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Abstract

Conformal geometry has its origins in the classical theory of holomorphic plane map-
pings in complex analysis. The study of conformal geometry in both two and higher
dimensions is strongly motivated by physics and by geometric analysis. Closely related
is (hypersurface type) CR geometry, which arises in several complex variables analysis
as the geometry of real hypersurfaces in complex n-space preserved by ambient biholo-
morphisms. In this thesis we present work on the calculus and local curvature the-
ory of submanifolds in conformal and (nondegenerate hypersurface type) CR manifolds.
The main contribution is the development of a complete local theory for CR embedded
submanifolds of CR manifolds, which parallels the standard Ricci calculus treatment of
Riemannian submanifold theory. This is based on adapting the well established tractor
calculus of conformal hypersurfaces to the more difficult CR setting. We also extend
this conformal hypersurface calculus to the higher codimension case and relate it to the
work of Burstall and Calderbank. The treatments of conformal and CR embeddings are
parallel, and the conformal case serves to illustrate and elucidate the more technical CR

case.
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1 Introduction

This thesis presents work on the calculus and local curvature theory of submanifolds
in conformal and (nondegenerate hypersurface type) CR manifolds. The main contri-
bution is the development of a complete local theory for CR embedded submanifolds of
CR manifolds, which parallels the standard Ricci calculus treatment of Riemannian sub-
manifold theory. Our approach is to generalise the established local theory of conformal
hypersurfaces obtained using conformal tractor calculus [7, 21, 90, 128, 141] to the CR
setting. This is accomplished using the direct construction of the CR tractor bundle and
connection in [79], and turns out to be much more delicate than the conformal case.
Though independent, this work is closely related to the approach developed in [144, 54]
for the study of rigidity of CR immersions into the sphere. In several ways we go beyond
the work of [144, 54], in particular by providing a more conceptual approach and one
which easily enables the construction of local invariants and invariant operators. The

latter is the test of completeness for any local theory.

Since CR embedded submanifolds of CR manifolds are necessarily of higher real codi-
mension than hypersurfaces, their local theory is more closely related to that of higher
codimension submanifolds in conformal manifolds. The conformal standard tractor bun-
dle and connection have already been employed in the study of general conformally em-
bedded submanifolds in [23] (cf. [22]) which gives a unifying approach to the classical
theory of submanifolds in the conformal sphere. We independently develop and present
the basic calculus of conformally embedded submanifolds in conformal manifolds in the
manner of [7, 21, 90, 128, 141]. Our approach is shown to be consistent with the abstract
approach of [23] (which uses different terminology and notation), and yields a more

direct construction of the basic calculus.

Invariant Theory and Tractor Calculus

In Riemannian geometry the classical Ricci calculus built from the Levi-Civita connec-

tion and Riemannian curvature tensor enables one to construct all possible invariant
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(i.e. well-defined) differential operators and all invariant tensors. This is well under-
stood through Weyl’s classical invariant theory of the orthogonal group [145, 5], which
relies heavily on the reductive nature of the group. The Levi-Civita calculus extends in
a fairly straightforward way to a calculus for invariant differential operators and invari-
ant tensors on a Riemannian submanifold. The key step here is to introduce the second
fundamental form via the Gauss formula, relating the ambient and intrinsic Levi-Civita
connections; coupling the submanifold Levi-Civita connection with the normal connec-
tion induced by the ambient Levi-Civita connection one can invariantly differentiate the
second fundamental form. These are the basic ingredients necessary for the local theory

of Riemannian submanifolds.

It is well known that conformal and CR geometries are parabolic geometries, meaning
that they admit an equivalent description in terms of a Cartan geometry of type (G, P)
where G is a semisimple Lie group and P is a parabolic subgroup of G [33]. In Rie-
mannian geometry the remaining freedom for coordinate changes between Riemannian
normal coordinates at a given point is the orthogonal group (and one can construct in-
variants from the orthogonal group invariants of the coefficients in the Taylor expansion
of the metric). In conformal and CR geometry the corresponding group is the parabolic
P, which is not reductive. This links the problem of constructing conformal and CR in-
variants with deep questions in representation theory and invariant theory. This prob-
lem was taken up in the CR setting by Fefferman in [63], initiating a programme of

parabolic invariant theory.

In previous groundbreaking work in CR geometry Fefferman [62] gave an explicit con-
struction of a Lorentzian conformal structure on the trivial circle bundle over a strictly
pseudoconvex domain {2 C C" (this was later developed in the abstract setting by Lee
[103], cf. [60]). Fefferman’s approach involved constructing (formally along 92 x C*) a
Lorentzian Kahler metric on 0 x C*. Motivated by this Fefferman and Graham [64, 66]
gave a formal construction of a Ricci flat signature (p + 1, ¢ + 1) metric extending the
metric cone Q of a signature (p, ¢) conformal structure. (For even dimensional confor-
mal structures this construction is obstructed at finite order.) This ambient metric con-
struction (and the related Poincaré metric construction [64, 66]) represented a significant
advance in the invariant theory for conformal structures. In particular, in the case of odd
dimensional real analytic conformal manifolds the formal series for the ambient metric
converges to a real analytic metric and the local conformal invariants can be obtained
from semi-Riemannian invariants. More generally the ambient metric construction gives

a framework in which one can apply algebraic results in parabolic invariant theory to



Introduction

the local invariant theory of conformal (and CR) manifolds.

The model parabolic invariant theory problem of Fefferman [63] arising from CR geome-
try was completely solved in [8], along with a conformal analogue (see [9] for exceptional
invariants in the conformal case). Via the ambient metric this gives a complete descrip-
tion of local scalar invariants for odd dimensional conformal manifolds. However for CR
manifolds and even dimensional conformal manifolds this gives very restricted results
because the ambient metric is obstructed at finite order depending on the dimension. In

particular, for conformal manifolds in dimension 4 one obtains essentially no results.

Another well known parabolic geometry is projective (differential) geometry. This is the
study of manifolds equipped with an equivalence class of affine connections having the
same unparametrised geodesics. The work of [8] relied on ideas of Gover from the anal-
ogous projective problem [71] (see [72] for exceptional invariants). This work has been
applied to give a complete theory of local invariants for projective manifolds in [73]

using the projective tractor calculus of [7].

Tractor calculi exist for any parabolic geometry [27] and provide a natural analogue of
the Riemannian Ricci calculus. (In the conformal and projective cases the main ideas go
back to work of Tracey Thomas in the 1920’s [134, 135, 136, 137].) The conformal tractor
calculus [7, 26] can be used to replace the ambient metric construction in the application
of parabolic invariant theory to the construction of local conformal invariants [75]. This
leaves only a finitely generated ‘window’ (in terms of conformal density weight and
principal degree) in which not all conformal invariants are known. In low dimensions
this ‘window’ is very small. In n > 6 dimensions the results of [75] are complemented
in low degree by [8]. The tractor calculi for conformal and CR geometry are intimately
connected with the ambient metric constructions of Fefferman and Graham [64] and
Fefferman [62] respectively [28, 29].

The tractor calculus can also be seen to underlie the general construction of invariant
differential operators between irreducible bundles on parabolic geometries, organised
into Bernstein-Gelfand-Gelfand (BGG) sequences [35, 25]. These sequences extend the
(generalised) BGG resolutions of [17, 106] to the curved case (where they are no longer
complexes). Many of the ideas of [35, 25] originated in work of Eastwood and Rice in the
conformal case [52], and were developed in subsequent work of Baston [11, 12, 13]. The
general method for producing invariant differential operators introduced in [35, 25] has
come to be known as the ‘BGG machinery’ [34]. Of particular importance are the first

operators arising in these sequences, termed ‘first BGG operators’. These are always
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overdetermined and include many important and well known operators. For example,
in conformal geometry these include the conformal-to-Einstein operator, the conformal
Killing operator, and the conformal Killing form operator [7, 77, 82], and in projective
geometry these include the Killing operator and operators governing the existence of
metrics, Ricci-flat metrics, and non-Ricci flat Einstein metrics whose Levi-Civita con-

nection is in the projective class [30, 51].

Parabolic Submanifold Theory

In seeking to develop the local theory of submanifolds in conformal and CR manifolds it
is natural to work within the framework of parabolic geometries and the corresponding
invariant theory and calculus. Conformal submanifold theory is by now fairly well un-
derstood from this point of view [7, 21, 22, 23, 78, 90, 128, 141]. However, submanifold
geometry in parabolic geometries more generally is currently not very well developed.
Some ideas have been put forward in [22], where submanifolds in the conformal sphere
are discussed as a model case, but little is said about the general case beyond raising

some technical issues which need to be resolved.

Insight into the submanifolds in parabolic geometries can also be gained from the study
of stratifications of parabolic geometries arising from so called ‘normal solutions’ of first
BGG operators (coming from the varying algebraic type of the solution) [31, 32]. In con-
formal geometry all solutions to the conformal-to-Einstein equation are ‘normal’, and
the zero locus of a solution is the conformal infinity of an Einstein metric defined on the
open dense region where the solution is nonzero. In the case of a negative Einstein met-
ric the conformal infinity is forced to be a smooth nondegenerate hypersurface [78, 44].
Not every nondegenerate hypersurface in a conformal manifold arises as the conformal
infinity of a negative Einstein metric (this would force it to be umbilic), but it turns out
that every nondegenerate conformal hypersurface can be realised as the conformal in-
finity of a negative constant scalar curvature metric (formally, up to order the dimension
of the ambient space) [3, 84]. This leads to an alternative ‘holographic’ construction of
conformal hypersurface invariants from Riemannian invariants of the resulting (formal)
metric [84]. Higher codimension submanifolds may arise as the common intersection of
the zero loci of a family of solutions to the conformal-to-Einstein equations [105, 4]. This
provides a starting point for related developments in the study of higher codimension

conformal submanifolds.
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Conformally Embedded Submanifolds

Understanding the local curvature theory of submanifolds is basic to the understand-
ing of any geometry. Just as in classical surface theory the intrinsic Gauss curvature is
understood as the product of the extrinsic principal curvatures, so in conformal geom-
etry intrinsic invariants may be best understood via some ambient space construction
[64, 98]. Further motivation for the study of local theory in conformal submanifolds
comes from physics, in particular from string (and brane) theory and the AdS/CFT cor-
respondence [89, 121]. Local invariant theory for conformal hypersurfaces is especially
important in geometric analysis because of its role in formulating and studying con-
formally invariant boundary value problems [38, 19, 20]. In major recent progress in
geometric analysis Marques and Neves have solved the Willmore conjecture of [146]
stating that the Clifford torus is the unique minimiser of the conformally invariant Will-

more energy among immersed tori in the round 3-sphere [112].

In Chapter 3 of this thesis we develop and present the basic calculus of conformally
embedded submanifolds in conformal manifolds in the manner of [7, 21, 90, 128, 141].
Though we present some original calculations for the basic invariants this chapter should

be seen as mainly expository, and serves the dual purpose of:

(1) showing that the approaches of Gover et al. {7, 21, 90, 128, 141] and Burstall and
Calderbank [22, 23] are consistent, and

(2) providing a treatment of the tractor calculus and local theory of conformal em-
beddings which parallels the treatment of CR embeddings in Chapter 5, for ease

of reference and comparison.

For expository purposes, we discuss the hypersurface case in §3.1 and §3.2 before mov-

ing to the general case in §3.3.

Our approach relies on the construction of the conformal standard tractor bundle and
connection of [7]. This is presented in Chapter 2 which is intended to give an accessible
exposition of the basic conformal tractor calculus and some of its applications. As in [7]
we use a choice of metric in the conformal class to split the standard tractor bundle 7 M

of (M, ¢) as a direct sum, which after trivialising the density bundles is simply
ReTM @R,

where R is the trivial line bundle M x R. We retain the density line bundles in our

presentation for a more direct comparison with the CR case, where the corresponding
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density bundles play a more important role. Splitting the tractor bundle using a choice
of metric g € c corresponds in the general theory of parabolic geometries to using ex-
act Weyl structures (rather than arbitrary Weyl structures) to reduce the Cartan frame
bundle to a reductive structure group, and thereby split the tractor bundle(s) [33]. In
conformal geometry a “Weyl structure’ simply corresponds to a choice of Weyl connec-
tion for the conformal class, and we are restricting to those Weyl connections which are
the Levi-Civita connection of some metric g € c. This is the standard approach in con-
formal geometry. The invariant constructions of tractor calculus can be done in terms of
a choice of metric, with invariance being checked by straightforward calculations. Once
the basic tractor calculus is established to be invariant in this way it can be employed to
construct tensors and differential operators which are manifestly invariant. The abstract

general picture is therefore left in the background.

Given a conformal embedding ¢ : ¥ < M between conformal manifolds (3™, ¢5) of
(M™, c¢) with n > m > 2 the key first step in the geometric part of the invariant theory

is to construct what we term the standard tractor map
Te:TY —TM,

by analogy with the tangent map 7" of the embedding. This is accomplished in §§§3.3.2.2
(cf. §§3.2.2) using Lemma 3.3.2:

Lemma. Given any metric gs, € cy, there exists a metric g € c extending gs, (i.e. such that

gs. = t*g) for which the mean curvature vector of > vanishes.

Such ambient metrics are called minimal scales. If we use a minimal scale ¢ € ¢ to
split the ambient tractor bundle, and the corresponding metric gs = ¢*g to split the

submanifold tractor bundle, then the obvious map
(id, Te,id) :Rlzs @ TE @Ry = ROTM &R

corresponds to a map 7% — 7 M which does not depend on the choice of such g € c.

The ambient tractor bundle therefore splits along 3 as an orthogonal direct sum
TM|s =TSN, (%)

where N is the normal tractor bundle.

10
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The splitting (%) of 7 M|x allows us to decompose the (normal) tractor connection V
on 7 M along ¥ in §§§3.3.2.7 as

D+S —LT T
UV = ( + Iy ) on ®
L A4 N

where D is the (normal) standard tractor connection of ¥, S is the difference tractor of
§§§3.3.2.3 (cf. §§3.2.3), and L is the tractor second fundamental form of §§§3.3.2.5 (cf.
§§3.2.4). This enables us to show, in an extended remark (Remark 3.3.13), that

()

satisfies the algebraic normalisation condition of [23], verifying consistency with their
approach. This also allows us to straightforwardly compute tractor Gauss, Codazzi and

Ricci equations (or ‘fundamental equations’) for the submanifold, §§§3.3.2.8.

With this setup established it becomes fairly straightforward to construct conformal
invariants of submanifolds quite generally following the approach of [75, 141]. We dis-
cuss this only briefly, §§§3.3.2.9 (cf. §§3.2.6 and §§2.7.7). (See also §6.4 for the case of
CR embeddings where invariant theory and the practical construction of invariants is
treated in more detail.) Further developments of the local and global invariant theory

for conformal submanifolds are work in progress.

CR Embedded Submanifolds in CR Manifolds

The study of local theory for CR embedded submanifolds in CR manifolds is strongly
motivated by problems in several complex variables analysis. By developing basic as-
pects of the local theory of CR embeddings Webster [144] established the rigidity of real
codimension 2 CR embeddings into the unit sphere in C" for n > 4. Webster then ap-
plied the work of [144] to show that the only proper holomorphic maps B! — B"
which are suitably regular at the boundary are given, up to automorphism of the do-
main and target, by the linear embedding [143]. This result sparked many subsequent
developments in the study and classification of proper holomorphic maps between balls
in different dimensions which extend (in a suitable sense) smoothly to the boundary
[58, 59, 93, 94, 95, 96]. The basic local theory developed in [144] by Webster was ex-
tended to higher codimension CR embeddings by Ebenfelt, Huang, and Zaitsev in [54]

11
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(cf. [99, 111]). This is applied in [54] to prove that rigidity holds for any CR immersion
of a CR manifold X*"*! into the CR sphere S***! provided d = n — m < m/2. The
authors also discuss the implications of this work for Milnor links of isolated hyper-
surface singularities. (For further developments regarding CR rigidity phenomena see
[55, 10, 97, 53] and the references therein.)

Our work on the local theory of CR embedded submanifolds in CR manifolds is presented
in Chapters 4, 5 and 6 which reproduce the preprint [45] (with only minor changes). Our
approach relies on the construction of the CR standard tractor bundle and (normal) trac-
tor connection of [79], using the direct sum decomposition of the tractor bundles induced
by a choice of pseudohermitian contact form. We work with Tanaka-Webster connec-
tions rather than "Weyl connections’ as the former are standard in the CR literature.
(The relation of the approach of [79] to the approach of the general theory using Weyl

structures is discussed in [33].) Chapter 4 gives a detailed introduction to this work.

The theory we develop is considerably more subtle technically than in the conformal
case. There are two main reasons for this. Firstly, in CR geometry the relevant parabolic
subgroup P of SU(p + 1,¢ + 1) has nilpotent part P, which is no longer Abelian. In
practical terms this simply means we have a non-trivial filtration of the tangent budle to
deal with; in this case one simply has the usual CR contact distribution. The problems
resulting from the filtration of the tangent bundle are resolved without much appar-
ent drama in Chapter 6 because of the convenient fact that admissible ambient contact
forms (in the sense of [54]) are equivalently the ambient contact forms for which the CR
embedded submanifold has vanishing pseudohermitian mean curvature (see §§6.2.1). In
brief admissibility is equivalent to minimality. Admissible ambient contact forms play a
role analogous to minimal scales in conformal geometry. The relation between admis-
sibility and minimality is key to establishing the relation between the submanifold and
ambient standard tractor bundles of Theorem 6.2.6. The second major technical issue re-
solved was relating the submanifold and ambient CR density bundles. This is discussed
in Chapter 4. These issues are representative of the general case of geometric embed-
dings between parabolic geometries. Our work therefore gives a template for dealing

with other kinds of embeddings.

Our treatment is complete in the sense that we solve the geometric part of the invariant
theory, and set up a practical and general construction of invariants. This can be applied,
e.g., to produce biholomorphic invariants of Milnor links. Another potential application

lies in work on the geometric reflection principle for holomorphic mappings in several

12
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complex variables [102]. A natural question which remains is whether one can produce
intrinsic CR invariants whose vanishing characterises the embeddability of a given ab-
stract CR manifold into the CR sphere or hyperquadric (cf. [149, 99]). Motivation for this
work also included establishing a framework for the study of ‘CR infinities’ of Sasakian

and (n-)Sasaki-Einstein manifolds. This is work in progress.

We refer the reader to Chapter 4 for further introductory details.

Real Hypersurfaces in CR Manifolds

We wish to indicate here that the ideas of Chapters 4-6 can be applied to submanifolds
in CR manifolds more generally, and in particular to real hypersurfaces in CR manifolds.
Preliminary work on this has been excluded from the thesis because of constraints of
time and space. The case where the ambient space is the CR sphere (or Heisenberg
group H,) is already of great interest. The author has observed that on surfaces in 3-
dimensional CR manifolds, away from the singular set where the surface is tangent to the
contact distribution, there is canonical ‘normal tractor’ analogous to the normal tractor
of a conformal hypersurface [7]. This is defined using the (weighted) normal in the
contact direction and the p-mean curvature of [39, 40]. Taking the tractor covariant
derivative of this normal tractor tangentially along the surface defines a notion of ‘tractor
second fundamental form’ (or ‘tractor shape operator’) once again analogous to the case
of conformal hypersurfaces (see, e.g., [141]). This provides a starting point for the local
CR invariant theory (cf. [42] where pseudohermitian invariant theory is developed in
this setting). We aim to apply this to the study of CR invariant boundary problems on

domains in 3-dimensional CR manifolds.

This work is naturally related to the study of codimension 2 CR structures [114, 56, 125].
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2 Conformal Geometry

Conformal Riemannian geometry is the study of manifolds with a Riemannian metric
defined only up to scale at each point. Geometrically this means that angles between
curves, but not lengths of curves, are well-defined. One can also define conformal ge-
ometry in the semi-Riemannian setting, and we will take this broader point of view. Two
semi-Riemannian metrics g and g on a smooth manifold are called conformally equivalent

if there is a positive smooth function €2 such that
- 2
g=0.

In this case we often call g a conformal rescaling of g. Conformal geometry is the study of
manifolds equipped with a semi-Riemannian metric up to conformal equivalence, and

of their mappings.

In this chapter we give the necessary technical background in conformal geometry for
our treatment of submanifolds in Ch. 3. We start with some general background on

conformal geometry in two and higher dimensions.

2.1 Conformal Geometry in Two Dimensions

Conformal geometry in two dimensions is intimately connected with single variable
complex analysis, and has been a major part of mathematics since the 19th century.
A conformal mapping between plane domains is one which does not distort the shape
of very small figures; more precisely, a conformal mapping is one which preserves the
angle between any pair of intersecting curves. Holomorphic mappings between plane
domains with nonzero derivative are conformal, and orientation preserving conformal
mappings are holomorphic. (Orientation reversing conformal mappings are ‘antiholo-
morphic’, i.e. holomorphic in Z rather than z.) Moving to abstract surfaces we note that a

complex structure is therefore equivalent to a conformal structure (and an orientation).
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A surface equipped with a complex structure is called a Riemann surface. The study
of Riemann surfaces has become one of the major areas of modern mathematics, with
strong connections to a large number of other parts of mathematics and mathematical
physics. In many applications the Riemann surfaces one is interested in are embedded

in some higher dimensional manifold, which is often the true object of study.

The real part of a holomorphic function on a plane domain is always a harmonic func-
tion. Conversely, on a simply connected domain any harmonic function is the real part
of some holomorphic function. This links complex analysis, and therefore conformal
geometry, with harmonic analysis and potential theory in the plane. (This can also be
seen as the starting point for elliptic regularity theory, since holomorphic functions are
necessarily smooth.) With the strong connection between the Cauchy-Riemann equa-
tions (governing orientation preserving conformal mappings) and the Laplace equation
in two dimensions, it should not be surprising that on an abstract Riemannian surface
(M, g) the Laplacian A, is conformally covariant, in the sense that if § = ¢* g for some
smooth T then

A

g = TA,.
Potential theory can be used to establish the Riemann mapping theorem, a fundamental
result in the theory of conformal mappings which states that any proper simply con-
nected open subset U of C can be mapped conformally onto the unit disc. This is a
remarkable theorem when one considers the large class of domains U it covers, includ-
ing domains with fractal boundary! In the context of Riemann surfaces the Riemann
mapping theorem is generalised by the uniformisation theorem, which states that the
universal cover of any Riemann surface must be conformally equivalent to the Riemann
sphere, the complex plane, or the unit disc. One way to prove this theorem is to pick any
metric g representing the conformal structure of the given surface M and then solve the
equation

AT + K, = ce®* (2.1.1)

for some constant c equal to 1, 0 or —1, where K, is the Gaussian curvature of g and A,
is the (negative spectrum) Laplacian. This allows one to find a metric § = €2 ¢ on the
surface which has constant Gaussian curvature c. The surface (M, §) then has universal
cover isometric to the round sphere, Euclidean space, or hyperbolic space depending on
whether ¢ equals 1, 0 or —1, and the conformal structures of these correspond to the

Riemann sphere, the complex plane, and the disc respectively.
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2.2 Conformal Geometry in Higher Dimensions

2.2 Conformal Geometry in Higher Dimensions

Conformal geometry in higher dimensions is no longer closely connected with complex
analysis, and exhibits a rigidity unlike the two dimensional case. The strong connection
between Riemannian signature conformal geometry and elliptic PDE continues however.
In particular, although the Laplace operator is no longer conformally covariant in n > 3

dimensions, the operator
n—2

Ly= A, + 22
g g+4<n_1)Rg

(2.2.1)

is conformally covariant, where 7, is the scalar curvature of g. The operator L, is
known as the conformal Laplacian. Many problems in Riemannian geometry involve
conformally rescaling the metric. An analogue of (2.1.1) in higher dimensions is the
Yamabe problem of finding a metric in the conformal class or a (compact) Riemannian

manifold with constant scalar curvature. This amounts to solving the PDE

n+2
Lou = cun— (2.2.2)

for some real constant ¢, which is a ‘nonlinear eigenvalue problem’ with the critical
Sobolev exponent Z—J_rg This problem was solved through the successive works of Yam-
abe, Trudinger, Aubin, and Schoen [148, 139, 6, 124] and represents an important devel-

opment in nonlinear elliptic PDE theory.

Conformal invariance has also proved to be a deeply important phenomenon in physics.
Indeed, the operator L, seems first have appeared in the Lorentzian geometric setting of
spacetime as the conformal wave operator [46, 140]. Conformal invariance is something
of a governing principle for the operators appearing in fundamental (particle) physics.
Consider for example the Dirac, Maxwell and Weyl operators, pertaining to the free field
theories for the electron, photon, and neutrino respectively. Each of these operators is
conformally covariant (and hence conformally invariant when interpreted correctly).
Conformal geometry also plays an important role in general relativity. The conformal
structure of spacetime precisely encodes the causal structure, i.e. the relation on space-
time which says which events may be influenced by which other events. This is because
light paths (null geodesics) depend only on the conformal structure, and collectively
they determine the both the conformal and causal structure via the ‘light cone’ at each
event. The notion of ‘conformal infinity’ [117, 68] has proven to be important in gen-
eral relativity for the study of isolated systems, allowing for rigorous definitions of mass

and angular momentum, and for the study of gravitational radiation emitted by isolated
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systems (recently detected for the first time [1]). Moreover, since Einstein’s field equa-
tions specify the Ricci curvature of spacetime in terms of the stress-energy tensor of the
matter content, it is only the conformal (Weyl) curvature which propagates in empty
space. Naturally conformal symmetry plays an important role in many of the theories
which seek to combine high energy particle physics and general relativity, notably in
Penrose’s twistor theory [118] and in string theory via, e.g., the AdS/CFT correspon-
dence (or ‘gauge/gravity duality’) of Maldacena [110, 147].

The importance of conformally invariant (linear) differential operators in physics has
motivated considerable study of the ‘spectrum’ of such operators available on confor-
mal manifolds. On Euclidean (or pseudo-Euclidean) space classifying the conformally
invariant operators is an algebraic problem. This was solved explicitly for 4-dimensional
Minkowski space in [52], the necessary representation theory for treating the general
case being already well established [106, 15, 16]; in [52] Eastwood and Rice then use the
conformal Cartan (or ‘local twistor’, or ‘tractor’) connection to show that, in almost all
cases, corresponding conformally invariant differential operators exist on any confor-
mal 4-manifold. This work is generalised to conformal manifolds of dimension n > 3
in [11, 12]. Exceptional cases include the ‘conformal powers of the Laplacian’ which
exist on conformally flat manifolds, but in even dimensions do not exist on conformally
curved manifolds beyond the order of the dimension [87, 80]. Closely related to the
problem of constructing invariant operators is the problem of constructing conformally
invariant scalar and tensor quantities. Important tools for the study of conformal invari-
ants are the ambient metric and Poincaré (or ‘Poincaré-Einstein’) metric constructions of
[64, 66]. A Poincaré metric for a conformal manifold is a negative Einstein metric with
the given manifold as conformal infinity; this is the basic situation to which the AdS/CFT
correspondence applies [2, 91], generating a lot of interest in these metrics in their own
right (see, e.g., [65, 78, 88, 104, 122]). Another key tool for the construction of conformal
invariants is the conformal tractor calculus [7, 75] described in more detail in §2.7. The
conformal tractor calculus is closely related to the Ricci calculus of the ambient metric
[28], and avoids the technical issues occurring with the ambient metric construction in
even dimensions. The tractor calculus and the associated ‘Bernstein-Gelfand-Gelfand
machinery’ of [35, 25] (which generalise [52, 11, 12]) are intimately connected with the
study of natural overdetermined PDE in parabolic (Cartan) geometry, and in particular
in conformal geometry. For example in conformal geometry the conformal-to-Einstein
equation and the conformal Killing equation can be prolonged (i.e. written as a closed

first order system) in terms of the normal tractor connection on the standard tractor
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bundle and the adjoint tractor bundle respectively [7, 77].

2.3 Conformal Manifolds

A conformal manifold (M, ¢) is a smooth n > 2 dimensional manifold M equipped
with a conformal equivalence class ¢ of semi-Riemannian metrics (necessarily of fixed
signature). One may alternatively describe the conformal structure on M in terms of the
bundle of metrics Q, a ray subbundle of S>7* M (with nondegenerate sections). From this
point of view ¢ = I'(Q), the space of smooth global sections of Q. A third approach is
to think of a signature (p, ¢) conformal structure on M™ as a reduction G, of the frame

bundle F M to the structure group
Go = CO(p,q) = {A € GL(n,R) : A"I,,A = \I,,, for some A € R, }.

On a conformal manifold (M, ¢) a frame for T, M is conformally orthonormal if it is
orthonormal for some choice of metric in Q, . The bundle G, is simply the bundle of

conformally orthonormal frames for (M, c).

A smooth map f : My — M between conformal manifolds (M, ¢y) and (M, c) is called

conformal if one (equivalently any) metric g € ¢ pulls back to a metric f*g € c.

2.3.1 Conformal Densities

Density bundles on a smooth n-manifold M are roots and powers of the oriented line
bundle ®*A"T*M. Conformal density bundles arise in conformal geometry as a kind
of bookkeeping tool for dimensional analysis. If we rescale a metric g by 2?2 to give
G = Q%g, we rescale ‘lengths’ by a factor 2 and ‘volumes’ by a factor of 2". Informally,
on a conformal manifold (M, ¢) a section of the conformal density bundle £[w] is simply
a smooth function, given with respect to some metric g € ¢, that transforms by a factor

of Q2 to give f = Q" f when ¢ is rescaled to § = O?g.

It is conventional to think of the ray bundle Q — M as a principal R, -bundle with
principal action given by r*(g,) = s?g, for s € R, and g, € Q,. The conformal density
bundle of weight w is the associated bundle

Elw] = Q Xr, 4, R
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where the R -action on R is given by p,,(s)t = s~“t. This means that the total space
E[w] is the quotient of @ x R by the equivalence relation (g,,t) ~ (s%g,, s“t) for any
s € Ry, and the bundle projection E[w] — M is [(g.,t)] — z. A choice of metric
g € c trivialises each of the density bundles £[w], and the weight w tells us how the
different trivialisations for different metrics in c are related. Of course, £[0] is the trivial

line bundle.

On an oriented conformal n-manifold there is a well-defined top form e taking values
in the line bundle £[n]. Trivialising £[n] with a metric ¢ € ¢, the top form € is given
by the Riemannian volume form ¢ of g. Since § = Q?g implies ¢ = Q"¢ we see that € is

well-defined. The £[n|-valued top form € defines an isomorphism
A"TM — &[n],

and dually A"T*M = £[—n]. In the case of non-oriented manifolds we do not have the
above displayed isomorphism, but we do have @*A"T'M = £[2n]| and Q*A"T*M =
E[—2n]. Thus conformal densities may be identified with the usual density bundles on

smooth manifolds.

Conformal density bundles provide us with the right way to think about conformally

covariant operators, namely as conformally invariant operators between weighted bun-

n—2

Tn=1) R has the conformal co-

dles. For example, the conformal Laplacian L = —A +

variance property
LoQb s =Q 120

when § = Q?¢, and therefore L can be thought of as a conformally invariant operator

n n
L:E1—-—-]—=&-1-=]
R S

Conformal densities arise naturally in the study of conformally invariant operators and

conformal invariants more generally.

