§6.5.2, see also
§§6.2.1, §§6.2.5, and §§6.3.3):

Proposition 4.3.1. The ambient standard tractor bundle TM splits along Σ asN⊥ ⊕N ,
and the ambient tractor connection∇ splits as

ι∗∇ =

(
∇N⊥ −L†

L ∇N

)
on TM |Σ =

N⊥

⊕
N
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4.3 Invariant Calculus on Submanifolds and Main Results

where L†(X) is the Hermitian adjoint of L(X) for any X ∈ X(Σ).

The Hom(N ,N⊥) valued 1-form L† on Σ is the CR tractor analogue of the shape op-
erator, and we term L the CR tractor second fundamental form. The ambient standard
tractor bundle can be decomposed with respect to a choice of contact form. Here it is
sensible to choose an ambient contact form whose Reeb vector field is tangent to the
submanifold (called admissible [54]). We give the components of L with respect to an
admissible ambient contact form in Proposition 6.3.6 (see also Proposition 6.2.15). The
principal component of L is the CR second fundamental form IIµν

γ of Σ in M , which
appears, for example, in [54].

4.3.2 Relating submanifold and ambient densities and tractors

Another way to understand the Riemannian second fundamental form is in terms of the
normal part of the ambient covariant derivative of a submanifold vector field in tangen-
tial directions. This is achieved via the Gauss formula. In the Riemannian Gauss formula
a submanifold vector field is regarded as an ambient vector field along the submanifold
using the pushforward of the embedding, which relies on the tangent map. In order to
give a CR tractor analogue of the Gauss formula one needs to be able to pushforward
submanifold tractors to give ambient tractors along the submanifold – one looks for a
CR ‘standard tractor map’. One might hope for a canonical isomorphism

T Σ → N⊥

between the submanifold standard tractor bundle and the orthogonal complement of the
normal tractor bundle (these having the same rank). In the conformal case there is such
a canonical isomorphism [22, 78, 90], however in the CR case it turns out that there is
no natural ‘standard tractor map’ T Σ → TM in general.

The problem has to do with the necessity of relating corresponding submanifold and
ambient CR density bundles. It turns out that these are not isomorphic along the sub-
manifold, but are related by the top exterior power of the normal tractor bundle N .
Rather than seeking to identify these bundles we therefore define the ratio bundles of
densities

R(w,w′) = E(w,w′)|Σ ⊗ EΣ(w,w′)∗

where E(w,w′)|Σ is a bundle of ambient CR densities along Σ and EΣ(w,w′)∗ is dual to
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the corresponding submanifold intrinsic density bundle. We obtain (in §§6.3.2, see also
§§6.1.11):

Proposition 4.3.2. Given a transversal CR embedding ι : Σ2m+1 → M2n+1 we have a
canonical isomorphism of complex line bundles

R(m+ 2, 0) ∼= ΛdN

where d = n − m. The complex line bundles R(w,w′) therefore carry a canonical CR
invariant connection ∇R induced by ∇N .

The bundles R(w,w) are canonically trivial and the connection ∇R on these is flat.
The bundles R(w,w′) are therefore normed, and ∇R is a U(1)-connection. Using the
pseudohermitian Gauss and Ricci equations (§§§6.1.7.1 and §§§6.1.7.3) we calculate the
curvature of ∇R (§§6.3.2, see also §§§6.1.11.1, and in particular Lemma 6.1.42) and see
that this connection is not flat in general when w ̸= w′. Thus rather than identifying
corresponding density bundles we should keep the ratio bundlesR(w,w′) in the picture.

We are then able to show (from Theorem 6.2.6 combined with Definitions 6.2.8, 6.2.11,
6.2.13 and §§6.3.3):

Theorem 4.3.3. Let ι : Σ2m+1 →M2n+1 be a transversal CR embedding. Then there is a
canonical, metric and filtration preserving, bundle map

T Rι : T Σ → TM |Σ ⊗R(1, 0)

over ι, which gives an isomorphism of T Σ withN⊥ ⊗R(1, 0). Moreover, the submanifold
and ambient tractor connections are related by the tractor Gauss formula

∇Xι∗u = ι∗(DXu+ S(X)u) + L(X)ι∗u

for all u ∈ Γ(T Σ) and X ∈ X(Σ), where S is an End(T Σ) valued 1-form on Σ, D is the
submanifold tractor connection, ∇ is the (pulled back) ambient tractor connection coupled
with ∇R, and the pushforward map ι∗ is defined using using T Rι.

By Proposition 4.3.1 the tractor Gauss formula implies

∇N⊥

X ι∗u = ι∗(DXu+ S(X)u)
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for all u ∈ Γ(T Σ) and X ∈ X(Σ), where ∇N⊥ is coupled with ∇R. The difference
tractor S measures the failure of the ambient tractor (or normal Cartan) connection to
induce the submanifold one. The components of Swith respect to an admissible ambient
contact form are given in (6.2.19), (6.2.20), and (6.2.21) (in §§6.3.3 it is noted that these
formulae hold in arbitrary codimension and signature). The principal component of S
is the difference between ambient and submanifold pseudohermitian Schouten tensors
Pµν̄ − pµν̄ for a pair of compatible contact forms (Definition 6.1.2); using the pseudoher-
mitian Gauss equation (§§§6.1.7.1) one can give a manifestly invariant expression for
this tensor involving the ambient Chern-Moser tensor and the CR second fundamental
form (see Lemma 6.1.42 for the casem = n− 1).

4.3.3 Constructing invariants

In §6.4 we develop both the theoretical and practical aspects of constructing invariants
of CR embeddings. We deal with the geometric part of the invariant theory problem,
using the results stated above. In particular, in §§6.4.1 we demonstrate that the tractor
second fundamental form L, the difference tractor S, and the submanifold and ambient
tractor (or Cartan) curvatures are the basic invariants of the CR embedding, in that they
determine the higher jets of the structure (Proposition 6.4.2). By applying natural dif-
ferential operators to these objects and making suitable contractions, one can start to
proliferate local invariants of a CR embedding. In practice a more refined construction
is useful. The algebraic problem of showing that one can make all invariants of a CR
embedding, suitably polynomial in the jets of the structure, is beyond the scope of this
article; despitemuch progress on the analogous problems for CR or conformalmanifolds,
these are still far from being completely solved (see, e.g., [8, 92]). We therefore turn in
§§6.4.4 to considering practical constructions of invariants. In §§§6.4.4.1 and §§§6.4.4.2
we develop a richer calculus of invariants than that presented for theoretical purposes
in §§6.4.1 and §§6.4.2. In §§§6.4.4.3 we illustrate this calculus with an example of an
invariant section I of EΣ(−2,−2) given by a manifestly invariant tractor expression
(6.4.10) involving L ⊗ L; we show how to calculate I in terms of the pseudohermitian
calculus of a pair of compatible contact forms, yielding the expression (6.4.16).
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4.3.4 A CR Bonnet theorem

With the setup of Proposition 4.3.1 and Theorem 4.3.3 established it is straightforward
to give CR tractor analogues of the Gauss, Codazzi and Ricci equations from Riemannian
submanifold theory. These are given in §§6.5.2. Just as in the Riemannian theory, if we
specialise to the ambient flat case the (tractor) Gauss, Codazzi and Ricci equations give
the integrability conditions for a Bonnet theorem or fundamental theorem of embed-
dings. We have (Theorem 6.5.5):

Theorem 4.3.4. Let (Σ2m+1, H, J) be a signature (p, q) CRmanifold and suppose we have
a complex rank d vector bundleN onΣ equipped with a signature (p′, q′)Hermitian bundle
metric hN and metric connection∇N . Fix an (m+2)th rootR of ΛdN , and let∇R denote
the connection induced by∇N . Suppose we have aN ⊗ T ∗Σ⊗R valued 1-form L which
annihilates the canonical tractor of Σ and an A0Σ valued 1-form S on Σ such that the
connection

∇ :=

(
D ⊗∇R + S −L†

L ∇N

)
on

T Σ⊗R∗

⊕
N

is flat (whereD is the submanifold tractor connection), then (locally) there exists a transver-
sal CR embedding of Σ into the model (p+ p′, q + q′) hyperquadricH, unique up to auto-
morphisms of the target, realising the specified extrinsic data as the induced data.

4.4 Geometric Intuition

In the case whereM = S2n+1 we can give a clear geometric interpretation of the normal
tractor bundleN of a CR embedded submanifold, or rather of its orthogonal complement
N⊥. In the conformal case a similar characterisation of the normal tractor bundle may
be given via the notion of a central sphere congruence (see [22]).

Onemay explicitly realise the standard tractor bundle of S2n+1 by considering the sphere
as the space of isotropic lines in the projectivisation of Cn+1,1; if ℓ is a complex null
line then a standard tractor at the point ℓ ∈ S2n+1 is a constant vector field along ℓ in
the ambient space Cn+1,1. The tractor parallel transport on S2n+1 then comes from the
affine structure of Cn+1,1 and the standard tractor bundle is flat. Given a point x in our
CR embedded submanifold Σ2m+1 ⊂ S2n+1 there is a unique totally chain CR subsphere
Sx of dimension 2m + 1 which osculates Σ to first order at x. If we view S2n+1 as the
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PC ∼= S2n+1

Σ

ℓ

CPn+1

C

N⊥
ℓ

ℓ

Cn+1,1

P

Figure 4.4.1: The orthogonal complementN⊥ of the normal tractor bundle whenM =
S2n+1.

unit sphere in Cn+1 then Sx is the intersection of S2n+1 with the (m + 1)-dimensional
complex affine subspace of Cn+1 generated by the tangent space to Σ at x. Viewing
S2n+1 instead as a projective hyperquadric the sphere Sℓ with x = ℓ is the image under
the projectivisation map of the intersection of the cone C of isotropic lines inCn+1,1 with
a non-null complex (m+ 2)-dimensional subspace N⊥

ℓ .

In this case the rank d = n − m normal tractor bundle N may be viewed as giving a
Gr(d,Cn+1,1) valued CR analogue of the Gauss map of an embedded Riemannian sub-
manifold in Euclidean space.

4.5 Structure

We aim to produce a calculus of invariants for CR embeddings which is both simple and
practical, and yields a machinery for constructing local CR invariants with formulae in
terms the psuedohermitian (Tanaka-Webster) calculus. We thus emphasise heavily the
connection between the CR tractor calculus and the pseudohermitian calculus of a fixed
contact form. Although our final results have a simple interpretation in terms of tractor
calculus, they are often established though explicit calculation using pseudohermitian
calculus. For this reason we have devoted the first part of the article to giving a detailed
exposition of the Tanaka-Webster calculus associated to a choice of pseudohermitian
contact form (§5.2) and an explicit description of the CR tractor calculus in terms of
this pseudohermitian calculus (§5.3). Although the results of §5.2 may largely be found
elsewhere in the literature, proofs are often merely indicated; collecting these results,
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and establishing them by proof, provides the essential reference for verifying the CR in-
variance of our later constructions. These results are immediately applied in §5.3 where
we present the CR tractor calculus, using the explicit description of the standard tractor
bundle and normal connection given in [79]. For the purpose of invariant theory we in-
troduce some CR analogues of parts of the conformal tractor calculus not yet developed
in the CR case.

In §6.1 we discuss the pseudohermitian geometry of CR embeddings, working in particu-
larwith pairs of compatible ambient and submanifold contact forms (seeDefinition 6.1.2).
We also discuss in this section the relationship between the submanifold and ambient CR
density bundles. For simplicity we initially treat the minimal codimension strictly pseu-
doconvex case, generalising to nondegenerate transversal CR embeddings of arbitrary
codimension between CR manifolds of any signature in §6.3.

In §6.2 we develop a manifestly CR invariant approach to studying CR submanifolds
using tractor calculus. Again we restrict initially to the minimal codimension strictly
pseudoconvex case, generalising in §6.3. In §6.4 we apply this calculus to the basic geo-
metric problems of invariant theory for CR embeddings, addressing practical construc-
tions of invariants in §§6.4.4. In §6.5 we prove a CR analogue of the Bonnet theorem
(Theorem 6.5.5).
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5 CR Geometry

5.1 Abstract CR Manifolds

ACRmanifold of hypersurface type is a triple (M2n+1, H, J)whereM is a real (2n+1)-
dimensional manifold,H is a corank one distribution in TM , and J is an almost complex
structure on H satisfying the integrability condition

[X, Y ]− [JX, JY ] + J ([JX, Y ] + [X, JY ]) = 0

for any two vector fields X, Y ∈ Γ(H). The almost complex structure J extends by
complex linearity to act onH⊗C, and since J2 = −id the eigenvalues of J must be±i.
It is easy to see that J acts by i on the bundle

T 1,0M := {X − iJX : X ∈ H} ⊂ H ⊗ C

and by −i on the bundle T 0,1M = T 1,0M . Moreover one has that T 1,0M ∩ T 0,1M = ∅
and

H ⊗ C = T 1,0M ⊕ T 0,1M.

From the integrability condition imposed on J it follows that T 1,0M is formally inte-
grable, that is

[T 1,0M,T 1,0M ] ⊂ T 1,0M

where here we have used the same notation for the bundle T 1,0M and its space of sec-
tions.

To simplify our discussion we assume that M is orientable. Since H carries an almost
complex structure it must be an orientable vector bundle, thus the annihilator line bundle
H⊥ ⊂ T ∗M must also be orientable (so there exists a global section of H⊥ which is
nowhere zero). We say that the CR manifold of hypersurface type (M2n+1, H, J) is
nondegenerate ifH is a contact distribution forM , that is, for any global section θ ofH⊥
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which is nowhere zero the (2n+ 1)-form θ ∧ dθn is nowhere zero (this is equivalent to
the antisymmetric bilinear form dθ being nondegenerate at each point when restricted
to elements of H). If H is a contact distribution then a global section θ of H⊥ which is
nowhere zero is called a contact form. We assume that the line bundle H⊥ has a fixed
orientation so that we can talk about positive and negative elements and sections. We
also assume that (M2n+1, H, J) is nondegenerate.

Given a choice of contact form θ for (M,H, J) we refer to the quadruple (M,H, J, θ) as
a (nondegenerate) pseudohermitian structure. Clearly for any two positive contact forms
θ and θ̂ there is a smooth function Υ ∈ C∞(M) such that θ̂ = eΥθ. One can there-
fore think of the CR manifold (M,H, J) as an equivalence class of pseudohermitian
structures much as we may think of a conformal manifold as an equivalence class of
Riemannian structures. In order to make calculations in CR geometry it is often conve-
nient to fix a choice of contact form θ, calculate, and then observe how things change
if we rescale θ. We will take this approach in the following, working primarily in terms
of the pseudohermitian calculus associated with the Tanaka-Webster connection of the
chosen contact form θ. In order to make real progress however we will need to make use
of the CR invariant tractor calculus [79] as a tool to produce CR invariants and invariant
operators which can be expressed in terms of the Tanaka-Webster calculus.

5.1.1 CR Densities

On a CR manifold (M2n+1, H, J) we denote the annihilator subbundle of T 1,0M by
Λ0,1M ⊂ CT ∗M (where by CT ∗M we mean the complexified cotangent bundle). Sim-
ilarly we denote the annihilator subbundle of T 0,1M by Λ1,0M ⊂ CT ∗M . The bundle
Λ1,0M has complex rank n+ 1 and hence K = Λn+1(Λ1,0M) is a complex line bundle
onM . The line bundle K is simply the bundle of (n+ 1, 0)-forms onM , that is

K = Λn+1,0M :=
{
ω ∈ Λn+1M : V ⌟ω = 0 for all V ∈ T 1,0M

}
,

and is known as the canonical bundle. We assume that K admits an (n + 2)th root
E(−1, 0) and we define E(1, 0) to be E(−1, 0)∗. We then define the CR density bundles
E(w,w′) to be E(1, 0)w ⊗ E(1, 0)

w′

where w − w′ ∈ Z.

Remark 5.1.1. The assumption that K admits an (n + 2)th root is equivalent to saying
that the Chern class c1(K ) is divisible by n + 2 in H2(M,Z). Note that ifM is a real
hypersurface in Cn+1 then K is trivial and therefore admits such a root.
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5.1 Abstract CR Manifolds

Note that the bundles E(w,w′) and E(w′, w) are complex conjugates of one another. In
particular, each diagonal density bundle E(w,w) is fixed under conjugation. We denote
by E(w,w)R the real line subbundle of E(w,w) consisting of elements fixed by conjuga-
tion.

5.1.2 Abstract Index Notation

We freely use abstract index notation for the holomorphic tangent bundle T 1,0M , denot-
ing it by Eα, allowing the use of lower case Greek abstract indices from the start of the
alphabet: α, β, γ, δ, ϵ, α′, β′, and so on. Similarly we use the abstract index notation E ᾱ

for T 0,1M . We denote the dual bundle of Eα by Eα and the dual bundle of E ᾱ by Eᾱ. Ten-
sor powers of these bundles are denoted by attaching appropriate indices to the E , so, for
example, we denote Eα⊗Eβ by Eαβ and Eα⊗Eβ̄⊗Eγ by Eαβ̄γ . As usual we attach abstract
indices to the elements or sections of our bundles to show which bundle they belong to,
so a section V of T 1,0M will be written as V α and a section ϖ of (T 1,0M)∗ ⊗ T 0,1M

will be denoted by ϖα
β̄ . The tensor product of V α and ϖγ

β̄ is written as V αϖγ
β̄ , and

repeated indices denote contraction, soϖ(V ) is written as V αϖα
β̄ . We indicate a tensor

product of some (unweighted) complex vector bundle V → M with the density bundle
E(w,w′) by appending (w,w′), i.e. V(w,w′) = V ⊗ E(w,w′).

We may conjugate elements (or sections) of Eα to get elements (or sections) of E ᾱ: we
write

V ᾱ := V α

to say that V ᾱ is the conjugate of V α. This extends in the obvious way to (weighted) ten-
sor product bundles; note that the complex conjugate bundle of Eαβ̄(w,w′) is Eᾱβ(w′, w).

We will occasionally use abstract index notation for the tangent bundle, denoting it by
Ea and allowing lower case Latin abstract indices from the start of the alphabet.

5.1.3 The Reeb Vector Field

Given a choice of pseudohermitian contact form θ for (M,H, J) there is a unique vector
field T ∈ X(M) determined by the conditions that θ(T ) = 1 and T⌟dθ = 0; this T is
called the Reeb vector field of θ. The Reeb vector field gives us a direct sum decomposition
of the tangent bundle

TM = H ⊕ RT
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and of the complexified tangent bundle

CTM = T 1,0M ⊕ T 0,1M ⊕ CT, (5.1.1)

whereRT (resp. CT ) denotes the real (resp. complex) line bundle spanned by T . Dually,
given θ we have

CT ∗M ∼= (T 1,0M)∗ ⊕ (T 0,1M)∗ ⊕ Cθ. (5.1.2)

5.1.4 Densities and Scales

Definition 5.1.2 ([103]). Given a contact form θ for H we say that a section ζ of K is
volume normalised if it satisfies

θ ∧ (dθ)n = in
2

n!(−1)qθ ∧ (T⌟ζ) ∧ (T⌟ζ̄). (5.1.3)

Given ζ volume normalised for θ clearly ζ ′ = eiφζ is also volume normalised for θ for
any real valued smooth function φ on M , so that such a ζ is determined only up to
phase at each point. Note however that ζ ⊗ ζ̄ does not depend on the choice of volume
normalised ζ . Let us fix a real (n+ 2)th root ς of ζ ⊗ ζ̄ in E(−1,−1). If θ̂ = fθ and ζ̂ is
volume normalised for θ̂ then fς is an (n+2)th root of ζ̂ ⊗ ¯̂

ζ . The map taking θ to ς and
fθ to fς determines an isomorphism from H⊥ to E(−1,−1)R. Fixing this isomorphism
simply corresponds to fixing an orientation of E(−1,−1)R, and we henceforth assume
this is fixed. The isomorphism

H⊥ ∼= E(−1,−1)R (5.1.4)

defines a tautological E(1, 1)R valued 1-form:

Definition 5.1.3. The CR contact form is the E(1, 1)R-valued 1-form θ which is given by
ς−1θ where θ is any pseudohermitian contact form and ς is the corresponding positive
section of E(−1,−1)R.
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5.1 Abstract CR Manifolds

5.1.5 The Levi Form

The Levi form of a pseudohermitian contact form θ is the Hermitian form h : T 1,0M ⊗
T 0,1M → C defined by

(U, V ) 7→ −2idθ(U, V ) = 2iθ([U, V ])

forU, V ∈ Γ(T 1,0M). The Levi form of θmay be thought of as a section of Eαβ̄ , whichwe
write as hαβ̄ ; there is also an inverse of the Levi form hαβ̄ determined by the condition
that hαβ̄hγβ̄ = δαγ (where δαγ is the identity endomorphism of Eα). Note that if θ is
replaced by θ̂ = eΥθ then ĥαβ̄ = eΥhαβ̄ and consequently ĥαβ̄ = e−Υhαβ̄ , moreover it
is clear that ς̂ = eΥς (where θ = ςθ and θ̂ = ς̂θ). This allows us to define a canonical
weighted Levi form:

Definition 5.1.4. The CR Levi form hαβ̄ ∈ Γ
(
Eαβ̄(1, 1)

)
is the E(1, 1)-valued Hermitian

form given by ς−1hαβ̄ for any pseudohermitian contact form θ = ςθ.

In the following we use the CR Levi form hαβ̄ and its inverse hαβ̄ to raise and lower
indices. Note that lowering indices with hαβ̄ identifies Eα with Eβ̄(1, 1) so that weights
generally change when indices are raised and lowered.

The CR Levi form could also have been defined by the map

(U, V ) 7→ 2iθ([U, V ]).

By complexifying and dualising the isomorphism (5.1.4) we obtain an isomorphism of
E(1, 1)with (CH⊥)∗ = CTM/CH . This allows us to identify h, up to a constant factor,
with the usual CTM/CH-valued Levi form in CR geometry.

Remark 5.1.5. Given a contact form θ one may also define a pseudo-Riemannian metric
gθ on the tangent bundle ofM by taking the direct sum of the bilinear form dθ(·, J ·) on
H (which is precisely the real part of the Levi form h of θ) with θ⊗θ onRT . This metric
is called theWebster metric.
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5.1.6 Decomposing Tensors

Using the direct sum decomposition of CTM given by a choice of contact form θ a real
tangent vector X may be represented by the triple

(Xα, X ᾱ, X0)

where Xα is the holomorphic part of X , X ᾱ is the antiholomorphic part, and X0 =

θ(X). Note that X0 is a (1, 1) density and X ᾱ = Xα. (We follow [79] in using θ rather
than θ in definingX0, this simplifies later conformal transformation laws.) Similarly we
may represent a real covector ω by the triple

(ωα, ωᾱ, ω0)

where ωα is the restriction of ω to holomorphic directions, ωᾱ = ωα is the restriction
of ω to antiholomorphic directions, and the (−1,−1) density ω0 is the θ-component of
ω (i.e. ςω(T ) where θ = ςθ). It is easy to see that the above decompositions extend to
arbitrary tensors or tensor fields. For instance we can represent a real covariant 2-tensor
T by the 9-tuple

(Tαβ, Tαβ̄, Tᾱβ, Tᾱβ̄, Tα0, Tᾱ0, T0β, T0β̄, T00);

moreover, by reality it is enough to specify the 5-tuple

(Tαβ, Tαβ̄, Tα0, T0β, T00)

since Tᾱβ = Tαβ̄ , Tᾱ0 = Tα0, and T0β̄ = T0β .

5.2 Psuedohermitian Calculus

5.2.1 The Tanaka-Webster Connection

Since a choice of contact form θ for (M,H, J) gives rise to a pseudo-Riemannian metric
gθ onM (Remark 5.1.5) one also obtains the Levi-Civita connection∇gθ of gθ. Calculat-
ing with this connection is highly inconvenient however, since it does not preserve the
direct sum decomposition (5.1.1) ofCTM induced by θ. We instead look for a connection
∇ onM which still satisfies

∇gθ = 0,
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5.2 Psuedohermitian Calculus

but whose parallel transport also preserves H and (as a connection on H) preserves
J ; such a connection cannot be torsion free, since by the contact condition there exist
X, Y ∈ Γ(H) with [X, Y ] /∈ Γ(H) and hence

T∇(X, Y ) = ∇XY −∇YX − [X, Y ]

cannot be zero since ∇XY − ∇YX ∈ Γ(H). It turns out that these conditions do not
determine a connection onM uniquely, but we can determine∇ uniquely by imposing
the following additional conditions on the torsion of∇,

T∇
αβ̄

γ = 0, T∇
αβ̄

γ̄ = 0, T∇
αβ̄

0 = ihαβ̄,

T∇
αβ

γ = 0, T∇
αβ

γ̄ = 0, T∇
αβ

0 = 0,

T∇
α0
γ = 0, T∇

α0
γ̄ = −Aγ̄α, and T∇

α0
0 = 0

for some Aγ̄α ∈ Γ(E γ̄α(−1,−1)) with Aαβ symmetric (see [131], Proposition 3.1). The
connection∇ determined uniquely by these conditions is called the Tanaka-Webster con-
nection of θ (it was discovered independently by Tanaka and Webster in [129, 142]), and
Aαβ is known as the pseudohermitian torsion tensor.