Remark 2.3.1. Note that one can lift the R, -action p,, on R to Gy = CO(p,q) =
R, SO(p, ¢) by making SO(p, q) act trivially. This allows one to think of the density
bundles as associated bundles to the conformal orthonormal frame bundle G, which is
the point of view taken in parabolic theory [33]. This point of view makes it clear that
the Levi-Civita connection of each metric g € c acts naturally on conformal densities
(since the Levi-Civita connection may be thought of as a principal connection on Gy).

This point of view also clarifies the relation between the conformal density bundles to
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2.4 Ricci Calculus and Conformal Rescalings

the usual density bundles (which are associated to the linear frame bundle by powers of

the determinant representation). 1

2.3.2 Densities and Scales

On any conformal manifold (M, ¢) there is a (tautological) £[2]-valued nondegenerate
bilinear form g, given with respect to the trivialisation of £[2] coming from g € ¢ by g

itself. We call g the conformal metric of (M, ¢). If o is a nowhere vanishing section of
the line bundle £[1] then

g=o0""g

is a metric in c¢. This gives rise to a 1-1 correspondence between positive sections of the
(naturally oriented) line bundle £[1] and metrics in ¢. We refer to o > 0 as the scale
corresponding to g if ¢ = 0~2g. It is common to refer to a choice of positive section o

of £[1], or correspondingly a metric g € ¢, as a choice of scale for the manifold (M, ¢).

2.4 Ricci Calculus and Conformal Rescalings

Fixing a scale g on a conformal manifold allows one to compute in terms of the associated
Ricci calculus (Levi-Civita connection, Riemannian curvature, etc.). One then must con-
sider how the resulting expression transforms under conformal rescalings. Proceeding
this way it is difficult to produce more than a few basic conformal invariants and invari-
ant operators. However, the Ricci calculus can also be used to explicitly construct the
natural conformally invariant calculus on conformal manifolds, namely the conformal
tractor calculus. Here we present some of the necessary background for this construc-

tion.

2.4.1 Abstract Index Notation

In the following, when convenient, we will make use of abstract index notation for tensor
calculus (formalised in [119]). We introduce the alternate notation £¢ for the tangent
bundle of a given smooth manifold M, allowing for the use of abstract indices from the
beginning of the (lower case) Latin alphabet. We also denote the cotangent bundle by &,.
Correspondingly we may write a (tangent) vector field V on M as V' (or V® or V) and a

1-form w as w, (or wy). We denote tensor products of the tangent and cotangent bundles
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(i.e. tensor bundles) by appending appropriate indices to the symbol £. For example,
®2T*M is denoted by &, and (R?T*M) @ TM by E,°. The symbols for elements (or
sections) of these bundles are also appended with the corresponding indices, thus I',,°
denotes an element (or section) of £,,°. Tensor products are indicated by concatenation
(with indices made distinct), so that V' ® w is written as V%, and w ® I' is written
as w,'p.%. Tensor contractions are then indicated by repeated indices, so that w(V) is
written as w,V* (or as V%,) and cont(w ® I') as w,[,.*. Symmetrisation over a set of
covariant or contravariant indices is denoted by enclosing them with round brackets, so
that, e.g.,
Ty = % (Tap + Tha) -

Similarly antisymmetrisation is indicated by square brackets, so that, e.g.,

1
. (Tab - Tba) .

ﬂab] = 92

The purpose of the indices is to indicate the type of the tensor and to make contrac-
tions (and symmetrisations) more explicit. Working with abstract indices also helps to
eliminate extraneous vector fields which appear in standard tensorial expressions, thus

clarifying their content.

If V is an affine connection on our manifold M and V' € X(M ) then the endomorphism
VV of T M is written using abstract indices as V,V?, so that Vi, would be written as
Vev,WP. More generally one writes the covariant derivative of T cas VTV .

We may also occasionally refer to the connection V as V,,.

On a conformal manifold (M, ¢) we indicate the tensor product of some (unweighted)
vector bundle V — M with the density bundle £[w] by appending [w], i.e. V[w] =
V ® EJw]. The conformal metric g is a section of £,,[2] and is commonly written as
J.- The ‘inverse’ g% of g,, is a section of £%°[—2] and satisfies g*°g,,. = d°. We will
use g, and g% to raise and lower indices, thus identifying £[w] with &,[w + 2]. Note
that if we choose a scale ¢ € ¢ and use it to trivialise the density bundles then this
identification reduces to the usual isomorphism 7'M = 7™M induced by g. Raising and
lowering indices with g, has the advantage of being scale independent (i.e. conformally

invariant). We denote the trace-free symmetric part of a covariant 2-tensor 75,;, by T{4p),-
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2.4 Ricci Calculus and Conformal Rescalings

2.4.2 The Levi-Civita Connection on Densities

Let (M, ¢) be a conformal n-manifold, and fix a metric ¢ € ¢. The Levi-Civita con-
nection V of g acts naturally on sections of ®*A"T'M. This determines an action of
the Levi-Civita connection on sections of the conformal density bundles such that the
identification of ®*A"T'M with £[2n] is parallel. If one trivialises the conformal den-
sity bundles using the metric g then this action of the Levi-Civita connection on sections
(which become functions) is simply given by the exterior derivative. Thusif f is a section
of £[w] then

Vf=0c"d(c7"f) (2.4.1)

where o is the scale corresponding to g € c¢. (The trivialisation of £[w] with respect to

g is given explicitly by E[w]| > 7 — o771 € £[0].)

Notice that the weight 1 density o corresponding to g is parallel with respect to the Levi-
Civita connection of g. (Under the trivialisation of £[1] induced by g, o corresponds to

the constant function 1.) As a consequence of this we observe that
Vg =0 (2.4.2)

since g can be expressed as o%g. Thus raising and lowering indices with the conformal
metric commutes with covariant differentiation with respect to the Levi-Civita connec-
tion of any metric in the conformal class. Note that since 0" is a global parallel section of
E[w] for each w the conformal density bundles are all flat for the Levi-Civita connection

of g.

2.4.3 Riemannian Curvature

Let (M™, ¢) be a conformal manifold of dimension n > 2. Fix a metric g € ¢ and let V
denote its Levi-Civita connection. We define the Riemannian curvature tensor R, g by
the Ricci identity

(VaVy — ViV )V = Ry qV (2.4.3)

for all sections V¢ of £¢ = T M. The Ricci tensor is

Rab = Rcacb (244)
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and the scalar curvatureis R = g® R;. (Since we have fixed a Riemannian metric g € c,
it doesn’t really matter whether we use g or g to raise and lower indices, however stick-
ing with the conformal metric simplifies the conformal transformation laws of §§2.4.4.)

For n > 3 the Riemannian curvature tensor naturally decomposes as

Rabcd - Wabcd + Pacgbd - Pbcgad - Padgbc + Pbdgac (245)

where the totally trace free tensor W4 is the Weyl curvature and

1 R
Pab = n_2 (Rab - 2(n _ 1)gab) (246)

is the Schouten tensor. We denote the trace of the Schouten tensor by P = g®P,. In

3-dimensions the Weyl curvature necessarily vanishes. For n = 2 we simply have

Rabcd =K (gacgbd - gbcgad) (247)

where K = %R is the Gauss curvature (as weight —2 density).

2.4.4 Conformal Transformations

Let (M", ¢) be a conformal manifold. If we conformally rescale g € ¢ to § = Q?g then

the respective Levi-Civita connections satisfy the transformation law
VoVl =V V4 T VP -V, Y+ T Ve (2.4.8)

for any vector field V°, where T, = Q~'V,Q. (This can be easily seen from the Koszul
formula, or the local coordinate expression for the Christoffel symbols.) From this one

can compute the transformation law for the Riemannian curvature tensor. One obtains

Rabcd - Rabcd - Eacgbd + Ebcgad + Eadgbc - Ebdgac (249)

where

1
Eab = vaTb - TaTb + ETCTCgab‘

From (2.4.5) when n > 3 one therefore has that

Wabeda = Waped (2410)
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and

A

1
Pab = Pab — vaTb + TaTb — éTCTcgab' (2411)

Note that we have lowered the indices on the respective Weyl tensors using the confor-
mal metric, so that Wabcd = Wapea only holds when the Weyl tensor W4 is thought of
as a section of Ep.q[2]. Tracing (2.4.11) yields

P=P_-vV, T+ (1 . g) 1,7 (2.4.12)

From these one can easily obtain the transformation laws for the Ricci and scalar curva-
tures in n > 3 dimensions. (Note Ry, = (n —2)P,, + Pg,,;.) When n = 2 we obtain the

Gauss curvature transformation law by tracing (2.4.9)

K=K-vV,T" (2.4.13)

Remark 2.4.1. If we treat the Gauss curvature as a function (rather than as a conformal
weight —2 density) and write € as e¥ so that ¥, = V, 7T then the transformation law

(2.4.13) becomes the more familiar
Ky=e T (K, —A,T), (2.4.14)
cf. (2.1.1). Treating the curvature tensors/scalars as carrying natural density weights has

the effect of eliminating overall rescaling factors in the transformation laws. 1

It will also be useful to have the transformation law for the Levi-Civita connection on
1-forms
@awb = Vawp — Towp — wo Yo + Twegy, (2.4.15)

obtained from (2.4.8) by duality, or by lowering indices using ¢ (noting Vg # 0). We will
also need the transformation law for the Levi-Civita connection on conformal weight w

densities

Vof = Vaof +wYof (2.4.16)

which follows directly from (2.4.1). Combining (2.4.8) and (2.4.15) with (2.4.16) we have
VoVl =V, VP + (w+ )TV =V, 10 + T Vs (2.4.17)
and

Vowy = Vawp + (w—1)Yqwp — wa Ty + Tweqg, (2.4.18)
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where V' and wj, are sections of £°[w] and &, [w] respectively.

2.5 The Conformal Sphere

Liouville’s theorem in conformal geometry states that any conformal mapping between
connected open sets in R" for n > 3 is a Mobius transformation, i.e. is given by the com-
position of translations, orthogonal transformations, dilations, and inversions in spheres

[109, 108]. Inversion in the unit sphere is the map

.,z
R

which sends the origin in R” to the point at infinity. This can be formalised by confor-

mally compactifying Euclidean space using inverse stereographic projection R" — S".

We therefore think of conformal R™ as a subspace of the conformal sphere on which

the Mobius transformations become globally defined. For this reason we refer to the

sphere S™ with its standard conformal structure ¢ = [gyouna] as the flat model space for

conformal geometry in dimensions n > 3.

The group of Mébius transformations M6b(n) is naturally isomorphic to PO(n + 1, 1),
the quotient of O(n + 1, 1) by its (finite) center. The group PO(n + 1,1) acts on the
n-sphere via the following construction: Let R"*1! denote R"*? equipped with the sig-
nature (n + 1, 1) inner product ( - , - ) represented in the standard coordinate basis by
diag(1,...,1, —1). We identify the sphere S™ with the space of null (i.e. isotropic) lines
in the projectivisation of R"*!. The action of O(n + 1,1) = O({ -, - }) on R"*! pre-
serves the space of isotropic lines (through the origin) so that O(n + 1, 1) acts on S".
The center of O(n + 1, 1) acts trivially on the space of lines through the origin, so the
action descends to PO(n + 1,1). It is easy to see that PO(n + 1,1) acts by conformal
diffeomorphisms and hence by Mdbius transformations. Writing the action explicitly
one can see that PO(n + 1,1) = Mdb(n).

By the construction above PO(3, 1) acts conformally on the Riemann sphere S* = C U
{o0}. Up to complex conjugation the action of an element of PO(3, 1) on the sphere is

given by a (holomorphic) Mébius transformation

az+b
|_>
cz+d

(2.5.1)

where a, b, ¢, and d are complex numbers with ad — bc # 0. However, the Liouville
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theorem does not hold in 2 dimensions; biholomorphic maps between open sets in the
plane form an infinite dimensional pseudogroup, whereas the group of Mobius transfor-

mations is 6-dimensional.

One way to obtain a Liouville-type theorem in 2 dimensions is to endow the Riemann
sphere with additional structure. The space of circles in S* maps under stereographic
projection to the space of circles and lines in C. Specifying the space of (standard)
circles gives additional structure to the Riemann sphere; the 2-sphere with this struc-
ture is known as the Mobius sphere. Realising the 2-sphere as the celestial sphere (space
of null lines through the origin in R*!) naturally endows it with the structure of the
Mébius sphere (circles are defined by intersecting the light cone in R*! with transverse
3-dimensional subspaces). It is well known that the only (orientation preserving) confor-
mal mappings between plane domains which preserve the space of lines and circles are
the Mobius transformations (2.5.1), so that a Liouville-type theorem holds for domains

in the Mdobius sphere.

2.6 2D Mobius Structures

Mobius structures can be defined on conformal surfaces more generally. We define a
Mobius structure ([24], cf. [123]) on a conformal surface (M, c) to be a second order

linear differential operator
Day: E[1] = &y, 1

with the property that D, — V(,Vy), is of order zero, where V is the Levi-Civita con-
nection of any metric in ¢. Given a metric g € ¢ on a Mobius surface (M, ¢, D) we may

define a trace-free symmetric 2-tensor P, by
PabO' = (Dab - V(avb)o) o (2.6.1)

for any section o of £[1]. One then computes using (2.4.16) and (2.4.18) that under the

conformal rescaling § = 2%g

R 1 1
Pab = Pab - Vaﬂrb + TaTb + i(vCTc)gab - §TCTCgab (262)
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where T, = 071V 0. We define the symmetric 2-tensor
1
Pab = Pab =+ iKgab. (263)
Recalling (2.4.13), i.e. K=K-— V. T we get that
. 1
Pab = Pab - Va"rb + TaTb - §TCTcgab7 (264)

cf. (2.4.11). We refer to P,; as the Rho-tensor of g (the Schouten tensor in higher dimen-
sions may also be called the Rho-tensor). A Mgbius structure on a conformal surface
(M, ¢) may alternatively be described as an assignment of a symmetric Rho-tensor P,

with trace K to each metric g € ¢, satisfying (2.6.4), since

Dy = V(avb)o + P(ab)0~ (2.6.5)
Remark 2.6.1. Prescribing the trace P, of the Rho-tensor to be K allows us to write

Rabcd = Pacgbd - Pbcgad - Padgbc + Pbdgac- (266)

This is important in that it ensures the tractor connection constructed from the Mobius
structure, as in §§2.7.4 below, is normal (in the sense of [27]). In [23] a more general
notion of Mobius structure on conformal 2-manifolds is introduced, which amounts to
prescribing a ‘Rho-tensor’ P, to each g € ¢ transforming according to (2.6.4) but with-
out the condition that P,* = K; such a Mdbius structure gives rise (or corresponds) to a
tractor connection which is normal if and only if P,* = K for some (equivalently any)

metric g € c. |

The term ‘Mobius structure’ in conformal geometry often refers to a manifold with atlas
whose transition functions are given by Mébius transformations. Such an atlas naturally
endows the manifold with a conformal structure; in 2-dimensions one can further de-
fine a Mobius structure Dy, by defining P, to be zero for the flat metric corresponding
to each chart. In higher dimensions these are conformally flat manifolds, and in 2 di-
mensions these correspond to what we will call (locally) flat Mobius structures, meaning
those Mobius structures for which the conformally invariant tensor Cyp. = 2V, P is
identically zero. (One can easily verify these claims using the tractor calculus of §2.7.)
Clearly the Mobius sphere defined in §2.5 has a natural atlas whose transition functions

are Mobius transformations. The Mobius sphere is the (globally) flat model space for
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2.7 The Tractor Calculus

Mobius surfaces.

We will use the term Mobius conformal sphere in n > 2 dimensions to refer to the usual

conformal sphere in the case n > 3 and to the Mdbius sphere in the case n = 2.

2.7 The Tractor Calculus

The (M&bius) conformal sphere arises naturally as the space of null lines in the projec-
tivisation of R"*1:1, It therefore comes naturally equipped with a flat vector bundle of
rank n + 2, the standard tractor bundle TS™. A standard tractor at a point x € S” corre-

sponding to a null line ¢ € P(R™*11) is a constant vector field in R"*! along /. Parallel

Rn-‘,—l,l ¢
future null a tractor
cone C atx =/

Figure 2.7.1: An element of 7,S™ is a homogeneous of degree zero vector field along
the line ¢ € P(R"*1!) corresponding to .

transport in 7S" is simply given by the affine space structure of R"*!*, This obser-
vation is the starting point for the development of the conformal tractor calculus, which
originated in the work of Tracey Thomas [135, 136, 137] and in the later independent ‘re-
discovery’ of Bailey, Eastwood and Gover [7]. The tractor calculus is closely connected
to the canonical conformal Cartan connection of [36] (for expositions see [100, 126, 33]),

being the natural calculus on associated bundles (see [26, 27], cf. [69]).

Here we present the basics of the tractor calculus for (Mobius) conformal manifolds,
following the style of [7, 50, 44].

2.7.1 The Standard Tractor Bundle

Let (M, ¢) be a conformal n-manifold, n > 3. The standard tractor bundle of (M, c) is a

rank n + 2 vector bundle 7 on M, also denoted £4 (we use capital Latin abstract indices
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from the start of the alphabet); given a choice of metric g € c it may be identified with

the direct sum bundle

(€4, = €l @ & 1] @ E[-1]; (2.7.1)
we write v £ (o, u®, p),
o o
AL | o = | e
p p

if an element or section of £# is represented by (o, u?, p) with respect to this iden-
tification; the identifications given by two metrics g and § = Q?g are related by the

transformation law

1 0 O o
4,2 | p |~ o 50 | €Y, (2.7.2)
14 —%TbTb —Tb 1 14

where T, = Q71V,Q. Itis easy to check that ~ is an equivalence relation on the disjoint
union of the spaces [£4],, so that £ is well-defined as the quotient of the disjoint union
of the [£4], over g € c by (2.7.2).

On a 2-dimensional conformal manifold we may also define the bundle £4 as above.
However this bundle is not a ‘tractor bundle’ in the sense that £4 does not carry a canon-
ical ‘tractor connection’. (The term ‘tractor bundle’ indicates a bundle with specific addi-
tional structure [26, 27], much like the notion of a ‘G-bundle’.) If the conformal structure
is supplemented with a Mdbius structure then there is a canonical ‘tractor connection’

(see (2.7.7)) and in this case we refer to £/ as the standard tractor bundle.

Remark 2.7.1. The term ‘standard’ in ‘standard tractor bundle’ refers not to canonicity,
but to the standard representation R"*2 (also denoted RP™14*1) of the conformal group
G = O(p+ 1,q + 1) to which the standard tractor bundle corresponds; 7 is the vector
bundle induced from the Cartan frame bundle by the representation R"2 (see [26]). The
representation A?(R"*2)* of G can be identified with the adjoint representation g and
the corresponding induced bundle £ 4 g) is called the adjoint tractor bundle. The standard
tractor bundle is fundamental in that any irreducible representation of G can be obtained

as an irreducible subspace of ®@*R"*?2 for some k by imposing tensor symmetries. 1
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2.7 The Tractor Calculus

2.7.2 Splitting Tractors

Here we introduce some convenient notation for working with tractors.

From (2.7.2) it is clear that there is an invariant inclusion of £[—1] into £4 given with

respect to any g € c by the map

0
p—1 0
p

Correspondingly there is an invariant section X“ of £4[1] such that the above displayed

map is given by p — pX4. The weight 1 canonical tractor X* can be written as

0
XA=1 0
1

with respect to any choice of metric g. Note that X* dually gives a map £4 — &[1]

sending v4 to X v 4.

Given a fixed metric g, we also get the corresponding splitting tractors of [81]

0
zZrE | o and YAZ | 0
0

which both have weight —1. A standard tractor v* £ (o, 4%, p) may instead be written
as v = oY A+ ZAub + pX* where we understand that Y and Z;* are defined in terms

of the splitting induced by g. If g = Q?¢ then by (5.3.3) we have

ZA = ZA + 1, XA, (2.7.3)

. 1
yA=y4 -1z — §TbT”XA. (2.7.4)
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2.7.3 The Tractor Metric

The standard tractor bundle £4 carries a canonical tractor metric g4. If v* < (o, u% p)

then

0 0 1 o
gapvv? = (o p* p) 0 g, O uo | =20p+ papt. (2.7.5)
1 0 0 p

We use the tractor metric g4p to raise and lower tractor indices, identifying the standard
tractor bundle £4 with its dual £,. The various contractions of the splitting tractors (for

a given g € c) using the tractor metric are described by the table:

y4 zA4 XA
Yo 0 0 1
ZAb 0 g 0
Xal 1 0 O

(2.7.6)

2.7.4 The Tractor Connection

Let (M, ¢) be a conformal manifold of dimension n > 3. In terms of a metric g € ¢

the (normal) standard tractor connection V7 (or simply V) is defined by the following

formula
g Vaa — Ha
Vol b | = Vb +Plo+6"p |. (2.7.7)
p Vap — Pt

If a section of £4 is given by [v1], = (0,u? p) then if § = Q2g by (2.7.2) we have
vy = (&, ) where

o o
ol = ut + Yo (2.7.8)
p p— Yopu* — %TGTGU
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2.7 The Tractor Calculus

with T, = V,log €). To see that the tractor connection V is well-defined, we just need
to check that

Vb — fla 1 0 0 Voo — fla
Vot + Plbo+bp | = T 0 Vi€ + P,o + 0Sp
VapA - Pab,ab _%TCTC _Tc 1 Vap - Pac,uc

(2.7.9)
using the transformation laws (2.4.16) and (2.4.17) for the Levi-Civita connection and
the transformation law (2.4.11) for the Schouten tensor. (The explicit calculation can be
found in [50].)

Since the conformal transformation law (2.6.4) for the Rho-tensor of a 2-dimensional
conformal Mdbius structure is formally the same as the conformal transformation law
(2.4.11) for the Schouten tensor in higher dimensions, the tractor connection (2.7.7) is
also well-defined for 2-dimensional Mobius structures with F,;, given by the Rho-tensor

of g.

It is often useful to differentiate expressions such as 7,Z4Y? using the Leibniz rule,
where Z and Y4 are splitting tractors determined by g € ¢. To do this we couple
the tractor connection V with the Levi-Civita connection of g. By differentiating the
expression oY Z + ;)*ZP + pY'B using the Leibniz rule and comparing with (2.7.7) one
obtains that

V. XP =278, (2.7.10)
vaZbB == abXB - gabYBa (2.7.11)

and
V., YB =p,75, (2.7.12)

Noting that gap = 2X(4Y5s) + 9,,2% 2}, these formulae give an easy way to check that

VagBC =0. (2.7.13)

2.7.5 The Tractor Curvature

Coupling the tractor connection with any torsion free affine connection the tractor cur-

vature Kq,C p satisfies the Ricci-type identity

(VaVi — ViV )0l = Ky poP. (2.7.14)
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Coupling the tractor connection with the Levi-Civita connection of some metric g € ¢

one may straightforwardly calculate (using (2.4.5)) that

o 0 0 0 o
(VaVb — vaa) ue = Cut Wuta O pLd (2.7.15)
p 0 —Cuwa O p

where Cyp. = 2V, Py is the Cotton tensor of g. In three dimensions the Weyl curvature
vanishes and the Cotton tensor is conformally invariant. In the case of a 2-dimensional
Mobius structure the same result (2.7.15) holds with W,,¢; replaced by zero (because of
(2.6.6)), and with Cyp. = 2V, ). defined in terms of the Rho-tensor of g.

Remark 2.7.2. From this one can easily see that, starting with the (Mobius) conformal
sphere, the construction of §§2.7.1-§§2.7.4 yields a globally flat tractor bundle; this is
consistent with our discussion of tractors on the model in our introduction to §2.7. One
can then reinterpret objects such as the tractor metric g4 and canonical tractor X4.
It is easy to see that in the model case the tractor metric corresponds to the constant
metric coming from R"*!. Also, in the model case a point x € S" defines a line ¢ C
T.S™ = R"*11 giving rise to a canonical line subbundle 7°S™ of 7S™. By considering
sections of the future null cone C; and the induced metrics on them (noting §§2.3.2) one
may naturally identify 7°S"™ with £[—1], and this gives rise to the canonical inclusion
E[—1] = &£%. On the model sphere sections of the density bundle £[w] can be identified
with functions on the null cone C C R""!! which are homogeneous of degree w. The
canonical tractor X# can therefore be identified with the Euler vector field of R™*1:!
restricted to C. For more details on the correspondence between the two constructions

in the model case see [44]. |

2.7.6 Invariant Tractor Operators

Differential splitting operators play an important role in tractor calculus, e.g., in the
‘BGG machinery’ of [35, 25] (see [127] for a treatment of the conformal case using the
tractor formalism as presented here). Here we present some of the most basic and impor-
tant families of such operators. The following applies in the usual setting of conformal
manifolds with dimension n > 3, but note that one also obtains corresponding opera-

tors, mutatis mutandis, in the case of 2-dimensional Mobius structures.
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2.7 The Tractor Calculus

2.7.6.1 The tractor D-operator(s)

Let £® denote any tensor product of copies of £ and €4 (we refer to such bundles, and

any subbundles obtained by imposing tensor symmetries, as tractor bundles).

Definition 2.7.3. On a conformal n-manifold (M, ¢) the tractor D-operator of [136, 7]
Da: E%w] — E4® EP[w — 1] (2.7.16)
is defined by
Daf® =w(n+ 2w —2)Yaf* + (n+ 2w — 2) 24V f* — X4(A +wP)f* (2.7.17)

where we calculate with respect to some metric g € ¢, so V denotes the tractor connec-

tion coupled with the Levi-Civita connection and A = g*V,V,,.

Using the transformation laws of §§2.4.4 one can easily check directly that D 4 does not
depend on the choice of metric used to define it (an explicit calculation can be found
in [50]). A key property of the tractor D-operator is that it can be iterated to produce
higher order invariants associated to a given weighted tractor. Note that the tractor D-
operator fails to be a splitting operator (i.e. to have a linear bundle map as left inverse)

at the critical weights w = 0 and w = 1 — 7. At the critical weight w = 1 — 5 we have

Duaf® = XsLf® (2.7.18)

where L is the (tractor twisted) conformal Laplacian

n—2
L=-A+——R. 2.7.19
PTOEEY) (2.7.19)

The tractor D-operator can be used to produce further invariant operators. In particular,

we note that if f is section of £[2 — %] then

ID4 = XAPf (2.7.20)
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where P, is the Paneitz operator [116]

Pyf =N f+V,[(4P" — (n — 2)Pg*) V, f]

+ w [—2AP — 4P,,P** + nP?] f. (2.7.21)

Continuing along these lines one may use the tractor D-operator to produce explicit
(Ricci calculus) formulae [81] for the ‘conformally invariant powers of the Laplacian’ (or
‘GJMS operators’) Py, of [87].

Related to the tractor D-operator is the g dependent operator D4 given by wf®Y, +
(Vaf®)Z4 on a section f® of £%[w]. The operator

Dapf® = 2XaDp f* (2.7.22)

does not depend on the choice of metric ¢ € ¢ and is known as the double-D-operator.
The double-D-operator is closely related to the ‘fundamental D-operator’ of [27]. The
relationships between the various ‘D-operators’ are expounded in [26]. In particular,

the tractor D-operator can be derived from the double- D-operator by noting [74] that
9*PDasDeynf® = XBDoy, f* (2.7.23)

for any weighted tractor field f* and that the map v4 — X(4vp), is injective.

2.7.6.2 Middle operators

Here we present some members of a class of important conformally invariant first or-
der operators, used by Eastwood to produce conformally invariant operators by ‘curved

translation’ (see, e.g., [50]).

Definition 2.7.4. The middle operator acting on weighted covector fields is the operator

MY = &, [w] — EaJw — 1] given with respect to a choice of g € ¢ by

M47e = (n+w — 2) 247, — XaV7,. (2.7.24)

To see that the operator defined by (2.7.24) is well-defined one simply observes that
(2.4.18) implies (when § = Q%g and T, = 27'V,Q)

A

Voer, =Ver, + (n+w—2)Y, (2.7.25)

36



2.7 The Tractor Calculus

for 7, of weight w, whereas from (2.7.3) we have that Z% = Z% + T%X 4. The operator
% 1is a splitting operator except when w = 2 — n, in which case 7, — V%7, is an

invariant operator.

One can similarly define a middle operator on weighted differential forms [127]. In

particular, on weighted 2-forms we may define the operator M4%, given by
MApTas = (n 4w — 4) Z4 Zp7ar, — 2X 4 Z 1V " Tap. (2.7.26)

Again it is straightforward to verify the invariance of this operator. By considering
simple sections w1 of g [w] where w, has weight 0 and 7. has weight w one obtains

from (2.4.18) and the Leibniz rule the transformation law
@aTbc = VaTe + (W — 1) YLoTpe + 274 L — 2nga[b7'c]d. (2.7.27)
Tracing one obtains that

Ve = V70 + (n+w — 4) Y7 (2.7.28)

for 7, a 2-form of weight w. Noting that Z;L‘Z%Tab = Z&Z%]Tab since Ty, = Tq), the

invariance of M4 then follows immediately from (2.7.3).

2.7.7 The Curvature Tractor

The middle operator M%Y; is strongly invariant, meaning that it can be applied to weighted
tractor valued 2-forms by coupling the Levi-Civita connection appearing in the defini-
tion of M%), with the tractor connection. Applying M4, to the tractor curvature Kqcp
yields the curvature tractor (or ‘W -tractor’) of [75] (cf. [127])

Wasep = MYsRapen. (2.7.29)
Computing W4 peop explicitly with respect to a metric g € ¢ one obtains

Wapep = (n—4) (Z4°Z5"Zc* Zp Wapea — 224" Z5" X (0 Zp)* Capa
— 2X(0Zp)" 26 Zp Com) + AX(uZp)" X0 Zp)"Bay ~ (2.7.30)
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where By, is the Bach tensor

Bapy = VClpo + P“Wiaes. (2.7.31)

Remark 2.7.5. (1) In [75], motivated by consideration of the action of the commutator

[D4, Dp| on standard tractors, the curvature tractor W4 pcp was defined as

3
n—2

DF (X[EZjngﬂ KabeD) -

Computing this explicitly with respect to g € ¢ yields (2.7.30) so the two definitions are
equivalent. Note that by (2.7.3) X [EZjZ%] is an invariant object, so that this is also a

manifestly invariant definition.