Since the Tanaka-Webster connection preservesH and gθ it also preserves the gθ-orthogonal
complement of H , which is spanned by the Reeb vector field T . Since gθ(T, T ) = 1 this
implies that∇T = 0. Thus also

∇θ = 0,

since θ( · ) = gθ( · , T ). By definition the Tanaka-Webster connection ∇ preserves the
direct sum decomposition (5.1.1) of CTM induced by θ. So, by definition ∇ induces a
linear connection on H and on T 1,0M . It therefore makes sense to take the Tanaka-
Webster covariant derivative of the Levi form h of θ, and it is easily seen that∇h = 0.

5.2.1.1 Interpreting the torsion conditions

The conditions on the torsion tensor may be alternatively phrased by saying that for any
function f ∈ C∞(M) we have

∇α∇β̄f −∇β̄∇αf = −ihαβ̄∇0f, (5.2.1)

∇α∇βf −∇β∇αf = 0, (5.2.2)
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and
∇α∇0f −∇0∇αf = Aγ̄α∇γ̄f (5.2.3)

where Aαβ is the symmetric pseudohermitian torsion tensor. We note that since the
Tanaka-Webster connection preserves the direct sum decomposition (5.1.2) of CT ∗M

induced by θ there is no ambiguity in the notation used in the above displays; for instance
one can equivalently think of ∇α∇βf as the ‘α-component’ of ∇ acting on ∇βf or as
the ‘αβ-component’ of ∇∇f .

5.2.2 The Tanaka-Webster Connection on Densities

The Tanaka-Webster connection of a contact form acts on sections of any density bundle
since it acts on sections of E(−1, 0)n+2 = K . In equation (5.2.3) above we are already
implicitly using the action of the connection on the density bundle E(−1,−1) in the
expression∇α∇0f . It does not matter whether or not we think of∇0f as density valued
in such equations because of the following lemma.

Lemma 5.2.1. The Tanaka-Webster connection ∇ of θ on E(−1,−1) is simply the flat
connection corresponding to the trivialisation induced by the contact form θ, i.e. by the
section ς satisfying θ = ςθ. In particular the isomorphism (5.1.4) is parallel for the Tanaka-
Webster connection, i.e. it intertwines the actions of∇ on H⊥ and on E(−1,−1)R.

Proof. Suppose the section ζ of K is volume normalised for θ. Parallel transporting ζ
along any curve must preserve ζ up to phase (since the result of parallel transport will
still be volume normalised, θ, dθ, and T being parallel). This implies that ζ⊗ ζ̄ is parallel,
but by definition ςn+2 = ζ ⊗ ζ̄ so that ςn+2 and hence ς is parallel.

The lemma also tells us that for the Tanaka-Webster connection ∇ of any contact form
θ we have

∇θ = 0 and ∇h = 0. (5.2.4)

The advantage of raising and lowering indices with the CR Levi form hαβ̄ is that these
operations commute with any Tanaka-Webster covariant derivative.
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5.2 Psuedohermitian Calculus

5.2.3 Pseudohermitian Curvature

By equation (5.2.1) the operator

∇α∇β̄ −∇β̄∇α + ihαβ̄∇0

annihilates smooth functions onM ; moreover, this operator preserves E γ̄ . By the Leibniz
rule the above displayed operator commutes with multiplication by smooth functions
when acting on sections of E γ̄ . Thus there is a tensor Rαβ̄

γ̄
δ̄ such that

∇α∇β̄V
γ̄ −∇β̄∇αV

γ̄ + ihαβ̄∇0V
γ̄ = −Rαβ̄

γ̄
δ̄V

δ̄ (5.2.5)

for all sections V γ̄ of E γ̄ . Equivalently Rαβ̄
γ̄
δ̄ is characterised by

∇α∇β̄Vδ̄ −∇β̄∇αVδ̄ + ihαβ̄∇0Vδ̄ = Rαβ̄
γ̄
δ̄Vγ̄ (5.2.6)

for all sections Vδ̄ of Eδ̄ . Our conventions agree with those of [79, 142]. We refer to this
tensor, or to Rαβ̄γδ̄ = hγϵ̄Rαβ̄

ϵ̄
δ̄ , as the pseudohermitian curvature tensor, and it has the

following properties

Rαβ̄γδ̄ = Rγβ̄αδ̄ = Rβᾱδγ̄ = Rαδ̄γβ̄ = Rγδ̄αβ̄ (5.2.7)

which we derive in §§5.2.4 below. The trace

Rαβ̄ = Rαβ̄
γ̄
γ̄ (5.2.8)

of the pseudohermitian curvature tensor is referred to as the Webster-Ricci tensor of θ
and its trace

R = hαβ̄Rαβ̄ (5.2.9)

is called theWebster scalar curvature of θ. The pseudohermitian curvature tensor can be
decomposed as

Rαβ̄γδ̄ = Sαβ̄γδ̄ + Pαβ̄hγδ̄ + Pγδ̄hαβ̄ + Pαδ̄hγβ̄ + Pγβ̄hαδ̄ (5.2.10)

where Sαβ̄γδ̄ satisfies

Sαβ̄γδ̄ = Sγβ̄αδ̄ = Sβᾱδγ̄ = Sαδ̄γβ̄ = Sγδ̄αβ̄, Sαβ̄
γ̄
γ̄ = 0 (5.2.11)
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and
Pαβ̄ =

1

n+ 2

(
Rαβ̄ −

1

2(n+ 1)
Rhαβ̄

)
. (5.2.12)

The tensor Sαβ̄γδ̄ is known as the Chern-Moser tensor and is a CR invariant, by which
we mean that if θ̂ is another contact form for H then Ŝαβ̄γδ̄ = Sαβ̄γδ̄ (note that we are
thinking of Sαβ̄γδ̄ as a weighted tensor field).

5.2.4 The Full Tanaka-Webster Curvature

The full curvature tensor of the Tanaka-Webster connection ∇ of a contact form θ is
defined by

∇a∇bY
c −∇b∇aY

c + T∇
ab
e∇eY

c = −Rab
c
dY

d (5.2.13)

for any tangent vector field Y c, where T∇ is the torsion of ∇ given in §§5.2.1. The
pseudohermitian curvature tensor Rαβ̄

γ̄
δ̄ is just one component of the full curvature

tensor, taken with respect to the direct sum decomposition

CTM = T 1,0M ⊕ T 0,1M ⊕ CT (5.2.14)

and its dual.

Lemma 5.2.2. The full curvature tensor Rab
c
d of the Tanaka-Webster connection is com-

pletely determined by the components Rαβ̄
γ̄
δ̄ , Rαβ

γ̄
δ̄ , and Rα0

γ̄
δ̄ .

Proof. Note that the tensor Rab
c
d is real, so that the component Rᾱβ

γ
δ is simply the

complex conjugate of Rαβ̄
γ̄
δ̄ and so on. Also, the symmetry Rab

c
d = −Rba

c
d translates

into Rαβ
γ̄
δ̄ = −Rβα

γ̄
δ̄ , Rᾱ0

γ
δ = −R0ᾱ

γ
δ , etcetera. Now since the Tanaka-Webster

connection preserves the splitting of sections of CTM according to (5.2.14) we must
have

Rab
γ
δ̄ = 0, Rab

γ
0 = 0, and Rab

0
δ = 0.

Since T is parallel we also have that

Rab
0
0 = 0.

From this we see that, up to conjugation and swapping the first two indices, the only
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5.2 Psuedohermitian Calculus

nonzero components of Rab
c
d are

Rαβ̄
γ
δ , Rαβ

γ
δ , Rα0

γ
δ , Rαβ̄

γ̄
δ̄ , Rαβ

γ̄
δ̄ and Rα0

γ̄
δ̄.

Our conclusion follows by observing that if we lower indices using the CR Levi form
then we have that

Rabγδ̄ = −Rabδ̄γ,

since hγδ̄ is parallel.

Remark 5.2.3. From the last display of the above proof we have that Rαβ̄γδ̄ = −Rαβ̄δ̄γ . It
immediately follows that Rαβ̄γδ̄ = Rβ̄αδ̄γ = Rβᾱδγ̄ , establishing one of the claims from
§§5.2.3.

Using (5.2.13) the curvature componentRαβ
γ̄
δ̄ may also be characterised by a Ricci-type

identity
∇α∇βV

γ̄ −∇β∇αV
γ̄ = −Rαβ

γ̄
δ̄V

δ̄ (5.2.15)

for any section V γ̄ of E γ̄ . Similarly for Rα0
γ̄
δ̄ we have

∇α∇0V
γ̄ −∇0∇αV

γ̄ − Aϵα∇ϵV
γ̄ = −Rα0

γ̄
δ̄V

δ̄. (5.2.16)

On a section Vδ̄ of Eδ̄ we have

∇α∇βVδ̄ −∇β∇αVδ̄ = Rαβ
γ̄
δ̄Vγ̄ (5.2.17)

by duality, and likewise for Rα0
γ̄
δ̄ .

5.2.4.1 The Bianchi symmetry

Recall that for a connection ∇ without torsion the Bianchi symmetry comes from ob-
serving that by torsion freeness one has

(∇a∇b −∇b∇a)∇df + (∇b∇d −∇d∇b)∇af + (∇d∇a −∇a∇d)∇bf = 0

for any f ∈ C∞(M), since the curvature tensor must then satisfy

(Rab
c
d +Rbd

c
a +Rda

c
b)∇cf = 0.
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This approach also works for a connection with torsion and we use it below to express
the consequences of the Bianchi symmetry for the curvature of the Tanaka-Webster con-
nection in terms of the components Rαβ̄

γ̄
δ̄ , Rαβ

γ̄
δ̄ , Rα0

γ̄
δ̄ , and the pseudohermitian tor-

sion. Because so many components of Rab
c
d already vanish one obtains expressions for

Rαβ
γ̄
δ̄ and Rα0

γ̄
δ̄ in terms of the pseudohermitian torsion.

Proposition 5.2.4. The Bianchi symmetry for the Tanaka-Webster curvature tensorRab
c
d

is equivalent to the following identities

Rαβ̄
γ̄
δ̄ = Rαδ̄

γ̄
β̄ (5.2.18)

Rαβ
γ̄
δ̄ = ihαδ̄A

γ̄
β − ihβδ̄A

γ̄
α (5.2.19)

Rα0
γ̄
δ̄ = ∇δ̄A

γ̄
α (5.2.20)

∇αA
γ̄
δ = ∇δA

γ̄
α. (5.2.21)

Proof. By elementary considerations the cyclic sum of Rab
c
d with respect to the lower

three indices is determined by the cyclic sums of Rαβ
c
δ , Rαβ

c
δ̄ , Rα0

c
δ , and Rα0

c
δ̄ with

respect to their lower three indices. In the case of Rαβ
c
δ we may instead cyclically per-

mute the lower indices of Rαβ
γ
δ since for each permutation the only nonzero part of

the tensor is obtained by replacing c with γ. By (5.2.2) ∇α∇β is symmetric on smooth
functions so that

(∇α∇β −∇β∇α)∇δf + (∇β∇δ −∇δ∇β)∇αf + (∇δ∇α −∇α∇δ)∇βf = 0

for all f ∈ C∞(M), and hence

Rαβ
γ
δ +Rδα

γ
β +Rβδ

γ
α = 0. (5.2.22)

This expression is not listed above because it is a consequence of (5.2.19), the latter being
equivalent to

Rαβ
γ
δ = −iδγαAβδ + iδγβAαδ (5.2.23)

since Rαβγδ̄ = −Rαβδ̄γ .

Now let f be a smooth function onM . We similarly compute

(
Rαβ

c
δ̄ +Rδ̄α

c
β +Rβδ̄

c
α

)
∇cf.
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Noting that Rαβ
c
δ̄∇cf = Rαβ

γ̄
δ̄∇γ̄f , and so on, we get

Rαβ
γ̄
δ̄∇γ̄f +Rδ̄α

γ
β∇γf +Rβδ̄

γ
α∇γf

= (∇α∇β −∇β∇α)∇δ̄f + (∇δ̄∇α −∇α∇δ̄ − ihαδ̄∇0)∇βf

+ (∇β∇δ̄ −∇δ̄∇β + ihβδ̄∇0)∇αf

= ∇α(∇β∇δ̄f −∇δ̄∇βf) +∇β(∇δ̄∇αf −∇α∇δ̄f)

+∇δ̄(∇α∇βf −∇β∇αf)− ihαδ̄∇0∇βf + ihβδ̄∇0∇αf

= ∇α(−ihβδ̄∇0f) +∇β(ihαδ̄∇0f)

− ihαδ̄∇0∇βf + ihβδ̄∇0∇αf

= ihαδ̄(∇β∇0f −∇0∇βf) + ihβδ̄(∇0∇αf −∇α∇0f)

= ihαδ̄A
ϵ̄
β∇ϵ̄f − ihβδ̄A

ϵ̄
α∇ϵ̄f

Since f was arbitrary the above display holds at any point for all functions f with∇γf =

0 (or with ∇γ̄f = 0) at that point, and thus we conclude that

Rαβ
γ̄
δ̄ = ihαδ̄A

γ̄
β − ihβδ̄A

γ̄
α

and
Rδ̄α

γ
β +Rβδ̄

γ
α = 0.

By conjugation the last display is equivalent to (5.2.18), noting that Rβδ̄
γ
α = −Rδ̄β

γ
α.

Similarly computing
Rα0

c
δ̄∇cf +R0δ̄

c
α∇cf +Rδ̄α

c
0∇cf

we get (noting Rδ̄α
c
0 = 0)

Rα0
γ̄
δ̄∇γ̄f +R0δ̄

γ
α∇γf = −(∇αA

γ

δ̄
)∇γf + (∇δ̄A

γ̄
α)∇γ̄f

so that
Rα0

γ̄
δ̄ = ∇δ̄A

γ̄
α.

Finally, computing the cyclic sum for Rα0
c
δ∇cf we obtain

Rα0
γ
δ∇γf +R0δ

γ
α∇γf = −(∇αA

γ̄
δ )∇γ̄f + (∇δA

γ̄
α)∇γ̄f
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so that
∇αA

γ̄
δ = ∇δA

γ̄
α

and
Rα0

γ
δ = Rδ0

γ
α. (5.2.24)

The identity (5.2.24) follows already from (5.2.20) since by lowering indices we have
Rα0γδ̄ = ∇δ̄Aαγ and using that Rα0δ̄γ = −Rα0γδ̄ we get that

Rα0
γ
δ = −∇γAαδ. (5.2.25)

The expressions (5.2.20) and (5.2.23) agree with those given in section 1.4.2 of [49], after
adjusting (5.2.23) by factor of two to account for their slightly different conventions (see
(1.84) in [49]).

Note that (5.2.18) implies that the pseudohermitian curvature tensor satisfies

Rαβ̄γδ̄ = Rγβ̄αδ̄

(as was previously claimed) from which we also deduce that

Rαβ̄γδ̄ = Rαδ̄γβ̄ = Rγδ̄αβ̄.

5.2.5 Curvature of the Density Bundles

Although the Tanaka-Webster connection ∇ of a contact form θ is flat on the diagonal
density bundles E(w,w) it is not flat on density bundles in general. The curvature of
the density bundles was calculated in [79, Prop. 2.2]. We give this proposition with an
alternate proof:

Proposition 5.2.5. Let θ be a pseudohermitian contact form and ∇ its Tanaka-Webster
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connection. On a section f of E(w,w′) we have

∇α∇βf −∇β∇αf = 0, (5.2.26)

∇α∇β̄f −∇β̄∇αf + ihαβ̄∇0f =
w − w′

n+ 2
Rαβ̄f, (5.2.27)

∇α∇0f −∇0∇αf − Aαγ∇γf =
w − w′

n+ 2
(∇γAγα)f. (5.2.28)

Proof. We first consider sections f = ζ of E(−n− 2, 0) = K . The map

ζ 7→ (T⌟ζ)|T 1,0M

induces an isomorphism between the complex line bundles K and Λn (T 1,0M)
∗. This

isomorphism between K and E[α1···αn] intertwines the action of the Tanaka-Webster
connection ∇ since the Reeb vector field T is parallel and ∇ preserves T 1,0M , so the
two line bundles have the same curvature. The curvature of the top exterior power
E[α1···αn] of Eα is simply obtained by tracing the curvature of Eα.

Now let f be a section of E(−n − 2, 0) = K . By tracing the conjugate of (5.2.19) and
using the appropriate Ricci-type identity for Rᾱβ̄

γ
δ we therefore obtain

∇ᾱ∇β̄f −∇β̄∇ᾱf = 0

since Rᾱβ̄
γ
γ = 0. Similarly, using that Rαβγδ̄ = −Rαβδ̄γ , we obtain from (5.2.19) that

Rαβ
γ
γ = 0 and hence

∇α∇βf −∇β∇αf = 0.

Using that Rαβ̄
γ
γ = Rαβ̄γ̄

γ̄ = −Rαβ̄
γ̄
γ̄ = −Rαβ̄ and the appropriate Ricci-type identity

for Rαβ̄
γ
δ we get

∇α∇β̄f −∇β̄∇αf + ihαβ̄∇0f = −Rαβ̄f.

Finally, by tracing the conjugate of (5.2.20) we obtain

∇ᾱ∇0f −∇0∇ᾱf − Aγᾱ∇γf = (∇γA
γ
ᾱ)f

and using Rα0γδ̄ = −Rα0δ̄γ we obtain from (5.2.20) that Rα0
γ
δ = −∇γAαδ so that

∇α∇0f −∇0∇αf − Aγ̄α∇γ̄f = −(∇γAαγ)f.

This establishes the proposition for (w,w′) equal to (−n − 2, 0), and for (w,w′) equal
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to (0,−n− 2) by conjugating.

Considering the action of the curvature operator(s) on (n + 2)th powers of sections of
E(−1, 0) and E(0,−1)we obtain the result for (w,w′) equal to (−1, 0) or (0,−1). Taking
powers and tensor products then gives the full proposition.

5.2.6 Changing Contact Form

Here we establish how the various pseudohermitian objects we have introduced trans-
form under conformal rescaling of the contact form. The first thing to consider is the
Reeb vector field:

Lemma 5.2.6. Under the transformation θ̂ = eΥθ of pseudohermitian contact forms, Υ ∈
C∞(M), the Reeb vector field transforms according to

T̂ = e−Υ
[
T + ((dΥ)|H ◦ J)♯

]
(5.2.29)

where ♯ denotes the usual isomorphismH∗ → H induced by the bundle metric dθ(·, J ·)|H
on the contact distribution.

Proof. Defining T̂ by (5.2.29) one has θ̂(T̂ ) = 1 and

T̂⌟dθ̂ = T̂⌟d(eΥθ) = dΥ(T̂ )θ̂ − dΥ + eΥT̂⌟dθ.

We observe that
dθ̂(T̂ , JY ) = −dΥ(JY ) + dθ(eΥT̂ , JY ) = 0

for any Y ∈ Γ(H), using that θ̂(JY ) = 0 and

dθ(eΥT̂ , JY ) = dθ(((dΥ)|H ◦ J)♯ , JY ) = dΥ(JY ).

Now since dθ̂(T̂ , T̂ ) = 0 we have T̂⌟dθ̂ = 0.

If η is a 1-formwhose restrictions to Eα and E ᾱ are ηα and ηᾱ respectively then (η|H)♯ is a
contact vector fieldwhose antiholomorphic component is hβᾱηβ andwhose holomorphic
component is hαβ̄ηβ̄ . It is easy to see that the restriction of (dΥ)|H ◦ J to Eα is i∇αΥ

and the restriction to E ᾱ is −i∇ᾱΥ. These observations imply:
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Lemma 5.2.7. If a 1-form ω has components (ωα, ωᾱ, ω0) with respect to some contact
form θ, then the components of ω with respect to eΥθ are

(ωα, ωᾱ, ω0 + iΥᾱωᾱ − iΥαωα)

where Υᾱ = hβᾱ∇βΥ and Υα = hαβ̄∇β̄Υ.

5.2.6.1 The Tanaka-Webster transformation laws

We need to see how the Tanaka-Webster connection transforms under rescaling of the
contact form.

Proposition 5.2.8. Under the transformation θ̂ = eΥθ of pseudohermitian contact forms,
Υ ∈ C∞(M), the Tanaka-Webster connection on sections τβ of Eβ transforms according to

∇̂ατβ = ∇ατβ −Υβτα −Υατβ (5.2.30)

∇̂ᾱτβ = ∇ᾱτβ + hβᾱΥ
γτγ (5.2.31)

∇̂0τβ = ∇0τβ + iΥγ̄∇γ̄τβ − iΥγ∇γτβ − i(Υγ
β −ΥγΥβ)τγ (5.2.32)

where Υα = ∇αΥ, Υᾱ = ∇ᾱΥ, Υαβ̄ = ∇β̄∇αΥ, and indices are raised using hαβ̄ .

Remark. Note that on the left hand side of the last equation in the above display the
‘0-component’ is taken with respect to the splitting of the cotangent bundle induced by
θ̂, whereas on the right hand side it is taken with respect to the splitting of the cotangent
bundle induced by θ (recall §§5.1.4 and §§5.1.6). In other words the operator ∇̂0 is taken
to be ς̂∇̂T̂ where θ̂ = ς̂θ, whereas ∇0 = ς∇T where θ = ςθ. No overall factor appears
in the transformation law since θ(ςT ) = θ(T ) = 1 and similarly θ(ς̂ T̂ ) = 1.

Proof of Proposition 5.2.8. We define the connection ∇̂ on Eβ by the formulae above, and
extend ∇̂ to a connection on TM in the obvious way. Precisely, we define ∇̂ to act on
Eβ̄ by the conjugates of the above formulae, so that, e.g., ∇̂ατβ̄ is the conjugate of ∇̂ᾱτβ

with τβ = τβ̄ . This gives a connection on CH∗ which preserves the real subbundle H∗

and preserves J . Thus by requiring θ̂ to be parallel for ∇̂ we obtain a connection on
T ∗M and hence on TM . To show that this is the Tanaka-Webster connection of θ̂ it
remains only to show that ∇̂gθ̂ = 0 and to verify the torsion conditions.
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To show that ∇̂gθ̂ = 0 it is sufficient to show that ∇̂ preserves the Levi form ĥ is of θ̂.
This is a computation using the formulae in the proposition: By the Leibniz rule we have

∇̂α(τβζγ̄) = ∇α(τβζγ̄)−Υα(τβζγ̄)−Υβ(ταζγ̄) + hαγ̄Υ
δ̄(τβζδ̄)

for a simple section of Eβγ̄ . By C-linearity we obtain

∇̂αĥβγ̄ = ∇αĥβγ̄ −Υαĥβγ̄ −Υβĥαγ̄ + hαγ̄Υ
δ̄ĥβδ̄;

the terms on the right hand side of the above display cancel in pairs since ĥβγ̄ = eΥhβγ̄ .
By conjugate symmetry we also get ∇̂ᾱĥβγ̄ = 0. Similarly one computes that

∇̂0ĥαβ̄ = ∇0ĥαβ̄ + iΥγ̄∇γ̄ĥαβ̄ − iΥγ∇γĥαβ̄

− i (Υγ
α −ΥγΥα) ĥγβ̄ + i

(
Υγ̄

β̄ −Υγ̄Υβ̄

)
ĥαγ̄.

The terms on the right hand side of the above display all cancel since ∇0ĥαβ̄ = Υ0ĥαβ̄

and Υαβ̄ −Υβ̄α = ihαβ̄Υ0, where Υ0 = ∇0Υ and Υβ̄α = ∇α∇β̄Υ.

Substituting ∇̂βf (= ∇βf ) for τβ in equation (5.2.30) we see that

∇̂α∇̂βf − ∇̂β∇̂αf = 0,

since −Υβτα −Υατβ is symmetric. Similarly from (5.2.31) we obtain

∇̂α∇̂β̄f − ∇̂β̄∇̂αf = −ihαβ̄ (∇0f + iΥγ̄∇γ̄f − iΥγ∇γf) ,

and from Lemma 5.2.7 we have that

∇̂0f = ∇0f + iΥγ̄∇γ̄f − iΥγ∇γf. (5.2.33)

From (5.2.32) and (5.2.33) one has that

∇̂α∇̂0f − ∇̂0∇̂αf = ∇̂α (∇0f − iΥγ∇γf + iΥγ̄∇γ̄f)

− (∇0∇αf + iΥγ̄∇γ̄∇αf − iΥγ∇γ∇αf (5.2.34)

−i(Υγ
α −ΥγΥα)∇γf) .
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One can easily compute directly that

∇̂α (∇0f − iΥγ∇γf + iΥγ̄∇γ̄f) = ∇α (∇0f − iΥγ∇γf + iΥγ̄∇γ̄f)

+ Υα (∇0f − iΥγ∇γf + iΥγ̄∇γ̄f)

(cf. the proof of Proposition 5.2.9). Substituting this into (5.2.34), expanding using the
Leibniz rule and simplifying one obtains

∇̂α∇̂0f − ∇̂0∇̂αf = (Aαγ + iΥαγ − iΥαΥγ) ∇̂γf

where Υαγ = ∇α∇γΥ is symmetric.