(2) The curvature tractor has Weyl tensor symmetries. In [81] it is shown to be straight-
forwardly related to the curvature of the (Ricci flat) ambient metric; the exception to
this relation is n = 4 where W4pcp (being equivalent to the Bach tensor) is instead the

obstruction which must vanish for the ambient metric to exist (formally) to all orders. I

The curvature tractor and tractor D-operator form the basis for a straightforward con-
struction of all (weighted) scalar conformal invariants in odd dimensions [75] (there is
also a closely related approach [8] using the ambient metric). Essentially, one imitates
the Riemannian case where a generating set of scalar invariants can be constructed
by tensoring together covariant derivatives of the Riemannian curvature tensor and
making complete contractions; in the conformal case one simply replaces R,p.q with
Wagep (or X [ 5449 Z%] Kapop) and the covariant derivative V, with D 4 (or D 4 4/). In fact
a slight improvement on this is required, which involves (roughly speaking) the can-
cellation of X 4’s (see [75]); this idea is illustrated for the case of invariant operators in
the derivations of the tractor D-operator from the double-D-operator (2.7.23), the con-
formal Laplacian from the tractor D-operator (2.7.18), and of the Paneitz operator from
the tractor D-operator and the conformal Laplacian (2.7.20). The even dimensional case
is much more subtle, and is far from being completely resolved (partial results can be
found in [8, 75]). To produce (weighted) tensor invariants one starts by constructing
weighted tractor invariants in the obvious way as before (now making incomplete con-
tractions); one then uses the natural bundle projections arising from the composition

series structure of £4, for example,

Xa: 8w = Ew+1] and XZP: Eapw] = Ew +2).
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Such a projection may be identically zero in which case another invariant projection is
defined, for example, if X 4Z4 = 0 then ZjIA is invariant (cf. §§5.3.9).
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3 The Geometry of Conformal
Embeddings

We now turn to the consideration of (nondegenerate) submanifolds in conformal man-
ifolds. We consider the induced conformal structure on such submanifolds as intrinsic,
so that we may equivalently consider a conformal embedding ¢ : > < M between
conformal manifolds (X, ¢x) and (M™, ¢) with n > m > 2. A choice of metric g € ¢
determines a metric gs, € ¢y, by pullback. In seeking to construct local invariants and in-
variant operators on conformally embedded submanifolds it is natural to compute with
respect to the pair of metrics (g, t*g) and look for constructions which are invariant un-
der conformal rescalings of g. However, one can only get so far with this naive approach.
Here we present the basics of the local theory of conformal hypersurfaces in Riemannian
manifolds as developed in [7, 21, 90, 128, 141] using tractor calculus. We then extend this
theory to the case of arbitrary codimension nondegenerate submanifolds in conformal
manifolds. This is consistent with work of Burstall and Calderbank [22, 23].

3.1 Conformal Hypersurfaces and Scales

Here we recall some basic facts concerning the geometry of hypersurfaces in Riemannian

manifolds, from the point of view of conformal geometry.

3.1.1 Notation

We consider a conformal embedding ¢ : > < M between Riemannian signature con-
formal manifolds (X, ¢x) and (M", ¢), now with n — 1 = m > 2. We retain the usual
abstract index notation £ for the tangent bundle of M, and use lower case Latin abstract
indices from the later part of the alphabet (i, j, k, [, etc.) for 2. So T'X. is alternatively

denoted by &%, and V' denotes a submanifold tangent vector or vector field. We denote
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the weight w submanifold density bundle by & [w] and the ambient density bundle by

&[w]. We denote the conformal metric of (X, cx) by g,; and its inverse by g*.

We identify 3 with its image in M and write £%|y; — X for the restriction of £ — M
to fibers over X (i.e. for the pullback bundle :*7'M). The submanifold density bundle
Es|w] can be identified with the restriction E[w]|x. of the ambient density bundle &[w]
to 3, since choosing any ambient metric g € c trivialises each of these bundles and the

resulting identification is clearly metric independent.

We denote the tangent map 7't : T — T'M, considered as a section of 7> ® T'M |5,
by I1¢. So if U = T'«(V') then U® = I1¢V"*. We define the section IT! of T*M |z ® T to
be the map T M|y, — T given by orthogonal projection with respect to the conformal

metric (or equivalently any metric in ¢). Clearly I[}IT§ = (5;-, where 5; is the (abstract)

Kronecker delta: 6517 = V*. The composition II{II} gives the orthogonal projection
T M|y, — T(TY), which we also denote by II{. Note also that

g,; = Tg,, (3.1.1)

along the submanifold ..

3.1.2 The Unit Normal Field

Given a choice of metric g € ¢ and a (possibly local) orientation of the normal bundle,
one may talk about the unit normal field. However, in conformal geometry it is more
natural to work with the corresponding weight —1 normal field which is normed by the
conformal metric (and hence conformally invariant). We assume a fixed orientation of

the normal bundle, working locally if necessary.

Definition 3.1.1. By the (weighted) unit normal field of a conformal hypersurface we
mean the section N of £¢[—1]|; satisfying g,, N*N? = 1 and compatible with the ori-
entation. We refer to the corresponding section N, = g, N® of £,[1]|x. as the (weighted)

unit conormal field.

It is easy to see that
o =TI¢ + N°N, and g,, = g;II.II + N, N, (3.1.2)

along X..
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3.1.3 Tangential Derivatives

Let g be a metric in ¢, and let V denote its Levi-Civita connection. Since a connection
can be thought of as differentiating vector fields along curves, by restricting to curves
in 3 the connection V induces a connection on TM|y;, — . We will refer to this
connection as the pullback connection, denoted :*V. When using abstract index notation
we distinguish between V and :*V by denoting them V, and V, respectively. One may
equivalently define V; to act on a section V' of £%|5, by

V, VP =10V, V? (3.1.3)

along >, where VPis any extension of Vbto M.

3.1.4 The Submanifold Levi-Civita Connection

If g € c then the Levi-Civita connection V of g induces the Levi-Civita connection D of
gs = t*g by [101]
DV’ =1V, V? (3.1.4)

where V? = HZV’“ . Dually, on a 1-form w; we have

Diw; =115V w, (3.1.5)

where w, = H’gwk.

3.1.5 The Second Fundamental Form

Here we establish our convention for the (Riemannian) second fundamental form.

Definition 3.1.2. Given a metric g € ¢ we define the second fundamental form II by the
Gauss formula
VxY =DxY+II(X,Y)N (3.1.6)

for all X,Y € X(X), where V and D are the Levi-Civita connections of g and (*g re-
spectively and NN is the (weighted) unit normal field. (As usual we are implicitly using

the pullback connection ¢*V on the left hand side.)
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This defines a bilinear form /I, which is of conformal weight 1 since /N has conformal
weight —1. (So trivialising the density bundles using g one gets the usual second fun-
damental form, with our sign convention.) It is easy to see that the bilinear form [T is

symmetric since both V and D are torsion free.
In terms of abstract index notation, the Gauss formula can be written as
ViVe =DV + II;;N°V?

were V¢ = TI{V*. Contracting both sides of the above with N, and using the Leibniz
rule (noting that N.V¢ = 0) yields that I[,-jVj = VI I5ViN, for all sections V7 of £7.
Thus

II;; = —TI5V;N,,. (3.1.7)

3.1.5.1 Conformal Transformations

From the transformation law (2.4.18) for the ambient Levi-Civita connection we have
Vi, = ViN, + TI¢T°N,g,,

since the unit conormal has weight 1 and II{/N, = 0. Thus from (3.1.7) we have the

conformal transformation law
f]z’j = II;; — T.N°g,; (3.1.8)

for the second fundamental form under the conformal rescaling § = Q?%g, with T, =
V.log €. Since the transformation law is by trace only we see that the trace free part
Il (5, of the second fundamental form is conformally invariant. Denoting II(;;, by I ij
we have

II; = II;; + Hg,; (3.1.9)

where H = %gij II;; is the mean curvature. Observe that the mean curvature has con-

formal weight —1. The mean curvature transforms according to

H=H-Y,N (3.1.10)
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3.1.6 The Gauss and Codazzi-Mainardi Equations

Let us recall the well known Gauss and Codazzi-Mainardi equations which express the
components of the ambient curvature along the hypersurface in terms of the intrin-
sic curvature and the second fundamental form. See, e.g., [43, 115] for derivations, cf.
§§6.1.7.

Fix a metric g € c¢. We denote the full projection H?H?HszRabcd of the ambient Rie-
mannian curvature tensor along ¥ by R;;x;. The Gauss equation for the hypersurface
is

Rijkl = rijkl + [[zl[[jk: — [[Zk[[jl (3111)
where 7, is the Riemannian curvature tensor of g5, = ¢*g. Denoting H?H?H;Rabcd]\f d

by R;jin the Codazzi-Mainardi equation is
RijkN = —QD[Z-]]j]k (3.1.12)

where D is the Levi-Civita connection of gs..

3.1.7 Minimal Scales

Here we present a useful technical lemma which was observed in, e.g., [21, 78].

Lemma 3.1.3. Given any metric gs; € cyx, there exists a metric g € c extending gy, (i.e.

such that gs, = 1*g) for which 3 has vanishing mean curvature.

Proof. Fix g5, € ¢y and let ¢ € c be any metric with g, = (*¢g with corresponding
scale 0. The mean curvature H of ¥ has conformal density weight —1, so the usual
(Riemannian) mean curvature function is o H. Similarly, the usual (Riemannian) unit
conormal is 01 N,. Consider a smooth function T on M which, in a neighbourhood of
Y, is given by so H where s is a normalised defining function for ¥ (meaning s|y, = 0 and

Vsl = 07 1N,). Then the metric § = e g satisfies 1*§ = gs and has mean curvature
H=H-—7TN°¢ (3.1.13)
where T, = V.Y by (3.1.10). Computing that V.Y = H N, along X (since V,0 = 0 and

s|s = 0) we obtain H = 0. O
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Definition 3.1.4. We refer to a scale o (or the corresponding metric g € c¢) for which

H = 0 as a minimal scale.

Notice that if g and § = Q%¢ both correspond to minimal scales then T, = V,log Q
satisfies
T,N*=0. (3.1.14)

3.1.8 The Natural Mobius Structure on 2D Conformal
Hypersurfaces

A conformal embedding of a conformal surface (X%, ¢5) into a conformal 3-manifold
(M3, ¢) induces a natural Mébius structure on Y. The notion we present here is termed

the ‘induced conformal Mébius structure’ in [23].

Definition 3.1.5. The (normal) induced Mobius structure on a conformally embedded

surface is defined by associating to each metric g5, € ¢x the Rho-tensor

1
Pij = Plij)o + §Kgij (3.1.15)
where P;; is the projection H;’H?Pab of the Schouten tensor of any minimal scale g € ¢

which extends gs..

To see that this gives a well-defined Mébius structure consider any two minimal scales
g,g € cfor X, with § = Q?¢g. By (2.4.11) along with (3.1.5) and (3.1.14) we have

P = P; — IOV, Yy + XY, — Y. Y,
=Py — D;T; + T, T; — T, T*g,; (3.1.16)

where T, = Q7'V,Q, T; := Q7 'D;Q) = 19T, and D is the Levi-Civita connection
of gv = t*g. Thusif gx = gy (ie. Qg = 1) then T; = 0 and ]A%-j = P;j, so P
does not depend on the choice of minimal scale g € ¢ extending gs. By tracing (3.1.16)
we see that P’ has the same conformal transformation law as the Gauss curvature K
(their difference is a weight —2 scalar invariant). The computation therefore shows that
the Rho tensor p;; transforms in the appropriate way under conformal rescalings of the

submanifold metric.
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3.1 Conformal Hypersurfaces and Scales

Remark 3.1.6. By (3.1.16) the assignment to each metric g € c of the ‘Rho-tensor’ p;; =
H?H;’»Pab, where P, is the Schouten tensor of any minimal scale g € ¢ extending gy,
gives rise to a Mobius structure in the more general sense of [23] (cf. Remark 2.6.1).
In [23] this is termed the ‘induced Mobius structure’. This Mobius structure (and the
corresponding tractor connection) was used in the earlier work of [21]. Note that if
g € cis an arbitrary metric extending gy, then p;; = HfH;’-Pab + HII ij + %H 291‘]‘ (cf.
(3.2.16)). 1

Proposition 3.1.7. If g € c is an arbitrary metric extending gx, then

: 1
pij = Pligo + HIlij + 5K g, (3.1.17)

where P;; denotes the projection H?H;’-Pab of the ambient Schouten tensor.

Proof. To verify this it suffices to check that the right hand side is unchanged under
conformal rescalings of g to § = ¢*¥g with Y|y, = 0 (since using Lemma 3.1.3 we may
take ¢ to be minimal). Note that under such a rescaling gs. (and hence K) does not
change. Note also that V;T = 0 and T* = VT is normal. Writing Y}, as (T.N¢)N,
(2.4.11) one then has

A

Plijyo = Piiye — I Viy, [(TeN) Ny
= Hij)o — (TcNC)H?sz‘)ONb (since H?Nb =0)
= Plj)o + (TN 35, (by (3.1.7))

as required by the mean curvature transformation law (3.1.10).

(Alternatively, to directly compute (3.1.17) one may rescale g to a minimal scale § = ¢*Y g

with tx§ = gs by taking T as in the proof of Lemma 3.1.3 and then rewrite ]5(2-]-)0 +iK gij

in terms of the metric g.) O

In the case where the conformal surface already carries an intrinsic Mobius structure,
we may define the notion of a Mobius conformal embedding to be a conformal embedding
for which the induced Mébius structure agrees with the intrinsic one. Just as we may
regard the induced conformal structure on a nondegenerate submanifold of a conformal
manifold as intrinsic, we may also regard the (normal) induced Mébius structure on a
conformal surface as intrinsic. Given gy, € cx, we may therefore refer to p;; as the

intrinsic Rho-tensor.
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3.2 Conformal Hypersurfaces and Tractors

Here we present the basic conformally invariant calculus for hypersurfaces developed in
[7, 21,90, 128, 141]. As in §3.1 we consider a conformal embedding ¢ : ¥ <— M between
Riemannian signature conformal manifolds (X, ¢x) and (M", ¢), withn —1 = m > 2.
We denote the standard tractor bundle of M by £ 4 as usual, using abstract indices from
the beginning of the alphabet. The standard tractor bundle of ¥ will be denoted by &7,
and we will use abstract indices I, J, K, L, I, etcetera. When using index free notation
we denote the standard tractor bundles of M and ¥ respectively by 7 M and TX.

3.2.1 The Normal Tractor

Following [7] we define the (unit) normal tractor of ¥ to be the section N4 of £4 |, given

by

NAZL | Ne (3.2.1)
H

for any g € ¢ where H is the mean curvature of > with respect to g. Comparing the
transformation law (3.1.13) for the mean curvature with the tractor transformation law
(2.7.8) we see that N is well-defined. Clearly N*N, = 1. Note that if ¢ is a minimal

scale then

NAZ | No |. (3.2.2)

Remark 3.2.1. The normal tractor is closely related to the conformal Robin operator 0y,
which supplies the conformal Laplacian with self adjoint elliptic boundary conditions
(see, e.g., [21]). The conformal Robin operator can be defined on ambient densities of

any weight (not just 1 — 7) and is given by
Inf=N'Vof +wHf (3.2.3)

along ¥ for any section f of £[w]. |

The normal tractor allows us to split the standard tractor bundle of M along ¥ as an

orthogonal direct sum

TM|s =N+ N (3.2.4)
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3.2 Conformal Hypersurfaces and Tractors

where N is the real line bundle spanned by the normal tractor (the ‘normal tractor bun-
dle’). We write
4 = 04 — N*Ng (3.2.5)

for the orthogonal projection 7 M|y — N,

3.2.2 Relating Tractor Bundles

The following theorem was implicit in [21] and made explicit in [90] (for the case m > 3)

cf. [78].

Theorem 3.2.2. The hypersurface standard tractor bundle T is canonically isomorphic
to the orthogonal complement N'* of the normal tractor bundle by a metric and filtration

preserving bundle isomorphism. The isomorphism T — N is given explicitly by

o
I 92 i H}A A9 a
v=| ou — v = p (3.2.6)
P P

where i = 11" and g is any minimal scale extending gs.

Proof. Let us start by fixing gs; € ¢y and g a minimal scale for which (*g = g5. We
need to show that the above map is unchanged if we replace g by g = Q¢ and gx by
gs = %gs, with g a minimal scale. If T, = Q7'V,Qand T; = Q71 D;Q (= 11¢Y,) then
by (3.1.14) along 3. we have

T, =17,

From this we see that the following diagram

[Sl]gz — [SA]9|Z

1 0 0 1 0 0
Y80 | | ™
R SO _1Ter, -7,

€705 — [EP]4ls
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commutes, where the horizontal maps have respective matrix representations

1 0 0 1 0 0
0 Iy 0 and 0 I% 0
0 0 1 0 0 1
Therefore the map (3.2.6) is well-defined. ]

If g € cis an arbitrary metric (with corresponding scale o) and g5, = ¢*¢ then the map
(3.2.6) of Theorem 3.2.2 is given by (cf. [78, 90])

o o
A 4
T E | | s 0L | pe— HNeo | (3.2.7)

p p—sH?o

This can be seen by rescaling ¢ to a minimal scale ¢ with the same induced metric gs
as in the proof of Lemma 3.1.3 and then using the ambient tractor transformation law
(2.7.8).

We refer to the map I1#' : £ — E4|y as the standard tractor map of the conformal

embedding. In index free notation we write this map as
To:TY — TM. (3.2.8)

Using the identifications of the respective standard tractor bundles with their duals given
by the respective tractor metrics, one may define a map I1% : £, — E4|x. (Whose image
annihilates N“). In other words we define IT to be g4I15g'’, where g’/ denotes the
‘inverse’ hypersurface tractor metric. We will often think of I1{* and IT as sections of

Er @ &4y and ET ® €45 respectively, allowing for a flexibility of interpretation.

3.2.3 Relating Tractor Connections on 7%

The standard tractor map allows us to define a connection V on the submanifold tractor
bundle 7Y induced by the ambient tractor connection. Given a standard tractor field v’

we define
V! =I5V, (TTEvF) (3.2.9)
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3.2 Conformal Hypersurfaces and Tractors

where V denenotes the ambient tractor connection (and V; denotes the pullback con-

nection (*V).

Using Theorem 3.2.2 and (3.1.4) it is easy to see that if g € c is a minimal scale then,

splitting £/ using gs. = (*¢g, we have

o Do — p;
Vil w | =| Dy + Pio+dp (3.2.10)
p Dip — Bjﬂj

where D is the Levi-Civita connection of g5, and F;; is the projection HfH?Pab of the
ambient Schouten tensor. (The fact that we are differentiating densities does not com-
plicate the use of (3.1.4) in the computation; one may trivialise the density bundles using

g and gy, for simplicity.)

3.2.3.1 The Difference Tractor

Compare (3.2.10) with the corresponding formula

o Dio — p;
D | 7 | =| Dy +pio+ 5fp (3.2.11)
P Dip — piji!

for the intrinsic tractor connection of >J, where p;; is the intrinsic Rho tensor (Schouten

for m > 3). One can easily see that

vi?}‘] = DZ‘UJ + Sz‘JKUK (3212)
where
0 0 0
STk E | Pi—p7 0 0o 1. (3.2.13)

0 pi; — Py 0

The End(7 ) valued 1-form S is referred to as the difference tractor. Using the splitting

tractors corresponding to gs; we have

Sk = (Py — pij) (25X — Z3:X ) . (3.2.14)
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Noting that ZZ[];]X K is conformally invariant by the intrinsic version of (2.7.3) we see
that
Fij = Pij — pij (3.2.15)

is independent of the choice of metrics gy, € ¢y and g € ¢ minimal with (*g = g5,. We

refer to the invariant ;; as the Fialkow tensor.

3.2.3.2 Computing the Fialkow Tensor

If one repeats the above calculation (of §§§3.2.3.1) removing the assumption that g be a

minimal scale then one arrives at the expression
o 1 9
Fij = Py = piy + HIL; + S H°g;, (3.2.16)

of [128] for the Fialkow tensor. Now by considering the ‘Ricci decomposition’ of the

Gauss equation (3.1.11) when m > 3 one readily obtains that

1

Fij=—= (Wz’NjN + 112 — (3.2.17)

2(m — l)gij

m— 2

I, >

where W,y denotes HfH?WacbdNCNd and f]fj = ]O]iklo]kj (cf. Proposition 3.3.10).

Remark 3.2.3. The manifestly invariant formula (3.2.17) for the Fialkow tensor was first
calculated by the author, and pointed out to Gover and Vyatkin (see [43, 141], cf. [98]).
It was observed by Vyatkin that such an expression seems to have appeared first in the

study [67] of Fialkow (whence the name ‘Fialkow tensor’). |

In the case m = 2 by combining (3.1.17) and (3.2.16) we have
Lok 2

Note that if 3 is a closed surface in Euclidean space then P’ = 0 and F;' = H? — K,
which is a form of the Willmore energy density [146] (the integral of K over X being
the topological invariant 27y (X) by the Gauss-Bonnet theorem). Substituting (2.4.5) for
the ambient curvature and (2.4.7) for the submanifold curvature in the Gauss equation

(3.1.11) and then contracting with g* we obtain

Plg;, = Kg; + IIII;' — 2H I (3.2.19)
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3.2 Conformal Hypersurfaces and Tractors

Tracing (3.2.19) we obtain

2P = 2K + II,;;117 — 4H"
— 2K + I1,;01" — 2H2. (3.2.20)

Thus 1
Fij = Z|H|2g” (3.2.21)

where |IT[2 = IT*11,,.

Remark 3.2.4. (1) The tensor Q"> appearing in [23] is the same as the Fialkow tensor
defined here for any dimension m > 2. In the conformally flat ambient case the above
formulae for the Fialkow tensor can be found in Section 11.4 of [23] by specialising the
formulae there to the case V = Vx (Vi being their notation for N+ = TY).

(2) In [141] the Fialkow tensor for the surface case is defined to be zero. This amounts to
treating the (non normal) induced tractor connection V as intrinsic (cf. [21]). We take
the point of view that V is extrinsic and the normal (or normalised) tractor connection

D is intrinsic. 1

3.2.4 The Tractor Gauss Formula

The standard tractor map also allows us to define a conformal tractor analogue of the

(Riemannian) second fundamental form by the following Gauss-type formula
VP = T5V! + Lig NBo® (3.2.22)

for all sections v/ of £7. The 1-form L takes values in the standard (co)tractor bundle
and is referred to as the tractor second fundamental form (or ‘tractor shape form’). Using

(3.2.12) we obtain the tractor Gauss formula

VP =115 (D’ + 57 ko) + Lig NP, (3.2.23)

Remark 3.2.5. Using T to identify 7Y with A'* we may write the Gauss formula using

index free notation as

Vxv = Dxv+S(X)v +L(X,v)N (3.2.24)
‘tangen?i;l part’ ‘normzf part’
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for any X € X(X) and v € I'(TX), where N denotes the normal tractor. 1

3.2.4.1 Computing the Tractor Second Fundamental Form

By contracting (3.2.22) on both sides with Nz (and using that NpvP = 0implies NgV;v?

equals —vPV;Np) we see that

L;; = 115 V;Np. (3.2.25)
Note that NBV, Nz = 0 since NP Ng = 1, so we also have

L;, 11, = —V,;Np. (3.2.26)
From the formula (2.7.7) for the ambient tractor connection we have that

0
V.NB L | V,N®+ HII (3.2.27)
ViH — Pin

where P,y = I1¢P,,N?, and from this (using (3.2.7)) we have
0

Li; = II;; ;
—ViH + Py

(3.2.28)

ie. L;’ g (0, Jii 7, —V;H + P;y). By substituting the ambient Ricci decomposition

(2.4.5) into the Codazzi-Mainardi equation (3.1.12) and contracting one can show that
1 .o
V.H - Py = ——=D’II;; (3.2.29)
m—1

in any ambient dimension n > 3 [7] (cf. Proposition 3.3.12). From this we see that
II =0 L =0, so the hypersurface Y is totally umbilic if and only if the tractor

second fundamental form is identically zero.
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3.2 Conformal Hypersurfaces and Tractors

3.2.5 Tractor Gauss and Codazzi-Mainardi Equations

Having established the Gauss formula (3.2.23) relating the intrinsic and ambient trac-
tor connections along the hypersurface one can easily compute tractor analogues of the
Gauss and Codazzi-Mainardi equations for the components of the ambient tractor cur-

vature along ..

3.2.5.1 The Tractor Gauss Equation

Let £ denote the curvature of V, defined in terms of the Ricci-type identity

2V[ZV]}U’€ == f%inL’UL (3230)

for all v~ € I'(E¥) where V is coupled with any torsion free affine connection on X.
Let K;j 7k denote the full projection H?H?HIC(HZL) Kavcp of the ambient tractor curvature

along Y. We denote the intrinsic tractor curvature of ¥ by xK=.

Noting the formal similarity between (3.2.22) and the Riemannian Gauss formula (3.1.5)
one obtains that

Kijxr = Rijrr + Litljx — LixLjg (3.2.31)

by arguing formally in the same manner as for the Gauss equation (3.1.11). From the

relationship (3.2.12) between the two connections V and D on 7Y we have
RinL = K,ZZ‘]‘KL + QD[ZSJ]KL —|— SiKL/SjL,L - SjKL/SiL/L (3232)

where the intrinsic tractor connection D of X is coupled with any torsion free affine

connection on Y. Putting these together we obtain the tractor Gauss formula
Remark 3.2.6. In [141] equation (3.2.31) is termed the ‘tractor Gauss equation’. Our trac-
tor Gauss equation (3.2.33) is consistent with [22] in the flat ambient case (and with

§§6.5.2 in the CR case). Similar comments apply to the discussion of the tractor Codazzi-

Mainardi Equation below. 1
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3.2.5.2 The Tractor Codazzi-Mainardi Equation

Let Kijkp denote the projection H?H?H%/ﬁabc p of the ambient tractor curvature along
Y. By arguing formally in the same manner as for the Riemannian Codazzi-Mainardi

equation (3.1.12) one has that
KX pNP = =2V ;L (3.2.34)

where V is coupled with any torsion free affine connection on ¥.. From (3.2.12) we then

have the tractor Codazzi-Mainardi equation
K" pNP = —2D;Ly"™ — 25" L " (3.2.35)

where D is similarly coupled with any torsion free affine connection on X..

3.2.6 Invariants and Invariant Operators

The hypersurface tractor D-operator D; can be extended to act on sections of any ambi-
ent tractor bundle along >; more generally, if £ ® s any ambient tractor bundle and & @

is any submanifold tractor bundle then
Dr: E%w] ® E%s — & @ E%[w] ® % (3.2.36)
is defined by the usual formula

) w(n+2w—2)f‘1"ii
D/f*® & | (n+2w—2)D;f** (3.2.37)
—(D'D; + wp)fﬁ’

where now the Levi-Civita connection D of gy is coupled not only with the hypersurface
(intrinsic) tractor connection, but also with the (pulled back) ambient tractor connection.

Note in particular that this allows us to define iterated ‘derivatives’
Dy---DgN4 (3.2.38)
of the normal tractor N*. One may similarly ‘twist’ the double-D-operator D;; so as

to act on sections of £2[w] ® £2|5. As in the case of conformal manifolds (§§2.7.7) one
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3.2 Conformal Hypersurfaces and Tractors

can now proliferate weighted scalar and tensor invariants by mimicking Riemannian

constructions using corresponding tractor objects (for further details see [141, 83]).

Besides constructing invariants the hypersurface tractor calculus can be used to produce
(extrinsic) differential operators. In [21] the calculus is applied to produce self adjoint
elliptic boundary conditions for the ‘conformally invariant powers of the Laplacian’ [y,
of [81] (these differ from the GJMS operators P of [87] when k£ > 3) for all £ if n is
odd and & < 7 if n is even. Invariant boundary conditions for the Paneitz operator
in 4-dimensions (the k& = § = 2 case) were found in [38], and in n > 4 dimensions
using tractor calculus in [90]. Tractor methods have also been used in attempts to better
understand the structure of the intrinsic GJMS operators (and related ()-curvatures) of
conformal hypersurfaces [98]. In [84] it was shown that on a conformal hypersurface
there exist (extrinsically defined) ‘conformally invariant powers of the Laplacian’ to all

orders.

Remark 3.2.7. In [84] the authors use ideas from tractor calculus developed for the study
of conformally compact Riemannian manifolds [76, 78, 85] which we have not presented
here. (An exposition of these ideas can also be found in [44], with some related de-
velopments.) Using these tools the authors solve formally (along the hypersurface )
the Loewner-Nirenberg boundary problem for a constant mean curvature metric in the
conformal class on M \ ¥ with ¥ as conformal infinity. This supplies ¥ C M with
a canonical ‘defining density’ o € T'(£[1]) (corresponding to a metric g° = 0 2g on
M \ ¥) determined up to order n = dimM after which log terms appear in the formal
solution. The authors are then able to give a ‘holographic’ construction of hypersurface
invariants and invariant operators (meaning that they extract well-defined limits on the
hypersurface ¥ from quantities defined in terms of the metric g° on M \ ¥). The coeffi-
cient of the first log term in the formal expansion for ¢ is termed the ‘ASC obstruction
density’ and is a conformal invariant of the hypersurface. This log term was calculated
already for surfaces in conformal 3-manifolds in [3], and turns out to agree with the well
known Willmore invariant [84]. The ‘ASC obstruction density’ therefore generalises the
Willmore invariant to hypersurfaces in higher dimensions (for other approaches to gen-
eralising the Willmore invariant cf. [89, 141]). The results of [84] have been applied to

the variational theory of conformal hypersurfaces in [70]. 1
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3.3 Higher Codimension Embeddings

Here we show that the conformally invariant calculus for hypersurfaces of [7, 21, 90,
128, 141] extends straightforwardly to the higher codimension case. (This has in large
part already been accomplished in [23].) The key additional input in our approach is
Lemma 3.3.2 which generalises Lemma 3.1.3. We relate this approach to the work of
Burstall and Calderbank [23] which is also based around the conformal standard trac-
tor bundle and connection (though informally termed the ‘Cartan bundle’ and ‘Cartan
connection’). We also introduce the ‘normal tractor form’ of a conformal submanifold
and show that a submanifold is umbilic if and only if the normal tractor form is parallel

along the submanifold.

We now consider conformal embedding ¢ : ¥ < M between conformal manifolds
(X™ ex) and (M™, ¢) with n > m > 2. Note that we now allow (¥, ¢x) and (M", ¢)
to have any signature. (Despite the heading we also allow X to be a hypersurface.) Our
notation is as in §3.1 and §3.2 whenever this makes sense. Note that as before we may

canonically identify the density bundles £[w]|x and Ex[w].

3.3.1 Submanifolds and Scales
3.3.1.1 The Normal Bundle

We denote the normal bundle of ¥ by N¥ C T'M|x. We write N for the orthogonal
projection T'M |y, — NX so that

5 = T1¢ + N¢ (33.1)

along 3. We let NY[w] denote N ® E[w]|s. Note that the ambient conformal metric
induces a bundle metric on NY:[—1]. Given g € ¢ we write V- for the normal Levi-Civita
connection on N (or NX:[w]). On a normal field N this is defined by

VN’ = NbV; N©. (3.3.2)
The curvature R+ of V+ on the normal bundle N¥. is defined by the Ricci-type identity

Vi ViiN® = Rj;¢N* (3.3.3)
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for any normal field N°.

3.3.1.2 The Second Fundamental Form

Fix g € c and let gy, = ¢*g. It is well known that the ambient Levi-Civita connection V

induces the submanifold Levi-Civita connection D,
D,V =TEV,V? (3.3.4)

where V? = TI0V*; the second fundamental form II;;° is then defined by the Gauss
formula
ViVe =DV + IL; V7. (3.3.5)

If N is any section of N'X|w] for any weight w then contracting both sides of (3.3.5) with
N, (and using that N.V¢ = 0) yields

Remark 3.3.1. If f is a defining function for a hypersurface containing 3 in M then one
may take N. = V_f in (3.3.6) to obtain

NIIL;¢ = —II{ TV, V, f. (3.3.7)
This is one way to see that II;;© = II;°, since torsion freeness implies V[,V f = 0. |

Of course in the hypersurface case we may trivialise the (weighted) normal bundle using
a unit normal field so that the second fundamental form becomes a (weighted) bilinear
form (§§3.1.5).