Note that in the course of the proof we have established the transformation law

Âαβ = Aαβ + iΥαβ − iΥαΥβ (5.2.35)

for the pseudohermitian torsion.

5.2.6.2 The transformation law for the pseudohermitian curvature tensor

From the transformation laws for the Tanaka-Webster connection one can directly com-
pute that

R̂αβ̄γδ̄ = Rαβ̄γδ̄ + Λαβ̄hγδ̄ + Λγδ̄hαβ̄ + Λαδ̄hγβ̄ + Λγβ̄hαδ̄ (5.2.36)

where
Λαβ̄ = −1

2
(Υαβ̄ +Υβ̄α)−

1

2
ΥγΥγhαβ̄. (5.2.37)

In particular this tells us that Ŝαβ̄γδ̄ = Sαβ̄γδ̄ and

P̂αβ̄ = Pαβ̄ + Λαβ̄. (5.2.38)

5.2.6.3 The transformation laws for the Tanaka-Webster connection on
densities

We also need to know how the Tanaka-Webster connection transforms when acting on
densities. These transformation laws follow from the above since it suffices to compare
the action of∇ and ∇̂ on sections of the canonical bundle K .
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Proposition 5.2.9. [79, Prop. 2.3] Under the transformation θ̂ = eΥθ of pseudohermi-
tian contact forms, Υ ∈ C∞(M), the Tanaka-Webster connection acting on sections f of
E(w,w′) transforms according to

∇̂αf = ∇αf + wΥαf

∇̂ᾱf = ∇ᾱf + w′Υᾱf

∇̂0f = ∇0f + iΥγ̄∇γ̄f − iΥγ∇γf

+ 1
n+2

[(w + w′)Υ0 + iwΥγ
γ − iw′Υγ̄

γ̄ + i(w′ − w)ΥγΥγ] f.

Proof. Since∇ preserves T and Γ(T 1,0M) the map

Iθ : ζ 7→ (T⌟ζ)|T 1,0M

taking sections of K to sections of E[α1···αn] commutes with ∇X for all X ∈ X(M). On
the other hand Iθ̂ : ζ 7→ (T̂⌟ζ)|T 1,0M intertwines the action of the connection ∇̂. Now
Iθ̂ = e−Υ ◦ Iθ since if Y = T̂ − e−ΥT then (Y ⌟ζ)|T 1,0M = 0 for any (n + 1, 0)-form ζ ;
to see this note that Y is contact (by Lemma 5.2.6) and the antiholomorphic part of Y
hooks into ζ to give zero, but also ζ|T 1,0M = 0 since the rank of T 1,0M is n. Thus we
have

Iθ(∇̂Xζ) = eΥIθ̂(∇̂Xζ) = eΥ∇̂XIθ̂(ζ) = eΥ∇̂X [e
−ΥIθ(ζ)]

= ∇̂XIθ(ζ)− dΥ(X)Iθ(ζ)

for any X ∈ X(M), ζ ∈ Γ(K ). So the action of ∇̂ on K is conjugate under Iθ to the
action of ∇̂ − dΥ on E[α1···αn]. One now easily translates using Iθ the transformation
laws for the Tanaka-Webster connection on E[α1···αn] (obtained from Proposition 5.2.8
by taking traces) to the transformation laws for the Tanaka-Webster connection on the
canonical bundle K . The transformation laws for E(w,w′) then follow from those for
K = E(−n− 2, 0) in the obvious way.

5.3 The Tractor Calculus

It is well known that nondegenerate (hypersurface type) CR geometries admit an equiv-
alent description as parabolic Cartan geometries. The Cartan geometric description of
CR manifolds was introduced by Cartan [37] in the case of 3-dimensional CR manifolds,
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and by Tanaka [129, 130, 132] and Chern and Moser [41] in the general case. To a sig-
nature (p, q) CR manifold (M,H, J) there is associated a canonical Cartan geometry
(G, ω) of type (SU(p + 1, q + 1), P ) where the subgroup P of SU(p + 1, q + 1) is the
stabiliser of a complex null line in Cp+1,q+1. Moreover, any local CR diffeomorphism
of (M,H, J) with another CR manifold (M ′, H ′, J ′) lifts to a local equivalence of the
canonical Cartan geometries (G, ω) and (G ′, ω′). In the model case of the CR sphere G is
simply the groupG = SU(n+1, 1) as a principal bundle over S2n+1 = G/P and ω is the
left Maurer-Cartan form of G. Strictly speaking, if we do not wish to impose any global
assumptions in the general case we need to quotient SU(p + 1, q + 1) and P by their
common finite cyclic center, but for the purpose of local calculus we can ignore this.

Given any representation V of SU(p + 1, q + 1) there is associated to the CR Cartan
bundle G a vector bundle V = G ×P V over M . The CR Cartan connection ω induces
on V a linear connection∇V . Such bundles V are known as tractor bundles, and the con-
nection∇V is the (canonical) tractor connection [27]. If T is the standard representation
Cp+1,q+1 of SU(p + 1, q + 1) then T = G ×P T is known as the standard tractor bun-
dle. Since T is a faithful representation of P the CR Cartan bundle G may be recovered
from T as an adapted frame bundle. The Cartan connection ω is easily recovered from
∇T . Elementary representation theory tells us that all other irreducible representations
of SU(p + 1, q + 1) are subbundles of tensor representations constructed from T (and
T∗) given by imposing certain tensor symmetries, so knowing the standard tractor bun-
dle T and its tractor connection one can easily explicitly obtain all tractor bundles and
connections.

The tractor bundles and their tractor connections, along with certain invariant differen-
tial (splitting) operators from irreducible tensor bundles on the CR manifold into tractor
bundles, form the basis of a calculus of local invariants and invariant operators for CR
manifolds known as the CR tractor calculus.

5.3.1 The Standard Tractor Bundle

There are various ways to construct the CRCartan bundle and hence the standard tractor
bundle. However for our purposes it is much better to use the direct construction of the
CR standard tractor bundle and connection found in [79]. This allows a very concrete
description of the standard tractor bundle and connection in terms of theweighted tensor
bundles and Tanaka-Webster calculus of §5.2.
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Since the subgroup P of SU(p + 1, q + 1) stabilises a null complex line in T it also
stabilises the orthogonal complement of this null line and so there is a filtration

T 1 ⊂ T 0 ⊂ T −1 = T (5.3.1)

of T by subbundles where T 1 has complex rank 1 and T 0 has complex rank n+ 1 (and
corank 1). The starting point for the explicit construction of T in [79] is the observation
that

T 1 = E(−1, 0), T 0/T 1 = Eα(−1, 0), and T −1/T 0 = E(0, 1). (5.3.2)

Let us introduce abstract index notation EA for T , allowing the use of capitalised Latin
indices from the start of the alphabet. The dual of T = EA is denoted by EA and the
conjugate by E Ā. Following [79] we present the standard cotractor bundle EA rather
than EA (it makes little difference since there will be a parallel Hermitian metric around).
The bundle EA comes with a naturally defined filtration, dual to (5.3.1). Given a choice
of contact form θ for (M,H, J) we identify the standard cotractor bundle EA with

[EA]θ = E(1, 0)⊕ Eα(1, 0)⊕ E(0,−1);

we write vA
θ
= (σ, τα, ρ),

vA
θ
=

 σ

τα

ρ

 , or [vA]θ =

 σ

τα

ρ


if an element or section of EA is represented by (σ, τα, ρ) with respect to this identifi-
cation; the identifications given by two contact forms θ and θ̂ = eΥθ are related by the
transformation law

[EA]θ ∋

 σ

τα

ρ

 ∼

 1 0 0

Υα δβα 0

−1
2
(ΥβΥβ + iΥ0) −Υβ 1


 σ

τβ

ρ

 ∈ [EA]θ̂ (5.3.3)

where Υα = ∇αΥ and Υ0 = ∇0Υ. This transformation law comes from the action of
the nilpotent part P+ of P on T∗ (see [33] for the general theory) so that ∼ is indeed
an equivalence relation on the disjoint union of the spaces [EA]θ. We can thus take the
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standard cotractor bundle EA to be the quotient of the disjoint union of the [EA]θ over
all pseudohermitian contact forms θ by the equivalence relation (5.3.3).

5.3.2 Splitting Tractors

From (5.3.3) it is clear that there is an invariant inclusion of E(0,−1) into EA given with
respect to any contact form θ by the map

ρ 7→

 0

0

ρ

 .

Correspondingly there is an invariant section ZA of EA(0, 1) such that the above dis-
played map is given by ρ 7→ ρZA. The weight (0, 1) canonical tractor ZA can be written
as

ZA =

 0

0

1


with respect to any choice of contact form θ.

Given a fixed choice of θ, we also get the corresponding splitting tractors

W β
A

θ
=

 0

δβα

0

 and YA
θ
=

 1

0

0


which both have weight (−1, 0). A standard cotractor vA

θ
= (σ, τα, ρ) may instead be

written as vA = σYA +W β
Aτβ + ρZA were we understand that YA andW β

A are defined
in terms of the splitting induced by θ. If θ̂ = eΥθ then by (5.3.3) we have

Ŵ β
A = W β

A +ΥβZA, (5.3.4)

ŶA = YA −ΥβW
β
A − 1

2
(ΥβΥ

β − iΥ0)ZA. (5.3.5)

5.3.3 The Tractor Metric

Since the group P preserves the inner product on T = Cp+1,q+1 the standard tractor
bundle T = G ×P T carries a natural signature (p+ 1, q + 1) Hermitian bundle metric.
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We denote this bundle metric by hAB̄ , and its inverse by hAB̄ . Explicitly the tractor
metric hAB̄ is given with respect to any contact form θ by

hAB̄ = ZAYB̄ + hαβ̄W
α
AW

β̄

B̄
+ YAZB̄ (5.3.6)

where ZB̄ ,W
β̄

B̄
, and YB̄ are the respective conjugates of ZB ,W β

B , and YB . One can easily
check directly using (5.3.4) and (5.3.5) that the above expression does not depend on the
choice of θ. Dually, the inverse tractor metric is given by

hAB̄v′AvB = σρ′ + hαβ̄τατ ′β + ρσ′ (5.3.7)

for any two sections vA
θ
= (σ, τα, ρ) and v′A

θ
= (σ′, τ ′α, ρ

′) of EA.

We use the tractor metric to identify EA with EĀ, the latter of which can be described
explicitly as the disjoint union of the spaces

[EĀ]θ = E(0, 1)⊕ Eᾱ(0, 1)⊕ E(−1, 0) (5.3.8)

(over all pseudohermitian contact forms θ) modulo the equivalence relation obtained by
conjugating (5.3.3). Identifying Eᾱ(0, 1) with Eα(−1, 0) via the CR Levi form we write a
standard tractor as vA θ

= (σ, τα, ρ) or

vA
θ
=


σ

τα

ρ

 ∈

E(0, 1)
⊕

Eα(−1, 0)

⊕
E(−1, 0)

.

We may also raise and lower indices on the splitting tractors in order to write vA =

σY A + τβWA
β + ρZA with respect to θ.

With these conventions the pairing between vA θ
= (σ, τα, ρ) and v′A

θ
= (σ′, τ ′α, ρ

′) is
given by

vAv′A = σρ′ + τατ ′α + ρσ′. (5.3.9)

The various contractions of the splitting tractors (for a given θ) are described by the
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5.3 The Tractor Calculus

following table
YA WAβ̄ ZA

Y A 0 0 1

WA
α 0 hαβ̄ 0

ZA 1 0 0

(5.3.10)

which reflects the form of the tractor metric hAB̄ .

5.3.4 The Tractor Connection

In order to define the canonical (normal) tractor connection we need two further curva-
ture objects. These are

Tα =
1

n+ 2
(∇αPβ

β − i∇βAαβ) (5.3.11)

and
S = − 1

n
(∇αTα +∇ᾱTᾱ + Pαβ̄P

αβ̄ − AαβA
αβ). (5.3.12)

These expressions appear in [79] and can be determined from the following formulae for
the tractor connection by the normalisation condition on the tractor curvature (which
amounts to certain traces of curvature tensors vanishing, see [29]). Of course the S and
Tα terms are also needed to make sure that the formulae for the tractor connection given
below transform correctly so as to give a well-defined connection on EA.

On any section vA
θ
= (σ, τα, ρ) of EA the standard tractor connection∇T (or simply∇) is

defined by the following formulae

∇βvA
θ
=

 ∇βσ − τβ

∇βτα + iAαβσ

∇βρ− Pβ
ατα + Tβσ

 , (5.3.13)

∇β̄vA
θ
=

 ∇β̄σ

∇β̄τα + hαβ̄ρ+ Pαβ̄σ

∇β̄ρ− iAβ̄
ατα − Tβ̄σ

 , (5.3.14)

and

∇0vA
θ
=

 ∇0σ + i
n+2

Pσ − iρ

∇0τα +
i

n+2
Pτα − iPα

βτβ + 2iTασ

∇0ρ+
i

n+2
Pρ+ 2iTατα + iSσ

 (5.3.15)

where P = Pβ
β̄ . Using (5.2.35), (5.2.38), and Proposition 5.2.8 combined with Proposi-
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tion5.2.9 one may check directly that the above formulae transform appropriately under
rescaling of the contact form θ (i.e. are compatible with (5.3.3), and with Lemma 5.2.6 in
the case of (5.3.15)) so that they give a well-defined connection on EA.

Coupling the tractor connection with the Tanaka-Webster connection of some contact
form θ, the tractor connection is given on the splitting operators by (cf. [29], and also
[54, Proposition 3.1])

∇βYA = iAαβW
α
A + TβZA (5.3.16)

∇βW
α
A = −δαβYA − Pβ

αZA (5.3.17)

∇βZA = 0 (5.3.18)

∇β̄YA = Pαβ̄W
α
A − Tβ̄ZA (5.3.19)

∇β̄W
α
A = iAαβ̄ZA (5.3.20)

∇β̄ZA = hαβ̄W
α
A , (5.3.21)

and

∇0YA = i
n+2

PYA + 2iTαW
α
A + iSZA (5.3.22)

∇0W
α
A = −iPβαW β

A + i
n+2

PWα
A + 2iTαZA (5.3.23)

∇0ZA = −iYA + i
n+2

PZA. (5.3.24)

Using either set of formulae for the tractor connection one can easily show by direct
calculation that ∇ preserves hAB̄ .

5.3.4.1 Weyl connections on the tangent bundle

The expression (5.3.15) for ∇0vA may be simplified if one absorbs the terms involving
Pα

β and its trace P into the definition of the connection on the tangent bundle we are
using. This amounts to working with, in the terminology of [33], the Weyl connection
determined by θ rather than the Tanaka-Webster connection of θ. The Weyl connection
∇W determined by θ agrees with the Tanaka-Webster connection when differentiating
in contact directions, but when differentiating in the Reeb direction one has

∇W
0 τα = ∇0τα − iPα

βτβ (5.3.25)
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5.3 The Tractor Calculus

for a section τα of Eα (the action on Eᾱ is given by conjugating (5.3.25) and ∇W
0 T = 0).

Using the isomorphism Iθ of E(−n−2, 0)with E[α1···αn] from the proof of Proposition 5.2.9
one obtains from (5.3.25) that

∇W
0 σ = ∇0σ +

i

n+ 2
Pσ (5.3.26)

for a section σ of E(1, 0). Using the Weyl connection rather than the Tanaka-Webster
connection in the expression (5.3.15) for∇0vA one has the simpler expression

∇0vA
θ
=

 ∇W
0 σ − iρ

∇W
0 τα + 2iTασ

∇W
0 ρ+ 2iTατα + iSσ

 . (5.3.27)

5.3.5 The Adjoint Tractor Bundle

Another important bundle on CR manifolds is the adjoint tractor bundle A = G ×P g.
Since g is the space of skew-Hermitian endomorphisms of Cp+1,q+1 with respect to the
signature (p+1, q+1) inner product we may identifyA with the bundle of hAB̄-skew-
Hermitian endomorphisms of the standard tractor bundle. Thus we think of A as the
subbundle of EAB = EA ⊗ EB whose sections tAB satisfy

tAB̄ = −tBĀ.

Since the standard tractor connection∇T is Hermitian, it induces a connection on A ⊂
End(T ) and this is the usual (normal) tractor connection on A.

The adjoint tractor bundle carries a natural filtration

A2 ⊂ A1 ⊂ A0 ⊂ A−1 ⊂ A−2 = A (5.3.28)

corresponding to a P -invariant filtration of su(p+1, q+1). In particular,A0 = G ×P p

where p = Lie(P ). Sections t of A−1 are those skew-Hermitian endomorphisms which
satisfy tABZAZB = 0, and sectionsA0 are those which additionally satisfy tABZAW β

B =

0. In any parabolic geometry the subbundleA1 = G×p+, where p+ is the nilpotent part
of p (in this case p+ is a Heisenberg algebra), is canonically isomorphic to T ∗M . Here
the isomorphism is given explicitly by the map

(υα, υᾱ, υ0) 7→ υαW
α
AZB̄ − υβ̄ZAW

β̄

B̄
− iυ0ZAZB̄ (5.3.29)
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with respect to any contact form θ. Dual to (5.3.29) there is a bundle projection from
A∗ ∼= A to TM . Explicitly, the resulting isomorphism of A/A0 with TM is given with
respect to θ by

XαWA
α Y

B̄ −X β̄Y AW B̄
β̄ + iX0Y AY B̄ +A0 7→ (Xα, X ᾱ, X0). (5.3.30)

5.3.6 The Tractor Curvature

The curvature of the standard tractor connection agrees with the usual (g-valued) cur-
vature of the canonical Cartan connection when the latter is thought of as an adjoint
tractor (A = G ×P g) valued two form. To normalise our conventions with the index
notation we define the curvature of the tractor bundle by

∇a∇bvC −∇b∇avC + T∇
ab
e∇evC = −κabCDvD (5.3.31)

for all sections vC of EC , where ∇ denotes the tractor connection coupled with any
connection on the tangent bundle and T∇ is the torsion of that connection on the tangent
bundle. Since we allow for the use of connections with torsion on the tangent bundle
in the above, we may compute κabCDvD explicitly in its decomposition with respect to
any contact form θ using the weighted Tanaka-Webster calculus developed in §5.2. The
resulting expressions were given in [79] (cf. [41]); we have

καβCD = 0, (5.3.32)

καβ̄C
D θ
=

 0 0 0

iVαβ̄γ Sαβ̄γ
δ 0

Uαβ̄ −iVαβ̄δ 0

 , (5.3.33)

κα0CD
θ
=

 0 0 0

Qαγ Vα
δ
γ 0

Yα −iUαδ 0

 , (5.3.34)
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where

Vαβ̄γ = ∇β̄Aαγ + i∇γPαβ̄ − iTγhαβ̄ − 2iTαhγβ̄, (5.3.35)

Uαβ̄ = ∇αTβ̄ +∇β̄Tα + Pα
γPγβ̄ − AαγA

γ

β̄
+ Shαβ̄, (5.3.36)

Qαβ̄ = i∇0Aαβ − 2i∇βTα + 2Pα
γAγβ, (5.3.37)

Yα = ∇0Tα − i∇αS + 2iP γ
αTγ − 3Aγ̄αTγ̄. (5.3.38)

Here the matrices appearing in (5.3.33) and (5.3.34) are arranged so that the action of
καβ̄CD and κα0CD on vD is given (with respect to θ) by the action of the respective
matrices on the column vector representing vD. The remaining components of the trac-
tor/Cartan curvature κ are determined by the obvious symmetries. We also have from
[79] (again cf. [41]) that

Vαβ̄γ = Vγβ̄α, Vα
α
γ = 0,

Uαβ̄ = Uβᾱ, Uα
α = 0,

and Qαβ = Qαβ.

The tractor connection on the CR sphere S2n+1 is flat, and for a general strictly pseudo-
convex CR manifold the tractor curvature is precisely the obstruction to being locally
CR equivalent to the sphere (see Theorem 6.5.1).

5.3.7 Invariant Tractor Operators

The tractor calculus can be used to give a uniform construction of curved analogues
for almost all CR invariant differential operators between irreducible bundles on the
model CR sphere. The key idea behind this is to apply Eastwood’s ‘curved translation
principle’ [52, 50] to the tractor covariant exterior derivative d∇ using certain invariant
differential splitting operators constructed via the ‘BGG machinery’ of [35, 25]. Impor-
tant exceptional cases are dealt with in [79] where the authors construct CR invariant
powers of the sublaplacian on curved CR manifolds using the tractor D-operator (which
extends one of the BGG splitting operators to a family of operators parametrised by
weight). Such invariant differential splitting operators are also very useful in the prob-
lem of constructing invariants of CR structures, since they allow the jets of the structure
(or rather of some invariant curvature tensor) to be packaged in a tractorial object which
can be further differentiated invariantly. In the following we present the most basic and
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important of these (families of) invariant operators.

5.3.7.1 The tractor D-operator(s)

Let EΦ denote any tractor bundle and let EΦ(w,w′) denote the tensor product of EΦ with
E(w,w′).

Definition 5.3.1. The tractor D-operator of [79]

DA : EΦ(w,w′) → EA ⊗ EΦ(w − 1, w′)

is defined by

DAf
Φ θ
=

 w(n+ w + w′)fΦ

(n+ w + w′)∇αf
Φ

−
(
∇β∇βf

Φ + iw∇0f
Φ + w(1 + w′−w

n+2
)PfΦ

)
 (5.3.39)

where ∇ denotes the tractor connection coupled to the Tanaka-Webster connection of
θ.

One may easily check directly that DA, as defined, does not depend on the choice of θ.
This operator is an analogue of the Thomas tractor D-operator in conformal geometry
[7]. Observe that DA is a splitting operator (has a bundle map as left inverse) except at
weights where w(n+ w + w′) = 0.

Related to the tractor D-operator is the θ dependent operator D̃A given by wfΦYA +

(∇αf
Φ)Wα

A on a section fΦ of EΦ(w,w′). The operator DAB defined by

DABf
Φ = 2Z[AD̃B]f

Φ (5.3.40)

does not depend on the choice of θ. The operator DAB has a partner DAB̄ defined by

DAB̄f
Φ = ZB̄D̃Af

Φ − ZAD̃B̄f
Φ − ZAZB̄

[
i∇0f

Φ + w′−w
n+2

PfΦ
]

(5.3.41)

where D̃B̄f
Φ = D̃BfΦ. Note that if fΦ has weight (0, 0) then

DAB̄f
Φ = ZB̄W

α
A∇αf

Φ − ZAW
β̄

B̄
∇β̄f

Φ − iZAZB̄∇0f
Φ, (5.3.42)
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cf. (5.3.29), so that DAB̄ takes sections of EΦ to sections ofA⊗EΦ. The pair of invariant
operators DAB and DAB̄ acting on sections of EΦ(w,w′) are called double-D-operators
[74].

Remark 5.3.2. The less obvious operator DAB̄ comes from coupling the fundamental
derivative of [27] on densitieswith the tractor connection to give an operator onweighted
tractors. The conformal double-D-operator on the Fefferman space, which comes from
similarly twisting the fundamental derivative on conformal densities with the confor-
mal tractor connection, can be seen to induce the pair of operators DAB̄ , DAB (and the
conjugate operator DĀB̄) on the underlying CR manifold [29, Theorem 3.7].

5.3.7.2 Middle operators

One can also create CR invariant differential splitting operators which take weighted
sections of tensor bundles of Eα to weighted tractors. These are analogues of operators in
conformal geometry used by Eastwood for ‘curved translation’ (see, e.g., [50]). We only
construct the particular operators from this family that we will need in the following.

Definition 5.3.3. The middle operator acting on sections of Eα(w,w′) is the operator
Mα
A : Eα(w,w′) → EA(w − 1, w′) given with respect to a choice of contact form θ by

Mα
Aτα = (n+ w′)Wα

Aτα − ZA∇ατα. (5.3.43)

To see that the operator defined by (5.3.43) is invariant one simply observes (by combin-
ing Proposition 5.2.8 with Proposition 5.2.9) that if θ̂ = eΥθ then

∇̂ατα = ∇ατα + (n+ w′)Υατα (5.3.44)

for τα of weight (w,w′), and on the other hand from (5.3.4) we have Ŵα
A = Wα

A+ΥαZA.

Remark 5.3.4. The operator Mα
A defined by (5.3.43) is a differential splitting operator,

except whenw′ = −n, in which case τα 7→ ∇̂ατα is an invariant operator andMα
A simply

becomes (minus) the composition of this operator with the bundle map ρ 7→ ρZA (for ρ
of appropriate weight).

In the same manner, by observing that when θ̂ = eΥθ we have

∇̂αταβ̄ = ∇αταβ̄ + (n+ w′ − 1)Υαταβ̄ −Υβ̄τα
α (5.3.45)
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for ταβ̄ of weight (w,w′), we see that there is an invariant operator on trace free sections
of Eαβ̄(w,w′) given by

Mα
Aταβ̄ = (n+ w′ − 1)Wα

Aταβ̄ − ZA∇αταβ̄. (5.3.46)

Conjugating one obtains an operatorMβ̄

B̄
on trace free sections of Eαβ̄(w,w′) given by

Mβ̄

B̄
ταβ̄ = (n+ w − 1)W β̄

B̄
ταβ̄ − ZB̄∇β̄ταβ̄. (5.3.47)

5.3.8 The Curvature Tractor

The operators Mα
A defined above are all first order, so in particular they are ‘strongly

invariant’ meaning that we may couple the Tanaka-Webster connection∇ used in their
definitions with the tractor connection (on any tractor bundle EΦ) to obtain invariant
operators Mα

A on sections of EαΦ(w,w′) and on trace free sections of Eαβ̄Φ(w,w′). We
use these strongly invariant middle operators to define a CR analogue of the conformal
‘W-tractor’ of [74].

Definition 5.3.5. The curvature tractor of a CR manifold is the section of EAB̄CD̄ given
by

κAB̄CD̄ = Mα
AM

β̄

B̄
καβ̄CD̄ (5.3.48)

where καβ̄CD̄ = −καβ̄D̄C = −καβ̄EChED̄.

Remark 5.3.6. The expression for the curvature tractor κAB̄CD̄ does not involve the (θ-
dependent) component κα0CD̄ of the tractor curvature κabCD̄. One way to include this
component in a CR invariant tractor is to define

κABB̄′CD̄ = Mα
A

(
καβCD̄W

β
BZB̄′ − καβ̄CD̄ZBW

β̄

B̄′ − iκα0CD̄ZBZB̄′

)
, (5.3.49)

where we have used the map T ∗M ↪→ A, given explicitly by (5.3.29), on the ‘b’ index
of κabCD̄ to obtain κaBB̄′CD̄ and then applied Mα

A to καBB̄′CD̄. Alternatively one can
apply the tensorial map T ∗M ↪→ A to both the ‘a’ and ‘b’ indices of κabCD̄ to obtain
κAĀ′BB̄′CD̄ (as is done in §§6.4.2).
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5.3.9 Projecting Parts

If a standard tractor v lies in subbundle T s of T , s=1,0,-1 (see (5.3.1)), then the image of
v under the projection

T s → T s/T s+1

(where the subbundle T 2 is the zero section) is called a projecting part of v. A projecting
part may be zero. Since the filtration of the standard tractor bundle induces a filtration of
all corresponding tensor bundles (and hence all tractor bundles), we may define a notion
of projecting part(s) similarly for sections of any tractor bundle.

The notion can be easily formalised using the splitting tractors of §§5.3.2. The invariant
‘top slot’ vAZA of a standard tractor is always a projecting part. If this top slot vanishes,
then the ‘middle slot’ vAWα

A is independent of the choice of θ by (5.3.4) and is a projecting
part. If both vAZA = 0 and vAWα

A = 0, then the ‘bottom slot’ vAYA is independent of
the choice of θ by (5.3.5) and is a projecting part of vA.

To see how this works for higher valence tractors consider a tractor tAB in E [AB]. Skew-
ness implies tABZAZB = 0, so tABZAW β

B is independent of the choice of θ by (5.3.4) and
is a projecting part. If tABZAW β

B = 0 then both tABWα
AW

β
B and tABZAYB are indepen-

dent of the choice of θ, and are both called projecting parts (the relevant composition
factor of E [AB] splits as a direct sum).
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6 The Geometry of CR Embeddings

6.1 CR Embedded Submanifolds and Contact

Forms

We now turn to the main subject of the article. We now suppose that ι : Σ ↪→M is a CR
embedding of a nondegenerate CR manifold (Σ2m+1, HΣ, JΣ) into (M2n+1, H, J), that
is ι is an embedding for which Tι maps HΣ into H and

J ◦ Tι = Tι ◦ JΣ.

Equivalently (the complex linear extension of) Tι maps T 1,0Σ into T 1,0M .

Suppose (M2n+1, H, J) has signature (p, q). Without loss of generality q ≤ p (q is often
alternatively called the signature). If q < m (in particular, ifM is strictly pseudoconvex)
then Txι(TxΣ) ̸⊂ Hx for all x ∈ Σ. In this case a choice of contact form θ for H
induces a choice of contact form for HΣ by pullback. If q ≥ m then we need to impose
the condition Txι(TxΣ) ̸⊂ Hx for all x ∈ Σ as an additional assumption; such a CR
embedding is said to be transversal. (Note that if Txι(TxΣ) ⊂ Hx then Txι(T 1,0

x Σ) ⊂
T 1,0
x M is a totally isotropic subspace, but the maximum dimension of such a subspace is

the signature q, so q ≥ m.) We consider transversal CR embeddings in the following.

We will work in terms of a pair of pseudohermitian structures (M,H, J, θ) and (Σ, HΣ,

JΣ, ι
∗θ) and aim for constructions which are invariant under ambient rescalings θ →

θ̂ = eΥθ. More precisely, our goal is to construct operators and quantities which may be
expressed in terms of the Tanaka-Webster calculus of θ and of ι∗θ which are invariant
under the replacement of the pair (θ, ι∗θ) with (eΥθ, ι∗(eΥθ)).

For simplicity wewill initially restrict our attention to the case wherem = n−1 (m ≥ 1)
andwhere bothmanifolds are strictly pseudoconvex (i.e. have positive definite Levi form
for positively oriented contact forms). The general codimension (and signature) case is
treated in §6.3, and much carries over directly.
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6.1.1 Notation

We fix a bundle of (1, 0)-densities on Σ, that is the dual of an (m+2)th root of KΣ, and
denote it by EΣ(1, 0). The corresponding (w,w′)-density bundles are denoted EΣ(w,w′).
We use abstract index notation Eµ for T 1,0Σ, and allow the use of Greek indices from
the later part of the alphabet: µ, ν, λ, ρ, µ′, and so on. Of course then E µ̄ denotes T 0,1Σ,
Eµ denotes (T 1,0Σ)∗, and so on. We denote the CR Levi form of Σ by hµν̄ and its inverse
by hµν̄ . We also occasionally use abstract index notation for TΣ, denoting it by E i and
allowing indices i, j, k, l, etcetera.

We identify Σwith its image under ι and write Eα|Σ → Σ for the restriction of Eα →M

to fibers over Σ (so Eα|Σ = ι∗Eα). We define the section Πα
µ of Eα|Σ ⊗ Eµ to be (the

complex linear extension of) Tι as a map from T 1,0Σ into T 1,0M , i.e. if V ∈ T 1,0Σ and
U = Tι(V ) then Uα = Πα

µV
µ. We define the section Πµ

α to be the map from T 1,0M |Σ
onto T 1,0Σ given by orthogonal projection with respect to the CR Levi form. Clearly
Πµ
αΠ

α
ν = δµν , and Πα

µΠ
µ
β is simply the orthogonal projection map from T 1,0M |Σ onto

Tι(T 1,0Σ) given by the Levi form. It is also clear that

hµν̄ = Πα
µΠ

β̄
ν̄hαβ̄ (6.1.1)

along Σ.

6.1.2 Compatible Scales

In developing the pseudohermitian and CR tractor calculus we have been making use of
the fact that a choice of contact form θ forM gives us a direct sum decomposition of the
complexified tangent bundle

CTM = T 1,0M ⊕ T 0,1M ⊕ CT,

T being the Reeb vector field of θ. Now the contact form θΣ = ι∗θ for Σ also determines
a direct sum decomposition

CTΣ = T 1,0Σ⊕ T 0,1Σ⊕ CTΣ (6.1.2)

where TΣ is the Reeb vector field of θΣ. It is easy to see that in general these two Reeb
vector fields will not agree along Σ. Clearly this will become a problem for us when we
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try to relate components of ambient tensor fields (decomposed w.r.t. θ) with components
of submanifold tensor fields (decomposed w.r.t. θΣ). To remedy this problem we will
make use of a basic lemma (cf. [54, Lemma 4.1]).

Lemma 6.1.1. Let ι : Σ ↪→M be a CR embedding between nondegenerate CR manifolds.
If θΣ is a contact form for Σ with Reeb vector field TΣ, then there exists a contact form θ for
M with ι∗θ = θΣ and whose Reeb vector field agrees with TΣ along Σ. Moreover, the 1-jet
of θ is uniquely determined along Σ.

Proof. Fix a contact form θ′ for M with ι∗θ′ = θΣ. Let f be an arbitrary smooth (real
valued) function on M with f |Σ ≡ 0, and consider the contact form θ = efθ′. First of
all we have

(Tι · TΣ)⌟dθ = ef (Tι · TΣ)⌟dθ′ + efdf

along Σ since θ′(Tι · TΣ) = (ι∗θ′)(TΣ) = θΣ(TΣ) = 1. Now since ι∗θ = θΣ we have

ι∗((Tι · TΣ)⌟dθ) = TΣ⌟dθΣ = 0.

This means that (Tι · TΣ)⌟dθ is zero when restricted to tangential directions. Conse-
quently, we only need to see if we can make (Tι · TΣ)⌟dθ zero on the quotient space
TM |Σ/TΣ. This requires choosing f such that along Σ

df = −(Tι · TΣ)⌟dθ′

on TM |Σ/TΣ, which simply amounts to prescribing the normal derivatives of f off Σ.
Choosing such an f we have that (Tι · TΣ)⌟dθ = 0 and θ(Tι · TΣ) = θΣ(TΣ) = 1 as
required.

Definition 6.1.2. A pair of contact forms θ, θΣ forM and Σ respectively will be called
compatible if θΣ = ι∗θ and the Reeb vector field of θ restricts to the Reeb vector field of
θΣ along Σ. A contact form θ which is compatible with ι∗θ, i.e. whose Reeb vector field
is tangent to Σ, will be said to be admissible [54].

We will work primarily in terms of compatible contact forms in the following. When
working in terms of compatible contact forms θ for M and θΣ for Σ we identify the
density bundles E(1, 1)|Σ with EΣ(1, 1) using the trivialisations of these bundles induced
by θ and θΣ respectively (in fact this identification is canonical, i.e. it is independent of
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the choice of compatible contact forms). We also identify the Reeb vector field TΣ of θΣ
with T |Σ where T is the ambient Reeb vector field. This means that the ‘0-component’
of X ∈ TΣ taken with respect to either θΣ or θ (identifying X with Tι · X) is the
same, and that our ambient and intrinsic decompositions of tensors will always be nicely
compatible.

Remark 6.1.3. Note that Lemma 6.1.1 holds for general codimension CR embeddings
(with the same proof). We can therefore continue to work with compatible contact forms
in the general codimension case discussed in §6.3.

6.1.3 Normal Bundles

Clearly T 1,0Σ has complex corank one inside T 1,0M |Σ. The CR Levi form determines
then a canonical complex line bundleN α ⊂ Eα|Σ whose sections are those V α for which
Πµ
αV

α ≡ 0. There is also the corresponding dual complex line bundleNα ⊂ Eα|Σ whose
sections Vα satisfy VαΠα

µ ≡ 0.

Remark 6.1.4. Given any choice of ambient contact form θ the manifoldM gains a Rie-
mannian structure from the Webster metric gθ. One can therefore treat Σ as a Rieman-
nian submanifold, in particular we have a Riemannian normal bundle toΣ. This Rieman-
nian normal bundle will be the same for any admissible contact form θ, and we denote
it by NΣ. Complexifying we see that CNΣ = N α ⊕N ᾱ where N α is the i-eigenspace
of J .

6.1.3.1 Unit Normal Fields

Given a choice of ambient contact form θ, one may ask that a section Nα be unit with
respect to the Levi form of θ. However, for CR geometry it is more natural to work with
sections of the bundleNα(1, 0) = Nα⊗E(1, 0)|Σ, which is normed by the CR Levi form.
Thus we make the following definition:

Definition 6.1.5. By a (weighted) unit holomorphic conormal field wemean a sectionNα

of Nα(1, 0) for which hαβ̄NαNβ̄ = 1 where Nβ̄ = Nβ . The field Nα = hαβ̄Nβ̄ obtained
from such an Nα will be referred to as a (weighted) unit holomorphic normal field.

Remark 6.1.6. The bundles Nα(w + 1,−w) are also normed by the CR Levi form, but
the natural weight for conormals is indeed (1, 0). The line bundleNα(1, 0) plays an im-
portant role in the following since it relates ambient and intrinsic density bundles (see

118



6.1 CR Embedded Submanifolds and Contact Forms

(6.1.28) below). Moreover, Nα(1, 0) can be canonically identified with a non-null sub-
bundle of the ambient cotractor bundle EA|Σ, and hence carries a canonical CR invariant
connection (see Proposition 6.2.3).

If Nα is a unit holomorphic conormal then so is N ′
α = eiφNα for any φ ∈ C∞(Σ), and

N ′α = e−iφNα. However, the combinations NαNβ and NαNβ̄ are independent of the
choice of holomorphic conormal, and these satisfy

δαβ = Πα
β +NαNβ and hαβ̄ = hµν̄Π

µ
αΠ

ν̄
β̄ +NαNβ̄ (6.1.3)

along Σ, where Πα
β is the tangential orthogonal projection Πα

µΠ
µ
β and hµν̄ is the CR Levi

form of Σ.

6.1.4 Tangential Derivatives

Let θ be an admissible ambient contact form with Tanaka-Webster connection ∇. The
pullback connection ι∗∇ allows us to differentiate sections of ambient tensor bundles
along Σ in directions tangential to Σ. Recall that we may think of the Tanaka-Webster
connection ∇ as a triple of ‘partial connections’ (∇α,∇ᾱ,∇0). Now suppose that the
Reeb vector field T of θ is tangent to Σ, then θ and θΣ = ι∗θ are compatible. Then we
can break up ι∗∇ into a corresponding triple (∇µ,∇µ̄,∇0). Precisely, ∇µ is defined to
act on sections of Eα|Σ according to the formula

∇µτ
α = Πβ

µ∇β τ̃
α (6.1.4)

where τ̃α is any extension of the section τα of Eα|Σ to a neighbourhd of Σ, and ∇µ is
defined similarly on sections of E ᾱ|Σ, Eα|Σ, and so on. We define∇µ̄ similarly, and define
∇0 on sections of Eα|Σ by the formula

∇0τ
α = ∇0τ̃

α (6.1.5)

along Σ, where τ̃α is any extension of τα, and similarly on sections of E ᾱ|Σ, Eα|Σ, and
so on (note the independence of the choice of the extension relies on the fact that T is
tangential to Σ).

Remark. We have identified E(1, 1)|Σ with EΣ(1, 1) and T |Σ and with the Reeb vector
field TΣ of θΣ, thus splitting ι∗∇ up into (∇µ,∇µ̄,∇0) corresponds precisely to restrict-
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ing ι∗∇ to the respective summands in the direct sum decomposition (6.1.2) induced by
θΣ.

6.1.4.1 The normal Tanaka-Webster connection

The ambient Tanaka-Webster connection also induces a connection on the normal bun-
dle.

Definition 6.1.7. Given an admissible ambient contact form θ, we define the normal
Tanaka-Webster connection ∇⊥ on Nα by differentiating tangentially using the Tanaka-
Webster connection ∇ of θ and then projecting orthogonally onto Nα using the Levi
form.

6.1.5 The Submanifold Tanaka-Webster Connection

We may define a connection D on T 1,0Σ = Eµ (which we identify with Tι(T 1,0Σ) in
T 1,0M |Σ) by differentiating in tangential directions using ι∗∇ and projecting the result
back onto T 1,0Σ = Eµ orthogonally with respect to the Levi form. This means that if τµ

is a section of Eµ then we have

Dντ
µ = Πµ

α∇ντ
α (6.1.6)

where τα = Πα
λτ

λ. One may define D to act also on T 0,1Σ = E µ̄ by the analogous
formula

Dντ
µ̄ = Πµ̄

ᾱ∇ντ
ᾱ. (6.1.7)

Thus D may be thought of as a connection on HΣ which preserves JΣ. One may then
extend D to a connection on TΣ by requiring that TΣ be parallel.

Remark. Equivalently one may define D as a connection on TΣ from the start by dif-
ferentiating tangent vectors to Σ in tangential directions using ι∗∇ and projecting the
result back onto TΣ orthogonally with respect to the Webster metric of θ.

Provided θ and θΣ are compatible, the connection D constructed in this manner will be
the Tanaka-Webster connection of θΣ (cf. [49, Theorem 6.4]):

Proposition 6.1.8. If θ, θΣ are contact forms forM and Σ respectively which are compat-
ible, that is, θΣ = ι∗θ and the Reeb vector field of θ is tangential to Σ, then the connection
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6.1 CR Embedded Submanifolds and Contact Forms

D on TΣ induced by the Tanaka-Webster connection∇ of θ (and projection with respect to
the ambient Webster metric) is the Tanaka-Webster connection of θΣ.

Proof. We need to show that D preserves (HΣ, JΣ, θΣ) and satisfies the torsion condi-
tions of §§5.2.1. It is clear that D preserves the decomposition (6.1.2) and gives a linear
connection on each of the three direct summands. This implies thatD preservesH and
J in the appropriate senses. Since ∇ preserves the Reeb vector field T , ι∗∇ preserves
T |Σ = TΣ and hence DTΣ = 0. Since D preserves TΣ and H it must also preserve θΣ.

Now let f ∈ C∞(Σ) and choose an extension f̃ of f to M such that along Σ we have
∇αf̃ = Πµ

α∇µf , i.e. the derivative of f̃ vanishes in gθ-normal directions along Σ (these
directions don’t depend on θ so long as we choose θ admissible). Then we have that
∇β̄ f̃ = Πλ̄

β̄
∇λ̄f along Σ and hence also that

DµDν̄f −Dν̄Dµf = Dµ∇ν̄f −Dν̄∇µf

= Πβ̄
ν̄∇µ(Π

λ̄
β̄∇λ̄f)− Πα

µ∇ν̄(Π
λ
α∇λf)

= Πβ̄
ν̄∇µ∇β̄ f̃ − Πα

µ∇ν̄∇αf̃

= Πα
µΠ

β̄
ν̄ (∇α∇β̄ f̃ −∇β̄∇αf̃)

= Πα
µΠ

β̄
ν̄ (−ihαβ∇0f̃)

= −ihµν̄D0f

where we have used that Dµf = ∇µf and Dν̄f = ∇ν̄f as well as that D0f = ∇0f =

∇0f̃ along Σ . Similarly we may easily compute that

DµDνf −DνDµf = 0.

Finally we have

DµD0f −D0Dµf = ∇µ∇0f −∇0∇µf

= Πα
µ(∇α∇0f̃ −∇0∇αf̃)

= Πα
µA

γ̄
α∇γ̄ f̃

= Πα
µΠ

λ̄
γ̄A

γ̄
α∇λ̄f = Aλ̄µDλ̄f

where Aµν = Πα
µΠ

β
νAαβ . Since f was arbitrary, we conclude that D is the Tanaka-

Webster connection of θΣ.
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Corollary 6.1.9. Given an admissible ambient contact form θ with pseudohermitian tor-
sion Aαβ , the pseudohermitian torsion of θΣ = ι∗θ is Aµν = Πα

µΠ
β
νAαβ .

Remark 6.1.10. Note that Proposition 6.1.8 and Corollary 6.1.9 hold in the general codi-
mension case by the same arguments.

6.1.6 The Second Fundamental Form

We can now define a second fundamental form using an analogue of the Gauss formula
from Riemannian submanifold geometry.

Definition 6.1.11. Given θ and θΣ compatible with respective Tanaka-Webster connec-
tions∇ and D we define the (pseudohermitian) second fundamental form by

∇XY = DXY + II(X, Y ), (6.1.8)

for all X, Y ∈ X(Σ), where we implicitly identify submanifold vector fields with tan-
gential ambient vector fields along Σ and use the pullback connection ι∗∇ on the left
hand side.

Clearly II(X, Y ) is tensorial in X and Y , and is normal bundle (NΣ) valued. It is also
clear from the definition that II( · , TΣ) = 0 and that II( · , · )|HΣ

is complex linear (with
respect to J and JΣ) in the second argument, that is

II( · , JΣ· )|HΣ
= JII( · , · )|HΣ

.

In fact, these properties also hold for the first argument, II being symmetric.

Proposition 6.1.12. The only nonzero components of the (pseudohermitian) second fun-
damental form II are IIµνγ and its conjugate. Moreover

IIµν
γ = IIνµ

γ, (6.1.9)

so that II is symmetric.

Proof. Since II( · , TΣ) = 0 and II( · , · )|HΣ
is complex linear in the second argument, to

prove the first claim it suffices to show that II0νγ = 0 and IIµ̄νγ = 0.
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6.1 CR Embedded Submanifolds and Contact Forms

Let Nα be a section of Nα such that hαβ̄NαNβ̄ = 1. From the Gauss formula (6.1.8) we
have that

∇iV
γ = Πγ

λDiV
λ + IIiν

γV ν (6.1.10)

for any section V λ of Eλ, where V γ = Πγ
λV

λ. Contracting the above display with Nγ

and replacing the ‘i’ index with ‘µ’, ‘µ̄’, and ‘0’ respectively gives

NγIIµν
γ = −Πγ

ν∇µNγ, NγIIµ̄ν
γ = −Πγ

ν∇µ̄Nγ,

and NγII0ν
γ = −Πγ

ν∇0Nγ,

since NγV
γ = 0 for all V λ ∈ Γ(Eλ). By conjugating, one also has that Nγ̄IIνµ̄

γ̄ =

−Πγ̄
µ̄∇νNγ̄ .

Now let f be a real valued function onM which vanishes onΣ and for which (∇αf,∇ᾱf,

∇0f) is equal to (Nα, Nᾱ, 0) along Σ. (Note that we must require ∇0f to be zero along
Σ since T is tangent to Σ and we ask that f |Σ ≡ 0. Such an f exists because we are
simply prescribing the normal derivatives of f off Σ. Any such f is, locally about Σ, a
defining function for a real hypersurface inM containing Σ which is gθ-orthogonal to
the real part and tangent to the imaginary part of Nα.) From (5.2.1) and (5.2.2) we have
that

∇α∇βf = ∇β∇αf and ∇α∇β̄f = ∇β̄∇αf

along Σ. Projecting tangentially along Σ we immediately have that

NγIIµν
γ = NγIIνµ

γ and Nγ̄IIµν̄
γ̄ = NγIIν̄µ

γ.

The first of these implies that IIµνγ = IIνµ
γ . Since Nγ was arbitrary the second implies

that IIµν̄ γ̄ = 0 (replacing Nγ with iNγ gives a minus sign).

Using the same function f , (5.2.3) states

∇α∇0f −∇0∇αf = Aγ̄α∇γ̄f.

Applying Πα
µ to both sides of the above display we get that

−Πα
µ∇0∇αf = Πα

µA
γ̄
α∇γ̄f
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along Σ (since Πα
µ∇α∇0f is zero along Σ). We conclude that

NγII0µ
γ = Nγ̄Π

α
µA

γ̄
α.

Again, since Nγ was arbitrary we must have

II0µ
γ = 0 and Nγ̄Π

α
µA

γ̄
α = 0. (6.1.11)

The second of the expressions (6.1.11) should be seen as a constraint on the pseudoher-
mitian torsion of an admissible contact form. We state this as a corollary:

Corollary 6.1.13. If θ is an admissible ambient contact form then the pseudohermitian
torsion of θ satisfies

Πα
µAαβN

β = 0 (6.1.12)

for any holomorphic normal field Nβ .

Remark 6.1.14. Note that in the higher codimension case (of CR embeddings) if one de-
fines the (pseudohermitian) second fundamental form of a pair of compatible contact
forms as in Definition 6.1.11 then Proposition 6.1.12 holds with the proof unchanged
(and consequently Corollary 6.1.13 also holds).

Remark 6.1.15. Our claim that II(T, · ) = 0, and the above corollary, disagree with [47]
and the book [49]. Our claim that II(T, · ) = 0 is confirmed however by the later article
[48].

6.1.6.1 The CR second fundamental form

We shall now see that the component IIµνγ does not depend on the choice of compatible
contact forms θ and θΣ.

Lemma 6.1.16. Given compatible contact forms θ and θΣ one has

IIµν
γ = −NγΠβ

ν∇µNβ (6.1.13)

for any unit holomorphic conormal field Nα.
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6.1 CR Embedded Submanifolds and Contact Forms

Proof. From the Gauss formula (cf. (6.1.10)) we have

∇µV
γ = Πγ

λDµV
λ + IIµν

γV ν

for any section V λ of Eλ, where V γ = Πγ
λV

λ. Contracting the above display with Nγ

and using that Nγ∇µV
γ = −V γ∇µNγ yields the result.

Corollary 6.1.17. The component IIµνγ of the pseudohermitian second fundamental form
does not depend on the pair of compatible contact forms used to define it.

Proof. Combining the Tanaka-Webster transformation laws of Proposition 5.2.8 and Propo-
sition 5.2.9 we have that

∇̂µNβ = ∇µNβ − Πα
µΥβNα −ΥµNβ +ΥµNβ = ∇µNβ

since Nβ has weight (1, 0). The claim then follows from (6.1.13).

We therefore term IIµν
γ the CR second fundamental form.

Remark 6.1.18. The pseudohermitian second fundamental form II (of a pair of compati-
ble contact forms) is not CR invariant, even though IIµνγ is, since the direct sum decom-
positions of CTM and CT ∗Σ change under rescaling of the ambient and submanifold
contact forms.