From (3.3.6) it follows that under the conformal rescaling of g to § = Q2¢ the second

fundamental form transforms according to

A

II;;¢ = II;;* — g, TN (3.3.8)

where T, = V, log(). As before we see that il ij¢ = 1), is conformally invariant, and

the mean curvature vector H¢ = %g” II;;¢ transforms according to

H® = H* — TNy (3.3.9)
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3.3.1.3 The Gauss-Codazzi-Ricci Equations

Fixing a metric g € ¢ we have the Gauss, Codazzi, and Ricci equations along ¥ (see, e.g.,

[115]). These may be written, respectively, as
Rijir = Tijat + 29 L Ly, (3.3.10)

RN = 2D 11, (3.3.11)

where the submanifold Levi-Civita connection D is coupled with the normal Levi-Civita
connection V+, and
Rij"sNeNg = Rija + 29" i Ijjva (33.12)

where R;;%, = HfH;chdab.

3.3.1.4 Minimal Scales

Here we generalise Lemma 3.1.3 to higher codimension. Note that by our definition the
mean curvature vector has conformal weight —2, whereas the mean curvature covector

has weight 0.

Lemma 3.3.2. Given any metric gs; € cyx, there exists a metric ¢ € c extending gsx, (i.e.

such that gs, = 1*g) for which the mean curvature vector of > vanishes.

Proof. By a partition of unity argument it suffices to establish the lemma for a neigh-
bourhood in M of any point in 3. Let (2!, ..., 2™) be local slice coordinates centered at
any given point in . Then Y is locally defined by the equations ™! = ... = 2" = (.
Given gy, € cyx let ¢ € c be any metric with (*g = gs. Let H, = g, H" denote the
mean curvature covector of ¥ with respect to g. On the 2! = ... = 2™ = 0 slice of
the coordinate chart the mean curvature covector may be written as H,dz?, using Ein-
stein summation convention with the index a running from 1 to n. Of course H, = 0 for
a=1...m (H,being normal). The functions H, depend only on the first m coordinates,
and we may extend H,, to the whole coordinate patch by extending its components H, to

be independent of ™!, . .. 2" Now let § = ¢*Y g with ¥ = H,z* Then dY = H,dz*

along ¥ since 2%y = 0fora=m+1,...,nand H, = 0fora = 1,...,m. We rewrite
this as V,T = H, along X. From (3.3.9) with T = gV, T = H® we therefore have
H* = H* — H'N¢ = 0. O
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Definition 3.3.3. Extending Definition 3.1.7 we refer to an ambient scale o (or the cor-
responding metric g € c) for which the mean curvature vector identically vanishes as a

minimal scale.

Note that if g and § = ?¢ are both minimal scales then by (3.3.9) T, = V,log ) satisfies

T.N& =0. (3.3.13)

3.3.1.5 The Natural M6bius Structure on Conformally Embedded Surfaces

We define the (normal) induced Mobius structure precisely as in Definition 3.1.5 from the
n = 3 case; the calculation to show that this is well-defined is formally the same as

(3.1.16) in §§3.1.8. Generalising Proposition 3.1.7 we have:

Proposition 3.3.4. If g» € cx and g € c is any metric extending gs, then the Rho-tensor
of gs, is given by
.1
pij = Pjyo + Hell i + §Kgij (3.3.14)

where P;; is the projection H?H?Pab of the ambient Schouten tensor.

Proof. By Lemma 3.3.2 to verify this one simply needs to show that the right hand side
of (3.3.14) is unchanged under conformal rescalings of g to €T g with Y|y, = 0. This is a
straightforward calculation using (2.4.11), (3.3.9) and (3.3.6) with N, = H.. O

Remark 3.3.5. As before, our definition of the normal induced Mobius structure is con-
sistent with the notion of ‘induced conformal Mobius structure’ in [23]. The ‘induced

MGobius structure’ of [23] corresponds to the assignment of the ‘Rho-tensor’

o 1
Pij = H?H?Pab + HoAl;¢ + 5 Hg;; (3.3.15)

to each metric gy, € ¢y, calculated with respect to any metric g € ¢ extending gy; the

‘Rho-tensor’ p;; differs from p;; only by trace (cf. Remarks 2.6.1 and 3.1.6). |

As before we may think of the (normal) induced Mdbius structure as being intrinsic,
so that the conformal embedding ¢ : ¥ < M becomes in a natural sense a Mobius

conformal embedding. We may therefore refer to p;; as the intrinsic Rho-tensor.
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3.3.2 Submanifolds and Tractors
3.3.2.1 The Normal Tractor Bundle

Definition 3.3.6. We define the normal tractor bundle N of X to be the subbundle of
T M|s, which is the image of NY[—1] under the map NY[—1] — T M]|x, given by

0
N®— N4 L Ne@ (3.3.16)
H,N®

where ¢ is any metric in c.

The map (3.3.16) is well-defined by (3.3.9). Note that if g € c is a minimal scale then
(3.3.16) becomes

0

N¢— NAZL | Ne (3.3.17)

0
and by (3.3.13) this gives rise to a well-defined (i.e. g-independent) vector bundle iso-
morphism NY[—1] = N. We alternatively denote N' by A'4. We denote the orthogonal
projection £8]s; — N4 by N4 and the complementary orthogonal projection by

14 = 65 — N2 (3.3.18)

We write V/ for the normal tractor connection on N (or N¥.[w]); on a normal tractor
field N this is defined by
VNNA = NEV,N¢ (3.3.19)

where V; denotes the pullback :*V of the ambient tractor connection. The curvature

kN of the normal tractor connection is defined by the Ricci-type identity
VA VAN = kN, NP (3.3.20)

for any section N¢ of N'C (where V2" is coupled with any torsion free affine connection

on ).

Remark 3.3.7. In the case where M is the conformal n-sphere S™ the normal tractor bun-

dle N may be interpreted in terms of the classical notion of a central sphere congruence
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[18, 138] (cf. [22]). Choosing a metric g € c at any point x € X there is a unique totally
umbilic m-sphere S, in S™ which is tangent to ¥ at  and whose mean curvature vector
agrees with that of 3 at x. By (3.3.9) the sphere S, does not depend on the choice of
g € c. Realising the conformal n-sphere as the projectivisation PC of the null cone C in
R"™+11 (§2.5) the m-sphere S, C S™ determines a subcone of C which is the intersection
of C with a unique (m + 2)-dimensional subspace V, in R""!!. The orthogonal com-
plement N of V, is an (m + 2)-dimensional subspace in 7,S". Identifying 7,S" with
R™*11 one obtains from N;- N C an m-sphere S/, C S™. The fiber of the normal tractor
bundle of S/, at x is clearly N, in other words S/, has matching tangent space and mean

curvature vector with 3 at x (for any g € ¢). Thus S/, =S, and N} = V. 1

3.3.2.2 Relating Tractors

Using Lemma 3.3.2 we now generalise Theorem 3.2.2. (The following theorem alterna-

tively follows from [23], Sections 9.3 and 11.3.)

Theorem 3.3.8. The submanifold standard tractor bundle T'% is canonically isomorphic
to the orthogonal complement N'* of the normal tractor bundle by a metric and filtration

preserving bundle isomorphism. The isomorphism T : TS — Nt is given explicitly by

o

195 ; 5 AY

v = | ot — v = u® (3.3.21)
P P

where u® = 11¢yu" and g is any minimal scale extending gs.
Proof. The proof is as in the hypersurface case, with (3.3.13) replacing (3.1.14). O]

As in the hypersurface case we refer to 7t as the standard tractor map.

Remark 3.3.9. Relaxing the condition that g be minimal the map (3.3.21) becomes

o g
4 ms
VTE | s P E | e —He | (3.3.22)
p p— %HGHCLU

This can be easily checked using (3.3.9).
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3.3.2.3 Relating Tractor Connections on 7%

As in §§3.2.3 we define the connection V on 7Y by
V! =I5V, (TE0") (3.3.23)

for any submanifold standard tractor field v’/. Computing with respect to a minimal
scale g € ¢ (and gy, = ¢*g) we obtain the explicit expression (3.2.10) for V exactly as in

the hypersurface case. Thus if D is the submanifold intrinsic tractor connection then
Viv! = Div? +S;7 o (3.3.24)

where

Sik =2(Py — piy) 2, X

X (3.3.25)

with respect to ¢ € ¢ minimal and gy, = ¢*g. (Here X denotes the intrinsic canonical
tractor and Z§ the Z-splitting tractor of gy). Since S;;x and ZZ[{]X K] are manifestly

conformally invariant we see that
Fij=Py;—py (3.3.26)

does not depend on the choice of pair (g, :*g) with ¢ € ¢ minimal. As in the hypersurface

case we term the invariant F;; the Fialkow tensor.

3.3.2.4 Computing the Fialkow Tensor

Here we relate the Fialkow tensor to the ambient Weyl curvature and the trace free part

of the second fundamental form, as in §§§3.2.3.2.

Proposition 3.3.10. In the case m > 3 the Fialkow tensor is given by

1

Wac Nachd
Fij=— (W@-cdecd o

2(m —1)

o . ITHe T .
m— 9 gi; + Hz'kCUjkc - —klg ) (3.3.27)

2(m — 1)7Y

where Wi ;q denotes the projection H?H?Wacbd of the ambient Weyl tensor and Neb —

Nag®. In them = 2 case

Fij =~ f[‘2gzj (3.3.28)

where |II|? = I, IT%°,
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Proof. We give the proof for the m > 3 case. The m = 2 case is a straightforward
generalisation of the argument detailed in §§§3.2.3.2.

For simplicity we work with a minimal scale g € ¢ and g5, = ¢*g. Thus I = II. Apply-
ing the submanifold and ambient Ricci decompositions (2.4.5) in the Gauss equation we

obtain

Wiji + Pi@j1 — Pir@a — Pugji + PjGa = Wijk + PinGj0 — PikGa — PuGji + Pjt9ik
+ Gog i 1" — g g 11 11

where W;;;; denotes the full projection H;-IH?H;H?WQM of the ambient Weyl curvature,

P = H?H?Pab, and w;ji; denotes the submanifold intrinsic Weyl tensor. Applying the

map Tjji ﬁ (Tikjk - Q(Tm’“—lfll)gij> on both sides of the above display we get

m—2

1 d . Waepg N2PNed . 1 °r ke I+ .
= <W/icdec + %9@) + Py =pij+ 75 (Ili U jre — Q(m_'fg gq)
noting that gleV,»kﬂ = gleZHleicjd =—-N CdWicjd since W4 is trace free, and simi-

larly WK = W,,qN?®N<, The result then follows from (3.3.26). O

Remark 3.3.11. As in the hypersurface case, if one repeats the calculation of (3.2.10)

without the restriction that ¢ € ¢ be a minimal scale, one obtains the more general

formula )
‘Fij = Pij — Dij + I—Ic[[ijC + 5 chgij (3.3.29)
for the Fialkow tensor in terms of ¢ and gy, = ¢*¢ (which holds for m > 2). 1

3.3.2.5 The Tractor Gauss Formula

We define the tractor second fundamental form IL by the Gauss-type formula
Vol =TIEV07 + LigPo® (3.3.30)

for all sections v’ of £7. The 1-form L takes values in 7*X ® N where T*X = (TX)*.
Using (3.3.24) we obtain the tractor Gauss formula

Vi =107 (Dyv? + S7 ko) + Lig "o (3.3.31)
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3.3.2.6 Computing the Tractor Second Fundamental Form

By contracting (3.3.30) on both sides with Nz where N4 is any section of the normal
tractor bundle we see that
NpL;;® = ~115V;Np. (3.3.32)

This formula can be used to give an explicit expression for L;; in terms of a choice of

ambient metric. For simplicity we compute with respect to a minimal ambient scale.

Proposition 3.3.12. Let g € c be a minimal scale and gs, = 1*g. Computing with respect

to g and gs, we have

o . 1 .o
Li,© = 11,2528 + —— (Dfllijc - H?WabdeN“eNCd> X, Z¢ (3.3.33)

m —

where ZS and Z'; are the respective Z-splitting tractors of g and gs,, X j is the submanifold

intrinsic canonical tractor, and N% = g‘leg.

Proof. Let N® be a weight —1 normal vector field and let N4 = N®Z. Then by (2.7.7)
(or by (2.7.11)) one has V;N? = (V;N*)ZP — 11¢P,.N¢X 5 so that

N§V;Ne = TI5(V;N.) Z% — TI! P,.N°X ;
= —NII,;7% —TIYP,.N°X (3.3.34)

using (3.3.6). Note that [ = 7 by minimality. Since (3.3.34) and (3.3.32) hold for all such
normal fields (noting that L; JCHg = 0 and 7;;°II§ = 0) we have

Li,¢ = I1,,752C + 2 P,yN“ X, Z€ . (3.3.35)

Now by substituting the ambient Ricci decomposition (2.4.5) into the Codazzi equation
(3.3.11) we obtain
Wi Ne + 2P, N¢ = 2D I,

where W;;%, = HngHﬁWabcd, P,. = 1I? P,., and the Levi-Civita connection D of gy, is

coupled with the normal Levi-Civita connection. Contracting with ¢** we obtain
VVijCiNg —(m— 1)chNg = Di[jijd = Dif]ijd- (3.3.36)

Noting that WijCi = —H?Wabce ? since the W4 the result follows from (3.3.35) and
(3.3.36). O
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3.3.2.7 Decomposing the Ambient Tractor Connection

Along ¥ we may decompose the ambient standard tractor bundle 7 M as

TMls=TX®N. (3.3.37)

Ifv € T(TM|s)is given by (v", v1) with respect to this decomposition then by (3.3.31),
(3.3.32), and (3.3.19) we have

[ Dx+5(X) —L(X)T Y\ [ o
wan (PO T (1) 5338

for any X € X(X), where L(X)7 is the transpose of IL.(X) with respect to the ambient

tractor metric. We therefore write

D S —LT Tz
'V = N on & . (3.3.39)
L vV N

Remark 3.3.13. In [23] Burstall and Calderbank define a ‘Mdbius reduction’ to be a rank
(m + 2) subbundle V' of T M |5, containing the rank m + 1 subbundle spanned by the
canonical tractor X and its covariant derivatives in submanifold tangential directions
(with respect to the tractor connection coupled with the Levi-Civita connection of some,
equivalently any, metric g € ¢). One then decomposes the ambient tractor connection

along > as (using notation similar to the above)

Vo (LY V
L*V:(v (L") ) on ®
%

LV vV L

The definition of ‘Mdbius reduction’ implies that LY;CX” = 0 and LY,C X = 0, so
that there is a well-defined projection II}¢ = LY,¢Z H Z¢ of LY;¢. Burstall and Calder-

bank then define the unique ‘canonical Mobius reduction’ Vs by imposing an algebraic

0 —(ILY)T
LY 0

which they denote NV (see Section 9.3 of [23]) similar to the algebraic normalisation

normalisation condition on

condition imposed on the curvature of the normal Cartan/tractor connection [33, 27].
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This algebraic normalisation condition amounts to the requirement that g"/ 11} = 0.
Since by Proposition 3.3.12 the tractor second fundamental form has invariant projection
1T GC =1L 7 JJ ZCC the ‘canonical Mobius reduction’ Vs is the same as the orthogonal

complement N+ of the normal tractor bundle. 1

3.3.2.8 Tractor Gauss-Codazzi-Ricci Equations

By writing the curvature (*K of t*V as

D+S -LT D+S -LT
UK = A 3.3.40
( L W ) ( L W (3340
one may easily obtain conformal tractor analogues of the Riemannian Gauss, Codazzi,

and Ricci equations (cf. [23], Equations (9.13a) and (9.13b)). By evaluating (3.3.40) on

(v',0) one obtains (from the 73 component) the tractor Gauss equation
ki1 = K555 L +2DuS; " 1 + 28" 1S~ 1 — 21" Ly e (3.3.41)

where Hin L = HfH?/ﬁ;abC Dﬂg 1P, From the N component one obtains the tractor

Codazzi equation
ki pNp = —QD[iLj]KE - 25[i|KLL|j]LE (3.3.42)

(from the N component) where K, p = H;?H?Hf(/ﬁabc p and D is coupled with the nor-
mal tractor connection (and also with any torsion free affine connection on ¥). Applying

(3.3.40) to (0, v') and evaluating the A/ component gives the tractor Ricci equation
’%ijABNgN[B) = K:/\i[j “p+ 2L[iKch]KD (3.3.43)

where k;;%p = H?H?/ﬁ;abc p- Evaluating the 7% component gives the tractor Codazzi

equation again.

3.3.2.9 Invariants and Invariant Operators

One may extend the submanifold tractor-D operator D; to act on sections of £%[w]® & ¢
where £%[w] is any weighted submanifold tractor bundle and £? is any ambient tractor
bundle by using the ambient tractor connection (precisely as in the hypersurface case

§§3.2.6). Working locally if necessary we assume the normal bundle of ¥ (equivalently
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the normal tractor bundle) to be oriented. We define the normal tractor form Na,...a,

where d = n — m to be the unique section of £4,...4,|» satisfying
]\7141...Ad'UA1 =(0forallv e N* and NAI_._AdNAl"'Ad =1 (3.3.44)

which is compatible with the orientation of the normal bundle. The normal tractor form
may be expressed in terms of a local orthonormal frame N{!,... N for the normal
tractor bundle as N41~4d = Nl[A1 e N;d]. The normal tractor form therefore encodes

the normal tractor bundle in terms of a section of £4,...4, 5.

It is clear that proceeding along the lines of the hypersurface case (see §§3.2.6 and the
references therein) replacing N* with N4144 one obtains a straightforward and very
general construction of submanifold conformal invariants. Specific applications of the
submanifold tractor calculus are being developed in current joint work with A. R. Gover.
In particular we are seeking to develop a ‘holographic’ approach to conformal subman-
ifold theory extending recent developments in the hypersurface case [84, 70]. This is
partly motivated by [89, 86] which gives an alternative approach to the study of (low

order) conformal invariants of submanifolds using ‘Poincaré-Einstein holography’.
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4 Introduction to CR Embedded
Submanifolds of CR Manifolds

Hypersurface type CR geometry is motivated by the biholomorphic equivalence prob-
lem for complex domains, and is rooted in the result of Poincaré that the analogue of
the Riemann mapping theorem fails for domains of complex dimension greater than one
[120]. On the side of geometry key pioneering work was developed by Cartan, Tanaka,
and Chern-Moser, in which it was seen that the structure is invariantly captured by a
prolonged system now known as a Cartan connection [37, 41, 129]. The fundamental
role of CR geometry in analysis was significantly strengthened by the result of Feffer-
man that any biholomorphic map between smoothly bounded strictly pseudoconvex do-
mains in C"*! extends smoothly to the boundary, and so induces a CR diffeomorphism
between the boundaries [61]; so Poincaré’s result may be recovered by a simple count-
ing of invariants argument (that was in fact proposed in [120]). This brought to the fore
the role of CR invariants as tools for distinguishing domains. Hypersurface type CR
geometry is an important example in a class of structures known as parabolic geome-
tries that also includes conformal geometry, projective differential geometry, and many
other structures. Seeking to determine the asymptotic expansion of the Bergman kernel,
Fefferman initiated a programme for the explicit construction of CR, and more widely
parabolic, invariants [63]. There has subsequently been much interest and progress on
this [8, 92, 75].

The study of CR embeddings and immersions (in CR manifolds) is also closely connected
with the study of holomorphic mappings between domains. Although open questions
remain about when proper holomorphic mappings between domains in C"*! and C"*!
extend smoothly [14, 143], if a holomorphic map between smoothly bounded domains
does extend in this way then it induces a CR map between the boundaries. So again CR
invariants of the boundaries play a fundamental role. The Chern-Moser moving frames
approach to the CR Cartan connection has been effectively applied to the study of CR

embeddings and immersions in the important work of Webster [144] on CR rigidity for
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real codimension two embeddings. This theme is significantly extended in the article
[54] of Ebenfelt, Huang and Zaitsev where rigidity is established when the codimension
is not too large. These works have strong applications to the study of proper holomor-
phic maps between balls and to the study of Milnor links of isolated singularities of
analytic varieties [143, 54]. The Chern-Moser approach has also been applied in related
work generalising the Schwarz reflection principle to several complex variables, where

invariant nondegeneracy conditions on CR maps play a key role [57, 102].

Despite the strong specific results mentioned, and geometric studies by several authors
(47,48, 49, 111, 113, 133], a significant gap has remained in the general theory for CR em-
beddings and immersions. A basic general theory should enable the straightforward con-
struction of local CR invariants, but in fact to this point very few invariants are known.
In particular using existing approaches there has been no scope for a general theory
of invariant construction, as the first step in a Fefferman-type invariants programme cf.
[63]. Closely related is the need to construct CR invariant differential operators required
for geometric analysis. Again no general theory for their construction has been previ-
ously advanced. The aim of this article is to close this gap. We develop a general CR
invariant treatment that on the one hand is conceptual and on the other provides a prac-
tical and constructive approach to treating the problems mentioned. The final package
may be viewed as, in some sense, an analogue of the usual Ricci calculus approach to
Riemannian submanifold theory, which is in part based around the Gauss formula. Our
hope is that this may be easily used by analysts or geometers not already strongly famil-
iar with CR geometry; for this reason we have attempted to make the treatment largely
self contained. The theory and tools developed here may also be viewed as providing a
template for the general problem of treating parabolic submanifolds in parabolic geome-
tries. This is reasonably well understood in the conformal setting [7, 23, 78, 90, 128, 141]
but little is known in the general case. The CR case treated here is considerably more

subtle than the conformal analogue as it involves dealing with a non-maximal parabolic.

4.1 CR Embeddings

Abstractly, a nondegenerate hypersurface-type CR manifold is a smooth manifold A/%"+!
equipped with a contact distribution 4 on which there is a formally integrable complex
structure J : H — H. We refer to such manifolds simply as CR manifolds. A CR mapping

between two CR manifolds is a smooth mapping whose tangent map restricts to a com-
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plex linear bundle map between the respective contact distributions. A CR embedding is

a CR mapping which is also an embedding.

Typically in studying CR embeddings one works with an arbitrary choice of contact form
for the contact distribution in the ambient manifold (ambient pseudohermitian structure).
The ambient contact form then pulls back to a pseudohermitian contact form on the sub-
manifold (assuming transversality when the ambient manifold has large signature). As-
sociated with these contact forms are their respective Tanaka-Webster connections, and
these can be used to construct pseudohermitian invariants of the embedding. The task
of finding some, let alone all, pseudohermitian invariants which are in fact CR invariants
(not depending on the additional choice of ambient contact form) is very difficult, unless
one can find a manifestly invariant approach. We give such an approach. Our approach
uses the natural invariant calculus on CR manifolds, the CR tractor calculus. In the CR
tractor calculus the standard tractor bundle and normal tractor (or Cartan) connection play
the role analogous to the (holomorphic) tangent bundle and Tanaka-Webster connection

in pseudohermitian geometry.

4.2 Invariant Calculus on CR Manifolds

Due to the work of Cartan, Tanaka, and Chern-Moser we may view a CR manifold
(M, H,J) as a Cartan geometry of type (G, P) with G a pseudo-special unitary group
and P a parabolic subgroup of GG. The tractor bundles are the associated vector bundles
on M corresponding to representations of (7, the standard tractor bundle correspond-
ing to the standard representation. The normal Cartan connection then induces a linear
connection on each tractor bundle [27]. In order to relate the CR tractor calculus to the
Tanaka-Webster calculus of a choice of pseudohermitian contact form we work with the
direct construction of the CR standard tractor bundle and connection given in [79]. This

avoids the need to first construct the Cartan bundle.

To fully treat CR submanifolds one needs to work with CR density line bundles, and
their Tanaka-Webster calculus. From the Cartan geometric point of view the CR density
bundles £ (w, w’) on M?"*! are the complex line bundles associated to one dimensional
complex representations of P, and include the canonical bundle % as £(—n —2,0). The
bundle £(1,0) is the dual of an (n + 2)" root of ¥ and

!
W

E(w,w') =E(1,0)" ® £(1,0)
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where w — w' € 7Z (and w, w’ may be complex). Since the Tanaka-Webster connection

acts on the canonical bundle it acts on all the density bundles.

4.3 Invariant Calculus on Submanifolds and Main
Results

We seek to extend the CR tractor calculus to the setting of transversally CR embedded
submanifolds of CR manifolds in order to deal with the problem of invariants. Our ap-
proach parallels the usual approach to Riemannian submanifold geometry; of central

importance in the Riemannian theory of submanifolds is the second fundamental form.

4.3.1 Normal tractors and the tractor second fundamental
form

One way to understand the Riemannian second fundamental form is in terms of the
turning of normal fields (i.e. as the shape operator). To define a tractor analogue of the

shape operator one needs a tractor analogue of the normal bundle for a CR embedding
L E2m+1 N M2n+1.

In §§6.2.1 we use a CR invariant differential splitting operator to give a CR analogue of
the normal tractor of [7] associated to a weighted unit normal field in conformal subman-

ifold geometry. It turns out that this a priori differential splitting gives a canonical bundle

isomorphism between the Levi-orthogonal complement of 71°% in 7" M|y, tensored
with the appropriate ambient density bundle, and a subbundle V of the ambient standard
tractor bundle along > (Proposition 6.2.3). The ambient standard tractor bundle carries a
parallel Hermitian metric and the normal tractor bundle N is nondegenerate since 3 and
M are required to be nondegenerate, so the ambient tractor connection induces connec-
tions VA and VN on A and N+ respectively. We therefore obtain (§§6.5.2, see also

§§6.2.1, §§6.2.5, and §§6.3.3):

Proposition 4.3.1. The ambient standard tractor bundle T M splits along > as N+ ® N,

and the ambient tractor connection V splits as
vVt L N
V'V = on TMls= &

N
L V N
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where LT(X) is the Hermitian adjoint of L(X) for any X € X(%).

The Hom(N, N't) valued 1-form L™ on ¥ is the CR tractor analogue of the shape op-
erator, and we term L the CR tractor second fundamental form. The ambient standard
tractor bundle can be decomposed with respect to a choice of contact form. Here it is
sensible to choose an ambient contact form whose Reeb vector field is tangent to the
submanifold (called admissible [54]). We give the components of I with respect to an
admissible ambient contact form in Proposition 6.3.6 (see also Proposition 6.2.15). The
principal component of L is the CR second fundamental form II,,,” of > in M, which

appears, for example, in [54].

4.3.2 Relating submanifold and ambient densities and tractors

Another way to understand the Riemannian second fundamental form is in terms of the
normal part of the ambient covariant derivative of a submanifold vector field in tangen-
tial directions. This is achieved via the Gauss formula. In the Riemannian Gauss formula
a submanifold vector field is regarded as an ambient vector field along the submanifold
using the pushforward of the embedding, which relies on the tangent map. In order to
give a CR tractor analogue of the Gauss formula one needs to be able to pushforward
submanifold tractors to give ambient tractors along the submanifold — one looks for a

CR ‘standard tractor map’. One might hope for a canonical isomorphism
TS — N+

between the submanifold standard tractor bundle and the orthogonal complement of the
normal tractor bundle (these having the same rank). In the conformal case there is such
a canonical isomorphism [22, 78, 90], however in the CR case it turns out that there is

no natural ‘standard tractor map’ 7% — 7 M in general.

The problem has to do with the necessity of relating corresponding submanifold and
ambient CR density bundles. It turns out that these are not isomorphic along the sub-
manifold, but are related by the top exterior power of the normal tractor bundle N.
Rather than seeking to identify these bundles we therefore define the ratio bundles of

densities
R(w,w'") = E(w,w')|s @ Es(w, w')*

where £(w, w’)|x is a bundle of ambient CR densities along ¥ and Es,(w, w’)* is dual to
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the corresponding submanifold intrinsic density bundle. We obtain (in §§6.3.2, see also

§§6.1.11):

Proposition 4.3.2. Given a transversal CR embedding 1 : ¥*™1 — M?"*! we have a

canonical isomorphism of complex line bundles
R(m +2,0) = AN

where d = n — m. The complex line bundles R(w,w'") therefore carry a canonical CR

invariant connection V® induced by V.

The bundles R(w,w) are canonically trivial and the connection V™ on these is flat.
The bundles R(w, w’) are therefore normed, and V* is a U(1)-connection. Using the
pseudohermitian Gauss and Ricci equations (§§§6.1.7.1 and §§§6.1.7.3) we calculate the
curvature of V* (§§6.3.2, see also §§§6.1.11.1, and in particular Lemma 6.1.42) and see
that this connection is not flat in general when w # w’. Thus rather than identifying

corresponding density bundles we should keep the ratio bundles R (w, w’) in the picture.

We are then able to show (from Theorem 6.2.6 combined with Definitions 6.2.8, 6.2.11,
6.2.13 and §§6.3.3):

Theorem 4.3.3. Let . : X*™ ! — M?"*! be a transversal CR embedding. Then there is a

canonical, metric and filtration preserving, bundle map
TR TS = TM|y @ R(1,0)

over ., which gives an isomorphism of TS with N* @ R(1,0). Moreover, the submanifold

and ambient tractor connections are related by the tractor Gauss formula
Vxtsu = to(Dxu+ S(X)u) + L(X) e

forallu € T(TX) and X € X(X), whereS is an End(TX) valued 1-form on 3, D is the
submanifold tractor connection, V is the (pulled back) ambient tractor connection coupled

with V®, and the pushforward map v, is defined using using T ~..

By Proposition 4.3.1 the tractor Gauss formula implies

VN L = u(Dxu+S(X)u)
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forall u € T(TX) and X € X(X), where VY is coupled with VR. The difference
tractor S measures the failure of the ambient tractor (or normal Cartan) connection to
induce the submanifold one. The components of S with respect to an admissible ambient
contact form are given in (6.2.19), (6.2.20), and (6.2.21) (in §§6.3.3 it is noted that these
formulae hold in arbitrary codimension and signature). The principal component of S
is the difference between ambient and submanifold pseudohermitian Schouten tensors
P, — pus for a pair of compatible contact forms (Definition 6.1.2); using the pseudoher-
mitian Gauss equation (§§§6.1.7.1) one can give a manifestly invariant expression for
this tensor involving the ambient Chern-Moser tensor and the CR second fundamental

form (see Lemma 6.1.42 for the case m = n — 1).

4.3.3 Constructing invariants

In §6.4 we develop both the theoretical and practical aspects of constructing invariants
of CR embeddings. We deal with the geometric part of the invariant theory problem,
using the results stated above. In particular, in §§6.4.1 we demonstrate that the tractor
second fundamental form L, the difference tractor S, and the submanifold and ambient
tractor (or Cartan) curvatures are the basic invariants of the CR embedding, in that they
determine the higher jets of the structure (Proposition 6.4.2). By applying natural dif-
ferential operators to these objects and making suitable contractions, one can start to
proliferate local invariants of a CR embedding. In practice a more refined construction
is useful. The algebraic problem of showing that one can make all invariants of a CR
embedding, suitably polynomial in the jets of the structure, is beyond the scope of this
article; despite much progress on the analogous problems for CR or conformal manifolds,
these are still far from being completely solved (see, e.g., [8, 92]). We therefore turn in
§§6.4.4 to considering practical constructions of invariants. In §§§6.4.4.1 and §§§6.4.4.2
we develop a richer calculus of invariants than that presented for theoretical purposes
in §§6.4.1 and §§6.4.2. In §§§6.4.4.3 we illustrate this calculus with an example of an
invariant section Z of £x(—2, —2) given by a manifestly invariant tractor expression
(6.4.10) involving L. ® L; we show how to calculate Z in terms of the pseudohermitian

calculus of a pair of compatible contact forms, yielding the expression (6.4.16).
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4.3.4 A CR Bonnet theorem

With the setup of Proposition 4.3.1 and Theorem 4.3.3 established it is straightforward
to give CR tractor analogues of the Gauss, Codazzi and Ricci equations from Riemannian
submanifold theory. These are given in §§6.5.2. Just as in the Riemannian theory, if we
specialise to the ambient flat case the (tractor) Gauss, Codazzi and Ricci equations give
the integrability conditions for a Bonnet theorem or fundamental theorem of embed-
dings. We have (Theorem 6.5.5):

Theorem 4.3.4. Let (X*™"! H_ J) be a signature (p, ¢) CR manifold and suppose we have
a complex rank d vector bundle N on X equipped with a signature (p', ¢') Hermitian bundle
metric hN' and metric connection V. Fix an (m +2)"" root R of A°’N, and let V™ denote
the connection induced by V. Suppose we have a N' @ T*¥ @ R valued 1-form L which
annihilates the canonical tractor of > and an A°Y. valued 1-form S on ¥ such that the
connection

V=

D
N
L v N

is flat (where D is the submanifold tractor connection), then (locally) there exists a transver-

(D@VR+S —LT) TR
on

sal CR embedding of ¥ into the model (p + p’, q + ¢') hyperquadric H, unique up to auto-

morphisms of the target, realising the specified extrinsic data as the induced data.

4.4 Geometric Intuition

In the case where M = S?"*! we can give a clear geometric interpretation of the normal
tractor bundle N of a CR embedded submanifold, or rather of its orthogonal complement
N+, In the conformal case a similar characterisation of the normal tractor bundle may

be given via the notion of a central sphere congruence (see [22]).

One may explicitly realise the standard tractor bundle of S***! by considering the sphere
as the space of isotropic lines in the projectivisation of C"*!; if £ is a complex null
line then a standard tractor at the point £ € S*"! is a constant vector field along ¢ in
the ambient space C"*1!. The tractor parallel transport on S***! then comes from the
affine structure of C"™!! and the standard tractor bundle is flat. Given a point x in our
CR embedded submanifold X*"*1 C S§?"*! there is a unique totally chain CR subsphere

S, of dimension 2m + 1 which osculates . to first order at . If we view S?"*! as the
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(C]P>n+l

]P;C o S2n+ 1

Figure 4.4.1: The orthogonal complement A/ of the normal tractor bundle when M =
S2n+1.

unit sphere in C"! then S, is the intersection of S***! with the (m + 1)-dimensional
complex affine subspace of C""! generated by the tangent space to Y at x. Viewing
S?"*! instead as a projective hyperquadric the sphere S, with 2 = £ is the image under
the projectivisation map of the intersection of the cone C of isotropic lines in C" 1! with

a non-null complex (m + 2)-dimensional subspace N;".

In this case the rank d = n — m normal tractor bundle N may be viewed as giving a
Gr(d, C"™11) valued CR analogue of the Gauss map of an embedded Riemannian sub-

manifold in Euclidean space.

4.5 Structure

We aim to produce a calculus of invariants for CR embeddings which is both simple and
practical, and yields a machinery for constructing local CR invariants with formulae in
terms the psuedohermitian (Tanaka-Webster) calculus. We thus emphasise heavily the
connection between the CR tractor calculus and the pseudohermitian calculus of a fixed
contact form. Although our final results have a simple interpretation in terms of tractor
calculus, they are often established though explicit calculation using pseudohermitian
calculus. For this reason we have devoted the first part of the article to giving a detailed
exposition of the Tanaka-Webster calculus associated to a choice of pseudohermitian
contact form (§5.2) and an explicit description of the CR tractor calculus in terms of
this pseudohermitian calculus (§5.3). Although the results of §5.2 may largely be found

elsewhere in the literature, proofs are often merely indicated; collecting these results,
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and establishing them by proof, provides the essential reference for verifying the CR in-
variance of our later constructions. These results are immediately applied in §5.3 where
we present the CR tractor calculus, using the explicit description of the standard tractor
bundle and normal connection given in [79]. For the purpose of invariant theory we in-
troduce some CR analogues of parts of the conformal tractor calculus not yet developed
in the CR case.

In §6.1 we discuss the pseudohermitian geometry of CR embeddings, working in particu-
lar with pairs of compatible ambient and submanifold contact forms (see Definition 6.1.2).
We also discuss in this section the relationship between the submanifold and ambient CR
density bundles. For simplicity we initially treat the minimal codimension strictly pseu-
doconvex case, generalising to nondegenerate transversal CR embeddings of arbitrary

codimension between CR manifolds of any signature in §6.3.

In §6.2 we develop a manifestly CR invariant approach to studying CR submanifolds
using tractor calculus. Again we restrict initially to the minimal codimension strictly
pseudoconvex case, generalising in §6.3. In §6.4 we apply this calculus to the basic geo-
metric problems of invariant theory for CR embeddings, addressing practical construc-
tions of invariants in §§6.4.4. In §6.5 we prove a CR analogue of the Bonnet theorem
(Theorem 6.5.5).
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5 CR Geometry

5.1 Abstract CR Manifolds

A CR manifold of hypersurface type is a triple (M?" ™! H, J) where M is areal (2n+1)-
dimensional manifold, H is a corank one distribution in 7'M, and J is an almost complex

structure on H satisfying the integrability condition
(X, Y] - [JX, JY|+ J([JX,) Y]+ [X,JY]) =0

for any two vector fields X,Y € I'(H). The almost complex structure .J extends by
complex linearity to act on H ® C, and since J? = —id the eigenvalues of .J must be =-i.

It is easy to see that J acts by ¢ on the bundle
TY°M ={X—-iJX : X€e HYCH®C

and by —i on the bundle 7'M = T19). Moreover one has that T*"°M NT% M = ()
and
HeC=T"M®T"" M.

From the integrability condition imposed on J it follows that TVYM is formally inte-

grable, that is
[TOM, T M] Cc T M

where here we have used the same notation for the bundle 7"°M and its space of sec-

tions.

To simplify our discussion we assume that )M is orientable. Since H carries an almost
complex structure it must be an orientable vector bundle, thus the annihilator line bundle
H+ C T*M must also be orientable (so there exists a global section of H+ which is
nowhere zero). We say that the CR manifold of hypersurface type (M?"*! H,J) is

nondegenerate if H is a contact distribution for M, that is, for any global section § of H+
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which is nowhere zero the (2n 4 1)-form 6 A df" is nowhere zero (this is equivalent to
the antisymmetric bilinear form df being nondegenerate at each point when restricted
to elements of H). If H is a contact distribution then a global section @ of H* which is
nowhere zero is called a contact form. We assume that the line bundle H* has a fixed
orientation so that we can talk about positive and negative elements and sections. We

also assume that (M?"*! H, J) is nondegenerate.

Given a choice of contact form 6 for (M, H, J) we refer to the quadruple (M, H, J, 0) as
a (nondegenerate) pseudohermitian structure. Clearly for any two positive contact forms
6 and 0 there is a smooth function T € C (M) such that 0 = €Y6. One can there-
fore think of the CR manifold (M, H, J) as an equivalence class of pseudohermitian
structures much as we may think of a conformal manifold as an equivalence class of
Riemannian structures. In order to make calculations in CR geometry it is often conve-
nient to fix a choice of contact form 6, calculate, and then observe how things change
if we rescale 6. We will take this approach in the following, working primarily in terms
of the pseudohermitian calculus associated with the Tanaka-Webster connection of the
chosen contact form 6. In order to make real progress however we will need to make use
of the CR invariant tractor calculus [79] as a tool to produce CR invariants and invariant

operators which can be expressed in terms of the Tanaka-Webster calculus.

5.1.1 CR Densities

On a CR manifold (M?"*! H,.J) we denote the annihilator subbundle of T1°M by
A®'M C CT*M (where by CT* M we mean the complexified cotangent bundle). Sim-
ilarly we denote the annihilator subbundle of 7%'A by A'°M < CT*M. The bundle
AYO M has complex rank n + 1 and hence #" = A" (AYM) is a complex line bundle
on M. The line bundle . is simply the bundle of (n + 1,0)-forms on M, that is

H =AM = {we A" M Viw=0forall V € TM},

and is known as the canonical bundle. We assume that .# admits an (n + 2)'" root
€(—1,0) and we define £(1,0) to be £(—1,0)*. We then define the CR density bundles
E(w,w') tobe £(1,0)* @ £(1,0) where w — w' € Z.

Remark 5.1.1. The assumption that .7~ admits an (n + 2)" root is equivalent to saying
that the Chern class ¢; () is divisible by n + 2 in H?(M,Z). Note that if M is a real

hypersurface in C"*! then %  is trivial and therefore admits such a root. 1
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Note that the bundles £(w, w’) and £(w’, w) are complex conjugates of one another. In
particular, each diagonal density bundle £(w, w) is fixed under conjugation. We denote
by £(w, w)g the real line subbundle of £(w, w) consisting of elements fixed by conjuga-

tion.

5.1.2 Abstract Index Notation

We freely use abstract index notation for the holomorphic tangent bundle 7Y M, denot-
ing it by £¢, allowing the use of lower case Greek abstract indices from the start of the
alphabet: a, 3,7, 9, €, o, B, and so on. Similarly we use the abstract index notation £*
for T%! M. We denote the dual bundle of £ by £, and the dual bundle of £ by &,. Ten-
sor powers of these bundles are denoted by attaching appropriate indices to the &, so, for
example, we denote E*®Ep by £%5 and £, REZRE, by £, 5.,. As usual we attach abstract
indices to the elements or sections of our bundles to show which bundle they belong to,
so a section V' of T1°M will be written as V' and a section w of (T"°M)* @ T%'M
will be denoted by ws". The tensor product of V' and w,yB is written as Vo‘wwg , and
repeated indices denote contraction, so w(V') is written as Vew,”. We indicate a tensor
product of some (unweighted) complex vector bundle V — M with the density bundle
E(w,w") by appending (w,w’), i.e. V(w,w') =V @ E(w,w’).

We may conjugate elements (or sections) of £ to get elements (or sections) of £%: we

write

Ve =Va

to say that VV* is the conjugate of V. This extends in the obvious way to (weighted) ten-

sor product bundles; note that the complex conjugate bundle of £,” (w, w') is £5° (v, w).

We will occasionally use abstract index notation for the tangent bundle, denoting it by

£ and allowing lower case Latin abstract indices from the start of the alphabet.

5.1.3 The Reeb Vector Field

Given a choice of pseudohermitian contact form 6 for (M, H, J) there is a unique vector
field T' € X(M) determined by the conditions that §(7') = 1 and 7,df = 0; this T is
called the Reeb vector field of 6. The Reeb vector field gives us a direct sum decomposition
of the tangent bundle

TM = H®RT
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and of the complexified tangent bundle
CTM =T""M o T M @ CT, (5.1.1)

where RT (resp. CT') denotes the real (resp. complex) line bundle spanned by 7'. Dually,
given 0 we have

CT*M = (TYM)* @ (T™'M)* & C6. (5.1.2)

5.1.4 Densities and Scales

Definition 5.1.2 ([103]). Given a contact form # for H we say that a section ( of %" is

volume normalised if it satisfies

0 A (d0)" = i nl(—=1)%0 A (TC) A (T=C). (5.1.3)

Given ¢ volume normalised for 6 clearly (' = ¢*( is also volume normalised for 6 for
any real valued smooth function ¢ on M, so that such a ( is determined only up to
phase at each point. Note however that ( ® ¢ does not depend on the choice of volume
normalised (. Let us fix a real (n + 2)*" root ¢ of ( ® ( in £(—1, —1). If§ = f6 and C is
volume normalised for 6 then f¢ is an (n +2)™" root of (® E . The map taking 0 to ¢ and
f0 to fs determines an isomorphism from H+ to £(—1, —1)g. Fixing this isomorphism
simply corresponds to fixing an orientation of £(—1, —1)g, and we henceforth assume

this is fixed. The isomorphism
H*=E&(—1,-1)g (5.1.4)

defines a tautological £(1, 1)g valued 1-form:

Definition 5.1.3. The CR contact formis the £(1, 1)g-valued 1-form 6 which is given by
¢~10 where @ is any pseudohermitian contact form and  is the corresponding positive
section of £(—1, —1)g.
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5.1.5 The Levi Form

The Levi form of a pseudohermitian contact form @ is the Hermitian form / : 7'M ®
T M — C defined by

(U, V) s —2id0(U, V) = 2i0([U, V)

for U,V € I'(T"°M). The Levi form of  may be thought of as a section of £, 5, which we
write as f,3; there is also an inverse of the Levi form h8 determined by the condition
that he? h.z = 6%, (where 0, is the identity endomorphism of £). Note that if 6 is
replaced by 0 = €70 then iLaB = eThaB and consequently he? = ¢~ Yho? moreover it
is clear that ¢ = e¥¢ (where § = ¢0 and 6 = ¢0). This allows us to define a canonical

weighted Levi form:

Definition 5.1.4. The CR Levi formh,,5 € T' (€,5(1,1)) is the £(1, 1)-valued Hermitian

form given by ¢~ 'h,,; for any pseudohermitian contact form 6 = 6.

In the following we use the CR Levi form h,; and its inverse h°? to raise and lower
indices. Note that lowering indices with h,,3 identifies £* with £5(1, 1) so that weights

generally change when indices are raised and lowered.
The CR Levi form could also have been defined by the map
(U, V) — 2i0([U, V]).

By complexifying and dualising the isomorphism (5.1.4) we obtain an isomorphism of
E(1,1) with (CH*)* = CT'M/CH. This allows us to identify h, up to a constant factor,
with the usual CT'M /CH -valued Levi form in CR geometry.

Remark 5.1.5. Given a contact form 6 one may also define a pseudo-Riemannian metric
go on the tangent bundle of M by taking the direct sum of the bilinear form df(-, J-) on
H (which is precisely the real part of the Levi form h of ) with 6 ® 6 on RT'. This metric
is called the Webster metric. 1
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5.1.6 Decomposing Tensors

Using the direct sum decomposition of CT'M given by a choice of contact form 6 a real

tangent vector X may be represented by the triple
(on’ X&’ XO)

where X is the holomorphic part of X, X is the antiholomorphic part, and X° =
0(X). Note that X% is a (1, 1) density and X® = X2, (We follow [79] in using @ rather
than 6 in defining X°, this simplifies later conformal transformation laws.) Similarly we

may represent a real covector w by the triple
(wom Wa s C(}())

where w, is the restriction of w to holomorphic directions, wz = W, is the restriction
of w to antiholomorphic directions, and the (—1, —1) density wy is the @-component of
w (i.e. sw(T) where § = ¢0). It is easy to see that the above decompositions extend to
arbitrary tensors or tensor fields. For instance we can represent a real covariant 2-tensor
T by the 9-tuple

(Tos T, Tap, Tsgs Taos Tao, Top, Togs Too);

moreover, by reality it is enough to specify the 5-tuple

(Tas, Tops Tao, Tog, Too)

since T3 = TB’ Tso = T, and Tosz = T_og.

5.2 Psuedohermitian Calculus

5.2.1 The Tanaka-Webster Connection

Since a choice of contact form 6 for (M, H, J) gives rise to a pseudo-Riemannian metric
gg on M (Remark 5.1.5) one also obtains the Levi-Civita connection V% of g,. Calculat-
ing with this connection is highly inconvenient however, since it does not preserve the
direct sum decomposition (5.1.1) of CT'M induced by 6. We instead look for a connection
V on M which still satisfies

Vge =0,
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5.2 Psuedohermitian Calculus

but whose parallel transport also preserves H and (as a connection on H) preserves

J; such a connection cannot be torsion free, since by the contact condition there exist

X,Y € I'(H) with [X,Y] ¢ I'(H) and hence
TV(X,Y)=VxY - VyX — [X,Y]

cannot be zero since VxY — Vy X € I'(H). It turns out that these conditions do not
determine a connection on M uniquely, but we can determine V uniquely by imposing

the following additional conditions on the torsion of V,
Voo vy _ VO _
Ta,é’y = 0, TozB’y = 0, TQB = Zh’aﬁ?

Vo _ vy _ Vo _
T,"=0,T,"=0,T)" =0,
TN =0, T =—A7,, and Th," =0
for some A7, € T'(E7,(—1,—1)) with A, symmetric (see [131], Proposition 3.1). The
connection V determined uniquely by these conditions is called the Tanaka-Webster con-

nection of 6 (it was discovered independently by Tanaka and Webster in [129, 142]), and

Ay p is known as the pseudohermitian torsion tensor.

Since the Tanaka-Webster connection preserves H and gy it also preserves the gg-orthogonal
complement of H, which is spanned by the Reeb vector field 7'. Since go(7',T") = 1 this
implies that V1" = 0. Thus also

Vo =0,

since §( - ) = go( - ,T). By definition the Tanaka-Webster connection V preserves the
direct sum decomposition (5.1.1) of CT'M induced by 6. So, by definition V induces a
linear connection on H and on TH°M. It therefore makes sense to take the Tanaka-

Webster covariant derivative of the Levi form / of , and it is easily seen that Vi = 0.

5.2.1.1 Interpreting the torsion conditions

The conditions on the torsion tensor may be alternatively phrased by saying that for any
function f € C°°(M) we have

VaVif = ViVaf = —iho5Vo !, (5.2.1)

VoVsf — VsVaf =0, (5.2.2)
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and
VaVof = VoVaf = A7,V (5.2.3)

where A,3 is the symmetric pseudohermitian torsion tensor. We note that since the
Tanaka-Webster connection preserves the direct sum decomposition (5.1.2) of CT*M
induced by 6 there is no ambiguity in the notation used in the above displays; for instance
one can equivalently think of V,Vf as the ‘a-component’ of V acting on Vs f or as
the ‘a3-component’ of VV f.

5.2.2 The Tanaka-Webster Connection on Densities

The Tanaka-Webster connection of a contact form acts on sections of any density bundle
since it acts on sections of £(—1,0)"™ = _#. In equation (5.2.3) above we are already
implicitly using the action of the connection on the density bundle £(—1, —1) in the
expression V,V f. It does not matter whether or not we think of V, f as density valued

in such equations because of the following lemma.

Lemma 5.2.1. The Tanaka-Webster connection V of 6 on £(—1,—1) is simply the flat
connection corresponding to the trivialisation induced by the contact form 0, i.e. by the
section s satisfying 0 = <0. In particular the isomorphism (5.1.4) is parallel for the Tanaka-

Webster connection, i.e. it intertwines the actions of V on H* and on £(—1, —1).

Proof. Suppose the section ¢ of " is volume normalised for §. Parallel transporting ¢
along any curve must preserve ¢ up to phase (since the result of parallel transport will
still be volume normalised, 6, df, and 7" being parallel). This implies that ¢ ®( is parallel,
but by definition ¢"*2 = ( ® ( so that ¢"*2 and hence ¢ is parallel. O

The lemma also tells us that for the Tanaka-Webster connection V of any contact form
0 we have

Vo =0 and Vh = 0. (5.2.4)

The advantage of raising and lowering indices with the CR Levi form h,,j is that these

operations commute with any Tanaka-Webster covariant derivative.
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5.2.3 Pseudohermitian Curvature

By equation (5.2.1) the operator
VaVs = V3V, +ih,5Vo

annihilates smooth functions on M ; moreover, this operator preserves £7. By the Leibniz
rule the above displayed operator commutes with multiplication by smooth functions

when acting on sections of £7. Thus there is a tensor R, ;375 such that
VoV3V7 = V5V V7 +ih,5VoV7 = —R,575V° (5.2.5)
for all sections V7 of £7. Equivalently R,57; is characterised by
VaV3Vs —V5VoVs+ih,5VoVs = R,575V5 (5.2.6)

for all sections Vj of &. Our conventions agree with those of [79, 142]. We refer to this
tensor, or to R,3.5 = h,eR,5%, as the pseudohermitian curvature tensor, and it has the

following properties
RaB'yg = R’y,éozg = R,3565’7 = Rag'yﬁ = R’yga,g (527)
which we derive in §§5.2.4 below. The trace
R.5= Ragva/ (5.2.8)

of the pseudohermitian curvature tensor is referred to as the Webster-Ricci tensor of 0
and its trace
R=h"R,; (5.2.9)

is called the Webster scalar curvature of 6. The pseudohermitian curvature tensor can be

decomposed as
Rogys = Sapys + Paghys + Pishog + Pyshog + Poghas (5.2.10)
where S, 3,5 satisfies

Sag,yg = S,ygag = Sgagry = Sag,yg = S,Ygag, Saﬂﬁ,—y =0 (5.2.11)
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and

1 1
P 3= 3 ——Rh 5. 5.2.12
BT 12 (Raﬁ 2(n+1)R aﬁ) ( )

The tensor S, 3.5 is known as the Chern-Moser tensor and is a CR invariant, by which
we mean that if 6 is another contact form for H then ga[%g = 5,35 (note that we are

thinking of S, 3,5 as a weighted tensor field).

5.2.4 The Full Tanaka-Webster Curvature

The full curvature tensor of the Tanaka-Webster connection V of a contact form 8 is
defined by
VoVpY¢ =V Vo Y+ TNV Y = —Ry%qY? (5.2.13)

for any tangent vector field Y¢, where TV is the torsion of V given in §§5.2.1. The
pseudohermitian curvature tensor R,575 is just one component of the full curvature

tensor, taken with respect to the direct sum decomposition
CITM =T"MaT""M & CT (5.2.14)

and its dual.

Lemma 5.2.2. The full curvature tensor R,y of the Tanaka-Webster connection is com-

pletely determined by the components R,575, Rop"5, and Rao”5.

Proof. Note that the tensor R,y is real, so that the component R537; is simply the
complex conjugate of Ralﬁg and so on. Also, the symmetry R,,°; = —Rp,“q translates
into R.3"; = —Rpa"5, Rao”’s = —Roa’s, etcetera. Now since the Tanaka-Webster
connection preserves the splitting of sections of CI'M according to (5.2.14) we must

have
Rab’yg = O, Rabvo = O, and Rab05 =0.

Since 7' is parallel we also have that
RabOO = 0.

From this we see that, up to conjugation and swapping the first two indices, the only
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nonzero COmponentS of Rabcd are
Ra5757 Raﬁ’y(Sa Ra0757 RaBﬂ/S7 Raﬁ’yg and Rao’yg'

Our conclusion follows by observing that if we lower indices using the CR Levi form

then we have that

Rab75 - _Rabg'w

since h.; is parallel. [

Remark 5.2.3. From the last display of the above proof we have that 3.5 = — R, 35, It
immediately follows that R,5.5 = R3.5, = [gasy, establishing one of the claims from
§§5.2.3. 1

Using (5.2.13) the curvature component R,575 may also be characterised by a Ricci-type
identity
VaoVVT = VsV, V7 = —R,s75V° (5.2.15)

for any section V7 of £7. Similarly for R,o75 we have
VaVoVT = VoVaV7 — AV VT = —Ryo 75V (5.2.16)
On a section V5 of £ we have
VaV5Vs — V5VaV5s = Rug'5V5 (5.2.17)

by duality, and likewise for R,o7;.

5.2.4.1 The Bianchi symmetry

Recall that for a connection V without torsion the Bianchi symmetry comes from ob-

serving that by torsion freeness one has
(VaVe = ViV Vaf + (ViVa = ViV Vo f + (VaVae = VoV Vi f =0
for any f € C°°(M), since the curvature tensor must then satisfy

(Rap“a + Roda + Raas)Vef = 0.
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This approach also works for a connection with torsion and we use it below to express
the consequences of the Bianchi symmetry for the curvature of the Tanaka-Webster con-
nection in terms of the components R,,375, Ras”5, Rao”s5, and the pseudohermitian tor-
sion. Because so many components of 1., already vanish one obtains expressions for

R.5"75 and R, in terms of the pseudohermitian torsion.

Proposition 5.2.4. The Bianchi symmetry for the Tanaka-Webster curvature tensor R, 4

is equivalent to the following identities
Ragf_yg = Ragﬁg (5.2.18)
R,g75 = ih,; A} — ihg; A] (5.2.19)
w0's = VAT (5.2.20)
(5.2.21)
Proof. By elementary considerations the cyclic sum of R,,“; with respect to the lower
three indices is determined by the cyclic sums of R.3%, g%, Ra0s, and Ry°s with
respect to their lower three indices. In the case of 1,3 we may instead cyclically per-
mute the lower indices of R,z3"5 since for each permutation the only nonzero part of

the tensor is obtained by replacing ¢ with 7. By (5.2.2) V, V3 is symmetric on smooth

functions so that
(VaVg = VgVo)Vsf + (VsVs = VsV3)Vaf + (VsVa =V Vs)Vaf =0
forall f € C*°(M), and hence
Rog7s + Rso"g + Rgs" o = 0. (5.2.22)

This expression is not listed above because it is a consequence of (5.2.19), the latter being
equivalent to
Rog"s = =10, Ags + 103 A0s (5.2.23)

since R, 3,5 = —Ryp5+-

Now let f be a smooth function on M. We similarly compute

(Raﬁcg + RSaCB + RBS ca) vcf
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Noting that R,;%V.f = R,575V5f, and so on, we get

Ro3 5V f + R5 sV f + Rs" Vo f
= (VoVp = VsV )Vsf +(VsVe — Vo V5 —ih Vo)V f
+ (VsVs; — V5Vs + ihﬁgvo)vaf
= Va(VsVsf = V5Viaf) + Va(VsVaf = VaVs/f)
+ V5(VoVaf = VVaf) —ih VoV f +ihgsVoVa f
= Va(=ihgsVof) + Vg(ihasVof)
—thsVoVf +ihg VoV f
= ih,5(VsVof —VoVsf) +ihgs(VoVaf — VaVof)
= ih,sAGVef — ihgs AL Ve f
Since f was arbitrary the above display holds at any point for all functions f with V., f =
0 (or with V5 f = 0) at that point, and thus we conclude that

R,5"5 = ih, AL —ihgs Al

and
RS(XVB + Rﬁgva = 0.

By conjugation the last display is equivalent to (5.2.18), noting that Rs57, = —Rs37,.

Similarly computing
Roo’sVef + Ros“oVef + Rso“oVef

we get (noting Rj,% = 0)
Ry 'sVif + Ros" o Vo f = =(Va AV, f + (VsAL) V5 f
so that

Raoﬁé = VSAZ‘

Finally, computing the cyclic sum for R,¢%V.f we obtain

Roo sV f 4 Ros oV f = =(Vo A V5 [ + (VAL V5 f
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so that
VoAl = VAL

and
Roos = Rso . (5.2.24)

The identity (5.2.24) follows already from (5.2.20) since by lowering indices we have
Roo,5 = V5Aa, and using that R5, = — 0,5 We get that

Roo's = =V Aps. (5.2.25)

]

The expressions (5.2.20) and (5.2.23) agree with those given in section 1.4.2 of [49], after
adjusting (5.2.23) by factor of two to account for their slightly different conventions (see
(1.84) in [49]).

Note that (5.2.18) implies that the pseudohermitian curvature tensor satisfies
Rogys = Rygas
(as was previously claimed) from which we also deduce that

Rapys = Rosyp = Roap-

5.2.5 Curvature of the Density Bundles

Although the Tanaka-Webster connection V of a contact form 6 is flat on the diagonal
density bundles £(w, w) it is not flat on density bundles in general. The curvature of
the density bundles was calculated in [79, Prop. 2.2]. We give this proposition with an

alternate proof:

Proposition 5.2.5. Let 0 be a pseudohermitian contact form and V its Tanaka-Webster
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connection. On a section f of £(w,w’) we have

VoV f —=VVof =0, (5.2.26)
VaVaf = VaVaf +ih,sVof = U;L;ZJ R.5f, (5.2.27)
VaVof = VoVaf — Aay V7 f = “T’L;@;’ (VIA W) f. (5.2.28)

Proof. We first consider sections f = ¢ of £(—n — 2,0) = .#". The map

C — (T—‘C)|T1v0M

induces an isomorphism between the complex line bundles .#" and A" (T*°M)". This
isomorphism between %" and £, ..., intertwines the action of the Tanaka-Webster
connection V since the Reeb vector field 7" is parallel and V preserves T M, so the
two line bundles have the same curvature. The curvature of the top exterior power

Elay--an) of &, is simply obtained by tracing the curvature of &,.

Now let f be a section of £(—n — 2,0) = J#. By tracing the conjugate of (5.2.19) and
using the appropriate Ricci-type identity for ;5”5 we therefore obtain

VQVBf - VBVC—L]C - 0

since R;37, = 0. Similarly, using that R,3.5 = —R,g5,, we obtain from (5.2.19) that
R.s" = 0 and hence
VoVef —=VsV.f =0.

Using that R,,3”, = R,3y” = —R,3"5 = —R, and the appropriate Ricci-type identity
for R,57s we get
VaVaf = VaVaf +ih,sVof = —R.5f.

Finally, by tracing the conjugate of (5.2.20) we obtain
VaVof = VoVaf — AV, f = (V, A3 f
and using R0, = —R,05, We obtain from (5.2.20) that R.¢"s = —V7 A4s so that
VaVof =VoVaf — AiV5f = —(V7Aa,) f.

This establishes the proposition for (w, w’) equal to (—n — 2,0), and for (w,w’) equal
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to (0, —n — 2) by conjugating.

Considering the action of the curvature operator(s) on (n + 2)" powers of sections of
E(—1,0) and £(0, —1) we obtain the result for (w, w’) equal to (—1, 0) or (0, —1). Taking
powers and tensor products then gives the full proposition. [

5.2.6 Changing Contact Form

Here we establish how the various pseudohermitian objects we have introduced trans-
form under conformal rescaling of the contact form. The first thing to consider is the
Reeb vector field:

Lemma 5.2.6. Under the transformation g =cTo of pseudohermitian contact forms, T €

C>° (M), the Reeb vector field transforms according to
T=e | T+ (dY)|g o J) (5.2.29)

where i denotes the usual isomorphism H* — H induced by the bundle metric d0(-, J-)|y

on the contact distribution.

Proof. Defining T by (5.2.29) one has (1) = 1 and
T.df = T.d(e¥) = dY(T)0 — AT + 7T do.

We observe that
d0(T,JY) = —dY(JY) +d0(e*T, JY) =0

for any Y € T'(H), using that (JY) = 0 and
d0(eXT, JY) = do(((dX)|g o J)*,JY) = dT(JY).

Now since df(7',T) = 0 we have T.df = 0. O

If 7) is a 1-form whose restrictions to £* and £ are 7, and 75 respectively then (1| )" is a
contact vector field whose antiholomorphic component is #°%1)5 and whose holomorphic
component is haBT]B. It is easy to see that the restriction of (dY)|y o J to £%is iV, T

and the restriction to £ is —iV ;Y. These observations imply:
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Lemma 5.2.7. If a I-form w has components (w,,wa,wo) with respect to some contact

form 0, then the components of w with respect to e* 6 are
(Way Wa, Wo + 1T %s — 1T %W, )

where T = h"*V 5T and T* = h*’V;3T.

5.2.6.1 The Tanaka-Webster transformation laws

We need to see how the Tanaka-Webster connection transforms under rescaling of the

contact form.