Recall that we write Πα
β for the tangential orthogonal projection Πα

µΠ
µ
β on the ambi-

ent holomorphic tangent bundle along Σ. The following lemma will be useful in the
derivations of §§6.1.7:

Lemma 6.1.19. For any admissible ambient contact form we have

∇µΠ
γ
β = IIµν

γΠν
β, ∇µΠ

β̄
γ̄ = IIµ

ν̄
γ̄Π

β̄
ν̄ , (6.1.14)

∇µ̄Π
γ̄

β̄
= IIµ̄ν̄

γ̄Πν̄
β̄, ∇µ̄Π

β
γ = IIµ̄

ν
γΠ

β
ν , (6.1.15)

and
∇0Π

γ
β = 0, ∇0Π

β̄
γ̄ = 0. (6.1.16)

Proof. These follow immediately by differentiating δγβ − NγNβ , however we wish to
give a proof that will also work in the higher codimension case. Pick a section V ν and
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let V β = Πβ
νV

ν . Then

∇µV
γ = ∇µ(Π

γ
βV

β) = (∇µΠ
γ
β)V

β +Πγ
β∇µV

β.

Noting that Πγ
β∇µV

β = Πγ
νDµV

ν , from the Gauss formula we have

Πβ
ν∇µΠ

γ
β = IIµν

γ (6.1.17)

since V ν was arbitrary. Now on the other hand if Nα is any unit holomorphic normal
then

Nβ∇µΠ
γ
β = −(∇µN

β)Πγ
β = 0 (6.1.18)

since IIµν̄ δ̄ = 0. The previous two displays imply the first equation of (6.1.14), and the
second then follows by raising and lowering indices. Conjugating these gives (6.1.15).
The expressions (6.1.16) are proved similarly using that II0νγ = 0 and II0ν̄ γ̄ = 0.

6.1.7 The Pseudohermitian Gauss, Codazzi, and Ricci
Equations

Here we give pseudohermitian analogues of the Gauss, Codazzi, and Ricci equations
from Riemannian submanifold theory. Real forms of these equations can be found in
Ch. 6 of [49], note that Q = 0 in the pseudohermitian Codazzi equation they give (cf.
Remark 6.1.15).

When working with compatible contact forms we denote the ambient and submanifold
Tanaka-Webster connections by∇ and D respectively. We write

Nα
β = δαβ − Πα

β (6.1.19)

for the orthogonal projection onto N α ⊂ Eα|Σ. In this case Nα
β = NαNβ for any unit

holomorphic normal Nα. We adopt the convention of replacing uppercase root letters
with lowercase root letters for submanifold curvature tensors, so the pseudohermitian
curvature tensor of θΣ will be denoted by rµν̄λρ̄, the pseudohermitian Ricci curvature
by rµν , and so on. For the ambient curvature tensors along Σ we will use submanifold
abstract indices to denote tangential projections, for example

Rµν̄λρ̄ = Πα
µΠ

β̄
ν̄Π

γ
λΠ

δ̄
ρ̄Rαβ̄γδ̄ and Rµν̄γδ̄ = Πα

µΠ
β̄
ν̄Rαβ̄γδ̄.
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6.1.7.1 The pseudohermitian Gauss equation

Proposition 6.1.20. Given compatible contact forms, the submanifold pseudohermitian
curvature is related to the ambient curvature via

Rµν̄λρ̄ = rµν̄λρ̄ + hγδ̄IIµλ
γIIν̄ρ̄

δ̄. (6.1.20)

Proof. Let V be a section of T 1,0Σ, let V γ̄ = Πγ̄

λ̄
V λ̄, and let Ṽ γ̄ be a smooth extension of

V γ̄ to a neighbourhood of Σ. Proposition 6.1.8 says that Dν̄V
λ̄ = Πλ̄

γ̄Π
β̄
ν̄∇β̄Ṽ

γ̄ and thus

DµDν̄V
λ̄ = Πλ̄

δ̄Π
ϵ̄
ν̄∇µ

(
Πδ̄
γ̄Π

β̄
ϵ̄∇β̄Ṽ

γ̄
)

= Πλ̄
δ̄Π

ϵ̄
ν̄(∇µΠ

δ̄
γ̄)Π

β̄
ϵ̄∇β̄Ṽ

γ̄ +Πλ̄
δ̄Π

ϵ̄
ν̄Π

δ̄
γ̄(∇µΠ

β̄
ϵ̄ )∇β̄Ṽ

γ̄

+Πλ̄
δ̄Π

ϵ̄
ν̄Π

δ̄
γ̄Π

β̄
ϵ̄∇µ∇β̄Ṽ

γ̄

= IIµ
λ̄
γ̄∇ν̄V

γ̄ +Πλ̄
γ̄Π

α
µΠ

β̄
ν̄∇α∇β̄Ṽ

γ̄,

where we have used (6.1.14) of Lemma 6.1.19 in the final step. Since Nδ
γV

γ = 0 we have
Nδ̄
γ̄∇ν̄V

γ̄ = −V γ̄∇ν̄N
δ̄
γ̄ = V ρ̄IIν̄ρ̄

δ̄ using (6.1.15) of Lemma 6.1.19, and hence by writing
IIµ

λ̄
γ̄ as IIµλ̄δ̄Nδ̄

γ̄ we obtain

DµDν̄V
λ̄ = IIµ

λ̄
δ̄IIν̄ρ̄

δ̄V ρ̄ +Πλ̄
γ̄Π

α
µΠ

β̄
ν̄∇α∇β̄Ṽ

γ̄.

By a similar calculation with the roles of µ and ν interchanged we obtain

Dν̄DµV
λ̄ = Πλ̄

γ̄Π
α
µΠ

β̄
ν̄∇β̄∇αṼ

γ̄;

no second fundamental form terms arise since IIµν̄ γ̄ = 0. Noting thatD0V
λ̄ = Πλ̄

γ̄∇0V
γ̄

we have the result.

Remark 6.1.21. The above proposition holds with the same proof in the general codimen-
sion setting. The equation (6.1.20) can also be found in [54] where it (or its trace free part)
is the key to proving rigidity for CR embeddings into the sphere with sufficiently low
codimension because it allows one to show that the intrinsic pseudohermitian curvature
determines the second fundamental form IIµν

γ .
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6.1.7.2 The pseudohermitian Codazzi equation

Proposition 6.1.22. Given compatible contact forms,

Rµν̄
γ̄
ρ̄N

δ̄
γ̄ = −DµIIν̄ρ̄

δ̄ (6.1.21)

where the submanifold Tanaka-Webster connection D is coupled with the normal Tanaka-
Webster connection∇⊥.

Proof. Let Nγ be an unweighted unit normal field and let Ñγ be an extension of Nγ to
all ofM such that, along Σ, Nα

β∇αÑ
γ = 0 and Nᾱ

β̄
∇ᾱÑ

γ = 0. Then along Σ we have

∇β̄Ñ
γ = −IIβ̄γδN δ +Nγ

δ∇β̄Ñ
δ

where IIβ̄γδ := Πν̄
β̄
Πγ
λIIν̄

λ
δ , using that IIν̄λδN δ = −Πλ

γ∇ν̄N
γ . Thus we compute that

Πα
µΠ

β̄
ν̄Π

λ
γ∇α∇β̄Ñ

γ = Πβ̄
ν̄Π

λ
γ

(
−∇µ(IIβ̄

γ
δN

δ) + (∇µN
γ
δ )∇β̄N

δ
)

= −Dµ(IIν̄
λ
δN

δ)

along Σ, where in the first step we used that Πλ
γN

γ
δ = 0 and in the second step we used

(6.1.14) to show that Πλ
γ∇µN

γ
δ = 0 and Proposition 6.1.8. Now on the other hand (since

IIµν̄
γ̄ = 0) we have

∇αÑ
γ = Nγ

δ∇αÑ
δ

along Σ, and this time we compute that

Πα
µΠ

β̄
ν̄Π

λ
γ∇β̄∇αÑ

γ = −IIν̄λδ∇µN
δ = −IIν̄λδ∇⊥

µN
δ

since ∇ν̄N
γ
δ = −IIν̄ ρδΠγ

ρ by (6.1.15). Putting these together we get

Πα
µΠ

β̄
ν̄Π

λ
γ

(
∇α∇β̄ −∇β̄∇α

)
Ñγ = −(DµIIν̄

λ
δ̄)N

δ̄

along Σ. Since II0µγ = 0 we have Πλ
γ∇0N

γ = 0 and hence from (5.2.5) we obtain

Rµν̄
λ
δN

δ = (DµIIν̄
λ
δ̄)N

δ̄. (6.1.22)

Noting that Rµν̄λ̄δ = −Rµν̄δλ̄ then gives the result.
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6.1.7.3 The pseudohermitian Ricci equation

Given a compatible pair of contact forms we letRN ᾱ denote the curvature of the normal
Tanaka-Webster connection ∇⊥ on the antiholomorphic normal bundle N ᾱ. With our
conventions we have

(
∇⊥
µ∇⊥

ν̄ N
γ̄ −∇⊥

ν̄ ∇⊥
µN

γ̄ + ihµν̄∇⊥
0 N

γ̄
)
= −RN ᾱ

µν̄
γ̄
δ̄N

δ̄ (6.1.23)

for any section N ᾱ ofN ᾱ, where we have coupled the normal Tanaka-Webster connec-
tion∇⊥ with the submanifold Tanaka-Webster connectionD. The pseudohermitian Ricci
equation relates the component RN ᾱ

µν̄
γ̄
δ̄ of RN ᾱ to the component Rµν̄

γ̄′
δ̄′N

γ̄
γ̄′N

δ̄′

δ̄
of the

ambient pseudohermitian curvature tensor:

Proposition 6.1.23. Given compatible contact forms,

RN ᾱ

µν̄
γ̄
δ̄ = Rµν̄

γ̄′

δ̄′N
γ̄
γ̄′N

δ̄′

δ̄ + hλρ̄IIµλδ̄IIν̄ρ̄
γ̄. (6.1.24)

Proof. To facilitate calculationwe couple the connection∇⊥with the submanifold Tanaka-
Webster connection D; we also couple ∇ with D. If N γ̄ is a holomorphic normal field
then

∇⊥
µ∇⊥

ν̄ N
γ̄ = ∇⊥

µ (N
γ̄

δ̄
∇ν̄N

δ̄)

= Nγ̄
ϵ̄∇µ(N

ϵ̄
δ̄∇ν̄N

δ̄)

= Nγ̄
ϵ̄

(
−IIµλ̄δ̄Πϵ̄

λ̄∇ν̄N
δ̄ +Nϵ̄

δ̄∇µ∇ν̄N
δ̄
)

= Nγ̄

δ̄
∇µ∇ν̄N

δ̄

On the other hand, when we interchange the roles of µ and ν we obtain

∇⊥
ν̄ ∇⊥

µN
γ̄ = Nγ̄

ϵ̄

(
−IIν̄λ̄ϵ̄Πλ̄

δ̄∇µN
δ̄ +Nϵ̄

δ̄∇ν̄∇µN
δ̄
)

= IIν̄λ̄
γ̄IIµ

λ̄
δ̄N

δ̄ +Nγ̄

δ̄
∇ν̄∇µN

δ̄

Now observe that if one extends N γ̄ off Σ such that Nα∇αÑ
γ̄ = 0 and N ᾱ∇ᾱÑ

γ̄ = 0,
then

Πα
µΠ

β̄
ν̄∇α∇β̄Ñ

δ̄ = ∇µ∇ν̄N
δ̄ and Πα

µΠ
β̄
ν̄∇β̄∇αÑ

δ̄ = ∇ν̄∇µN
δ̄.

Thus by (6.1.23) and (5.2.5) (noting that∇⊥
0 N

γ̄ = ∇0N
γ̄) one has the result.
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Remark 6.1.24. SinceN ᾱ is a line bundle we may think of the curvature RN ᾱ instead as
a two form. By convention we take RN ᾱ

µν̄ to be RN ᾱ

µν̄
γ̄
γ̄ , which means that RN ᾱ is minus

the usual curvature two form of the connection ∇⊥ on the line bundle N ᾱ. With this
convention we may write

RN ᾱ

µν̄ = Rµν̄NN̄ + hγδ̄h
λρ̄IIµλ

γIIν̄ρ̄
δ̄ (6.1.25)

whereRµν̄NN̄ = Rµν̄γδ̄N
γN δ̄ for any weight (1, 0) unit normal fieldNα. Also, since∇⊥

is Hermitian with respect to the Levi form of θ (on N ᾱ), one has that RN ᾱ
= RNα as

two forms. Moreover, by duality one has that RNα = −RNα .

6.1.8 Relating Density Bundles

We have already been using compatible contact forms to identify the density bundles
E(1, 1)|Σ and EΣ(1, 1), and have commented in passing that this identification does not
in fact depend on any choice of (compatible) contact forms. Let ς be a positive real
element of E(1, 1)|Σ, then there is a unique real element ςΣ in EΣ(1, 1) such that ς−1θ

pulls back to ςΣθΣ under ι. This correspondence induces an isomorphism of complex line
bundles. In this way we obtain canonical identifications between all diagonal density
bundles E(w,w)|Σ and EΣ(w,w). These identifications also agree with those induced
by trivialising the ambient and intrinsic (diagonal) density bundles using an ambient
contact form θ and its pullback ι∗θ respectively.

On the other hand it is not a priori obvious whether one may canonically identify the
density bundles E(1, 0)|Σ and EΣ(1, 0), and therefore identify all corresponding density
bundles E(w,w′)|Σ and EΣ(w,w′). We require that any isomorphism of E(1, 0)|Σ with
EΣ(1, 0) should be compatible with the identification of E(1, 1)|Σ with EΣ(1, 1) already
defined. Any two such isomorphisms of E(1, 0)|Σ with EΣ(1, 0) are related by an au-
tomorphism of E(1, 0)|Σ given by multiplication by eiφ for some φ ∈ C∞(Σ). This is
precisely the same freedom as in the choice of a unit holomorphic conormal, in fact, we
shall see below that these two choices are intrinsically connected.

6.1.8.1 Densities and holomorphic conormals

Let Λ1,0
⊥ Σ denote the subbundle of Λ1,0M |Σ consisting of all forms N which vanish on

the tangent space of Σ. The bundle Λ1,0
⊥ Σ may be canonically identified with Nα by

restriction to T 1,0M .

130



6.1 CR Embedded Submanifolds and Contact Forms

Lemma 6.1.25. Along Σ the ambient and submanifold canonical bundles are related by
the canonical isomorphism

K |Σ ∼= KΣ ⊗ Λ1,0
⊥ Σ. (6.1.26)

Proof. The map from Λn(Λ1,0Σ)⊗ Λ1,0
⊥ Σ to Λn+1(Λ1,0M |Σ) is given by

ζΣ ⊗N 7→ η ∧N (6.1.27)

where η is any element of Λn(Λ1,0M |Σ) with ι∗η = ζΣ.

Given a section ζΣ ⊗N of KΣ ⊗ Λ1,0
⊥ Σ we write ζΣ ∧N for the corresponding section

of K |Σ. The above lemma is the key to relating ambient and submanifold densities:

Corollary 6.1.26. The ambient and submanifold density bundles are related via the canon-
ical isomorphism

E(−n− 1, 0)|Σ ∼= EΣ(−n− 1, 0)⊗Nα(1, 0). (6.1.28)

Proof. By definition E(−n− 2, 0) = K and EΣ(−n− 1, 0) = KΣ. Using this in (6.1.26),
tensoring both sides with E(1, 0)|Σ, and identifying Λ1,0

⊥ Σ withNα gives the result.

Thus any trivialisation of the line bundle Nα(1, 0) gives an identification of the cor-
responding ambient and submanifold density bundles along Σ. One can check that if
the trivialisation of Nα(1, 0) is given by a unit holomorphic conormal then the result-
ing identification of density bundles will be compatible with the usual identification of
E(w,w)|Σ with EΣ(w,w); this amounts to the claim that, given compatible contact forms
θ and θΣ, if ζΣ is a section of KΣ volume normalised for θΣ and N is a section of Λ1,0

⊥ Σ

which is normalised with respect to the Levi form of θ (i.e. satisfies hαβ̄NαNβ = 1) then
the section ζΣ ∧N of K |Σ is volume normalised for θ.

Remark 6.1.27. The preceding observationmotivates the search for a canonical unit holo-
morphic conormal. One way to approach this search is to observe that for any unit holo-
morphic conormal Nα the field ϖµ̄ := Nα∇µ̄Nα = −N ᾱ∇µ̄Nᾱ does not depend on the
choice of admissible ambient contact form used to define ∇µ̄ and a calculation shows
thatϖµ̄ satisfies∇[µ̄ϖν̄] = 0. In the case where one has local exactness of the tangential
Cauchy-Riemann complex of Σ at (0, 1)-forms one can then (locally) define a canonical
unit holomorphic conormal Nα for which ϖµ̄ = ∇µ̄f with f a real valued function; the
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a priori phase freedom in the unit normal is used to eliminate the imaginary part of f ,
leaving no further freedom. However, for smooth (rather than real analytic) embeddings
the required local exactness may not hold, as was famously demonstrated by Lewy for
the three dimensional Heisenberg group [107]. In the following it will become plain that
we should keep Nα(1, 0) in the picture, rather than trivialise it, and thus we have not
pursued this direction further.

6.1.9 Relating Connections on Density Bundles

Given an admissible ambient contact form θ, the normal Tanaka-Webster connection∇⊥

on Nα can equivalently be thought of as the connection on Λ1,0
⊥ Σ defined by differen-

tiating tangentially using the Tanaka-Webster connection ∇ and then projecting using
the Webster metric gθ.

Lemma 6.1.28. Given any pair of compatible contact forms the isomorphism (6.1.26) of
Lemma 6.1.25 intertwines the respective Tanaka-Webster connections:

K |Σ ∼= KΣ ⊗ Λ1,0
⊥ Σ

ι∗∇ ∼= D ⊗ ∇⊥.

Proof. Let ζΣ ⊗ N be a section of KΣ ⊗ Λ1,0
⊥ Σ. Let η be any section of Λn(Λ1,0M |Σ)

which pulls back to ζΣ. Then ζΣ ∧N := η ∧N . If X ∈ TΣ then

∇X(ζΣ ∧N) = (∇Xη) ∧N + η ∧ (∇XN),

but (∇Xη)∧N = (ΠΣ∇Xη)∧N which is the section ofK |Σ corresponding to (DXζΣ)⊗
N (here ΠΣ denotes submanifold tangential projection with respect to gθ), and η ∧
(∇XN) = η ∧ (∇⊥

XN).

Observing that the connection ∇⊥ on Nα(1, 0) agrees with the coupling of ∇⊥ on Nα

with ι∗∇ on E(1, 0)|Σ we have the following corollary:

Corollary 6.1.29. Given any pair of compatible contact forms the (canonical) isomorphism
(6.1.28) of Corollary 6.1.26 intertwines the respective Tanaka-Webster connections:

E(−n− 1, 0)|Σ ∼= EΣ(−n− 1, 0)⊗Nα(1, 0)

ι∗∇ ∼= D ⊗ ∇⊥.
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6.1 CR Embedded Submanifolds and Contact Forms

This means that if we want to identify corresponding ambient and submanifold density
bundles (alongΣ) in such a way that the ambient and submanifold Tanaka-Webster con-
nections of a pair of compatible contact forms agree (in the sense that ι∗∇ = D), then we
must trivialiseNα(1, 0) using a section which is parallel for the normal Tanaka-Webster
connection∇⊥. This is not a CR invariant condition on the section ofNα(1, 0), and the
following lemma shows that it is not possible to find a parallel section in general because
of curvature:

Lemma 6.1.30. Let θ and θΣ be compatible contact forms and let RNα(1,0) denote the
curvature of∇⊥ on the bundleNα(1, 0), then the (1, 1)-component ofRNα(1,0)|HΣ

satisfies

R
Nα(1,0)
µν̄ =

n+ 1

n+ 2
Rµν̄ − rµν̄ , (6.1.29)

where Rµν̄ = Πα
µΠ

β̄
ν̄Rαβ̄ .

Proof. By Proposition 5.2.5 the (1, 1)-component of the restriction toH of the curvature
of the Tanaka-Webster connection on the line bundle E(1, 0) is 1

n+2
Rαβ̄ . Thus the (1, 1)-

component of the the restriction to HΣ of the curvature of ι∗∇ on E(1, 0)|Σ is 1
n+2

Rµν̄ .
Combining this with the Ricci equation (6.1.25) for RN ᾱ

µν̄ = RNα
µν̄ we have

R
Nα(1,0)
µν̄ = Rµν̄NN̄ + hγδ̄IIµλ

γIIν̄
λδ̄ − 1

n+ 2
Rµν̄ .

Using the once contracted Gauss equation

Rµν̄ −Rµν̄NN̄ = rµν̄ + hγδ̄IIµλ
γIIν̄

λδ̄

obtained from (6.1.20) we have the result.

Remark 6.1.31. Here, because of our conventions (cf. Remark 6.1.24), we take RNα(1,0)

to be minus the usual curvature of Nα(1, 0) as a line bundle.

6.1.10 The Ratio Bundle of Densities

The observations of §§6.1.8 and §§6.1.9 motivate us to look at the relationship between
corresponding ambient and submanifold density bundles rather than seeking to identify
them (along Σ). We therefore make the following definition:
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Definition 6.1.32. The ratio bundle of densities of weight (w,w′) is the complex line
bundle

R(w,w′) := E(w,w′)|Σ ⊗ EΣ(−w,−w′) (6.1.30)

on the submanifold Σ. Equivalently R(w,w′) is the bundle whose sections are endo-
morphisms from EΣ(w,w′) to E(w,w′)|Σ.

Note that the bundlesR(w,w) are canonically trivial, and thereforeR(w,w′) is canon-
ically isomorphic to R(w − w′, 0). Also by definition R(−n − 1, 0) is canonically iso-
morphic to Nα(1, 0), and we make this into an identification

R(−n− 1, 0) = Nα(1, 0). (6.1.31)

6.1.11 The Canonical Connection on the Ratio Bundles

Borrowing insight from §6.2 below we observe that the bundle Nα(1, 0) carries a nat-
ural CR invariant connection, which induces connections on the density ratio bundles
R(w,w′). The reason is that Nα(1, 0) is canonically isomorphic to a subbundle NA of
the ambient cotractor bundle EA along Σ which has an invariant connection induced by
the ambient tractor connection (Proposition 6.2.3). We denote this canonical invariant
connection on R(w,w′) by ∇R. It turns out to be very naturally expressed in terms of
Weyl connections (recall §§§5.3.4.1). Hence we make the following definition:

Definition 6.1.33. Given an admissible ambient contact form θ, the normal Weyl con-
nection ∇W,⊥ on N α(w,w′) is the connection induced by ∇W (projecting tangential
derivatives of sections back intoN α using the Levi form). Dually, the connection∇W,⊥

acts on Nα(−w,−w′).

For calculational purposes we will need the following lemma:

Lemma 6.1.34. Given an admissible ambient contact form θ the connection ∇W,⊥ on
Nα(1, 0) acts on a section τα by

∇W,⊥
µ τα = ∇⊥

µ τα, ∇W,⊥
µ̄ τα = ∇⊥

µ̄ τα (6.1.32)

and
∇W,⊥

0 τα = ∇⊥
0 τα − iPNN̄τα +

i

n+ 2
Pτα (6.1.33)
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6.1 CR Embedded Submanifolds and Contact Forms

where PNN̄ = Pαβ̄N
αN β̄ for any (weighted) unit holomorphic normal Nα and P = Pα

α.

Proof. This follows immediately from the definitions of the Weyl and normal Weyl con-
nections and the formula (5.3.26).

The connection ∇R on R(−n − 1, 0) = Nα(1, 0) turns out to agree precisely with the
normal Weyl connection of any admissible contact form. In particular the normal Weyl
connection ∇W,⊥ on the bundle Nα(1, 0) does not depend on the choice of admissible
ambient contact form. This follows from Proposition 6.2.3 below, but here we give a
direct proof. Before we prove this we make an important technical observation, stated
in the following lemma:

Lemma 6.1.35. Let θ be an admissible ambient contact form. The contact form θ̂ = eΥθ

is admissible if and only if
Υα = Πβ

αΥβ (6.1.34)

along Σ.

Proof. This follows immediately from the transformation law for the Reeb vector field
given in Lemma 5.2.6 since both T and T̂ must be tangent to Σ.

Proposition 6.1.36. The normal Weyl connection ∇W,⊥ on the bundle Nα(1, 0) does not
depend on the choice of admissible contact form.

Proof. Fix a pair of compatible contact forms θ, θΣ and suppose θ̂ = eΥθ is any other
admissible ambient contact form. Let τα be a section of Nα(1, 0). Extend τα arbitrarily
off Σ. When differentiating in contact directions the connections ∇W,⊥ and ∇⊥ agree,
so from (5.2.30) and Proposition 5.2.9 we have

∇̂W,⊥
µ τδ = Nβ

δΠ
α
µ∇̂ατβ

= Nβ
δΠ

α
µ(∇ατβ −Υβτα −Υατβ +Υατβ)

= Nβ
δΠ

α
µ∇ατβ

since Πα
µτα = 0 (note that Nβ

γΥβ also vanishes since θ and θ̂ are admissible). Similarly,
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from (5.2.31) and Proposition 5.2.9 we have

∇̂W,⊥
µ̄ τδ = Nβ

δΠ
ᾱ
µ̄∇̂ᾱτβ

= Nβ
δΠ

ᾱ
µ̄(∇ᾱτβ + hβᾱΥ

γτγ)

= Nβ
δΠ

ᾱ
µ̄∇ᾱτβ

since Nβ
δΠ

α
µhβᾱ = 0.