Proposition 5.2.8. Under the transformation 6 =cTo of pseudohermitian contact forms,

T € C*°(M), the Tanaka-Webster connection on sections 75 of £z transforms according to

VaTs = Vats — To7a — ToTs (5.2.30)
Vas = Vats + hss Y7, (5.2.31)
@07'5 = Vo715 + @'Tﬁv;ﬂ'ﬁ —iY"V,75 — (Y75 — T Tp)T, (5.2.32)

where T, = VT, Tq = V3T, T,5 = V5V.T, and indices are raised using h?.

Remark. Note that on the left hand side of the last equation in the above display the
‘0-component’ is taken with respect to the splitting of the cotangent bundle induced by
0, whereas on the right hand side it is taken with respect to the splitting of the cotangent
bundle induced by 6 (recall §§5.1.4 and §§5.1.6). In other words the operator V,, is taken
to be f@:ﬁ where § = 6, whereas V = ¢V where § = ¢6. No overall factor appears
in the transformation law since 8(c7T") = 6(T) = 1 and similarly 8(¢T) = 1.

Proof of Proposition 5.2.8. We define the connection V on & by the formulae above, and
extend V to a connection on 7'M in the obvious way. Precisely, we define V to act on
&5 by the conjugates of the above formulae, so that, e.g., @QTB is the conjugate of @C—YTB
with 75 = 75. This gives a connection on CH™ which preserves the real subbundle H*
and preserves J. Thus by requiring 0 to be parallel for V we obtain a connection on
T*M and hence on T M. To show that this is the Tanaka-Webster connection of it

remains only to show that @gé = 0 and to verify the torsion conditions.
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To show that @gé = 0 it is sufficient to show that V preserves the Levi form h is of 6.

This is a computation using the formulae in the proposition: By the Leibniz rule we have
Val(756y) = Va(m56s) = TalT56) = Ta(7als) + Bas T (7565)
for a simple section of £35. By C-linearity we obtain
Vahgs = Vahgs — Tahgy — Tghas + hay T0hs:

the terms on the right hand side of the above display cancel in pairs since ﬁﬁﬁ = e hgs.

By conjugate symmetry we also get @aﬁg,—y = (. Similarly one computes that

Vohas = Vohas + Y 7V5has — i1V b5
— i (Y70 = YY) hog 4+ (Y5 — YY) R

~ ~

The terms on the right hand side of the above display all cancel since Voh,;3 = Toh,z
and 1,5 — T3, = ih,5To, where To = V(T and 15, = V,V5T.
Substituting @Bf (= Vg f) for 75 in equation (5.2.30) we see that
VaVsf —VsVaf =0,
since —Y 37, — T,75 is symmetric. Similarly from (5.2.31) we obtain
VoViaf = VaVaf = —ihgg (Vof +iXIV5f — TV, f),

and from Lemma 5.2.7 we have that

Vof = Vof +iX7Vsf —iYV,f. (5.2.33)

From (5.2.32) and (5.2.33) one has that

VoVof = VoVaf =Va (Vof — YV, f +iTTV5f)
— (VoVaf +iYV Vo f — YV, V. f (5.2.34)
—i(T7y = YTV, f).
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One can easily compute directly that

Vo (Vof =YV f +iYIVf) = Vo (Vof —iY IV, f +iYTV5f)
+ Yo (Vof —iY 'V, f +iY7V5f)

(cf. the proof of Proposition 5.2.9). Substituting this into (5.2.34), expanding using the

Leibniz rule and simplifying one obtains
VaVof = VoVaf = (Agy + i Ty — T T,) VI f
where T, = V,V, T is symmetric. l

Note that in the course of the proof we have established the transformation law

Aa/g = Aag + iTag — ’iTaT/g (5.2.35)

for the pseudohermitian torsion.

5.2.6.2 The transformation law for the pseudohermitian curvature tensor

From the transformation laws for the Tanaka-Webster connection one can directly com-

pute that
Rog5 = Ropys + Maghos + Ashog + Aoshog + A ghgs (5.2.36)
where
Ng = —%(Taﬂ +Y3,) — %T”Twhaﬁ. (5.2.37)
In particular this tells us that ga 3y = Sajys and
P,3 =P+ Ays. (5.2.38)

5.2.6.3 The transformation laws for the Tanaka-Webster connection on
densities

We also need to know how the Tanaka-Webster connection transforms when acting on
densities. These transformation laws follow from the above since it suffices to compare

the action of V and V on sections of the canonical bundle % .
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Proposition 5.2.9. [79, Prop. 2.3] Under the transformation 0 = e¥o of pseudohermi-
tian contact forms, T € C*°(M), the Tanaka-Webster connection acting on sections f of

E(w,w') transforms according to

@af = vaf + WTaf
@af =Vaf +0'Ysf
Vof = Vof +iXV<f —iTIV, f

+ 5 [(w+w') Yo + w7, — iw' Y75 4+ i(w — w) Y7L, f.

Proof. Since V preserves T and I'(TY M) the map

[9 : C — (T—‘C)‘TU’M

taking sections of J#” to sections of £, ...q,,] commutes with V x for all X € X(M). On
the other hand I; : ¢ — (T'2()|71.0), intertwines the action of the connection V. Now
Iy =e¢Yolysinceif Y =T — e YT then (Y () |10y = 0 for any (n + 1,0)-form ¢;
to see this note that Y is contact (by Lemma 5.2.6) and the antiholomorphic part of YV’
hooks into ¢ to give zero, but also |10y, = 0 since the rank of T7V°M is n. Thus we

have

I(VxC) = " I;(Vx() = "V I;(¢) = e"Vx|e T I,(Q)]
= VxIp(¢) — dY(X)Ip(C)

for any X € X(M), ( € T(X). So the action of V on .# is conjugate under I, to the
action of V — dT on Elay--an]- One now easily translates using Iy the transformation
laws for the Tanaka-Webster connection on &, ..., (obtained from Proposition 5.2.8
by taking traces) to the transformation laws for the Tanaka-Webster connection on the
canonical bundle #". The transformation laws for £(w, w’) then follow from those for
H = E(—n — 2,0) in the obvious way. O

5.3 The Tractor Calculus

It is well known that nondegenerate (hypersurface type) CR geometries admit an equiv-
alent description as parabolic Cartan geometries. The Cartan geometric description of

CR manifolds was introduced by Cartan [37] in the case of 3-dimensional CR manifolds,
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and by Tanaka [129, 130, 132] and Chern and Moser [41] in the general case. To a sig-
nature (p,q) CR manifold (M, H, J) there is associated a canonical Cartan geometry
(G,w) of type (SU(p + 1,q + 1), P) where the subgroup P of SU(p + 1,¢q + 1) is the
stabiliser of a complex null line in CP™19"! Moreover, any local CR diffeomorphism
of (M, H, J) with another CR manifold (M’, H', J') lifts to a local equivalence of the
canonical Cartan geometries (G, w) and (G’, w’). In the model case of the CR sphere G is
simply the group G = SU(n+1, 1) as a principal bundle over S***! = G/ P and w is the
left Maurer-Cartan form of G. Strictly speaking, if we do not wish to impose any global
assumptions in the general case we need to quotient SU(p + 1,¢ + 1) and P by their

common finite cyclic center, but for the purpose of local calculus we can ignore this.

Given any representation V of SU(p + 1,¢q + 1) there is associated to the CR Cartan
bundle G a vector bundle V = G xp V over M. The CR Cartan connection w induces
on V a linear connection VY. Such bundles V are known as tractor bundles, and the con-
nection VY is the (canonical) tractor connection [27]. If T is the standard representation
Crrhatl of SU(p + 1,q + 1) then T = G xp T is known as the standard tractor bun-
dle. Since T is a faithful representation of P the CR Cartan bundle G may be recovered
from 7 as an adapted frame bundle. The Cartan connection w is easily recovered from
V7. Elementary representation theory tells us that all other irreducible representations
of SU(p + 1,q + 1) are subbundles of tensor representations constructed from T (and
T*) given by imposing certain tensor symmetries, so knowing the standard tractor bun-
dle 7 and its tractor connection one can easily explicitly obtain all tractor bundles and

connections.

The tractor bundles and their tractor connections, along with certain invariant differen-
tial (splitting) operators from irreducible tensor bundles on the CR manifold into tractor
bundles, form the basis of a calculus of local invariants and invariant operators for CR

manifolds known as the CR tractor calculus.

5.3.1 The Standard Tractor Bundle

There are various ways to construct the CR Cartan bundle and hence the standard tractor
bundle. However for our purposes it is much better to use the direct construction of the
CR standard tractor bundle and connection found in [79]. This allows a very concrete
description of the standard tractor bundle and connection in terms of the weighted tensor
bundles and Tanaka-Webster calculus of §5.2.
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Since the subgroup P of SU(p + 1,¢q + 1) stabilises a null complex line in 7 it also

stabilises the orthogonal complement of this null line and so there is a filtration
T'cT’cT'=T (5.3.1)

of T by subbundles where 7 has complex rank 1 and 7° has complex rank n + 1 (and
corank 1). The starting point for the explicit construction of 7 in [79] is the observation
that

TH=£&(-1,0), T°/T'=&%(~1,0), and T /7% =£(0,1). (5.3.2)

Let us introduce abstract index notation £ for 7T, allowing the use of capitalised Latin
indices from the start of the alphabet. The dual of 7 = £4 is denoted by £, and the
conjugate by &4, Following [79] we present the standard cotractor bundle £, rather
than £4 (it makes little difference since there will be a parallel Hermitian metric around).
The bundle £4 comes with a naturally defined filtration, dual to (5.3.1). Given a choice
of contact form 6 for (M, H, J) we identify the standard cotractor bundle £, with

[Ea]o = E(1,0) ® E,(1,0) & £(0, —1);

we write v, = (0, Tas P),

o o

0
va=| 7 |, or [valo=| 7
p p

if an element or section of €4 is represented by (o, 7, p) with respect to this identifi-
cation; the identifications given by two contact forms 6 and 0 = €T0 are related by the

transformation law

o 1 0 O o
EaloD | 7 | ~ T, 5 0 75 | €€al;  (5.33)
p —3(TPTs4+1iTo) =17 1 p

where T, = V,T and Tg = V(Y. This transformation law comes from the action of
the nilpotent part P, of P on T* (see [33] for the general theory) so that ~ is indeed

an equivalence relation on the disjoint union of the spaces [£4]g. We can thus take the
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standard cotractor bundle £, to be the quotient of the disjoint union of the [£4]y over

all pseudohermitian contact forms 6 by the equivalence relation (5.3.3).

5.3.2 Splitting Tractors

From (5.3.3) it is clear that there is an invariant inclusion of £(0, —1) into £4 given with

respect to any contact form 6 by the map

0
p— | 0
p

Correspondingly there is an invariant section Z4 of £4(0, 1) such that the above dis-
played map is given by p — pZ 4. The weight (0, 1) canonical tractor Z 4 can be written

as

with respect to any choice of contact form 6.

Given a fixed choice of 0, we also get the corresponding splitting tractors

0
8 | and viZ ]| 0
0

0
Wi =

which both have weight (—1,0). A standard cotractor vy 2 (0, Ta, p) may instead be
written as vy = oYy + WETB + pZ 4 were we understand that Y, and Wf are defined
in terms of the splitting induced by 6. If = Y6 then by (5.3.3) we have

WH =W45+71°2,, (5.3.4)
. 1
Yy =Yy —TsWi - §(T5T5 —iY0)Za. (5.3.5)

5.3.3 The Tractor Metric

Since the group P preserves the inner product on T = CP™1¢*! the standard tractor

bundle 7 = G X p T carries a natural signature (p + 1, ¢ + 1) Hermitian bundle metric.
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We denote this bundle metric by h 45, and its inverse by h*P. Explicitly the tractor

metric h 45 is given with respect to any contact form 6 by
hap = ZaY5 + hosWSWE + YaZg (5.3.6)

where 75, Wg , and Y5 are the respective conjugates of Zp, Wg, and Y. One can easily
check directly using (5.3.4) and (5.3.5) that the above expression does not depend on the

choice of 6. Dually, the inverse tractor metric is given by
hABU;‘@ =op + hO‘BTa% + po’ (5.3.7)
for any two sections v4 Z (0, Ta, p) and v'y 2 (o', 70, p) of Ea.

We use the tractor metric to identify EA with & 1, the latter of which can be described

explicitly as the disjoint union of the spaces
[E4lo = £(0,1) ® £5(0,1) ® £(—1,0) (5.3.8)

(over all pseudohermitian contact forms ) modulo the equivalence relation obtained by

conjugating (5.3.3). Identifying £5(0, 1) with £%(—1, 0) via the CR Levi form we write a

standard tractor as v4 < (0,7 p) or
o £(0,1)
S
I e | e E*(—1,0) .
S
p £(-1,0)

We may also raise and lower indices on the splitting tractors in order to write v =

oV 4+ TPWit 4 pZ* with respect to 0.

/ /

AL (0,7, p) and v/ A (o', 7., p) is

With these conventions the pairing between v
given by
vy = op + 77 + po’. (5.3.9)

The various contractions of the splitting tractors (for a given ) are described by the

104



5.3 The Tractor Calculus

following table

Ya Was Za
Y410 0
(5.3.10)
Wil o0 h,z
ZA11 0

which reflects the form of the tractor metric h 4 5.

5.3.4 The Tractor Connection

In order to define the canonical (normal) tractor connection we need two further curva-

ture objects. These are

1
T, = JP3® —iVPA, 5.3.11
- 2(V 5" — V7 Aug) ( )
and .
S = —E(VQTQ + VT, + PgP — A, A%P). (5.3.12)

These expressions appear in [79] and can be determined from the following formulae for
the tractor connection by the normalisation condition on the tractor curvature (which
amounts to certain traces of curvature tensors vanishing, see [29]). Of course the S and
T, terms are also needed to make sure that the formulae for the tractor connection given

below transform correctly so as to give a well-defined connection on & 4.

: 0 : . :
On any section vy = (0, 7o, p) of £4 the standard tractor connection V7 (or simply V) is

defined by the following formulae

Vo — 13
Vava < VsTa + idago : (5.3.13)
V5p - PgaTa + TgO’
Vo
0
VBUA = VBTO‘ + haBp + PaBO' , (5.3.14)

Viap —iAz%7q — Tpo

and _
VOU + #HPU — ip

Vova 2 | Vora + —5P1y — iP, 13 + 2iT,0 (5.3.15)
Vop + nisz + 2iT%1,, +iSo

where P = PgB. Using (5.2.35), (5.2.38), and Proposition 5.2.8 combined with Proposi-
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tion 5.2.9 one may check directly that the above formulae transform appropriately under
rescaling of the contact form 6 (i.e. are compatible with (5.3.3), and with Lemma 5.2.6 in

the case of (5.3.15)) so that they give a well-defined connection on £4.

Coupling the tractor connection with the Tanaka-Webster connection of some contact
form 6, the tractor connection is given on the splitting operators by (cf. [29], and also
[54, Proposition 3.1])

VaYa = iAugW§ +Ts 74 (5.3.16)
VsW§ = —65Ya — P5°Zs (5.3.17)
VsZs = 0 (5.3.18)
ViYa = PyW§ —T524 (5.3.19)
VWi = iASZa (5.3.20)
V324 = hosW§, (5.3.21)
and
VoYa = 75PYa+ 2T, W5 +iSZ4 (5.3.22)
VoW§ = —iPs"W§ + 5 PW§ + 20T Z, (5.3.23)
VoZa = —i¥Ya+ 75PZa. (5.3.24)

Using either set of formulae for the tractor connection one can easily show by direct

calculation that V preserves h 4 5.

5.3.4.1 Weyl connections on the tangent bundle

The expression (5.3.15) for Vyv4 may be simplified if one absorbs the terms involving
P.P and its trace P into the definition of the connection on the tangent bundle we are
using. This amounts to working with, in the terminology of [33], the Weyl connection
determined by 6 rather than the Tanaka-Webster connection of . The Weyl connection
VW determined by @ agrees with the Tanaka-Webster connection when differentiating

in contact directions, but when differentiating in the Reeb direction one has

VY Ty = VoTa — iP, 15 (5.3.25)
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for a section 7, of &, (the action on &, is given by conjugating (5.3.25) and V}V' T = 0).
Using the isomorphism Iy of £(—n—2, 0) with £}, .., from the proof of Proposition 5.2.9
one obtains from (5.3.25) that

l
n+2

Vo = Voo + Po (5.3.26)

for a section o of £(1,0). Using the Weyl connection rather than the Tanaka-Webster

connection in the expression (5.3.15) for V(v4 one has the simpler expression

Vo —ip
V1o 4 2iT,0 : (5.3.27)
YV p+ 20T%7, +iSo

0
Vova =

5.3.5 The Adjoint Tractor Bundle

Another important bundle on CR manifolds is the adjoint tractor bundle A = G Xp g.
Since g is the space of skew-Hermitian endomorphisms of CP*14*! with respect to the
signature (p + 1, ¢ + 1) inner product we may identify .4 with the bundle of / 4 5-skew-
Hermitian endomorphisms of the standard tractor bundle. Thus we think of A as the

subbundle of £47 = £4 ® £F whose sections 4@ satisfy

2|
b

tag = —

Since the standard tractor connection V7 is Hermitian, it induces a connection on A C

End(7) and this is the usual (normal) tractor connection on .A.

The adjoint tractor bundle carries a natural filtration
AAcA'cAcAtcA?=A (5.3.28)

corresponding to a P-invariant filtration of su(p + 1, ¢ + 1). In particular, 4° = G xp p
where p = Lie(P). Sections ¢ of A~! are those skew-Hermitian endomorphisms which
satisfy t 42 Z4Zp = 0, and sections .A° are those which additionally satisfy t ,* Z AWg =
0. In any parabolic geometry the subbundle A' = G x p, where p, is the nilpotent part
of p (in this case p, is a Heisenberg algebra), is canonically isomorphic to 7M. Here

the isomorphism is given explicitly by the map

(Vv Va, Vo) = Va W3 Z5 — UBZAWBB — W9 Z Al (5.3.29)
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with respect to any contact form §. Dual to (5.3.29) there is a bundle projection from
A* = Ato T M. Explicitly, the resulting isomorphism of A/ A° with T'M is given with
respect to 6 by

XoWAYE — XPYAWE +iXV AV P 4+ A (X°, X%, XO). (5.3.30)

5.3.6 The Tractor Curvature

The curvature of the standard tractor connection agrees with the usual (g-valued) cur-
vature of the canonical Cartan connection when the latter is thought of as an adjoint
tractor (A = G X p g) valued two form. To normalise our conventions with the index

notation we define the curvature of the tractor bundle by
VoVive — ViVave + Ty Veve = —KacPvp (5.3.31)

for all sections v of £-, where V denotes the tractor connection coupled with any
connection on the tangent bundle and 7'V is the torsion of that connection on the tangent
bundle. Since we allow for the use of connections with torsion on the tangent bundle
in the above, we may compute Kq,c”vp explicitly in its decomposition with respect to
any contact form 6 using the weighted Tanaka-Webster calculus developed in §5.2. The

resulting expressions were given in [79] (cf. [41]); we have

Kagc” = 0, (5.3.32)
0 0 0

Kage? = Vasy  Sap” 0 |, (5.3.33)
Uaﬁ_ —Zvaﬁ 0
0 0 0

Koo < J

awc” = Qay Vol 0 |, (5.3.34)
Y, —iU,° 0
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where

Vagy = VBAO/Y +1iV,P,5 — iTh,5 — QiTahwg, (5.3.35)
Uaj = VaTs+ V5To + PPy — Aay A + Shyg, (5.3.36)
Qo = 1VoAap — 2iVsT, + 2P, A g, (5.3.37)

Y, = VoI, —iV,S + 2iP]T, — 3A)T5. (5.3.38)

Here the matrices appearing in (5.3.33) and (5.3.34) are arranged so that the action of
Kopc” and Kaoc” on vp is given (with respect to ¢) by the action of the respective
matrices on the column vector representing vp. The remaining components of the trac-
tor/Cartan curvature ~ are determined by the obvious symmetries. We also have from
[79] (again cf. [41]) that

Vagy = Vipas Vo, =0,
Uaﬁ = U_,Bém U" =0,
and Qaﬁ = Qaﬂ-

The tractor connection on the CR sphere S?"*! is flat, and for a general strictly pseudo-
convex CR manifold the tractor curvature is precisely the obstruction to being locally

CR equivalent to the sphere (see Theorem 6.5.1).

5.3.7 Invariant Tractor Operators

The tractor calculus can be used to give a uniform construction of curved analogues
for almost all CR invariant differential operators between irreducible bundles on the
model CR sphere. The key idea behind this is to apply Eastwood’s ‘curved translation
principle’ [52, 50] to the tractor covariant exterior derivative dV using certain invariant
differential splitting operators constructed via the ‘BGG machinery’ of [35, 25]. Impor-
tant exceptional cases are dealt with in [79] where the authors construct CR invariant
powers of the sublaplacian on curved CR manifolds using the tractor D-operator (which
extends one of the BGG splitting operators to a family of operators parametrised by
weight). Such invariant differential splitting operators are also very useful in the prob-
lem of constructing invariants of CR structures, since they allow the jets of the structure
(or rather of some invariant curvature tensor) to be packaged in a tractorial object which

can be further differentiated invariantly. In the following we present the most basic and
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important of these (families of) invariant operators.

5.3.7.1 The tractor D-operator(s)

Let £% denote any tractor bundle and let £% (w, w’) denote the tensor product of £* with
E(w,w'’).

Definition 5.3.1. The tractor D-operator of [79]
Da: E%w,w') — E4® EX(w — 1,w)
is defined by

w(n+w+w')f®
(Tl +w+ w/)vaf@ (5.3.39)
— (VPVaf® + iwVof® + w(l + ¥2)Pf*)

Df®

where V denotes the tractor connection coupled to the Tanaka-Webster connection of

6.

One may easily check directly that D 4, as defined, does not depend on the choice of 6.
This operator is an analogue of the Thomas tractor D-operator in conformal geometry
[7]. Observe that D 4 is a splitting operator (has a bundle map as left inverse) except at

weights where w(n + w + w') = 0.

Related to the tractor D-operator is the § dependent operator D 4 given by wf®Y, +
(Vo f®)W$ on a section f® of £%(w,w’). The operator D 45 defined by

Dapf® = 2ZADp f* (5.3.40)
does not depend on the choice of . The operator D45 has a partner D 45 defined by

Dapf® = ZsDaf® = ZaDpf* — ZaZ5 [iVo [ + 43 Pf°] (5.3.41)

where D5 f® = Dy f®. Note that if f® has weight (0,0) then

H))ABJC(I) = ZBWZVafq) - ZAWBBVB](@ - iZAZBVqu), (5342)
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cf. (5.3.29), so that D , 5 takes sections of £? to sections of A ® £®. The pair of invariant
operators D45 and D 45 acting on sections of £%(w, w') are called double-D-operators
[74].

Remark 5.3.2. The less obvious operator D45 comes from coupling the fundamental
derivative of [27] on densities with the tractor connection to give an operator on weighted
tractors. The conformal double-D-operator on the Fefferman space, which comes from
similarly twisting the fundamental derivative on conformal densities with the confor-
mal tractor connection, can be seen to induce the pair of operators D 5, D45 (and the

conjugate operator D 553) on the underlying CR manifold [29, Theorem 3.7]. 1

5.3.7.2 Middle operators

One can also create CR invariant differential splitting operators which take weighted
sections of tensor bundles of £* to weighted tractors. These are analogues of operators in
conformal geometry used by Eastwood for ‘curved translation’ (see, e.g., [50]). We only

construct the particular operators from this family that we will need in the following.

Definition 5.3.3. The middle operator acting on sections of &,(w,w’) is the operator

MG : Ea(w,w') = E4(w — 1, w'") given with respect to a choice of contact form 6 by

Yo =N+ W)Wty — Z4V7,. (5.3.43)

To see that the operator defined by (5.3.43) is invariant one simply observes (by combin-
ing Proposition 5.2.8 with Proposition 5.2.9) that if § = ¢Y0 then

A~

Ve =V + (n + )Y, (5.3.44)

for 7, of weight (w, w’), and on the other hand from (5.3.4) we have W¢ = W9+ TZ,.

Remark 5.3.4. The operator MY defined by (5.3.43) is a differential splitting operator,
except when w’ = —n, in which case 7, — V7, is an invariant operator and M9 simply
becomes (minus) the composition of this operator with the bundle map p — pZ 4 (for p

of appropriate weight). 1

In the same manner, by observing that when 0 = ¢Y6 we have

A

Ver,;=VoTp5+(n+w —1)T%,5 — Tsr" (5.3.45)
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for 7,5 of weight (w, w’), we see that there is an invariant operator on trace free sections

of £,5(w, w’) given by
ATap = (n+w' — D)Wit,g — ZaVT,3. (5.3.46)
Conjugating one obtains an operator MBB on trace free sections of &, 5(w, w’) given by

M5Tas = (n+w — 1)Wg7a5 ~ Z5VP1,5. (5.3.47)

o i

5.3.8 The Curvature Tractor

The operators M9 defined above are all first order, so in particular they are ‘strongly
invariant’ meaning that we may couple the Tanaka-Webster connection V used in their
definitions with the tractor connection (on any tractor bundle £%) to obtain invariant
operators M4 on sections of £,*(w,w’) and on trace free sections of &,5% (w, w'). We
use these strongly invariant middle operators to define a CR analogue of the conformal
‘W-tractor’ of [74].

Definition 5.3.5. The curvature tractor of a CR manifold is the section of £,50p given

by
RKABchD = MiM%HaBCD (5.3.48)

o o B
where Ko50p = —Kagpo = —Kaj chieb.

Remark 5.3.6. The expression for the curvature tractor K 45-p does not involve the (6-
dependent) component K,,cp of the tractor curvature K., 5. One way to include this

component in a CR invariant tractor is to define
Kappop = M3 (KQBCDWEZE/ — KagonZWp, — maocDZBZB/> ; (5.3.49)

where we have used the map T*M — A, given explicitly by (5.3.29), on the ‘b’ index
of Kyop to obtain K,ppcp and then applied MY to K,pp cp. Alternatively one can
apply the tensorial map 7*M < A to both the ‘a’ and ‘b’ indices of K, p to obtain

Kaipgcp (asis done in §§6.4.2). |
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5.3.9 Projecting Parts

If a standard tractor v lies in subbundle 7* of T, s=1,0,-1 (see (5.3.1)), then the image of

v under the projection

7-5 SN Ts /Ts-i-l

(where the subbundle 77 is the zero section) is called a projecting part of v. A projecting
part may be zero. Since the filtration of the standard tractor bundle induces a filtration of
all corresponding tensor bundles (and hence all tractor bundles), we may define a notion

of projecting part(s) similarly for sections of any tractor bundle.

The notion can be easily formalised using the splitting tractors of §§5.3.2. The invariant
‘top slot’ v Z 4 of a standard tractor is always a projecting part. If this top slot vanishes,
then the ‘middle slot’ vV ¢ is independent of the choice of # by (5.3.4) and is a projecting
part. If both v4Z4 = 0 and vAW¢ = 0, then the ‘bottom slot’ v'Y, is independent of
the choice of 6 by (5.3.5) and is a projecting part of v,

To see how this works for higher valence tractors consider a tractor t*” in £[15, Skew-
ness implies t2Z, 7z = 0,s0 t18Z AWg is independent of the choice of # by (5.3.4) and
is a projecting part. If t48 7 AWg = 0 then both 45 WXWg and 48 Z ,Yp are indepen-
dent of the choice of 6, and are both called projecting parts (the relevant composition

factor of £5 splits as a direct sum).
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6 The Geometry of CR Embeddings

6.1 CR Embedded Submanifolds and Contact
Forms

We now turn to the main subject of the article. We now suppose that ¢ : > — M isa CR
embedding of a nondegenerate CR manifold (3?""!, Hy, Jx) into (M**1 H,J), that

is ¢ is an embedding for which 7" maps Hy, into H and
JoTit=Tio Js.

Equivalently (the complex linear extension of) 7't maps T°% into T M.

Suppose (M?" 1 H. J) has signature (p, q). Without loss of generality ¢ < p (q is often
alternatively called the signature). If ¢ < m (in particular, if M is strictly pseudoconvex)
then T,.(T,>) ¢ H, for all z € 3. In this case a choice of contact form 0 for H
induces a choice of contact form for Hy, by pullback. If ¢ > m then we need to impose
the condition T,.(7T,Y) ¢ H, for all x € ¥ as an additional assumption; such a CR
embedding is said to be transversal. (Note that if T,,.(7,X) C H, then T,.(T}°%) C
T}9M is a totally isotropic subspace, but the maximum dimension of such a subspace is

the signature ¢, so ¢ > m.) We consider transversal CR embeddings in the following.

We will work in terms of a pair of pseudohermitian structures (M, H, J,0) and (%, Hy,
Js, 1*0) and aim for constructions which are invariant under ambient rescalings 6 —
0 = Y. More precisely, our goal is to construct operators and quantities which may be
expressed in terms of the Tanaka-Webster calculus of ¢ and of +*6 which are invariant
under the replacement of the pair (6, 1*0) with (X0, *(e16)).

For simplicity we will initially restrict our attention to the case where m = n—1(m > 1)
and where both manifolds are strictly pseudoconvex (i.e. have positive definite Levi form
for positively oriented contact forms). The general codimension (and signature) case is

treated in §6.3, and much carries over directly.
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6.1.1 Notation

We fix a bundle of (1, 0)-densities on 3, that is the dual of an (m + 2)" root of %5, and
denote it by (1, 0). The corresponding (w, w')-density bundles are denoted Es (w, w’).
We use abstract index notation £* for T'°Y, and allow the use of Greek indices from
the later part of the alphabet: u, v, A, p, 1//, and so on. Of course then £# denotes 701y,
&, denotes (T"%)*, and so on. We denote the CR Levi form of . by h,,; and its inverse
by h*”. We also occasionally use abstract index notation for 7', denoting it by £¢ and

allowing indices ¢, 7, k, [, etcetera.

We identify ¥ with its image under ¢ and write £%|y; — X for the restriction of £¢ — M
to fibers over ¥ (so £z = *E®). We define the section IIj, of £%[s ® &, to be (the
complex linear extension of) T as a map from 719 into T'OM, i.e. if V € T"°Y and
U = Tu(V) then U* = TI3V*. We define the section II/ to be the map from 7"0M|y
onto 719 given by orthogonal projection with respect to the CR Levi form. Clearly
[I4IT} = 6}, and II; 11} is simply the orthogonal projection map from T M]s, onto
T(T*°%) given by the Levi form. It is also clear that

hyy = 0T Ry 5 (6.1.1)

along ¥..

6.1.2 Compatible Scales

In developing the pseudohermitian and CR tractor calculus we have been making use of
the fact that a choice of contact form 6 for M gives us a direct sum decomposition of the

complexified tangent bundle
CTM =T""M & T M @ CT,

T being the Reeb vector field of §. Now the contact form 6y, = +*0 for X also determines

a direct sum decomposition
CTY =TYWE @ T™'Y @ CTx (6.1.2)
where T, is the Reeb vector field of 0y, It is easy to see that in general these two Reeb

vector fields will not agree along .. Clearly this will become a problem for us when we
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6.1 CR Embedded Submanifolds and Contact Forms

try to relate components of ambient tensor fields (decomposed w.r.t. #) with components
of submanifold tensor fields (decomposed w.r.t. fy). To remedy this problem we will

make use of a basic lemma (cf. [54, Lemma 4.1]).