The operators∇W
0 and∇0 acting on τα are related by

∇W
0 τα = ∇0τα − iPα

βτβ +
i

n+ 2
Pτα.

Now, on the one hand, by (5.2.32) and Proposition 5.2.9, noting that Nβ
δΥβ = 0 by

Lemma 6.1.35, we have

∇̂⊥
0 τδ = Nβ

δ [∇0τβ + iΥγ̄∇γ̄τβ − iΥγ∇γτβ − iΥγ
βτγ

+ 1
n+2

(Υ0 + iΥγ
γ − iΥγΥγ)τβ].

On the other hand from (5.2.37) and (5.2.38), noting that Υαβ̄ +Υβ̄α = 2Υβ̄α − ihαβ̄Υ0

by (5.2.1), we have

Nβ
δ [iP̂β

γτγ − i
n+2

P̂ τβ] = Nβ
δ [i(Pβ

γ −Υγ
β +

i
2
Υ0δ

γ
β − 1

2
ΥϵΥϵδ

γ
β)τγ

− i
n+2

(P −Υγ
γ +

in
2
Υ0 − n

2
ΥϵΥϵ)τβ].

Since 1
2
− n

2(n+2)
= 1

n+2
we obtain that

∇̂W,⊥
0 τδ = ∇W,⊥

0 τβ + iΥµ̄∇W,⊥
µ̄ τβ − iΥµ∇W,⊥

µ τβ,

as required (recall that the ‘0-direction’ has a different meaning on the left and right
hand sides of the above display, cf. Lemma 5.2.7).

Remark 6.1.37. Both Lemma 6.1.35 and Proposition 6.1.36 hold in the general codimen-
sion case with the same proof (as does Proposition 6.2.3).

We therefore take ∇R to be the connection induced on the ratio bundles by the normal
Weyl connection of an admissible contact form onNα(1, 0), and give later in Proposition 6.2.3
of §§6.2.1 the tractor explanation for this invariant connection. In order to compute with
∇R we will need the following lemma:
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Lemma 6.1.38. In terms of a compatible pair of contact forms, θ, θΣ, the connection ∇R

on a section ϕ⊗ σ of E(w,w′)|Σ ⊗ EΣ(−w,−w′) is given by

∇R
µ (ϕ⊗ σ) = (∇µϕ)⊗ σ + ϕ⊗ (Dµσ), (6.1.35)

∇R
µ̄ (ϕ⊗ σ) = (∇µ̄ϕ)⊗ σ + ϕ⊗ (Dµ̄σ), (6.1.36)

and

∇R
0 (ϕ⊗ σ) = (∇0ϕ)⊗ σ + ϕ⊗ (D0σ) +

w−w′

n+1
(iPNN̄ − i

n+2
P )ϕ⊗ σ. (6.1.37)

Proof. This follows from Lemma 6.1.34 combined with Corollary 6.1.29.

Corollary 6.1.39. The connection∇R on the diagonal bundlesR(w,w) is flat and agrees
with the exterior derivative of sections in the canonical trivialisation.

Proof. This follows from Lemma 6.1.38 combined with Lemma 5.2.1.

Remark 6.1.40. By coupling with the connection ∇R we can invariantly convert con-
nections (and hence other operators) acting on intrinsic densities to ones on ambient
densities, and vice versa. This will allow us to relate the intrinsic and ambient tractor
connections, their difference giving rise to the basic CR invariants of the embedding.

6.1.11.1 The curvature of the canonical ratio bundle connection

We shall see that the connection∇R is not flat in general, making it unnatural to identify
the ambient and submanifold density bundles along Σ.

LetκR(w,w′) denote the curvature of∇R on the line bundleR(w,w′), and letRN ∗ denote
the curvature of ∇W,⊥ on Nα(1, 0) for any admissible contact form θ. By convention
RN ∗ has the opposite sign to the usual line bundle curvature κR(−n−1,0). Clearly the
curvatures κR(w,w′) are determined by RN ∗ , in particular

κR(1,0) =
1

n+ 1
RN ∗

.

Here we give expressions for the components of RN ∗ . Note that the components of the
restriction RN ∗|HΣ

must be invariant.
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Proposition 6.1.41. The (1, 1)-part of RN ∗ |HΣ
satisfies

RN ∗

µν̄ = (n+ 1)(Pµν̄ − pµν̄) + (P − PNN̄ − p)hµν̄ , (6.1.38)

where PNN̄ = Pαβ̄N
αN β̄ for any (weighted) unit holomorphic normal Nα, P = Pα

α, and
p = pµ

µ.

Proof. Recall that∇R = ∇W,⊥ onR(−n− 1, 0) = Nα(1, 0) for any admissible ambient
contact form θ. Fixing θ admissible we have

−RN ∗

µν̄ τα =
(
∇W,⊥
µ ∇W,⊥

ν̄ −∇W,⊥
ν̄ ∇W,⊥

µ + ihµν̄∇W,⊥
0

)
τα

=
(
∇⊥
µ∇⊥

ν̄ −∇⊥
ν̄ ∇⊥

µ + ihµν̄∇⊥
0

)
τα

+ (PNN̄ − 1

n+ 2
P )hµν̄τα

for any section τα of Nα(1, 0), using Lemma 6.1.34. Thus from (6.1.29) of Lemma 6.1.30
we have that

RN ∗

µν̄ =
n+ 1

n+ 2
Rµν̄ − rµν̄ − (PNN̄ − 1

n+ 2
P )hµν̄ .

Now using that Rαβ̄ = (n + 2)Pαβ̄ + Phαβ̄ , from the definition of Pαβ̄ , and using the
corresponding expression for rµν̄ , we have the result.

Note that P − PNN̄ − p is the trace of Pµν̄ − pµν̄ , with respect to hµν̄ . The following
lemma therefore manifests the CR invariance of RN ∗

µν̄ .

Lemma 6.1.42. Given any pair of compatible contact forms, the difference Pµν̄ − pµν̄

satisfies

Pµν̄ − pµν̄ =
1

n+ 1
(Sµν̄NN̄ + 1

2n
SNN̄NN̄hµν̄)

+
1

n+ 1
(IIµλγ̄IIν̄

λγ̄ + 1
2n
IIρλγ̄II

ρλγ̄hµν̄), (6.1.39)

where Sµν̄NN̄ = Πα
µΠ

β̄
ν̄Sαβ̄γδ̄N

γN δ̄ and SNN̄NN̄ = Sαβ̄γδ̄N
αN β̄NγN δ̄ for any (weighted)

unit holomorphic normal Nα.

Proof. Taking the trace free part of the Gauss equation (6.1.20) one has

1
n+1

(Sµν̄λ
λ − 1

n
Sρ

ρ
λ
λhµν̄) + Pµν̄ = pµν̄ +

1
n+1

(IIµλγ̄IIν̄
λγ̄ + 1

2n
IIρλγ̄II

ρλγ̄hµν̄)
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and noting that Sµν̄λλ = Sµν̄γδ̄(h
γδ̄ − NγN δ̄) = −Sµν̄NN̄ and similarly that Sρρλλ =

SNN̄NN̄ one has the result.

Remark 6.1.43. The difference Pµν̄ − pµν̄ is the CR analogue of the so called Fialkow
tensor [44, 141] in conformal submanifold geometry, though here it is showing up in a
completely new role.

Proposition 6.1.44. We have

RN ∗

µν = 0 and RN ∗

µ̄ν̄ = 0. (6.1.40)

Proof. By a straightforward calculation along the lines of the proof of Proposition 6.1.23
we have, given compatible contact forms, that

∇⊥
µ∇⊥

ν Nα −∇⊥
ν ∇⊥

µNα = NαN
β(∇µ∇νNβ −∇ν∇µNβ)

for any unit holomorphic conormal field Nα (where both ι∗∇ and ∇⊥ are coupled with
the submanifold Tanaka-Webster connection D). Noting that∇µ∇ν = ∇ν∇µ on densi-
ties by Proposition 5.2.5, we get that−RN ∗

µν = Πα
µΠ

β
νRαβ

γ
δNγN

δ; this is zero by (5.2.19),
noting thatRαβγ̄δ = −Rαβδγ̄ . In a similarmanner one shows thatRN ∗

µ̄ν̄ also vanishes.

Given compatible contact forms, one also has the componentRN ∗
µ0 . By a similar but more

tedious calculation one arrives at the expression

RN ∗

µ0 = −VµN̄N − iTµ (6.1.41)

where Tµ = Πα
µTα, VµN̄N = Πα

µVαβ̄γN
β̄Nγ for any (weighted) holomorphic normal field

Nα, and the tensors Tα and Vαβ̄γ are defined by (5.3.11) and (5.3.35) respectively. One
can obtain this expression more easily using the description of the canonical connection
on Nα(1, 0) in terms of the ambient tractor connection given below.

6.2 CR Embedded Submanifolds and Tractors

Here we continue to work in the setting where ι : Σ ↪→ M is a CR embedding of a hy-
persurface type CR manifold (Σ2m+1, HΣ, JΣ) into a strictly pseudoconvex CR manifold
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(M2n+1, H, J) withm = n− 1. We adopt the notation TM rather than T for the stan-
dard tractor bundle ofM , and write T Σ for the standard tractor bundle of Σ. Similarly
we will denote the adjoint tractor bundles ofM and Σ byAM andAΣ respectively. We
will also use the abstract index notation EI for T Σ and allow the use of indices I , J ,K ,
L, I ′, and so on.

6.2.1 Normal Tractors

Given any unit sectionNα ofNα(1, 0)we define the corresponding (unit) normal (co)tractor
NA to be the section of EA|Σ, the ambient tractor bundle restricted to fibers overΣ, given
by

NA
θ
=

 0

Nα

−H

 (6.2.1)

whereH = 1
n−1

hµν̄Πα
µ∇ν̄Nα and∇ν̄ denotes the Tanaka-Webster connection of θ acting

in tangential antiholomorphic directions along Σ; the tractor field NA does not depend
on the choice of ambient contact form θ since from (5.2.31) of Proposition 5.2.8 combined
with Proposition 5.2.9 we have that

Ĥ = H+ΥαNα

when θ̂ = eΥθ (with Υα = ∇αΥ), as required by (5.3.3). If θ is admissible for the
submanifold Σ then H = 0 (since IIν̄µγ = 0) and

NA
θ
=

 0

Nα

0

 . (6.2.2)

Remark 6.2.1. The normal tractor NA associated to a unit holomorphic conormal Nα

is an analogue of the normal tractor associated to a weighted unit (co)normal field in
conformal hypersurface geometry defined first in [7].

Definition 6.2.2. The normal cotractor bundleNA is the subbundle of EA|Σ, the ambient
cotractor bundle along Σ, spanned by the normal tractor NA given any unit holomor-
phic conormal field Nα. The normal tractor bundle NA is the dual line subbundle of
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EA|Σ spanned by NA = hAB̄NB . We alternatively denote NA and NA by N and N ∗

respectively.

Since the ambient tractor bundle carries a parallel Hermitian bundle metric the ambient
tractor connection induces a connection ∇N on the non-null subbundle NA of EA|Σ.
Explicitly, if NA

B is the orthogonal projection from EA|Σ onto NB then we have

∇N
i vB = NA

B∇ivA (6.2.3)

for any section vB of NB , where ∇i is the ambient standard tractor connection (pulled
back via ι). We can now explain the origin of the canonical connection on Nα(1, 0).

Proposition 6.2.3. The weighted conormal bundle Nα(1, 0) is canonically isomorphic to
the normal cotractor bundle NA via the map

τα 7→ τA
θ
=

 0

τα

0

 (6.2.4)

defined with respect to any admissible ambient contact form θ. Moreover, the above iso-
morphism intertwines the normal tractor connection ∇N on NA with the normal Weyl
connection on Nα(1, 0) of any admissible θ.

Proof. The first part follows from the fact that if θ is admissible then θ̂ = eΥθ is admissi-
ble if and only if ΥαN

α = 0, whereNα is a holomorphic normal field (a consequence of
Lemma 5.2.6). The second part follows from the explicit formulae for the tractor connec-
tion given in §§5.3.4 (noting in particular (5.3.27)) and the observation that the orthog-
onal projection EA|Σ → NA is given, with respect to any admissible ambient contact
form, by  σ

τα

ρ

 7→

 0

Nβ
ατβ

0

 . (6.2.5)

Remark 6.2.4. Clearly the isomorphism of Proposition 6.2.3 is Hermitian; in particular if
NA is the normal tractor corresponding to a unit normal field Nα then

NANA = NαNα = 1,
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soNA is indeed a unit normal tractor. Although a unit normal tractor is determined only
up to phase, the tractors

NANB̄ and NANB,

are independent of the choice of unit length section of NA. Indeed, NANB = NA
B and

the section
ΠA
B = δAB −NANB

projects orthogonally from EA|Σ onto the orthogonal complement N⊥
A of NA in EA|Σ.

6.2.2 Tractor Bundles and Densities

Clearly N⊥
A has the same rank as EI ; they also have the same rank subbundles in their

canonical filtration structures. Moreover, both N⊥
A and EI carry canonical Hermitian

bundle metrics (and Hermitian connections). On the other hand we note that forN⊥
A we

have the canonical map
N⊥
A → E(1, 0)|Σ
vA 7→ ZAvA

where ZA is the ambient canonical tractor, whereas for EI we have the canonical map

EI → EΣ(1, 0)
vI 7→ ZIvI

where ZI is the canonical tractor of Σ. It seems natural that we should look to identify
these bundles (canonically), but doing so clearly also involves identifying the density
bundles E(1, 0)|Σ and EΣ(1, 0) (also canonically). The following lemma shows us that
this is the only thing stopping us from identifying EI with N⊥

A :

Lemma 6.2.5. Fix a local isomorphism ψ : EΣ(1, 0) → E(1, 0)|Σ (compatible with the
canonical identification of EΣ(1, 1) with E(1, 1)|Σ) and identify all corresponding density
bundles EΣ(w,w′) and E(w,w′)|Σ using ψ. Then locally there is a canonically induced map
from EI to N⊥

A , given with respect to any pair θ, θΣ of compatible contact forms by

vI
θΣ=

 σ

τµ

ρ

 7→ vA
θ
=

 σ

τα

ρ

 (6.2.6)

where τα = Πµ
ατµ, which is a filtration preserving isomorphism of Hermitian vector bundles.
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Proof. Let us start by fixing θ and θΣ. That the map described above is a filtration pre-
serving bundle isomorphism is obvious. That the map pulls back the Hermitian bundle
metric of N⊥

A to that of EI is also obvious. It remains to show that the map is indepen-
dent of the choice of compatible contact forms. To see this we suppose that θ̂ = eΥθ

is any other admissible contact form and let θ̂Σ = ι∗θ̂ = eΥθΣ. We need to compare
the submanifold and ambient versions of the tractor transformation law (5.3.3). By the
compatibility of θ and θΣ we have ∇0Υ = D0Υ along Σ, and by Lemma 6.1.35 we also
have Υα = Πµ

αΥµ where Υµ = DµΥ. These observations ensure that the map is well-
defined.

The local bundle isomorphism ψ : EΣ(1, 0) → E(1, 0)|Σ in the above lemma can also
be thought of as a nonvanishing local section (or local trivialisation) of the ratio bundle
R(1, 0). The bundleR(1, 1) is canonically trivial because of the canonical isomorphism
of EΣ(1, 1) with E(1, 1)|Σ, so thatR(1, 0) carries a natural Hermitian bundle metric (i.e.
is a U(1)-bundle) and the compatibility of ψ with the identification EΣ(1, 1) = E(1, 1)|Σ
is equivalent to ψ being a unit section ofR(1, 0). The ratio bundleR(1, 0) will prove to
be the key to relating the tractor bundles (globally) without making an unnatural (local)
identification of density bundles.

6.2.3 Relating Tractor Bundles

If we tensor EI with EΣ(0, 1) then choosing a submanifold contact form θΣ identifies this
bundle with

[EI ]θΣ ⊗ EΣ(0, 1) = EΣ(1, 1)⊕ Eµ(1, 1)⊕ EΣ(0, 0)

where EΣ(0, 0) is the trivial bundle Σ × C. Similarly, given an ambient contact form θ

we may identify the N⊥
A ⊗ E(0, 1)|Σ with

[N⊥
A ]θ ⊗ E(0, 1)|Σ = E(1, 1)|Σ ⊕N⊥

α (1, 1)⊕ E(0, 0)|Σ

where E(0, 0) is the trivial bundleM × C and N⊥
α denotes the orthogonal complement

to Nα in Eα|Σ. Since EΣ(w,w) is canonically identified with E(w,w)|Σ we have the
following theorem:

Theorem 6.2.6. There is a canonical filtration preserving bundle isomorphism

ΠI
A : EI ⊗ EΣ(0, 1) → N⊥

A ⊗ E(0, 1)|Σ
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given with respect to a pair of compatible contact forms θ, θΣ by

[EI ]θΣ ⊗ EΣ(0, 1) ∋

 σ

τµ

ρ

 7→

 σ

τα

ρ

 ∈ [N⊥
A ]θ ⊗ E(0, 1)|Σ

where τα = Πµ
ατµ.

Proof. We only need to establish that the map is independent of the choice of compatible
contact forms, and this follows from comparing the submanifold and ambient versions
of (5.3.3) noting that∇0Υ = D0Υ and Υα = Πµ

αΥµ as in the proof of Lemma 6.2.5.

Remark 6.2.7. If ψ : EΣ(1, 0) → E(1, 0)|Σ is a local bundle isomorphism (unit as a local
section of R(1, 0)) and we denote by Tψι the local isomorphism EI → N⊥

A given by
Lemma 6.2.5 then isomorphism of Proposition 6.2.6 agrees with Tψι ⊗ ψ where this is
defined.

Conjugating the map ( 6.2.6) and raising tractor indices one gets an isomorphism

ΠA
I : EI ⊗ EΣ(1, 0) → (NA)⊥ ⊗ E(1, 0)|Σ

and tensoring both sides with EΣ(−1, 0) one gets another isomorphism

EI → (NA)⊥ ⊗ E(1, 0)|Σ ⊗ EΣ(−1, 0)︸ ︷︷ ︸
R(1,0)

(6.2.7)

which we may also denote by ΠA
I . We think of ΠA

I as a section of EI ⊗ EA|Σ ⊗R(1, 0)

and ΠI
A as a section of EI ⊗ EA|Σ ⊗ R(0, 1). Thinking about these objects as sections

emphasises that they can be interpreted as maps in a variety of ways.

Definition 6.2.8. The isomorphism (6.2.7) gives an injective bundle map

T Rι : T Σ → TM |Σ ⊗R(1, 0) (6.2.8)

which we term the twisted tractor map.

The twisted tractor map is clearly filtration preserving, and restricts to an isomorphism
T 1Σ → T 1M |Σ ⊗R(1, 0). This is just the trivial isomorphism

EΣ(−1, 0) ∼= E(−1, 0)|Σ ⊗ E(1, 0)|Σ ⊗ EΣ(−1, 0). (6.2.9)
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Since it is filtration preserving T Rι also induces an injective bundle map T 0Σ/T 1Σ →
(T 0M |Σ/T 1M |Σ) ⊗ R(1, 0) and this is simply the tangent map Eµ → Eα|Σ tensored
with the isomorphism (6.2.9). The map T Σ/T 0Σ → (TM |Σ/T 0M |Σ)⊗R(1, 0) induced
by the twisted tractor map is the isomorphism

EΣ(0, 1) ∼= E(0, 1)|Σ ⊗R(1, 0)

which simply comes from noting that R(1, 0) = R(0,−1) since EΣ(1, 1) = E(1, 1)|Σ.
Note that since R(1, 0) is Hermitian, so is TM |Σ ⊗ R(1, 0), and T Rι is clearly a Her-
mitian bundle map. These properties characterise the twisted tractor map.

6.2.3.1 The adjoint tractor map

SinceR(1, 1) is canonically trivial the section ΠA
I Π

J
B gives us a canonical bundle map

End(T Σ) → End(TM).

Since the twisted tractor map is metric preserving by restricting to skew-Hermitian en-
domorphisms we get a map

Aι : AΣ → AM

which we term the adjoint tractor map. Recalling the projection AM → TM given by
(5.3.30) we note that the diagram

AΣ → AM
↓ ↓
TΣ → TM

(6.2.10)

is easily seen to commute. So the adjoint tractor map is a lift of the tangent map.

6.2.4 Relating Tractor Connections on T Σ

Using the twisted tractor map and the connection∇R we obtain a connection ∇̌ on the
standard (co)tractor bundle induced by the ambient tractor connection. Given a standard
tractor field uJ and a cotractor field vJ on Σ we define

∇̌iu
J = ΠJ

B∇i(Π
B
Ku

K) and ∇̌ivJ = ΠB
J∇i(Π

K
B vK) (6.2.11)
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where by ∇ we mean the ambient standard tractor connection ∇ differentiating in di-
rections tangent to Σ (i.e. pulled back by ι) coupled with the connection∇R.

From §§5.3.4 the submanifold intrinsic tractor connectionD on a section vI
θΣ= (σ, τµ, ρ)

is given by

DµvJ
θΣ=

 Dµσ − τµ

Dµτν + iAµνσ

Dµρ− pµ
ντν + tµσ

 , Dµ̄vJ
θΣ=

 Dµ̄σ

Dµ̄τν + hµν̄ρ+ pνµ̄σ

Dµ̄ρ− iAµ̄
ντν − tµ̄σ

 , (6.2.12)

and

D0vJ
θΣ=

 D0σ + i
n+1

pσ − iρ

D0τν +
i

n+1
pτν − ipν

λτλ + 2itνσ

D0ρ+
i

n+1
pρ+ 2itντν + isσ

 (6.2.13)

where tµ and s are the submanifold intrinsic versions of Tα and S defined by (5.3.11) and
(5.3.12) respectively. By contrast, for ∇̌ we have:

Proposition 6.2.9. The connection ∇̌ on a section vI
θΣ= (σ, τµ, ρ) of EI is given, in terms

of any ambient contact form compatible with θΣ, by

∇̌µvJ
θΣ=

 Dµσ − τµ

Dµτν + iAµνσ

Dµρ− Pµ
ντν + Tµσ

 , (6.2.14)

∇̌µ̄vJ
θΣ=

 Dµ̄σ

Dµ̄τν + hµν̄ρ+ Pνµ̄σ

Dµ̄ρ− iAµ̄
ντν − Tµ̄σ

 , (6.2.15)

and

∇̌0vJ
θΣ=

 D0σ + i
n+1

Pλ
λσ − iρ

D0τν +
i

n+1
Pλ

λτν − iPν
λτλ + 2iTνσ

D0ρ+
i

n+1
Pλ

λρ+ 2iT ντν + iSσ

 . (6.2.16)

Proof. Choose any local isomorphism ψ : EΣ(1, 0) → E(1, 0)|Σ compatible with the
canonical identification of EΣ(1, 1) with E(1, 1)|Σ. Replacing σ with fσ where f ∈
C∞(Σ,C) we may take σ to satisfy σσ = ςΣ where θΣ = ςΣθΣ. We can thus factor the
components of vI so that vI

θΣ= (fσ, ξµσ, gσ), where ξµ ∈ Γ(Eµ) and g ∈ Γ(EΣ(−1,−1)).
If θ is an ambient contact form compatible with θΣ then (splitting the tractor bundles
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w.r.t. θ, θΣ) under the map Tψι⊗ ψ of Remark 6.2.7

(fσ, ξµσ, gσ)⊗ σ 7→ (fϕ, ξαϕ, gϕ)⊗ ϕ

where ϕ = ψ(σ) and ξα = Πµ
αξµ. Thus by definition we have

vB = ΠJ
BvJ

θ
=

 fϕ

ξβϕ

gϕ

⊗ (ϕ⊗ σ−1)

as a section of EB|Σ ⊗ R(1, 0). Now one simply computes ∇ivB using the formulae
(5.3.13), (5.3.14), and (5.3.15) for the tractor connection along with Lemma 6.1.38 which
relates∇R to the Tanaka-Webster connections on the ambient and intrinsic density bun-
dles. We have

ΠB
C∇µvB

θ
=

 (∇µf)ϕ+ f∇µϕ− ξµϕ

Πβ
γ(∇µξβ)ϕ+ ξγ∇µϕ+ iΠβ

γAµβfϕ

(∇µg)ϕ+ g∇µϕ− Pµ
γξγϕ+ Tµfϕ

⊗ (ϕ⊗ σ−1)

+

 fϕ

ξγϕ

gϕ

⊗∇R
µ (ϕ⊗ σ−1) (6.2.17)

where Aµβ = Πα
µAαβ , Pµγ = Πα

µPα
γ , and Tµ = Πα

µTα. By Corollary 6.1.13 we have
Πβ
γAµβ = Πν

γAµν . We also have Πβ
γ∇µξβ = Πν

γDµξν . Now by Lemma 6.1.38 we have

∇R
µ (ϕ⊗ σ−1) = (∇µϕ)⊗ σ−1 + ϕ⊗Dµ(σ

−1)

= (∇µϕ)⊗ σ−1 + (σ−1Dµσ)ϕ⊗ σ−1

using that σDµ(σ
−1) = −σ−1Dµσ = σ−1Dµσ since DµςΣ = 0. If θ = ςθ then since

ϕ = ψ(σ) we must have ϕϕ = ς|Σ, and this implies that

(∇µϕ)⊗ ϕ+ ϕ⊗∇µϕ = 0.
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Using these to simplify (6.2.17) we have

ΠB
C∇µvB

θ
=

 (Dµf)ϕ− ξµϕ

Πν
γ(Dµξν)ϕ+ iΠν

γAµνfϕ

(Dµg)ϕ− Pµ
νξνϕ+ Tµfϕ

⊗ (ϕ⊗ σ−1)

+ (σ−1Dµσ)

 fϕ

ξγϕ

gϕ

⊗ (ϕ⊗ σ−1).