Lemma 6.1.1. Let ¢ : 3 — M be a CR embedding between nondegenerate CR manifolds.
If Oy, is a contact form for Y2 with Reeb vector field T, then there exists a contact form 6 for
M with .*0 = 0y, and whose Reeb vector field agrees with T, along 3. Moreover, the 1-jet
of 0 is uniquely determined along X..

Proof. Fix a contact form 6’ for M with *0’ = 6fx. Let f be an arbitrary smooth (real
valued) function on M with f|x; = 0, and consider the contact form § = e/¢’. First of
all we have

(Te-Tx)odd = e/ (To - T)2d6 + e/ df

along ¥ since ¢/ (T - Tx) = (1*0')(Tx) = 0x(T%) = 1. Now since +*0 = 0y, we have
L*((TL : TE)JdQ) = sz_ldez =0.

This means that (7 - Tx)1d6 is zero when restricted to tangential directions. Conse-
quently, we only need to see if we can make (7 - Tx;) 1df zero on the quotient space
T'M|sx,/TY. This requires choosing f such that along 3

df = —(Tv - Ts)od¢/

on T'M |5, /TS, which simply amounts to prescribing the normal derivatives of f off X.
Choosing such an f we have that (7t - Tx)1df = 0 and (T - Tx) = O0x(Tx) = 1 as
required. [

Definition 6.1.2. A pair of contact forms 6, 0y, for M and ¥ respectively will be called
compatible if 0y, = 1*0 and the Reeb vector field of 6 restricts to the Reeb vector field of
0y, along >.. A contact form # which is compatible with ¢*0, i.e. whose Reeb vector field
is tangent to X, will be said to be admissible [54].

We will work primarily in terms of compatible contact forms in the following. When
working in terms of compatible contact forms 6 for M and 0y, for ¥ we identify the
density bundles £(1, 1)|x, with Ex(1, 1) using the trivialisations of these bundles induced

by 0 and 6, respectively (in fact this identification is canonical, i.e. it is independent of
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the choice of compatible contact forms). We also identify the Reeb vector field 7%, of 6y,
with 7’|z, where T is the ambient Reeb vector field. This means that the ‘0-component’
of X € T taken with respect to either 5, or 6 (identifying X with Tt - X) is the
same, and that our ambient and intrinsic decompositions of tensors will always be nicely

compatible.

Remark 6.1.3. Note that Lemma 6.1.1 holds for general codimension CR embeddings
(with the same proof). We can therefore continue to work with compatible contact forms

in the general codimension case discussed in §6.3. 1

6.1.3 Normal Bundles

Clearly 7' has complex corank one inside 7"°M|x. The CR Levi form determines
then a canonical complex line bundle N C £°|5; whose sections are those V* for which
[I#V* = 0. There is also the corresponding dual complex line bundle N,, C &,|s; whose
sections V,, satisfy VaHfj =0.

Remark 6.1.4. Given any choice of ambient contact form 6 the manifold M gains a Rie-
mannian structure from the Webster metric gy. One can therefore treat 3. as a Rieman-
nian submanifold, in particular we have a Riemannian normal bundle to 3. This Rieman-
nian normal bundle will be the same for any admissible contact form 6, and we denote
it by N3. Complexifying we see that CNY = N® & N'® where N'“ is the i-eigenspace
of J. 1

6.1.3.1 Unit Normal Fields

Given a choice of ambient contact form 6, one may ask that a section NV, be unit with
respect to the Levi form of §. However, for CR geometry it is more natural to work with
sections of the bundle NV, (1,0) = N, ® (1, 0)|x, which is normed by the CR Levi form.

Thus we make the following definition:

Definition 6.1.5. By a (weighted) unit holomorphic conormal field we mean a section N,
of N,(1,0) for which h*’ N, Nz = 1 where N3 = Nj. The field N® = h*’ Nj obtained

from such an N, will be referred to as a (weighted) unit holomorphic normal field.

Remark 6.1.6. The bundles N, (w + 1, —w) are also normed by the CR Levi form, but
the natural weight for conormals is indeed (1, 0). The line bundle NV, (1, 0) plays an im-

portant role in the following since it relates ambient and intrinsic density bundles (see
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(6.1.28) below). Moreover, NV,(1,0) can be canonically identified with a non-null sub-

s, and hence carries a canonical CR invariant

bundle of the ambient cotractor bundle £ 4

connection (see Proposition 6.2.3). 1

If N, is a unit holomorphic conormal then so is N/, = €’?N,, for any p € C*(X), and
N'® = ¢~ N However, the combinations NN 3 and N,V 5 are independent of the

choice of holomorphic conormal, and these satisfy
05 =l + N°Ng and h,z= hu,;HZH% + NoNj (6.1.3)

along %, where 117 is the tangential orthogonal projection HﬁHg and h,,; is the CR Levi
form of ..

6.1.4 Tangential Derivatives

Let 0 be an admissible ambient contact form with Tanaka-Webster connection V. The
pullback connection ¢*V allows us to differentiate sections of ambient tensor bundles
along . in directions tangential to Y. Recall that we may think of the Tanaka-Webster
connection V as a triple of ‘partial connections’ (V,, Vs, Vo). Now suppose that the
Reeb vector field T' of § is tangent to 3, then 6 and 0y, = "0 are compatible. Then we
can break up ¢*V into a corresponding triple (V,,, V;, Vo). Precisely, V, is defined to

act on sections of £ |y according to the formula
V=1V s7° (6.1.4)

where 7% is any extension of the section 7* of £%|y; to a neighbourhd of ¥, and V, is
defined similarly on sections of £%|s;, £,|5;, and so on. We define V; similarly, and define

Vo on sections of £¢|x; by the formula

Vor® = Vo7 (6.1.5)

along ], where 7% is any extension of 7, and similarly on sections of £%|s, &,|x, and
so on (note the independence of the choice of the extension relies on the fact that 7" is

tangential to X).

Remark. We have identified £(1,1)|x with (1, 1) and T'|yx and with the Reeb vector
field T, of Oy, thus splitting :*V up into (V,,, V5, V) corresponds precisely to restrict-
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ing t*V to the respective summands in the direct sum decomposition (6.1.2) induced by
Os..

6.1.4.1 The normal Tanaka-Webster connection

The ambient Tanaka-Webster connection also induces a connection on the normal bun-

dle.

Definition 6.1.7. Given an admissible ambient contact form 6, we define the normal
Tanaka-Webster connection V+ on N, by differentiating tangentially using the Tanaka-
Webster connection V of # and then projecting orthogonally onto N, using the Levi

form.

6.1.5 The Submanifold Tanaka-Webster Connection

We may define a connection D on 7" = &* (which we identify with T.(7T"°Y) in
T%M]|s) by differentiating in tangential directions using *V and projecting the result
back onto 71°% = £# orthogonally with respect to the Levi form. This means that if 7+

is a section of £ then we have
D, =11'V, ¢ (6.1.6)

where 7¢ = TI¢7*. One may define D to act also on T%'Y = &7 by the analogous
formula
D" =114V, r°. (6.1.7)

Thus D may be thought of as a connection on Hy, which preserves Jy. One may then

extend D to a connection on 7' by requiring that 7%, be parallel.

Remark. Equivalently one may define D as a connection on 7% from the start by dif-
ferentiating tangent vectors to X in tangential directions using ¢*V and projecting the

result back onto 7Y orthogonally with respect to the Webster metric of 6.

Provided € and 6y, are compatible, the connection D constructed in this manner will be
the Tanaka-Webster connection of 6y, (cf. [49, Theorem 6.4]):

Proposition 6.1.8. If0, Oy, are contact forms for M and ¥ respectively which are compat-
ible, that is, 0, = 1*0 and the Reeb vector field of 0 is tangential to 3., then the connection
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D onT'Y induced by the Tanaka-Webster connection V of 0 (and projection with respect to

the ambient Webster metric) is the Tanaka-Webster connection of 0.

Proof. We need to show that D preserves (Hy, Jx, fx) and satisfies the torsion condi-
tions of §§5.2.1. It is clear that D preserves the decomposition (6.1.2) and gives a linear
connection on each of the three direct summands. This implies that D preserves H and
J in the appropriate senses. Since V preserves the Reeb vector field 7', .*V preserves

T|s, = Tx, and hence DT%, = 0. Since D preserves Ty, and H it must also preserve Os..

Now let f € C*°(X) and choose an extension f of f to M such that along ¥ we have
Vof = 114V, f, i.e. the derivative of f vanishes in gy-normal directions along X (these

directions don’t depend on 6 so long as we choose 6 admissible). Then we have that
Vs f= H%V;\ f along > and hence also that

D.Dyf — DyD,f = D,Vuf — DoV ,.f
= T,V,,(I}V5f) — IV, (I VA f)
=TV, V3f — T2V, Vo f
= 0TI (Vo V] — V3Vaf)
= TIST) (—ihap Vo )
= —th,; Dy f

where we have used that D, f = V,f and Dy f = V;f as well as that Dy f = Vo f =
Vof along ¥ . Similarly we may easily compute that

D,D,f—-D,D,f=0.
Finally we have

D,Dof — DoD,.f =V, NVof = VoV,.f
=112(VaVof — VoValf)
=TI0AT, V5 f
=0T A7 Vs f = AN D5 f

where A, = HﬁHang. Since f was arbitrary, we conclude that D is the Tanaka-

Webster connection of .. O
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Corollary 6.1.9. Given an admissible ambient contact form 6 with pseudohermitian tor-

sion A,p, the pseudohermitian torsion of Oy, = "0 is A, = HffoAa/g.

Remark 6.1.10. Note that Proposition 6.1.8 and Corollary 6.1.9 hold in the general codi-

mension case by the same arguments. 1

6.1.6 The Second Fundamental Form

We can now define a second fundamental form using an analogue of the Gauss formula

from Riemannian submanifold geometry.

Definition 6.1.11. Given  and 6y, compatible with respective Tanaka-Webster connec-

tions V and D we define the (pseudohermitian) second fundamental form by
VxY =DxY +I1(X,Y), (6.1.8)

for all X, Y € X(X), where we implicitly identify submanifold vector fields with tan-
gential ambient vector fields along > and use the pullback connection ¢*V on the left
hand side.

Clearly II(X,Y) is tensorial in X and Y, and is normal bundle (NX) valued. It is also
clear from the definition that II( -, 7%) = 0 and that II( -, - )| g, is complex linear (with

respect to J and Jy) in the second argument, that is
]]("7JE')|HE = JII('?')‘Hz'
In fact, these properties also hold for the first argument, /I being symmetric.

Proposition 6.1.12. The only nonzero components of the (pseudohermitian) second fun-
damental form II are I1,,,” and its conjugate. Moreover

I

uv

Y — 1.7

vy

(6.1.9)
so that II is symmetric.
Proof. Since II(-,Tx) = 0and II( -, )|, is complex linear in the second argument, to

prove the first claim it suffices to show that 1I;,” = 0 and 11;,” = 0.
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Let N, be a section of \V,, such that h*’ N, N 5 = 1. From the Gauss formula (6.1.8) we
have that
V.V =DV + L, V" (6.1.10)

for any section V* of £*, where V7 = II]V*. Contracting the above display with NN,

and replacing the ‘" index with ‘1, ‘ii’, and ‘0’ respectively gives

N, 11, = -1IDV,N,, N, II;" = -1}V N,,
and N,II,," = -1I'V,N,,

since N,V = 0 for all V* € I'(€*). By conjugating, one also has that N-II,;7 =
~IJV,N;.

Now let f be a real valued function on M which vanishes on 3 and for which (V,, f, V4 f,
Vof) is equal to (N,, Ny, 0) along X. (Note that we must require V f to be zero along
Y since T is tangent to X and we ask that f|x, = 0. Such an f exists because we are
simply prescribing the normal derivatives of f off ¥. Any such f is, locally about ¥, a
defining function for a real hypersurface in M containing > which is gy-orthogonal to
the real part and tangent to the imaginary part of N®.) From (5.2.1) and (5.2.2) we have
that
VoVpf =VeVyef and V,Vzf=V;zV,f

along >.. Projecting tangentially along > we immediately have that
N, = N,II,,” and N-II,;,” = N,II;, .

The first of these implies that /1,,” = II,,,”. Since N., was arbitrary the second implies

that 11,,;7 = 0 (replacing N., with ¢V, gives a minus sign).

Using the same function f, (5.2.3) states
Vavof - Vovaf = Aﬁav"yf-
Applying IIf} to both sides of the above display we get that

MOV Vof = 2AT, Vs f
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along ¥ (since II}V,V [ is zero along ¥). We conclude that
N, Iy, = NﬁHfjAZ.
Again, since N, was arbitrary we must have
IIp,” =0 and N5II; A7 = 0. (6.1.11)
O

The second of the expressions (6.1.11) should be seen as a constraint on the pseudoher-

mitian torsion of an admissible contact form. We state this as a corollary:

Corollary 6.1.13. If 0 is an admissible ambient contact form then the pseudohermitian
torsion of 0 satisfies
% AasN” =0 (6.1.12)

for any holomorphic normal field N”.

Remark 6.1.14. Note that in the higher codimension case (of CR embeddings) if one de-
fines the (pseudohermitian) second fundamental form of a pair of compatible contact
forms as in Definition 6.1.11 then Proposition 6.1.12 holds with the proof unchanged
(and consequently Corollary 6.1.13 also holds). 1

Remark 6.1.15. Our claim that I1(T, - ) = 0, and the above corollary, disagree with [47]
and the book [49]. Our claim that /I(7), - ) = 0 is confirmed however by the later article
[48]. |

6.1.6.1 The CR second fundamental form

We shall now see that the component 17,7 does not depend on the choice of compatible

contact forms 6 and Os..

Lemma 6.1.16. Given compatible contact forms 0 and 05, one has
1, = -N"TI°V,N;s (6.1.13)

for any unit holomorphic conormal field N,,.
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6.1 CR Embedded Submanifolds and Contact Forms

Proof. From the Gauss formula (cf. (6.1.10)) we have
Vv,V =MD, V*+ I,V

for any section V* of £, where V7 = IIJV*. Contracting the above display with N,
and using that N,V , V7 = —V7V N, yields the result. O

Corollary 6.1.17. The component 11,7 of the pseudohermitian second fundamental form

does not depend on the pair of compatible contact forms used to define it.

Proof. Combining the Tanaka-Webster transformation laws of Proposition 5.2.8 and Propo-

sition 5.2.9 we have that
VN5 =V, Ng —I2T3N, — T,.Ns + Y, N3 = V, N3
since N3 has weight (1, 0). The claim then follows from (6.1.13). O

We therefore term 1,7 the CR second fundamental form.

Remark 6.1.18. The pseudohermitian second fundamental form 7 (of a pair of compati-
ble contact forms) is not CR invariant, even though /1,7 is, since the direct sum decom-
positions of CT'M and CT™*¥ change under rescaling of the ambient and submanifold

contact forms. 1

Recall that we write 115 for the tangential orthogonal projection Hﬁﬂg on the ambi-
ent holomorphic tangent bundle along 3. The following lemma will be useful in the
derivations of §§6.1.7:

Lemma 6.1.19. For any admissible ambient contact form we have

VI = 10,010, VI = 11,711, (6.1.14)
Vall} = 11,715, VAl = 117,11, (6.1.15)

and
Voll} =0, VI =0. (6.1.16)

Proof. These follow immediately by differentiating 5g — N7Njg, however we wish to

give a proof that will also work in the higher codimension case. Pick a section V' and
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let VP = I1°V". Then
V.V = V,(IVF) = (VI)VF + 11V, V7.
Noting that HZ,V L VP = 117D, V", from the Gauss formula we have
v, = 11, (6.1.17)

since V¥ was arbitrary. Now on the other hand if N is any unit holomorphic normal
then
NPV, I, = —(V, NI = 0 (6.1.18)

since ] ,ﬂ;g = 0. The previous two displays imply the first equation of (6.1.14), and the
second then follows by raising and lowering indices. Conjugating these gives (6.1.15).

The expressions (6.1.16) are proved similarly using that IIo,” = 0 and IIy;7 = 0. O

6.1.7 The Pseudohermitian Gauss, Codazzi, and Ricci
Equations

Here we give pseudohermitian analogues of the Gauss, Codazzi, and Ricci equations
from Riemannian submanifold theory. Real forms of these equations can be found in
Ch. 6 of [49], note that () = 0 in the pseudohermitian Codazzi equation they give (cf.
Remark 6.1.15).

When working with compatible contact forms we denote the ambient and submanifold

Tanaka-Webster connections by V and D respectively. We write
Ng =5 — 113 (6.1.19)

for the orthogonal projection onto N* C £%[s. In this case N§ = N®Nj for any unit
holomorphic normal N®. We adopt the convention of replacing uppercase root letters
with lowercase root letters for submanifold curvature tensors, so the pseudohermitian
curvature tensor of fx. will be denoted by 7,55, the pseudohermitian Ricci curvature
by 7., and so on. For the ambient curvature tensors along > we will use submanifold
abstract indices to denote tangential projections, for example

Runp = ICTIJIIR, 5.5 and R

L Bp
uoyod HfjHﬁRaﬁyé'
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6.1.7.1 The pseudohermitian Gauss equation

Proposition 6.1.20. Given compatible contact forms, the submanifold pseudohermitian

curvature is related to the ambient curvature via

Ruoxs = Tuoas + h,YSIIMAWIIﬁﬁS- (6.1.20)

Proof. Let V' be a section of TN let V7 = H;VS‘, and let V7 be a smooth extension of
V7 to a neighbourhood of . Proposition 6.1.8 says that DV = H%‘H[g \Y B‘~/W and thus

D,D,V* = DIV, (HiH?VB‘N/W)
= ISV, )TV 5V + I (V,,112)V 517
+ IRV, V5V
= 1LV, V7 + IRISIE Y, V517,
where we have used (6.1.14) of Lemma 6.1.19 in the final step. Since N?YV“Y = 0 we have

NSV, VT = —VIV,N¢ = V711, using (6.1.15) of Lemma 6.1.19, and hence by writing

11 MX@ as 1] ungg we obtain
DD V> = I 511,,°VP + TSIV, V517
By a similar calculation with the roles of 1+ and v interchanged we obtain
DyD,V* = TRV 5V, V7

no second fundamental form terms arise since I/,,;7 = 0. Noting that DOVX = H%VOV'_Y

we have the result. O]

Remark 6.1.21. The above proposition holds with the same proof in the general codimen-
sion setting. The equation (6.1.20) can also be found in [54] where it (or its trace free part)
is the key to proving rigidity for CR embeddings into the sphere with sufficiently low
codimension because it allows one to show that the intrinsic pseudohermitian curvature

determines the second fundamental form 17,,,7. 1
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6.1.7.2 The pseudohermitian Codazzi equation

Proposition 6.1.22. Given compatible contact forms,
¥ NO 5
RU’D’YEN’? - _D,U,[IDﬁ (6.1.21)

where the submanifold Tanaka-Webster connection D is coupled with the normal Tanaka-

Webster connection V.

Proof. Let N7 be an unweighted unit normal field and let N7 be an extension of N7 to
all of M such that, along ¥, NgVaN7 = (0 and N%‘V@NV = (. Then along > we have

VB‘]\?'Y = _UB%N(; + NgVEN(S
where 11575 := H%HKHE’\(;, using that II, s N° = —H;\V,;NV. Thus we compute that

TV, V5N = IR (=V,(11575N°) + (V,N7)V5N°)
= —D,(II*sN°)

along ¥, where in the first step we used that II)N] = 0 and in the second step we used
(6.1.14) to show that HgV#Ng = 0 and Proposition 6.1.8. Now on the other hand (since
11,7 = 0) we have

VoN? = NIV, N°
along >, and this time we compute that
eIV 5V N = —ILA5V,N? = — I, VEN°
since V;Nj = —II,7511) by (6.1.15). Putting these together we get
TR (Vo Vs — V5Va) NY = —(D, I, 5)N?
along . Since II;,” = 0 we have H;\VON7 = 0 and hence from (5.2.5) we obtain

R,:"sN° = (D,II,*5)N°. (6.1.22)

Noting that R,,;55 = — ;53 then gives the result. ]
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6.1 CR Embedded Submanifolds and Contact Forms

6.1.7.3 The pseudohermitian Ricci equation

Given a compatible pair of contact forms we let RV denote the curvature of the normal
Tanaka-Webster connection V+ on the antiholomorphic normal bundle A'®. With our

conventions we have

(VAVENT — VEVEINT +ih,, Vg NT) = —RN'T:N° (6.1.23)

g

for any section N® of N'*, where we have coupled the normal Tanaka-Webster connec-
tion V1 with the submanifold Tanaka-Webster connection D. The pseudohermitian Ricci
equation relates the component Rﬁ,@aig of RN to the component Ruﬂ/g/NZ,Ng:/ of the

ambient pseudohermitian curvature tensor:

Proposition 6.1.23. Given compatible contact forms,

RN Ys = Ry g NI NS + W10, 0501, (6.1.24)

Proof. To facilitate calculation we couple the connection V+ with the submanifold Tanaka-
Webster connection D; we also couple V with D. If N7 is a holomorphic normal field
then

Lol ary — ol/\? 5
V,VyNT = V. (NIV,N°) _
= NIV, (N:V,N?)
= NI (— IV, N + N5V, VN
=NIV,V,N’

On the other hand, when we interchange the roles of 1+ and v we obtain

VLIVENT =N} (—UD;H;WNS + Ngvpqu(?)
= I, I, \sN° + NIV, V,N?
Now observe that if one extends N7 off ¥ such that N*V,N7 = (0 and N®°V;N7 = 0,

then
eIV, V5N = V,V,N° and TILVV,N° = V,V,N°.

Thus by (6.1.23) and (5.2.5) (noting that V3 N7 = V;N7) one has the result. N
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Remark 6.1.24. Since N'® is a line bundle we may think of the curvature RV instead as
a two form. By convention we take Rﬁ{f to be R%&'V;,, which means that RV is minus
the usual curvature two form of the connection V- on the line bundle N'®. With this

convention we may write
Rﬁgx =R ony + h'ygh)\ﬁjlu)\w]]ﬁﬁg (6.1.25)

where R,y = RHD,Y(;N“’NS for any weight (1,0) unit normal field N®. Also, since V+
is Hermitian with respect to the Levi form of # (on N'®), one has that RV “ = RNe ag
two forms. Moreover, by duality one has that RN = — RN, |

6.1.8 Relating Density Bundles

We have already been using compatible contact forms to identify the density bundles
E(1,1)|x and &x(1, 1), and have commented in passing that this identification does not
in fact depend on any choice of (compatible) contact forms. Let ¢ be a positive real
element of £(1,1)

pulls back to ¢85, under ¢. This correspondence induces an isomorphism of complex line

s, then there is a unique real element ¢y, in Ex(1, 1) such that <16

bundles. In this way we obtain canonical identifications between all diagonal density
bundles £(w, w)|s and Es(w,w). These identifications also agree with those induced
by trivialising the ambient and intrinsic (diagonal) density bundles using an ambient

contact form 6 and its pullback +*0 respectively.

On the other hand it is not a priori obvious whether one may canonically identify the
density bundles £(1,0)|x, and Ex(1, 0), and therefore identify all corresponding density
bundles £(w, w')|x and Ex(w, w’). We require that any isomorphism of £(1,0)|x with
Ex(1,0) should be compatible with the identification of £(1, 1)|x with Ex(1, 1) already
defined. Any two such isomorphisms of £(1,0)|y with £x(1,0) are related by an au-
tomorphism of £(1,0)|s given by multiplication by e'# for some ¢ € C'*(X). This is
precisely the same freedom as in the choice of a unit holomorphic conormal, in fact, we

shall see below that these two choices are intrinsically connected.

6.1.8.1 Densities and holomorphic conormals

Let AEOZ denote the subbundle of AM*M |5, consisting of all forms N which vanish on
the tangent space of . The bundle AEOE may be canonically identified with N, by

restriction to T1OM.
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6.1 CR Embedded Submanifolds and Contact Forms

Lemma 6.1.25. Along 3. the ambient and submanifold canonical bundles are related by

the canonical isomorphism

Ay = s @ NS (6.1.26)

Proof. The map from A™(AM°%) @ AY°Y to A"t (AMOM|y) is given by
(s@N—=nAN (6.1.27)
where 7 is any element of A"(AYYM|x) with t*n = (x. O

Given a section (x ® N of J#5 ® AEOE we write (x; A N for the corresponding section

of  |s. The above lemma is the key to relating ambient and submanifold densities:

Corollary 6.1.26. The ambient and submanifold density bundles are related via the canon-

ical isomorphism
E(—n—1,0)|x = Es(—n — 1,0) @ N, (1,0). (6.1.28)

Proof. By definition £(—n —2,0) = % and Ex(—n — 1,0) = 5. Using this in (6.1.26),
tensoring both sides with £(1,0)|y, and identifying A'°Y with AV, gives the result. [

Thus any trivialisation of the line bundle N, (1,0) gives an identification of the cor-
responding ambient and submanifold density bundles along >. One can check that if
the trivialisation of N,(1,0) is given by a unit holomorphic conormal then the result-
ing identification of density bundles will be compatible with the usual identification of
E(w,w)|y with Es (w, w); this amounts to the claim that, given compatible contact forms
0 and 6y, if (5 is a section of %5, volume normalised for 6y, and NV is a section of AiOE
which is normalised with respect to the Levi form of € (i.e. satisfies hoPB N,Njs = 1) then

the section (5; A N of |5, is volume normalised for 6.

Remark 6.1.27. The preceding observation motivates the search for a canonical unit holo-
morphic conormal. One way to approach this search is to observe that for any unit holo-
morphic conormal N, the field w; := N*V;N, = —N*V;N; does not depend on the
choice of admissible ambient contact form used to define V; and a calculation shows
that wy; satisfies V(w0 = 0. In the case where one has local exactness of the tangential
Cauchy-Riemann complex of ¥ at (0, 1)-forms one can then (locally) define a canonical

unit holomorphic conormal NV, for which w; = V; f with f a real valued function; the
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a priori phase freedom in the unit normal is used to eliminate the imaginary part of f,
leaving no further freedom. However, for smooth (rather than real analytic) embeddings
the required local exactness may not hold, as was famously demonstrated by Lewy for
the three dimensional Heisenberg group [107]. In the following it will become plain that
we should keep N, (1,0) in the picture, rather than trivialise it, and thus we have not

pursued this direction further. 1

6.1.9 Relating Connections on Density Bundles

Given an admissible ambient contact form 6, the normal Tanaka-Webster connection V+
on N, can equivalently be thought of as the connection on AiOE defined by differen-
tiating tangentially using the Tanaka-Webster connection V and then projecting using

the Webster metric gj.

Lemma 6.1.28. Given any pair of compatible contact forms the isomorphism (6.1.26) of

Lemma 6.1.25 intertwines the respective Tanaka-Webster connections:

Ay = s @AY
SV =2 D e Vi

Proof. Let (z ® N be a section of /5 ® AY°Y. Let 1) be any section of A"(AMM|s)
which pulls back to (.. Then (x A N :=n A N.If X € T'Y then

Vx((s AN) = (Vxn) AN +nA(VxN),

but (Vxn)AN = (IIsVxn) AN which is the section of % |5, corresponding to (Dx(x)®
N (here Ily, denotes submanifold tangential projection with respect to gy), and n A
(VxN)=nA(VxN). [

Observing that the connection V+ on NV, (1,0) agrees with the coupling of V+ on N,
with ¢*V on £(1,0) |y, we have the following corollary:

Corollary 6.1.29. Given any pair of compatible contact forms the (canonical) isomorphism

(6.1.28) of Corollary 6.1.26 intertwines the respective Tanaka-Webster connections:

E(-n—1,0)|g = Es(—n —1,0) ® NL(1,0)
'V o D ® V.
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This means that if we want to identify corresponding ambient and submanifold density
bundles (along ¥’) in such a way that the ambient and submanifold Tanaka-Webster con-
nections of a pair of compatible contact forms agree (in the sense that :*V = D), then we
must trivialise NV, (1, 0) using a section which is parallel for the normal Tanaka-Webster
connection V+. This is not a CR invariant condition on the section of N, (1,0), and the
following lemma shows that it is not possible to find a parallel section in general because

of curvature:

Lemma 6.1.30. Let 0 and 05, be compatible contact forms and let RN(0) denote the
curvature of V- on the bundle N,(1,0), then the (1, 1)-component of RN~(10)|;  satisfies

1 0) n+1
R o R~ T (6.1.29)

where R,,; = HgHgRaB.

Proof. By Proposition 5.2.5 the (1, 1)-component of the restriction to H of the curvature
of the Tanaka-Webster connection on the line bundle £(1,0) is — Ra 5- Thus the (1, 1)-

component of the the restriction to Hy; of the curvature of L*V on £(1,0)|y is %HRMD'
Combining this with the Ricci equation (6.1.25) for RN = RN > we have
«(1,0) Y 1
RN R + Pl 11" — —— Ry
Using the once contracted Gauss equation
Rus — Ruony = Ty + hog I\ 1Y
obtained from (6.1.20) we have the result. [

Remark 6.1.31. Here, because of our conventions (cf. Remark 6.1.24), we take RNa(1,0)

to be minus the usual curvature of NV,(1,0) as a line bundle. 1

6.1.10 The Ratio Bundle of Densities

The observations of §§6.1.8 and §§6.1.9 motivate us to look at the relationship between
corresponding ambient and submanifold density bundles rather than seeking to identify

them (along >.). We therefore make the following definition:
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Definition 6.1.32. The ratio bundle of densities of weight (w,w’) is the complex line
bundle
R(w,w') = E(w,w)|s @ Ex(—w, —w') (6.1.30)

on the submanifold ¥.. Equivalently R(w,w’) is the bundle whose sections are endo-

morphisms from & (w, w’) to £(w, w')|s.

Note that the bundles R (w, w) are canonically trivial, and therefore R(w, w’) is canon-
ically isomorphic to R(w — w’,0). Also by definition R(—n — 1,0) is canonically iso-

morphic to NV, (1, 0), and we make this into an identification

R(—n —1,0) = N,(1,0). (6.1.31)

6.1.11 The Canonical Connection on the Ratio Bundles

Borrowing insight from §6.2 below we observe that the bundle N, (1,0) carries a nat-
ural CR invariant connection, which induces connections on the density ratio bundles
R(w,w"). The reason is that N, (1,0) is canonically isomorphic to a subbundle N4 of
the ambient cotractor bundle £4 along X which has an invariant connection induced by
the ambient tractor connection (Proposition 6.2.3). We denote this canonical invariant
connection on R(w,w’) by V. It turns out to be very naturally expressed in terms of

Weyl connections (recall §§§5.3.4.1). Hence we make the following definition:

Definition 6.1.33. Given an admissible ambient contact form 6, the normal Weyl con-
nection V'Vt on N'®(w,w’) is the connection induced by V" (projecting tangential
derivatives of sections back into A/® using the Levi form). Dually, the connection V-

acts on N, (—w, —w’).
For calculational purposes we will need the following lemma:

Lemma 6.1.34. Given an admissible ambient contact form 0 the connection V"V'* on

Na(l, 0) acts on a section 7, by

VEVJ_TOC — vi_Ta, ngvLTa — V;;Toc (6132)
and )
. 1

Vi, = Vi iPrya + — P, (0139
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where Pyy = PQBNQNB for any (weighted) unit holomorphic normal N® and P = P,°.