Applying ΠC
J to the above display gives

ΠB
J∇µvB

θΣ=

 (Dµf)σ − ξµσ

(Dµξν)σ + iAµνfσ

(Dµg)σ − Pµ
νξνσ + Tµfσ

+

 fDµσ

ξνDµσ

gDµσ


which proves (6.2.14). Formula (6.2.15) is obtained similarly. In following the same pro-
cess for (6.2.16) we obtain that

∇̌0vJ
θΣ=

 D0σ + i
n+2

Pσ − iρ

D0τν +
i

n+2
Pτν − iPν

λτλ + 2iTνσ

D0ρ+
i

n+2
Pρ+ 2iT ντν + iSσ



+

(
− i

(n+ 1)
PNN̄ +

i

(n+ 2)(n+ 1)
P

) σ

τν

ρ

 ,

the second term arising from the use of Lemma 6.1.38. Simplifying this gives the result.

Remark 6.2.10. By construction ∇̌ preserves the tractor metric hJK̄ . One can therefore
obtain the formulae for ∇̌ acting on sections of EI by conjugating the above formulae
and using the identification of EI with EĪ via the tractor metric.

One can now easily compare the two connections ∇̌ and D on T Σ.

Definition 6.2.11. The difference tractor S is the tractor endomorphism valued 1-form
on Σ given by the difference between ∇̌ and D on T Σ. Precisely, we have

∇̌Xu = DXu+ S(X)u and ∇̌Xv = DXv − v ◦ S(X) (6.2.18)
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for X ∈ X(Σ), u ∈ Γ(T Σ), and v ∈ Γ(T ∗Σ).

Given a contact form θΣ onΣ the difference tractor S splits into components SµJK , Sµ̄JK

and S0J
K (with only the last of these depending on θΣ). From the above formulae for ∇̌

and D we have, in terms of a compatible pair of contact forms,

SµJ
K = (Pµ

λ − pµ
λ)ZJW

K
λ − (Tµ − tµ)ZJZ

K , (6.2.19)

Sµ̄J
K = −(Pνµ̄ − pνµ̄)W

ν
JZ

K + (Tµ̄ − tµ̄)ZJZ
K , (6.2.20)

and

S0J
K = − i

m+2
(Pλ

λ − p)δKJ + i(Pν
λ − pν

λ)W ν
JW

K
λ

− 2i(Tν − tν)W
ν
JZ

K − 2i(T λ − tλ)ZJW
K
λ − i(S − s)ZJZ

K , (6.2.21)

where m + 2 = n + 1 in this case. Both SµJ
K and Sµ̄J

K are invariant objects. Both
have as projecting part the difference Pµν̄ − pµν̄ ; a manifestly CR invariant expression
for this difference was given in Lemma 6.1.42. We can also give matrix formulae for the
difference tractor, following the same conventions used in §§5.3.6 we have

SµJ
K =

 0 0 0

0 0 0

tµ − Tµ Pµ
λ − pµ

λ 0

 , Sµ̄J
K =

 0 0 0

pνµ̄ − Pνµ̄ 0 0

Tµ̄ − tµ̄ 0 0


and

S0J
K =

 − i(Pλ
λ−p)

m+2
0 0

−2i(Tν − tν) i(Pν
λ − pν

λ)− i(Pλ
λ−p)

m+2
0

−i(S − s) −2i(T λ − tλ) − i(Pλ
λ−p)

m+2

 .

Remark 6.2.12. Since both tractor connections ∇̌ and D preserve the tractor metric on
T Σ, the difference tractor must take values in skew-Hermitian endomorphisms of the
tractor bundle (i.e. S is anAΣ-valued 1-form). This can also easily be seen from (6.2.19),
(6.2.20) and (6.2.21), from which we see that S is in fact A0Σ-valued.

6.2.5 The Tractor Gauss Formula

In order to write down the Gauss formula in Riemannian geometry one needs the tan-
gent map (more precisely the pushforward) of the embedding, though one typically sup-
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presses this from the notation. In order to give a standard tractor analogue we have
sought a canonical ‘standard tractor map’, but ended up instead with the twisted tractor
map T Rι. However this poses no problem for constructing a Gauss formula, since the
line bundle R(1, 0) we have had to twist with carries an invariant connection∇R.

Letting ι∗ denote the induced map on sections coming from T Rι we make he following
definition:

Definition 6.2.13. We define the tractor second fundamental form L by the tractor Gauss
formula

∇Xι∗u = ι∗(DXu+ S(X)u) + L(X)ι∗u (6.2.22)

which holds for any X ∈ X(Σ) and u ∈ Γ(T Σ), where ∇ denotes the ambient tractor
connection coupled with ∇R.

This (combined with Theorem 6.2.6) establishes Theorem 4.3.3 for the case m = n − 1,
the result generalises straightforwardly (§§6.3.3).

Remark 6.2.14. By the definition of the difference tensor S, for any X ∈ X(Σ) and u ∈
Γ(T Σ) we have that L(X)ι∗u is the orthogonal projection of∇Xι∗u ontoN ⊗R(1, 0).
By definition then L is a 1-form on Σ valued in Hom(N⊥ ⊗ R(1, 0),N ⊗ R(1, 0)) =

Hom(N⊥,N ).

Suppressing ι∗ we write the tractor Gauss formula as

∇Xu = DXu+ S(X)u︸ ︷︷ ︸
‘tangential part’

+ L(X)u︸ ︷︷ ︸
‘normal part’

(6.2.23)

for any X ∈ X(Σ) and u ∈ Γ(T Σ).

WritingΠB
J u

J as uB and contracting the Gauss formula on both sides with a unit normal
cotractor NA we get that

NCL(X)B
CuB = NB∇Xu

B = −uB∇XNB

for all sections uJ of EJ and X ∈ X(Σ). Thus L is given by

LiBC = −NCΠB′

B ∇iNB′ (6.2.24)

for any unit normal cotractor NC . From this we have:
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Proposition 6.2.15. With respect to a compatible pair of contact forms the components
LµBC , Lµ̄BC , and L0B

C of the tractor second fundamental form L are given by

LµBC = IIµν
γΠν

βW
β
BW

C
γ + PµN̄N

γZBW
C
γ , (6.2.25)

Lµ̄BC = 0, (6.2.26)

and
L0B

C = −2iTN̄N
γZBW

C
γ (6.2.27)

where Nα is some unit holomorphic normal field, PµN̄ = Πα
µPαβ̄N

β̄ , and TN̄ = TᾱN
ᾱ.

Proof. One simply chooses a unit holomorphic normal fieldNα and corresponding nor-
mal tractor NA, then calculates ΠB′

B ∇iNB′ using the formulae (5.3.13), (5.3.14), and
(5.3.15) for the ambient tractor connection. Using (6.2.24) one immediately obtains (6.2.25);
for (6.2.26) one also has to use that IIµ̄νγ = 0 (by Proposition 6.1.12) and Πᾱ

µ̄Aᾱβ̄N
β̄ =

0 (by Corollary 6.1.13), and for (6.2.27) one also has to use that II0νγ = 0 (again by
Proposition 6.1.12).

The proposition shows that the invariant projecting part of LµBC is IIµνγΠν
β , giving a

manifestly CR invariant way of defining the CR second fundamental form.

6.3 Higher Codimension Embeddings

It is straightforward to adapt our treatment of CR embeddings in the minimal codimen-
sion case to general codimension transversal CR embeddings. Here we consider a CR
embedding of ι : Σ2m+1 →M2n+1 with n = m+d, andm, d > 0. We keep our notation
for bundles on Σ andM as before. We now have a rank 2d real conormal bundle N∗Σ,
and the complexification of N∗Σ splits as

CN∗Σ = Nα ⊕Nᾱ (6.3.1)

where Nα is the annihilator of T 1,0Σ in (T 1,0M)∗|Σ = Eα|Σ and Nᾱ = Nα. We denote
by Nα

β the orthogonal projection of Eβ|Σ onto the holomorphic normal bundle N α, and
by Πα

β the tangential projection, so that Πα
β + Nα

β = δαβ . We will also write Nαβ̄ for
hγδ̄Nα

γN
β̄

δ̄
= hγβ̄Nα

γ .
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Remark 6.3.1. Note that in passing to the general codimension there is no restriction on
the signatures (or relative signature) of the CR manifolds, provided we have a nonde-
generate transversal CR embedding.

6.3.1 Pseudohermitian Calculus

We may continue to work with compatible contact forms in the general codimension
case (see Remark 6.1.3). By Remark 6.1.10 the Tanaka-Webster connection ∇ of an ad-
missible ambient contact form θ induces the Tanaka-Webster connectionD of θΣ via the
Webster metric gθ as in Proposition 6.1.8. We can therefore define the (pseudohermitian)
second fundamental form of a pair of compatible contact forms as in Definition 6.1.11
(i.e. via a Gauss formula). By Remark 6.1.14 the only nontrivial components of the
pseudohermitian second fundamental form are IIµνγ and its conjugate. Also by Remark
6.1.14 the pseudohermitian torsion of any admissible ambient contact form satisfies
Πα
µAαβN

β
γ = 0.

The higher codimension analogue of Lemma 6.1.16 is:

Lemma 6.3.2. Given compatible contact forms one has

NγIIµν
γ = −Πβ

ν∇µNβ (6.3.2)

for any holomorphic conormal field.

From Lemma 6.3.2 we see again that the component IIµνγ of the pseudohermitian second
fundamental form does not depend on the compatible pair of contact forms used to define
it (cf. Corollary 6.1.17).

The Gauss, Codazzi and Ricci equations given in the three propositions of §§6.1.7 hold
in the general codimension case with the same proofs (noting that the normal fields used
in the proofs of Proposition 6.1.22 and Proposition 6.1.23 were arbitrary).

6.3.2 Relating Densities

As before we define Λ1,0
⊥ Σ to be the bundle of forms in Λ1,0M |Σ annihilating TΣ. Again

we may identify Λ1,0
⊥ Σ with Nα by restriction to T 1,0M |Σ. We write Λd,0⊥ Σ for the line

bundle Λd(Λ1,0
⊥ Σ). The following lemma is easily established (cf. Lemma 6.1.25 and

Lemma 6.1.28):
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6.3 Higher Codimension Embeddings

Lemma 6.3.3. Along Σ the submanifold and ambient canonical bundles are related by the
canonical isomorphism which intertwines the Tanaka-Webster connections of any compat-
ible pair of contact forms

K |Σ ∼= KΣ ⊗ Λd,0⊥ Σ

ι∗∇ ∼= D ⊗ ∇⊥.

Identifying Λ1,0
⊥ Σ withNα we may write Λd,0⊥ Σ asN[α1···αd]. Tensoring both sides of the

isomorphism of Lemma 6.3.3 with E(d, 0)|Σ we obtain (cf. Corollary 6.1.26 and Corollary
6.1.29):

Corollary 6.3.4. AlongΣ the submanifold and ambient density bundles are related by the
canonical isomorphism which intertwines the Tanaka-Webster connections of any compat-
ible pair of contact forms

E(−m− 2, 0)|Σ ∼= EΣ(−m− 2, 0)⊗N[α1···αd](d, 0)

ι∗∇ ∼= D ⊗ ∇⊥.

Note that the line bundleN[α1···αd](d, 0) is the dth exterior power ofNα(1, 0). Once again
this bundle will turn out to be canonically isomorphic to a subbundle N ∗ = NA of the
ambient cotractor bundle EA|Σ (see §§6.3.3), and hence once again Nα(1, 0) carries a
canonical invariant connection. As before this connection turns out to be explicitly re-
alised as the normal Weyl connection on Nα(1, 0) of any admissible ambient contact
form. The normal Weyl connection onNα(1, 0) agrees with the normal Tanaka-Webster
connection when differentiating in contact directions; when differentiating in Reeb di-
rections the two are related by

∇W,⊥
0 τα = ∇⊥

0 τα − iNα′

α Pα′
βτβ +

i

n+ 2
Pτα (6.3.3)

for any section τα ofNα(1, 0). The curvatureRΛdN ∗ of this connection onN[α1···αd](d, 0)

is again generically non zero, and we have

RΛdN ∗

µν̄ = (m+ 2)(Pµν̄ − pµν̄) + (Pλ
λ − p)hµν̄ (6.3.4)
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(cf. Lemma 6.1.41), RΛdN ∗
µν = 0, RΛdN ∗

µ̄ν̄ = 0, and (cf. (6.1.41))

RΛdN ∗

µ0 = −Vµβ̄γNγβ̄ − iTµ. (6.3.5)

We thus define the ratio bundle of densities R(w,w′) as before (Definition 6.1.32) and
see from Corollary 6.3.4 that these bundles carry a canonical connection ∇R coming
from the connection ∇N on ΛdN ∗ = N[α1···αd](d, 0). We have therefore established
Proposition 4.3.2. Using Corollary 6.3.4 and (6.3.3) we may relate the connection ∇R to
the coupled submanifold-ambient Tanaka-Webster connection (cf. Lemma 6.1.38):

Lemma 6.3.5. In terms of a compatible pair of contact forms, θ, θΣ, the connection∇R on
a section ϕ⊗ σ of E(w,w′)|Σ ⊗ EΣ(−w,−w′) is given by

∇R
µ (ϕ⊗ σ) = (∇µϕ)⊗ σ + ϕ⊗ (Dµσ), (6.3.6)

∇R
µ̄ (ϕ⊗ σ) = (∇µ̄ϕ)⊗ σ + ϕ⊗ (Dµ̄σ), (6.3.7)

and

∇R
0 (ϕ⊗ σ) = (∇0ϕ)⊗ σ + ϕ⊗ (D0σ) +

w−w′

m+2
(iPαβ̄N

αβ̄ − i
n+2

P )ϕ⊗ σ. (6.3.8)

6.3.3 Relating Tractors

As before we have a canonical isomorphism from Nα(1, 0) to a subbundle NA of EA|Σ,
given with respect to any admissible ambient contact form θ by

τα 7→ τA
θ
=

 0

τα

0

 . (6.3.9)

There is a corresponding isomorphism ofN α(−1, 0) with a subbundleNA of EA|Σ, and
we alternatively denote the dual pairNA andNA byN andN ∗ respectively. The normal
tractor connection∇N onNA agrees with the normalWeyl connection of any admissible
ambient contact form on Nα(1, 0) (cf. Proposition 6.2.3).

Sections §§6.2.2 and §§6.2.3 are valid without change in the general codimension case.
In particular, Lemma 6.2.5 and Theorem 6.2.6 hold. Thus we may talk about the twisted
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6.4 Invariants of CR Embedded Submanifolds

standard tractor map
T Rι : T Σ → TM |Σ ⊗R(1, 0)

and the corresponding sectionsΠA
I of EI⊗EA|Σ⊗R(1, 0) andΠI

A of EI⊗EA|Σ⊗R(0, 1).
This allows us to define the connection ∇̌ on T Σ as in (6.2.11); one can then easily
establish the expressions for ∇̌ given in Proposition 6.2.9 in the general codimension
setting (the proof is essentially the same, with Lemma 6.3.5 generalising Lemma 6.1.38).
The difference tractor S, defined as in Definition 6.2.11, is then still given in component
form by (6.2.19), (6.2.20), and (6.2.21).

We define the tractor second fundamental form L by a tractor Gauss formula as in
Definition 6.2.13. This establishes Theorem 4.3.3. One then also has that

LiBCNC = −ΠB′

B ∇iNB′ (6.3.10)

for any section NA of NA. From this we get (cf. Proposition 6.2.15):

Proposition 6.3.6. With respect to a compatible pair of contact forms the components
LµBC , Lµ̄BC , and L0B

C of the tractor second fundamental form L are given by

LµBC = IIµν
γΠν

βW
β
BW

C
γ + Pµδ̄N

γδ̄ZBW
C
γ , (6.3.11)

Lµ̄BC = 0, (6.3.12)

and
L0B

C = −2iTδ̄N
γδ̄ZBW

C
γ . (6.3.13)

6.4 Invariants of CR Embedded Submanifolds

For many problems in geometric analysis it is important to construct the invariants that
are, in a suitable sense, polynomial in the jets of the structure. Riemannian theory along
these lines was developed by Atiyah-Bott-Patodi for their approach to the heat equation
asymptotics [5], and in [63] Fefferman initiated a corresponding programme for confor-
mal geometry and hypersurface type CR geometry. As explained in [8] there are two
steps to such problems. The first is to capture the jets (preferably to all orders) of the
geometry invariantly and in an algebraically manageable manner. The second is to use
this algebraic structure to construct all invariants. The latter boils down to Lie repre-
sentation theory, for the case of parabolic geometries this is difficult, and despite the

155



Chapter 6

progress in [8] and [75] for conformal geometry and CR geometry many open problems
remain. For the conformal and CR cases the first part is treated by the Fefferman and
Fefferman-Graham ambient metric constructions [63, 64, 66] and alternatively by the
tractor calculus [7, 27, 75]. It is beyond the scope of the current work to fully set up
and treat the corresponding invariant theory for CR submanifolds. However we wish to
indicate here that the first geometric step, of capturing the jets effectively, is solved via
the tools developed above. In particular we will show that it is straightforward to pro-
liferate invariants of a (transversally embedded) CR submanifold. It seems reasonable
to hope that these methods will form the basis of a construction of all invariants of CR
embeddings (in an appropriate sense).

6.4.1 Jets of the Structure

We now show that the jets of the structure of a CR embedding are captured effectively by
the basic invariants we have introduced in our ‘tractorial’ treatment of CR embeddings.

Observe that the tractor Gauss formula ( 6.2.13) may be rewritten in the form

∇XT Rι = T Rι ◦ S(X) + L(X) ◦ T Rι (6.4.1)

for anyX ∈ TΣ, where T Rι is interpreted as a section of TM |Σ⊗T ∗Σ⊗R(1, 0) and∇
here denotes the (pulled back) ambient tractor connection coupled with the submanifold
tractor connection and the canonical connection ∇R. Using this we have the following
proposition:

Proposition 6.4.1. Given a transversal CR embedding ι : Σ → M , the 2-jet of the map ι
at a point x ∈ Σ is encoded by ι(x), T R

x ι, Sx and Lx.

Proof. Recalling §§§6.2.3.1 we note that the twisted tractor map T Rι determines the
adjoint tractor map Aι (by restricting T Rι ⊗ T Rι). Since the adjoint tractor map lifts
the tangent map, the 1-jet (ι(x), Txι) of ι at a point x ∈ Σ is also determined by the pair
(ι(x), T R

x ι). The proposition then follows from (6.4.1).

In the jets of the structure of a CR embedding ι : Σ → M we include the jets of the
ambient and submanifold CR structures, along with the jets of the map ι. A CR invariant
of the embedding should depend only on these jets evaluated along the submanifold.
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6.4 Invariants of CR Embedded Submanifolds

The jets of the ambient and submanifold CR structures are determined by the respective
tractor curvatures. Thus from Proposition 6.4.1 we have:

Proposition 6.4.2. The jets of the structure of a transversal CR embedding are determined
algebraically by the embedding ι : Σ → M , the submanifold and ambient CR structures
(as parabolic geometries), the twisted tractor map T Rι, as well as the jets of the difference
tensor S, the tractor second fundamental form L, the submanifold tractor curvature κΣ,
and the full (i.e. ambient) jets of the ambient tractor curvature κ.

In order to complete the first step of the invariant theory programmewe need to package
the jets of S, L, κΣ and κ in an algebraically manageable way. Note that the standard
tractor bundle, tractor metric, and canonical tractor Z are all determined algebraically
from structure of a CR geometry (as a parabolic geometry). Thus if we package the jets
of S, L, κΣ and κ into sequences of CR invariant tractors then one may combine these
tractors by tensoring them and using the submanifold and ambient metrics to contract
indices. One can also use the twisted tractor map to change submanifold tractor indices
to ambient ones before making contractions (the ratio bundle of densities is also deter-
mined algebraically from the submanifold and ambient CR structures). This would not
only complete the first step of the invariant theory programme, but would also suggest
an obvious approach to the second of the two steps.

6.4.2 Packaging the Jets

One way to define iterated derivatives of the difference tractor S and submanifold cur-
vature κΣ would be to repeatedly apply the submanifold fundamental derivative (or
D-operator) of [27]. Denoting the submanifold fundamental derivative byD, if f is S or
κΣ then by Theorem 3.3 of [27] the k-jet of f is determined by the section

(f,Df,D2f, . . . ,Dkf)

of
⊕k

l=0

(⊗lA∗Σ⊗W
)
where W equals Λ1Σ ⊗ AΣ or Λ2Σ ⊗ AΣ respectively. The

ambient jets ofκ can be similarly captured by iterating the ambient fundamental deriva-
tive, and one can also capture the jets ofL by using the submanifold fundamental deriva-
tive twisted with the ambient tractor connection. Here instead we parallel the approach
taken in [75] to conformal invariant theory by first putting the tractor valued forms S, L,
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κΣ and κ into tractors (invariantly and algebraically) using the natural inclusion of the
cotangent bundle into the adjoint tractor bundle, and then using double-D-operators.

Let Ba
AB̄

denote the map T ∗M ↪→ AM given explicitly by (5.3.29) and Bi
IJ̄

denote the
map T ∗Σ ↪→ AΣ.

Definition 6.4.3. We define the respective lifted (tractor) expressions of the tractor val-
ued forms S, L, κΣ and κ to be

SIĪ′J
K = Bi

IĪ′SiJ
K , LIĪ′BC = Bi

IĪ′LiB
C , κΣ

IĪ′JJ̄ ′KL̄ = Bi
IĪ′B

j

JJ̄ ′κ
Σ
ijKL̄,

and
κAĀ′BB̄′CD̄ = Ba

AĀ′B
b
BB̄′κabCD̄.

Explicitly this means, for example, that

SIJ̄K
L = SµK

LW µ
I ZJ̄ − Sν̄K

LZIW
ν̄
J̄ − iS0K

LZIZJ̄ .

By (5.3.42) the double-D-operator DAB̄ acting on unweighted ambient tractors can be
written as

DAB̄ = Ba
AB̄∇a (6.4.2)

where∇ is the ambient tractor connection. Similarly the double-D-operatorDIJ̄ acting
on unweighted submanifold tractors can be written as

DIJ̄ = Bi
IJ̄Di (6.4.3)

where Di denotes the submanifold tractor connection. By coupling Di in (6.4.3) with
∇i we enable the double-D-operator operator DIJ̄ to act iteratively on the unweighted
(mixed) tractor LKL̄CD. Noting that each of the lifted tractor expressions given in Defi-
nition 6.4.3 is unweighted we therefore have:

Proposition 6.4.4. Let ι : Σ → M be a transversal CR embedding, and let D denote the
submanifold double-D-operatorDIJ̄ . If f equals S,L, orκΣ then the k-jet of f is determined
by the section

(f̃ ,Df̃ ,D2f̃ , . . . ,Dkf̃) (6.4.4)

of
⊕k

l=0

(⊗lAΣ⊗W
)
, where f̃ is the lifted tractor expression for f and W equals

⊗2AΣ, AΣ⊗AM |Σ, or ⊗3AΣ respectively.
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6.4 Invariants of CR Embedded Submanifolds

Along with the corresponding proposition for the ambient curvature:

Proposition 6.4.5. Let ι : Σ → M be a transversal CR embedding, and let D denote the
ambient double-D-operator DAB̄ . The k-jet of the ambient curvature κ is determined by
the section

(κ̃,Dκ̃,D2κ̃, . . . ,Dkκ̃) (6.4.5)

of
⊕k

l=0

(⊗l+3AM
)
.

By packaging the jets of the basic invariants S, L, κΣ and κ into sequences of tractors
(i.e. sections of associated bundles corresponding to representations of the appropriate
pseudo-special unitary groups) we have solved the first step of the invariant theory.

6.4.3 Making All Invariants

By tensoring together tractors of the form appearing in (6.4.4) and (6.4.5) along Σ, mak-
ing partial contractions, and taking projecting parts one may proliferate local CR in-
variant (weighted) scalars and tensors. It is an algebraic problem to show that all such
invariants, which are suitably polynomial in the jets of the structure, can be obtained
by such a procedure. This is a subtle and difficult problem, which extends Fefferman’s
parabolic invariant theory programme to the submanifold-relative case (where there are
two parabolics around, P and PΣ). Even in the original case of invariant theory for CR
manifolds, despite much progress, important questions remain unresolved [8, 92]. We
do not attempt to resolve these issues here.

We do wish to indicate, however, that there is scope for development of the invariant
theory for CR manifolds, and now CR embeddings, along the lines of the treatment of
invariant theory for conformal and projective structures in [71, 72, 73, 75]. The trac-
tor calculus we have developed for CR embeddings provides all the machinery needed
to emulate the constructions of conformal Weyl and quasi-Weyl invariants in [75]. We
anticipate that further insight from the projective case [73] will be needed, and our ma-
chinery is sufficient for this also. With all the tools in hand this article therefore puts
us in good stead in terms of our ability to construct (potentially all) invariants of CR
embeddings.
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6.4.4 Practical Constructions

Although in principle one may need only the invariant tractors appearing in Proposi-
tions 6.4.4 and 6.4.5 for construction of general invariants, in practice it is much more
efficient to use the richer calculus which is available. First of all, there are many alterna-
tive ways to construct tractor expressions from the basic invariants (recall for instance
the curvature tractor of §§5.3.8). Secondly, there are several invariant operators besides
the double-D-operatorsDIJ̄ andDAB̄ that can be used to act on these tractor expressions.

6.4.4.1 Alternative tractor expressions

Along with the lifted tractor expressions for the submanifold and ambient tractor cur-
vatures one may of course construct invariants using the curvature tractor of §§5.3.8 or
using the tractor defined in equation (5.3.49) of that section. Correspondingly we may
also use the middle operators of §§§5.3.7.2 to construct tractors from our basic invariants
S and L

SIJ
K = Mµ

ISµJ
K , SĪJ

K = Mµ̄

Ī
Sµ̄J

K , and LIBC = Mµ
ILµB

C

using indices to distinguish them from the difference tractor S and the tractor second
fundamental form L (and from their lifted tractor expressions in §§6.4.2). Recall that
Lµ̄BC = 0.

From (5.3.4) it follows immediately that

Z[AW
β
B] =

1

2
(ZAW

β
B − ZBW

β
A)

does not depend on the choice of contact form, so is CR invariant. Using Z[AW
β
B] and

Z[IW
ν
J ] we construct the tractors

SII′J
K = Z[IW

µ
I′]SµJ

K , SĪ Ī′J
K = Z

[Ī
W µ̄

Ī′]
Sµ̄J

K ,

LII′BC = Z[IW
µ
I′]LµB

C ,

κΣ
II′J̄ J̄ ′KL̄ = Z[IW

µ
I′]Z[J̄W

ν̄
J̄ ′]κ

Σ
µν̄KL̄,

and
κAA′B̄B̄′CD̄ = Z[AW

α
A′]Z[B̄

W β̄

B̄′]
καβ̄CD̄.
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Of course one can also make invariant tractors from the invariant components SµJK ,
Sµ̄J

K , LµBC , and so on, by making contractions with the submanifold (or ambient) CR
Levi form. For example, we have the following invariant tractors on Σ

hµν̄SµI
JSν̄K

L, hµν̄LµABSν̄K̄ L̄, hµρ̄hλν̄κΣ
µν̄KL̄LλA

BLρ̄C̄ D̄,

where Sν̄K̄
L̄ = SνKL and Lρ̄C̄ D̄ = LρCD. One can also contract some, or all, of the

tractor indices. Note that
LµBC̄LµBC̄ = IIµνγ̄II

µνγ̄ (6.4.6)

whereas
SµJK̄S

µJK̄ = 0 and ΠJ
BΠ

K̄
C̄ SµJK̄L

µBC̄ = 0 (6.4.7)

from the explicit formulae for S and L in terms of compatible contact forms and the
orthogonality relations (5.3.10) between the splitting tractors.

Remark 6.4.6. Although SµJK̄SµJK̄ = 0 one can extract a scalar invariant from the partial
contraction SµJK̄S

µJ ′K̄ by observing that this tractor is of the form fZJZ
J ′ , so that the

(−1,−1) density f must be CR invariant. In fact f is simply the invariant

(Pµν̄ − pµν̄)(P
µν̄ − pµν̄).

One of the difficulties inherent in constructing all invariants is predicting when this type
of phenomenon will happen when dealing with various contractions of higher order
invariant tractors (such as those appearing in Proposition 6.4.4).

6.4.4.2 Invariant operators

Along with the double-D-operators (6.4.2) and (6.4.3) used in §§6.4.2 one may of course
use the submanifold and ambient tractor D-operators of §§§5.3.7.1 and the other double-
D-operators DIJ and DAB . In order to act on tractors of mixed (submanifold-ambient)
type, with potentially submanifold and ambient weights, we will need to appropriately
couple the submanifold intrinsic invariant D-operators with the ambient tractor con-
nection and with the canonical connection on the density ratio bundles. Note that these
operators also form the building blocks for constructing invariant differential operators
on CR embedded submanifolds.

We first need to use the ratio bundles to eliminate ambient weights. Let EΦ
Σ denote

any submanifold intrinsic tractor bundle and let EΦ
Σ (w,w

′) denote EΦ
Σ ⊗ EΣ(w,w′). Let
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E Φ̃(w̃, w̃′) denote any ambient tractor bundle, weighted by ambient densities. We make
the identification

EΦ
Σ (w,w

′)⊗ E Φ̃(w̃, w̃′)|Σ = EΦ
Σ (w − w̃, w′ − w̃′)⊗ E Φ̃|Σ ⊗R(w̃, w̃′) (6.4.8)

which motivates the following definition:

Definition 6.4.7. We define the reduced weight of a section fΦΦ̃ of the bundle (6.4.8) to
be (w̌, w̌′) = (w − w̃, w′ − w̃′).

One can extend any of the submanifold D-operators to act on sections of the bundle
(6.4.8) by taking the relevant D-operator acting on submanifold tractors with the reduced
weight, expressed in terms of a choice of contact form θΣ, and coupling the Tanaka-
Webster connection of θΣ with the (pulled back) ambient tractor connection and the
ratio bundle connection∇R.

We illustrate how this works for the submanifold tractor D-operator DI . We define the
CR invariant operator

DI : EΦ
Σ (w̌, w̌

′)⊗ E Φ̃|Σ ⊗R(w̃, w̃′) → EI ⊗ EΦ
Σ (w̌ − 1, w̌′)⊗ E Φ̃|Σ ⊗R(w̃, w̃′)

by

DIf
ΦΦ̃ θΣ=


w̌(m+ w̌ + w̌′)fΦΦ̃

(m+ w̌ + w̌′)Dµf
ΦΦ̃

−
(
DνDνf

ΦΦ̃ + iw̌D0f
ΦΦ̃ + w̌(1 + w̌′−w̌

m+2
)pfΦΦ̃

)
 (6.4.9)

where D denotes the Tanaka-Webster connection of θΣ coupled with the submanifold
tractor connection, the (pulled back) ambient tractor connection, and the ratio bundle
connection ∇R.

6.4.4.3 Computing higher order invariants

Using the tractor calculus we have developed it is now straightforward to construct fur-
ther local (weighted scalar, or other) invariants of a CR embedding. One can differentiate
the various tractors constructed from the basic invariants in §§6.4.2 and §§§6.4.4.1 us-
ing the invariant operators of §§§5.3.7.1 and §§§6.4.4.2, tensor these together, and make
contractions using the tractor metrics (and the twisted tractor map). One can also make
partial contractions and take projecting parts.
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To illustrate our construction we give an example invariant and compute the form of the
invariant in terms of the Tanaka-Webster calculus of a pair of compatible contact forms:
Consider the nontrivial reduced weight (−2,−2) density

I = DIDJ̄(ΠB
I Π

D̄
J̄ h

µν̄hCĒLµBCLν̄D̄Ē). (6.4.10)

SinceΠB
I Π

D̄
J̄
is by definition a section of EIJ̄⊗EBD̄|Σ⊗R(1, 1), andR(1, 1) is canonically

trivial and flat, we see that

fIJ̄ = ΠB
I Π

D̄
J̄ h

µν̄hCĒLµBCLν̄D̄Ē (6.4.11)

has reduced weight (−1,−1) and no ratio bundle weight (diagonal ratio bundle weights
can be ignored). Therefore in this case we do not need to couple the submanifold tractor
D-operator with any ambient connection in order to defineDIDJ̄fIJ̄ . From the definition
of DJ we have

DJ̄fIJ̄ = −(m− 2)Y J̄fIJ̄ + (m− 2)W νJ̄DνfIJ̄

− Z J̄ (DνDνfIJ̄ − iD0fIJ̄ − pfIJ̄) (6.4.12)

whereD denotes the submanifold tractor connection coupled with the Tanaka-Webster
connection of some submanifold contact form θΣ and Z , W , Y are the splitting trac-
tors corresponding to the choice of θΣ. The tractor DJ̄fIJ̄ has weight (−2,−1) and so,
applying DĪ and contracting, we have

DIDJ̄fIJ̄ = −2(m− 3)Y IDJ̄fIJ̄ + (m− 3)W µ̄IDµ̄D
J̄fIJ̄

− ZI

(
Dµ̄Dµ̄D

J̄fIJ̄ − 2iD0D
J̄fIJ̄ − 2

m+ 3

m+ 2
pDJ̄fIJ̄

)
. (6.4.13)

If we choose θ admissible and compatible with θΣ then (6.3.11) implies

fIJ̄ = IIµλ
γIIν̄ρ

ϵ̄hµν̄hγϵ̄W
λ
I W

ρ̄

J̄
+ PµᾱN

βᾱPβν̄h
µν̄ZIZJ̄ . (6.4.14)

In each term on the right hand side of (6.4.12) and (6.4.13) there is a contraction with a
tractor, using the orthogonality relations between the tractor projectors simplifies the
calculation significantly since one can ignore terms that will vanish after these contrac-
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tions. So, for example, one easily computes that

W νJ̄DνfIJ̄ = Dρ̄(IIµλ
γIIµρ̄γW

λ
I ) +mPµᾱN

βᾱPβ
µZI .

Another efficient way to compute terms is to commute the splitting tractors forward past
each appearance of the connectionD using the submanifold versions of (5.3.16)-(5.3.24).
Since Z J̄fIJ̄ = 0 and [Dν , Z

J̄ ] = DνZ
J̄ = 0 we have Z J̄DνfIJ̄ = 0, from which we get

Z J̄DνDνfIJ̄ = −W νJ̄DνfIJ̄

using [Dν , Z J̄ ] = DνZ J̄ = W νJ̄ ; thus two of the terms in (6.4.12) coincide, up to a factor,
simplifying our calculations significantly. Computing similarly

Z J̄D0fIJ̄ = D0(Z
J̄fIJ̄)− (D0Z

J̄)fIJ̄

= iPµᾱN
βᾱPβ

µZI

using that Z J̄fIJ̄ = 0 and D0Z
J̄ = −iY J̄ + i

m+2
pZ J̄ . Putting these together yields

DJ̄fIJ̄ = (m− 1)Dρ̄(IIµλ
γIIµρ̄γW

λ
I ) + (m− 1)2PµᾱN

βᾱPβ
µZI . (6.4.15)

Repeating this procedure for (6.4.13) we eventually obtain

I = (m− 1)
[
(m− 2)DλDρ̄(IIµλ

γIIµρ̄γ)

+ (Dρ̄Dρ̄ − 2iD0 − (m+4)(m−2)
m+2

p)(IIµλ
γIIµλγ)

− (m− 2)(m− 4)pλρ̄IIµλ
γIIµρ̄γ

+ (m− 1)(m− 2)(m− 4)PµᾱN
βᾱPβ

µ
]
. (6.4.16)

6.5 A CR Bonnet Theorem

In classical surface theory the Bonnet theorem (or fundamental theorem of surfaces)
says that if a covariant 2-tensor II on an abstract Riemannian surface (Σ, g) satisfies the
Gauss and Codazzi equations then (locally about any point) there exists an embedding
of (Σ, g) into Euclidean 3-space which realises the tensor II as the second fundamental
form. A more general version of the Bonnet theorem states that if we specify on a Rie-
mannian manifold (Σm, g) a rank d vector bundle NΣ with bundle metric and metric
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preserving connection and anNΣ-valued symmetric covariant 2-tensor II satisfying the
Gauss, Codazzi and Ricci equations then (locally) there exists an embedding of (Σm, g)

into Euclidean n-space, where n = m+ d, realising NΣ as the normal bundle and II as
the second fundamental form. Here we give a CR geometric analogue of this theorem.

6.5.1 Locally Flat CR Structures

The Bonnet theorem given in §§6.5.3 generalises and is motivated by the following well
known theorem on locally flat CR structures. The proof we give will be adapted to give
a proof of the Bonnet theorem.

Theorem 6.5.1. A nondegenerate CR manifold (M2n+1, H, J) of signature (p, q) with
vanishing tractor curvature is locally equivalent to the signature (p, q)model hyperquadric
H.

Proof. The signature (p, q)model hyperquadricH can be realised as the space of null (i.e.
isotropic) complex lines in the projectivisation of Cp+1,q+1. Since the tractor curvature
vanishes onemay locally identify the standard tractor bundle TM with the trivial bundle
M ×Cp+1,q+1 so that the tractor connection becomes the trivial flat connection and the
tractor metric becomes the standard inner product on Cp+1,q+1. The canonical null line
subbundle L = T 1M of TM (spanned by the weighted canonical tractor ZA) then gives
rise to a map fromM into the model hyperquadric given by

M ∋ x 7→ Lx ⊂ Cp+1,q+1. (6.5.1)

We need to show that the map f : M → P(Cp+1,q+1) given by (6.5.1) is a local CR
diffeomorphism.

The maximal complex subspace in the tangent space to H at the point ℓ, where ℓ ⊂
Cp+1,q+1 is an isotropic line, is the image of ℓ⊥ under the tangent map of the projection
Cp+1,q+1 → P(Cp+1,q+1). Choosing a nowhere zero local section ρ of L = E(−1, 0) we
get a lift of the map f to a map fρ : M → Cp+1,q+1. The map L = E(−1, 0) ↪→ TM =

EA is given explicitly by ρ 7→ ρZA. Since the tractor connection is flat the tangent map
of fρ at x ∈M is given by

TxM ∋ X 7→ ∇X(ρZ
A) ∈ Cp+1,q+1.
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By the respective conjugates∇β̄Z
A = 0 and∇βZ

A = WA
β of (5.3.18) and (5.3.21) (fixing

any background contact form and raising indices using the tractor metric) the tangent
map Txfρ restricted to contact directions maps onto a complementary subspace to Lx
inside L⊥

x and induces a complex linear isomorphism ofHx with L⊥
x /Lx; combined with

(5.3.24) we see that Txfρ is injective and its image is transverse to Lx. Now f is the
composition of fρ with the projectivisation map Cp+1,q+1 \ {0} → P(Cp+1,q+1); thus we
have that Txf is injective, and further that f is a local CR diffeomorphism from M to
the signature (p, q) model hyperquadric in P(Cp+1,q+1).

Remark 6.5.2. Throughout this article we have implicitly identified the CR tractor bun-
dle TM with the holomorphic part of its complexification in the standard way. In the
above proof we have therefore also implicitly identified the tangent space to Cp+1,q+1 at
any point with the holomorphic tangent space; the section ρZA should be understood
as a section of the holomorphic tractor bundle, the map fρ being determined by the
corresponding section of the real tractor bundle.

The map constructed in the proof is the usual Cartan developing map for a flat Cartan
connection, though constructed using tractors and the projective realisation of themodel
hyperquadric. The fact that the map constructed is a local CR diffeomorphism relies
on the soldering property of the canonical Cartan/tractor connection on M , which is
captured in the formulae (5.3.18), (5.3.21), and (5.3.24).

6.5.2 CR Tractor Gauss-Codazzi-Ricci Equations

Our tractor based treatment of transversal CR embeddings in §6.2 and §6.3 has shown
us exactly what data should be prescribed on a CR manifold in a CR version of the
Bonnet theorem: Consider a transversal CR embedding Σ2m+1 ↪→M2n+1 between non-
degenerate CR manifolds. Then alongΣ the ambient standard tractor bundle splits as an
orthogonal direct sum (T Σ⊗R(−1, 0))⊕N with the ratio bundleR(−1, 0) being the
dual of an (m + 2)th root of the top exterior power ΛdN of the normal tractor bundle
N . It is also easy to see that the (pulled back) ambient tractor connection decomposes
along Σ as

∇ =

(
D ⊗∇R + S −L†

L ∇N

)
on

T Σ⊗R(−1, 0)
⊕
N

(6.5.2)
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whereD⊗∇R denotes the coupled connection on T Σ⊗R(−1, 0), withD the subman-
ifold tractor connection and ∇R the connection induced on R(−1, 0) by the normal
tractor connection ∇N . The objects S and L are as defined in §§6.2.4 and §§6.2.5, and
L†(X) is the Hermitian adjoint of L(X) with respect to the ambient tractor metric for
any X ∈ X(Σ). The bundle N carries a Hermitian metric hN induced by the ambient
tractor metric. We refer to the triple (N ,∇N , hN ) along with (R(−1, 0),∇R) and the
invariants S and L as the (extrinsic) induced data coming from the CR embedding.

The above observations also establish Proposition 4.3.1.

Remark 6.5.3. The Hermitian adjoint L† of L appears because of (6.3.10). Note that
L†
iB
C = LiC̄ B̄ so that in particular L†

µ̄B
C = LµC̄B̄ and L†

µB
C = 0. Note also that for any

X ∈ X(Σ) (
S(X) −L†(X)

L(X) 0

)
(6.5.3)

is a skew-Hermitian endomorphism of TM |Σ since each of the connections appearing
in (6.5.2) preserves the appropriate Hermitian bundle metric.

We can also easily see what the integrability conditions should be on this abstract data:
Observe that the curvature of the connection (6.5.2) acting on sections of TM |Σ is given
by (

D ⊗∇R + S −L†

L ∇N

)
∧

(
D ⊗∇R + S −L†

L ∇N

)

=

(
κD⊗∇R+S − L† ∧ L −dL† − S ∧ L†

dL+ L ∧ S κN − L ∧ L†

)

whereκD⊗∇R+S is the curvature ofD⊗∇R+S, dL and dL† are the respective covariant
exterior derivatives of L and L† with respect to D ⊗ ∇R ⊗ ∇N , and κN is the curva-
ture of ∇N . The above display expresses the pullback of the ambient curvature by the
embedding in terms of the induced data of the CR embedding. Writing these relations
component-wise leads to the CR tractor Gauss, Codazzi, and Ricci equations; denoting
the pullback of the ambient curvature simply by κ these are, respectively,

Π ◦ κ ◦ Π = κD⊗∇R+S − L† ∧ L, (6.5.4)

N ◦ κ ◦ Π = dL+ L ∧ S, (6.5.5)
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and
N ◦ κ ◦ N = κN − L ∧ L† (6.5.6)

where Π and N denote the complementary ‘tangential’ and ‘normal’ projections acting
on a section v = (v⊤, v⊥) of TM |Σ. Of course

κD⊗∇R+S = κΣ − κR(1,0) + dS+ S ∧ S

where κR(1,0) denotes the curvature of R(1, 0) acting as a bundle endomorphism via
multiplication, κΣ is the submanifold tractor curvature, and dS is the covariant exterior
derivative of S with respect to the submanifold tractor connection. Note that the equa-
tion Π ◦κ ◦N = −dL†− S∧L† is determined by (6.5.5). Note also that the tractor Ricci
equation (6.5.6) determines the normal tractor curvature κN in terms of the ambient
curvature and the tractor second fundamental form.

Remark 6.5.4. One can easily write the terms appearing in the tractor Gauss, Codazzi,
and Ricci equations more explicitly using abstract indices. For instance we have

(L† ∧ L)ijKL = 2L†
[i|E

LL|j]K
E = 2L[i|

L
EL|j]K

E

where we use LjKE = LjCEΠC
K and L†

iE
L = L†

iE
DΠL

D since we are identifying N⊥ ⊂
TM |Σ with T Σ⊗R(−1, 0).

6.5.3 The CR Bonnet Theorem

With the notion of induced data on the submanifold from a CR embedding given in the
previous section we can now give the following theorem:

Theorem 6.5.5. Let (Σ2m+1, H, J) be a signature (p, q) CRmanifold and suppose we have
a complex rank d vector bundleN onΣ equipped with a signature (p′, q′)Hermitian bundle
metric hN and metric connection∇N . Fix an (m+2)th rootR of ΛdN , and let∇R denote
the connection induced by∇N . Suppose we have aN ⊗ T ∗Σ⊗R valued 1-form L which
annihilates the canonical tractor of Σ and an A0Σ valued 1-form S on Σ such that the
connection

∇ :=

(
D ⊗∇R + S −L†

L ∇N

)
on

T Σ⊗R∗

⊕
N
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is flat (whereD is the submanifold tractor connection), then (locally) there exists a transver-
sal CR embedding of Σ into the model (p+ p′, q + q′) hyperquadricH, unique up to auto-
morphisms of the target, realising the specified extrinsic data as the induced data.

Proof. Since the complex line bundleΛdN is normed by hN , the bundleR is also normed.
This means that the tractor metric hT Σ induces a Hermitian bundle metric on T Σ⊗R∗,
which we again denote by hT Σ. We therefore have a Hermitian bundle metric h =

hT Σ + hN on the bundle (T Σ⊗R∗) ⊕ N . Since S is adjoint tractor valued (i.e. skew-
Hermitian endomorphism of T Σ valued) the connection D ⊗ ∇R + S on T Σ ⊗ R∗

preserves hT Σ. Collectively, the terms involving L and L† in the displayed definition of
∇ constitute a one form valued in skew-Hermitian endomorphisms of (T Σ⊗R∗)⊕N .
Combinedwith the fact that∇N preserves hN this shows that∇ preserves theHermitian
bundle metric h.

The signature (p+ p′, q + q′) model hyperquadricH can be realised as the space of null
complex lines in the projectivisation of T = Cp+p′+1,q+q′+1. Since the connection ∇ on
(T Σ⊗R∗) ⊕ N is flat and preserves h one may locally identify this bundle with the
trivial bundle Σ × T such that ∇ becomes the trivial flat connection and h becomes
the standard signature (p + p′ + 1, q + q′ + 1) inner product on T; this trivialisation is
uniquely determined up to the action of SU(p+p′+1, q+q′+1) onT. The canonical null
line subbundle EΣ(−1, 0) of T Σ gives rise to a null line subbundle L = EΣ(−1, 0)⊗R∗

of Σ × T. The null line subbundle L then gives rise to a smooth map into the model
(p+ p′ + 1, q + q′ + 1) hyperquadric given by

Σ ∋ x 7→ Lx ⊂ T = Cp+p′+1,q+q′+1. (6.5.7)

Since the local trivialisation of (T Σ⊗R∗)⊕N is uniquely determined up to the action
of SU(T) the above displayed map from Σ to H is determined up to automorphisms of
H. It remains to show that this map is a transversal CR embedding inducing the specified
extrinsic data.

Let us denote the map (6.5.7) by f : Σ → H ⊂ P(T). Given a nowhere zero local section
ρ of L = EΣ(−1, 0) ⊗R∗ we may think of the section ρZI of T Σ ⊗R∗ as a section of
Σ×T via inclusion; this section gives rise to a lifted map fρ : Σ → T. The tangent map
of fρ at x ∈ Σ is given by

TxΣ ∋ X 7→ ∇X(ρZ
I) ∈ T.
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From (5.3.18) and (5.3.21) we have that Dν̄Z
I = 0 and DνZ

I = W I
ν (fixing some

background contact form on Σ); using these, the definition of ∇, and the facts that
SiJ

KZJ mod ZK = 0 (since S is adjoint valued) and that L annihilates the canoni-
cal tractor ZI , we see that Txfρ restricted to contact directions is injective and induces
a complex linear isomorphism of Hx onto a subspace of L⊥

x /Lx; combined with (5.3.24)
we see that Txfρ is injective and its image is transverse to Lx. This implies that the com-
position f of fρ with the projectivisation map T \ {0} → P(T) is a local CR embedding
into the model hyperquadric H. Equation (5.3.24) further shows that Txfρ(TxΣ) ̸⊂ L⊥

x

so f is transversal.

To see that this embedding induces back the specified extrinsic data we simply need to
note that we may identify (T Σ⊗R∗)⊕N = Σ×Twith T H|Σ, identifying∇with the
flat tractor connection on T H|Σ and h with the tractor metric hT H along Σ. Then

T H|Σ =

T Σ⊗R∗

⊕
N

is the usual decomposition of the ambient tractor bundle along the submanifold, and the
definition of ∇ in the statement of the theorem gives the usual decomposition of the
ambient tractor connection.

Our formulation and proof of this CR Bonnet theorem is inspired by the conformal Bon-
net theorem formulated and proved in terms of standard conformal tractors by Burstall
and Calderbank in [23]. The condition that the connection∇we define be flat is alterna-
tively given in terms of the prescribed data on (Σ, HΣ, JΣ) by the tractor Gauss, Codazzi,
and Ricci equations (6.5.4), (6.5.5), and (6.5.6) with the left hand sides equal to zero.
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