Proof. This follows immediately from the definitions of the Weyl and normal Weyl con-
nections and the formula (5.3.26). [

The connection V* on R(—n — 1,0) = N,(1,0) turns out to agree precisely with the
normal Weyl connection of any admissible contact form. In particular the normal Weyl
connection V1 on the bundle N, (1, 0) does not depend on the choice of admissible
ambient contact form. This follows from Proposition 6.2.3 below, but here we give a
direct proof. Before we prove this we make an important technical observation, stated

in the following lemma:

Lemma 6.1.35. Let 0 be an admissible ambient contact form. The contact form 0 =evo
is admissible if and only if
T, =157, (6.1.34)

along 3.

Proof. This follows immediately from the transformation law for the Reeb vector field

given in Lemma 5.2.6 since both 7" and T must be tangent to X. O

Proposition 6.1.36. The normal Weyl connection V- on the bundle N, (1,0) does not

depend on the choice of admissible contact form.

Proof. Fix a pair of compatible contact forms 6, 05, and suppose 0 = e is any other
admissible ambient contact form. Let 7, be a section of N,(1,0). Extend 7, arbitrarily
off ¥. When differentiating in contact directions the connections V¥* and V+ agree,

so from (5.2.30) and Proposition 5.2.9 we have

@ZV’LT& = N?Hg@am
= Nng(VQTﬂ — TlgTa — Toﬂ'g + TaTg)
= NyIIOV 0 75

since H,‘jTa = 0 (note that NgTrB also vanishes since 6 and 6 are admissible). Similarly,
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from (5.2.31) and Proposition 5.2.9 we have

@I—:V’LT(; = N?Hg@@m
= N?Hg(V@Tﬂ + hﬁ@Tvay)
= Ny T2V 475

since N?thm =0.
The operators V{ and V acting on 7, are related by

l

Vi To = VoTa — iP’15 + "

Pr,.

Now, on the one hand, by (5.2.32) and Proposition 5.2.9, noting that Nf Ts = 0 by

Lemma 6.1.35, we have

Vigs = Nj [Vors +iY7V575 — X7V, — iY77,
+ L (o +iY7, —iY7Y,)75).

On the other hand from (5.2.37) and (5.2.38), noting that 1,5 + T35, = 2135, — th,5Yo
by (5.2.1), we have

N{[iPs 7T, — =55 Prg] = NJ[i(Ps" — 175 + 000} — 37T 57,
: (P - T'YA/ + %To - %TeTe)TB].

T nt2

. 1 1 .
Since 5 — m = 5 we obtain that

ﬁgVA_Tg = VE)/V’J_TQ + iTﬁvl‘;‘/’J—Tg — Z'T”VZV’J'TB,

as required (recall that the ‘0-direction’ has a different meaning on the left and right
hand sides of the above display, cf. Lemma 5.2.7). O

Remark 6.1.37. Both Lemma 6.1.35 and Proposition 6.1.36 hold in the general codimen-

sion case with the same proof (as does Proposition 6.2.3). 1

We therefore take V7 to be the connection induced on the ratio bundles by the normal
Weyl connection of an admissible contact form on N, (1, 0), and give later in Proposition 6.2.3
of §§6.2.1 the tractor explanation for this invariant connection. In order to compute with

V7 we will need the following lemma:
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Lemma 6.1.38. In terms of a compatible pair of contact forms, 0, O, the connection V*

on a section ¢ @ o of E(w, w')|x @ Ex(—w, —w') is given by

Vi(¢®o)= (V) @0+ ¢ @ (Do), (6.1.35)
Vi ¢®0)=(Vip) @0+ ¢® (Do), (6.1.36)

and
Vi@ ®0) = (Vop) ® 0+ ¢ ® (Doo) + % (iPyy — 5 P)¢ @ 0. (6.1.37)
Proof. This follows from Lemma 6.1.34 combined with Corollary 6.1.29. ]

Corollary 6.1.39. The connection V® on the diagonal bundles R(w, w) is flat and agrees

with the exterior derivative of sections in the canonical trivialisation.
Proof. This follows from Lemma 6.1.38 combined with Lemma 5.2.1. ]

Remark 6.1.40. By coupling with the connection V* we can invariantly convert con-
nections (and hence other operators) acting on intrinsic densities to ones on ambient
densities, and vice versa. This will allow us to relate the intrinsic and ambient tractor

connections, their difference giving rise to the basic CR invariants of the embedding. 1

6.1.11.1 The curvature of the canonical ratio bundle connection

We shall see that the connection V7 is not flat in general, making it unnatural to identify

the ambient and submanifold density bundles along 3.

Let kR(%") denote the curvature of V7 on the line bundle R (w, w’), and let RV denote
the curvature of V"'* on A, (1,0) for any admissible contact form 6. By convention
RN" has the opposite sign to the usual line bundle curvature K*(="~10) Clearly the
curvatures K% are determined by RV, in particular

]. >k
HR(LO) _ _RN )

n+1

Here we give expressions for the components of RV". Note that the components of the

restriction RV |, must be invariant.
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Proposition 6.1.41. The (1,1)-part of RN |y, satisfies
R = (n+1)(Puy — pur) + (P — Py — p)hyuw, (6.1.38)

where Py = PQBN"‘NB for any (weighted) unit holomorphic normal N¢, P = P,*, and
p=pu

Proof. Recall that V* = V"L on R(—n — 1,0) = N,(1,0) for any admissible ambient

contact form 6. Fixing 6 admissible we have

e e e e R e Bt

= (V,Vy = ViV, +ihuVi) 7
1

P =T

P) h“l—/Ta
for any section 7, of NV,(1,0), using Lemma 6.1.34. Thus from (6.1.29) of Lemma 6.1.30
we have that ) )
N n + ~
= gt~ e~ (Pux =2
Now using that R,; = (n + 2)P,5 + Ph,3, from the definition of P, 3, and using the

P)h,s.

corresponding expression for r,,;, we have the result. [

Note that P — Pyyx — p is the trace of P,; — p,s, with respect to h,;. The following

lemma therefore manifests the CR invariance of Rﬁg.

Lemma 6.1.42. Given any pair of compatible contact forms, the difference P,; — p,»
satisfies

P/u? — Pup = 1 (SWNN + ﬁSNNNNhuﬂ

n+
1 i ]
e o 1577 + 5 s [T Ry, (6.1.39)

where S ;NN = HﬁHgSaBWgNVNS and SNNNN = Sajy

sNONBNYNO for any (weighted)

unit holomorphic normal N.

Proof. Taking the trace free part of the Gauss equation (6.1.20) one has

(S = 5,2 ) + Pup = pup + 75 (g LY + 5= 11,05 117 )
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and noting that S,;,\* = Sm—,,yg(hvg — N'N%) = —S,snx and similarly that S, =

Snnnn one has the result. O

Remark 6.1.43. The difference P,; — p,s is the CR analogue of the so called Fialkow
tensor [44, 141] in conformal submanifold geometry, though here it is showing up in a

completely new role. 1

Proposition 6.1.44. We have

N* N>
R, =0 and Rg =0. (6.1.40)
Proof. By a straightforward calculation along the lines of the proof of Proposition 6.1.23

we have, given compatible contact forms, that
V,VyNy =V, VN, = N.N*(V,V,Nz — V,V,Np)

for any unit holomorphic conormal field N,, (where both :*V and V+ are coupled with
the submanifold Tanaka-Webster connection D). Noting that V,V, = V,V,, on densi-
ties by Proposition 5.2.5, we get that —Rﬁg = HﬂHfRag%Nq,N‘;; this is zero by (5.2.19),

noting that R,355 = —Rags5. In a similar manner one shows that Rﬁg also vanishes. [

Given compatible contact forms, one also has the component R%*. By a similar but more
tedious calculation one arrives at the expression

RN = —V,xn —iT}, (6.1.41)

where T), = Il T, V,yn = UV, 5, N 5 N7 for any (weighted) holomorphic normal field
N?, and the tensors T, and V3, are defined by (5.3.11) and (5.3.35) respectively. One
can obtain this expression more easily using the description of the canonical connection

on N,(1,0) in terms of the ambient tractor connection given below.

6.2 CR Embedded Submanifolds and Tractors

Here we continue to work in the setting where ¢ : ¥ <— M is a CR embedding of a hy-

persurface type CR manifold (X*"*! Hy, Jx) into a strictly pseudoconvex CR manifold
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(M?+1 H,J) with m = n — 1. We adopt the notation 7 M rather than 7T for the stan-
dard tractor bundle of M, and write 7Y for the standard tractor bundle of Y. Similarly
we will denote the adjoint tractor bundles of M and ¥ by AM and A respectively. We
will also use the abstract index notation £’ for 7% and allow the use of indices I, .J, K,

L, I’, and so on.

6.2.1 Normal Tractors

Given any unit section N, of NV/,,(1, 0) we define the corresponding (unit) normal (co)tractor
N 4 to be the section of £4

by

s, the ambient tractor bundle restricted to fibers over X, given

NaZ| N, (6.2.1)

where H = ﬁh“’jﬂz‘v,;]\fa and V; denotes the Tanaka-Webster connection of § acting
in tangential antiholomorphic directions along ¥; the tractor field N4 does not depend
on the choice of ambient contact form 6 since from (5.2.31) of Proposition 5.2.8 combined

with Proposition 5.2.9 we have that
H=H+T"N,

when 6 = ¢Y0 (with T* = V°7Y), as required by (5.3.3). If 6 is admissible for the
submanifold > then H = 0 (since /I;;,” = 0) and

9

0
Na N, |. (6.2.2)
0

Remark 6.2.1. The normal tractor N4 associated to a unit holomorphic conormal N,
is an analogue of the normal tractor associated to a weighted unit (co)normal field in

conformal hypersurface geometry defined first in [7]. 1

Definition 6.2.2. The normal cotractor bundle N4 is the subbundle of £4|s,, the ambient

cotractor bundle along ¥, spanned by the normal tractor N4 given any unit holomor-

phic conormal field N,. The normal tractor bundle N is the dual line subbundle of
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6.2 CR Embedded Submanifolds and Tractors

E45, spanned by N4 = hABNg. We alternatively denote N4 and N, by A" and N*

respectively.

Since the ambient tractor bundle carries a parallel Hermitian bundle metric the ambient
tractor connection induces a connection V' on the non-null subbundle N4 of £ Al

Explicitly, if N4 is the orthogonal projection from £4|x. onto N3 then we have
VNug = NAV, 04 (6.2.3)

for any section v of N, where V; is the ambient standard tractor connection (pulled

back via ¢). We can now explain the origin of the canonical connection on N,(1,0).

Proposition 6.2.3. The weighted conormal bundle N, (1,0) is canonically isomorphic to

the normal cotractor bundle Ny via the map

Ta F> Ta Ta (6.2.4)

defined with respect to any admissible ambient contact form . Moreover, the above iso-
morphism intertwines the normal tractor connection V' on Ny with the normal Weyl

connection on N, (1,0) of any admissible 6.

Proof. The first part follows from the fact that if § is admissible then 0 = 0 is admissi-
ble if and only if T, N® = 0, where N“ is a holomorphic normal field (a consequence of
Lemma 5.2.6). The second part follows from the explicit formulae for the tractor connec-
tion given in §§5.3.4 (noting in particular (5.3.27)) and the observation that the orthog-

onal projection £4|s; — Ny is given, with respect to any admissible ambient contact

form, by
o 0
To | — | Ny |. (6.2.5)
p 0

]

Remark 6.2.4. Clearly the isomorphism of Proposition 6.2.3 is Hermitian; in particular if

N4 is the normal tractor corresponding to a unit normal field N, then

NAN, = NN, =1,
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so N, is indeed a unit normal tractor. Although a unit normal tractor is determined only

up to phase, the tractors

N4sNgz and N“Njg,

are independent of the choice of unit length section of A4. Indeed, N4 Nz = N4 and
the section
14 = 65 — N*Np

projects orthogonally from £,4|s. onto the orthogonal complement N3 of V4 in E4|x. 1

6.2.2 Tractor Bundles and Densities

Clearly N1 has the same rank as &;; they also have the same rank subbundles in their
canonical filtration structures. Moreover, both A’ and &; carry canonical Hermitian
bundle metrics (and Hermitian connections). On the other hand we note that for N'3- we
have the canonical map

Ni — £(1,0)|y

v — Zhuy

where Z* is the ambient canonical tractor, whereas for £ we have the canonical map

g[ — 82(1,0)
vy Z]U]

where Z! is the canonical tractor of ¥. It seems natural that we should look to identify
these bundles (canonically), but doing so clearly also involves identifying the density
bundles £(1,0)|x and Ex(1,0) (also canonically). The following lemma shows us that
this is the only thing stopping us from identifying £; with N3

Lemma 6.2.5. Fix a local isomorphism v : £x(1,0) — £(1,0)|s (compatible with the
canonical identification of Ex(1,1) with £(1,1)|s) and identify all corresponding density
bundles Es(w, w") and £ (w, w')|s, using 1p. Then locally there is a canonically induced map

from Er to N1, given with respect to any pair 0, Os, of compatible contact forms by

g ag
(% 4
o= 1 |Pu=] (6.2.6)
P P

where T, = 1141, which is a filtration preserving isomorphism of Hermitian vector bundles.
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Proof. Let us start by fixing 6 and fy,. That the map described above is a filtration pre-
serving bundle isomorphism is obvious. That the map pulls back the Hermitian bundle
metric of A'; to that of & is also obvious. It remains to show that the map is indepen-
dent of the choice of compatible contact forms. To see this we suppose that 0 = evo
is any other admissible contact form and let 92 — 1 = eT0s.. We need to compare
the submanifold and ambient versions of the tractor transformation law (5.3.3). By the
compatibility of # and 5, we have V(T = DyT along ¥, and by Lemma 6.1.35 we also
have T, = II4T, where T, = D,YT. These observations ensure that the map is well-
defined. [

The local bundle isomorphism ¢ : £x(1,0) — £(1,0)|x in the above lemma can also
be thought of as a nonvanishing local section (or local trivialisation) of the ratio bundle
R(1,0). The bundle R(1, 1) is canonically trivial because of the canonical isomorphism
of Es(1,1) with £(1, 1)|x, so that R(1, 0) carries a natural Hermitian bundle metric (i.e.
is a U(1)-bundle) and the compatibility of ¢ with the identification &x(1,1) = £(1,1)|s
is equivalent to 1) being a unit section of R(1, 0). The ratio bundle R(1,0) will prove to

be the key to relating the tractor bundles (globally) without making an unnatural (local)
identification of density bundles.
6.2.3 Relating Tractor Bundles

If we tensor £ with £x(0, 1) then choosing a submanifold contact form 6y, identifies this
bundle with
[Erlos ® E5(0,1) = Ex(1,1) ® E,(1,1) ® E(0,0)

where Ex(0,0) is the trivial bundle ¥ x C. Similarly, given an ambient contact form 6
we may identify the Vi ® £(0,1)|x with

Nt ®&(0,1)]y = E(1,1)|s @NE(,1) @ £(0,0)]5

where £(0,0) is the trivial bundle M x C and N;- denotes the orthogonal complement
to NV, in &,|s. Since Ex(w,w) is canonically identified with £(w, w)|x we have the

following theorem:
Theorem 6.2.6. There is a canonical filtration preserving bundle isomorphism

I - & ®Ex(0,1) = Nt ®&(0,1)|s
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given with respect to a pair of compatible contact forms 0, Oy, by

g g
oy @E(0,1) 3 [ 7, | = | 7 | e Wil ®E(0,1)]5
p p

= I#
where 7, = Ik 7,.

Proof. We only need to establish that the map is independent of the choice of compatible
contact forms, and this follows from comparing the submanifold and ambient versions
of (5.3.3) noting that V(T = DyY and T, = II# T, as in the proof of Lemma 6.2.5. [

Remark 6.2.7. If ¢ : Ex(1,0) — £(1,0)]|x is a local bundle isomorphism (unit as a local
section of R(1,0)) and we denote by T the local isomorphism & — N given by

Lemma 6.2.5 then isomorphism of Proposition 6.2.6 agrees with T}, ® ¢ where this is
defined. 1

Conjugating the map ( 6.2.6) and raising tractor indices one gets an isomorphism
I &' ®Ec(1,0) &> (W' ® E(1,0)]x

and tensoring both sides with £5;(—1,0) one gets another isomorphism

gl — (NH* ® E(1,0)]x ® Ex(-1,0) (6.2.7)

R(1,0)

which we may also denote by I1¢'. We think of 11 as a section of £ ® £4|s ® R(1,0)
and IT/ as a section of £ ® E4]s ® R(0,1). Thinking about these objects as sections

emphasises that they can be interpreted as maps in a variety of ways.

Definition 6.2.8. The isomorphism (6.2.7) gives an injective bundle map
TR TE = TM|s @ R(1,0) (6.2.8)

which we term the twisted tractor map.

The twisted tractor map is clearly filtration preserving, and restricts to an isomorphism
T'S — T'M|s ® R(1,0). This is just the trivial isomorphism

Ex(—1,0) = E(—1,0)|x ® £(1,0)]x ® Ex(—1,0). (6.2.9)

144



6.2 CR Embedded Submanifolds and Tractors

Since it is filtration preserving 7 . also induces an injective bundle map 7°% /7% —
(T°M|s/T'M|s) ® R(1,0) and this is simply the tangent map £# — £%|s; tensored
with the isomorphism (6.2.9). The map 7% /7°% — (TM|s/T°M|s)®R(1,0) induced

by the twisted tractor map is the isomorphism

which simply comes from noting that R(1,0) = R(0, —1) since £x(1,1) = £(1,1)]s.
Note that since R(1,0) is Hermitian, so is 7 M|s ® R(1,0), and T *¢ is clearly a Her-

mitian bundle map. These properties characterise the twisted tractor map.

6.2.3.1 The adjoint tractor map

Since R(1, 1) is canonically trivial the section IT{'I1%, gives us a canonical bundle map
End(7%) — End(TM).

Since the twisted tractor map is metric preserving by restricting to skew-Hermitian en-

domorphisms we get a map

Av: AY — AM

which we term the adjoint tractor map. Recalling the projection AM — T M given by
(5.3.30) we note that the diagram

AY — AM
l 1 (6.2.10)
TS, — TM

is easily seen to commute. So the adjoint tractor map is a lift of the tangent map.

6.2.4 Relating Tractor Connections on 7%

Using the twisted tractor map and the connection V”* we obtain a connection V on the
standard (co)tractor bundle induced by the ambient tractor connection. Given a standard

tractor field v’ and a cotractor field v; on ¥ we define

V! = OLV,(ITEuE) and Viuy = TEV, (1K vk) (6.2.11)
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where by V we mean the ambient standard tractor connection V differentiating in di-

rections tangent to . (i.e. pulled back by ¢) coupled with the connection V.

. o . . 0
From §§5.3.4 the submanifold intrinsic tractor connection D on a section v; = (o, Ty, P)

is given by
D,o—1, Do
Dy Z D7, + iAo  Duvs 2| Dury + hop+pupo |, (6.212)
D,p—p,'1, +to Dup — 1Az T, — tzo
and

Dyo + n+‘r1pa —ip
o .
Dovy = | Dyt + DTy — ip, Ty + 2it,0 (6.2.13)
Dop + 75pp + 27, + iso

where t,, and s are the submanifold intrinsic versions of T}, and S defined by (5.3.11) and

(5.3.12) respectively. By contrast, for V we have:

o R . 0 . .
Proposition 6.2.9. The connection V on a section vy = (0,7, p) of & is given, in terms

of any ambient contact form compatible with 0y, by

D,o—1,
- Os;

Vuvy = D1, + A0 , (6.2.14)
D.,p— P}/, +T,0

Do
Vavs 2| Dury+ huop+ Pyo | (6.2.15)
Dup —iAz'1, — Tho
and ‘
o Do+ zaPlo —in
Vovy = | Dyt + #_HP,\)‘TV —iP Ay +2iT,0 | . (6.2.16)
Dop + #P)\Ap + 2iT"71, +1S0
Proof. Choose any local isomorphism ¢ : Ex(1,0) — &(1,0)|x compatible with the
canonical identification of £x(1,1) with £(1,1)|s. Replacing o with fo where f €
C>* (X, C) we may take o to satisfy 00 = ¢5 where 0y, = ¢505. We can thus factor the
components of v; so that v; = (fo,€,0,90), where¢, € I'(§,) and g € I'(Ex(—1, —1)).

If # is an ambient contact form compatible with s, then (splitting the tractor bundles
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w.r.t. 6, fx) under the map 7yt ® 1) of Remark 6.2.7

(f0,8u0,90) @T = ([0, a0, 90) @ &

where ¢ = (o) and &, = I1%¢,,. Thus by definition we have

fo B
&o | @ (o)
9o

0
’UB:H}_];UJ:

as a section of Egly ® R(1,0). Now one simply computes V,vp using the formulae
(5.3.13), (5.3.14), and (5.3.15) for the tractor connection along with Lemma 6.1.38 which
relates V™ to the Tanaka-Webster connections on the ambient and intrinsic density bun-
dles. We have

(Vuf)o+ Vo — &t
M2(V,5)0 + & Vo + il A fo | @ (00T )
(Vug)o+9gVud — P&o +Tufd
fo
+| &0 |@Vieea™) (6.2.17)
9o

[4
2V, vp =

where A,3 = H,‘an,B, b, = 1ITR,", and T, = Hz‘Ta. By Corollary 6.1.13 we have
HEAMB =117 A,,. We also have H«’vaufﬁ = II7D,&,. Now by Lemma 6.1.38 we have
Vi(0@7 ) =(Vu) @7 '+ 6@ D@ )
=(V,0)®7 '+ (67'Dyo)p@5 "

using that 7D, (¢ ') = -3 'D,d = 0 'D,0 since D,ss = 0. If § = <0 then since
¢ = ¢ (c) we must have ¢p = ¢

s, and this implies that

(Vi) @+ ¢V, =0.
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Using these to simplify (6.2.17) we have

(Duf)d — £,
MEV,op L | T(D&)0+ i A, fo | @ (G0a)
(Dug)Qb - PuV§V¢ + Tuf¢

AN
+ (@ 'Duo) | &0 | @ (92T ).
99
Applying I19 to the above display gives
(D,f)o —¢&u0 fD,o
5V g 2 (D,&,)o +iA,, fo +| &Dyo
(Dug)o — P o+ T, fo gD,o

which proves (6.2.14). Formula (6.2.15) is obtained similarly. In following the same pro-
cess for (6.2.16) we obtain that

n+2

Vous Z | Dyr, + =5 Pr, — iPA 1y + 2iT0

Dop + 75 Pp + 2iT"7, + iSo

D()O'—FLPO'—?;p

g

! (‘ﬁpm TS 1>P) vl

the second term arising from the use of Lemma 6.1.38. Simplifying this gives the result.

]

Remark 6.2.10. By construction V preserves the tractor metric & ;5. One can therefore
obtain the formulae for V acting on sections of £’ by conjugating the above formulae

and using the identification of £7 with £; via the tractor metric. 1

One can now easily compare the two connections V and D on T X.

Definition 6.2.11. The difference tractor S is the tractor endomorphism valued 1-form

on ¥ given by the difference between V and D on 7 X. Precisely, we have

qu:DXu—i—S(X)u and Vyv = Dxv —voS(X) (6.2.18)
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for X € X(¥),u € I'(TY),and v € I'(T*Y).

Given a contact form fy; on X the difference tractor S splits into components S,,;*, S;,%
and Sy;* (with only the last of these depending on fy). From the above formulae for V

and D we have, in terms of a compatible pair of contact forms,

S = (P> —pNZWE (T, —t,)2,2", (6.2.19)
SﬂJK = _(Puﬂ - pu;L)Wf]/ZK + (Tﬁ - tﬂ)ZJZKa (6-2~20)
and
Sos" =~z (P = p)oy +i(R —p,)yWyWE

—2i(T, — t, )WY ZE — 2(T* =t Z,WE —i(S — 8)Z; 2%, (6.2.21)

where m + 2 = n + 1 in this case. Both S, ;% and S ;% are invariant objects. Both
have as projecting part the difference P,; — p,»; a manifestly CR invariant expression
for this difference was given in Lemma 6.1.42. We can also give matrix formulae for the

difference tractor, following the same conventions used in §§5.3.6 we have

0 0 0 0 00
S = 0 0 0|, Saw/=1|pp—PFpu 00
t“ - TH -P,u)\ - p.U')\ 0 Tﬁ - tﬁ 00
and ()
B 72+2p 0 N 0
So/X = | —2(T, —t,) (P> —p) -1 0
. . (P —
—i(S —s) —2i(T* — 1) - (TZHP)

Remark 6.2.12. Since both tractor connections V and D preserve the tractor metric on
TY, the difference tractor must take values in skew-Hermitian endomorphisms of the
tractor bundle (i.e. S is an AY-valued 1-form). This can also easily be seen from (6.2.19),
(6.2.20) and (6.2.21), from which we see that S is in fact .A°Y-valued. 1

6.2.5 The Tractor Gauss Formula

In order to write down the Gauss formula in Riemannian geometry one needs the tan-

gent map (more precisely the pushforward) of the embedding, though one typically sup-
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presses this from the notation. In order to give a standard tractor analogue we have
sought a canonical ‘standard tractor map’, but ended up instead with the twisted tractor
map 7 .. However this poses no problem for constructing a Gauss formula, since the

line bundle R(1,0) we have had to twist with carries an invariant connection V.

Letting ¢, denote the induced map on sections coming from 7~ we make he following

definition:

Definition 6.2.13. We define the tractor second fundamental form IL by the tractor Gauss

formula
Vxtu = tu(Dxu~+ S(X)u) + L(X)e.u (6.2.22)

which holds for any X € X(X) and u € I'(TX), where V denotes the ambient tractor

connection coupled with V.

This (combined with Theorem 6.2.6) establishes Theorem 4.3.3 for the case m = n — 1,
the result generalises straightforwardly (§§6.3.3).

Remark 6.2.14. By the definition of the difference tensor S, for any X € X(X) and u €
['(7X) we have that IL(X)¢,u is the orthogonal projection of V x¢,u onto N ® R(1,0).
By definition then LL is a 1-form on ¥ valued in Hom(N* ® R(1,0), N ® R(1,0)) =
Hom (N, N). I

Suppressing ¢, we write the tractor Gauss formula as

Vxu = Dxu+S(X)u + L(X)u (6.2.23)
N———— ——
‘tangential part’ ‘normal part’

forany X € X(¥) and u € I'(TY).

Writing TT15u” as u” and contracting the Gauss formula on both sides with a unit normal

cotractor N4 we get that
NeL(X)p%u? = NpVxu? = —uPVxNp
for all sections u”/ of £/ and X € X(X). Thus L is given by
L;z¢ = —NCTIZ'V,Np (6.2.24)

for any unit normal cotractor N¢. From this we have:
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Proposition 6.2.15. With respect to a compatible pair of contact forms the components

L,5%, LugY, and Log® of the tractor second fundamental form L are given by

L.5¢ = I, TI5WEWE + P,y N ZpWC, (6.2.25)
L% =0, (6.2.26)

and
Lop® = —2iTyN" ZgW< (6.2.27)

where N is some unit holomorphic normal field, P,y = HZ‘PQBNB, and Ty = T5N°.

Proof. One simply chooses a unit holomorphic normal field N and corresponding nor-
mal tractor N4, then calculates I158'V;Np, using the formulae (5.3.13), (5.3.14), and
(5.3.15) for the ambient tractor connection. Using (6.2.24) one immediately obtains (6.2.25);
for (6.2.26) one also has to use that I7;,7 = 0 (by Proposition 6.1.12) and HgA@BNB =
0 (by Corollary 6.1.13), and for (6.2.27) one also has to use that I/,,” = 0 (again by
Proposition 6.1.12). O]

The proposition shows that the invariant projecting part of L,z is II w115, giving a

manifestly CR invariant way of defining the CR second fundamental form.

6.3 Higher Codimension Embeddings

It is straightforward to adapt our treatment of CR embeddings in the minimal codimen-
sion case to general codimension transversal CR embeddings. Here we consider a CR
embedding of ¢ : X" — M?*"*! withn = m +d, and m, d > 0. We keep our notation
for bundles on ¥ and M as before. We now have a rank 2d real conormal bundle N*Y,

and the complexification of N*X splits as
CN*Y =N, ® Ny (6.3.1)

where N, is the annihilator of 7%°% in (TYM)*|s; = &,|s and Ny = N,. We denote
by N the orthogonal projection of £ A5, onto the holomorphic normal bundle A/®, and
by 11§ the tangential projection, so that II§ + N3 = 05. We will also write NP for
R°NoNY = RPN,
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Remark 6.3.1. Note that in passing to the general codimension there is no restriction on
the signatures (or relative signature) of the CR manifolds, provided we have a nonde-

generate transversal CR embedding. 1

6.3.1 Pseudohermitian Calculus

We may continue to work with compatible contact forms in the general codimension
case (see Remark 6.1.3). By Remark 6.1.10 the Tanaka-Webster connection V of an ad-
missible ambient contact form 6 induces the Tanaka-Webster connection D of 0y, via the
Webster metric gy as in Proposition 6.1.8. We can therefore define the (pseudohermitian)
second fundamental form of a pair of compatible contact forms as in Definition 6.1.11
(i.e. via a Gauss formula). By Remark 6.1.14 the only nontrivial components of the
pseudohermitian second fundamental form are /7,7 and its conjugate. Also by Remark
6.1.14 the pseudohermitian torsion of any admissible ambient contact form satisfies

1% AasNZ = 0.

The higher codimension analogue of Lemma 6.1.16 is:

Lemma 6.3.2. Given compatible contact forms one has
N, 11, = -1V, Ny (6.3.2)

for any holomorphic conormal field.

From Lemma 6.3.2 we see again that the component 1/,,,7 of the pseudohermitian second
fundamental form does not depend on the compatible pair of contact forms used to define
it (cf. Corollary 6.1.17).

The Gauss, Codazzi and Ricci equations given in the three propositions of §§6.1.7 hold
in the general codimension case with the same proofs (noting that the normal fields used

in the proofs of Proposition 6.1.22 and Proposition 6.1.23 were arbitrary).

6.3.2 Relating Densities

As before we define A'°Y to be the bundle of forms in A"*M |5, annihilating Y. Again
we may identify AEOZ with A, by restriction to T1°M|sx.. We write AfOZ for the line
bundle Ad(AtoE). The following lemma is easily established (cf. Lemma 6.1.25 and
Lemma 6.1.28):
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Lemma 6.3.3. Along > the submanifold and ambient canonical bundles are related by the
canonical isomorphism which intertwines the Tanaka-Webster connections of any compat-

ible pair of contact forms

Hs = s @ NS
UV =2 D e Vi

Identifying AEOE with NV, we may write AT]Z as Nja,...a ). Tensoring both sides of the
isomorphism of Lemma 6.3.3 with £(d, 0)|x, we obtain (cf. Corollary 6.1.26 and Corollary
6.1.29):

Corollary 6.3.4. Along Y the submanifold and ambient density bundles are related by the
canonical isomorphism which intertwines the Tanaka-Webster connections of any compat-

ible pair of contact forms

g(_m - 25 O)|E = gZ(_m - 27 0) ® Ma1~--ad](d7 0)
L'V D ® VL.

I

Note that the line bundle NV, ..., (d, 0) is the d" exterior power of (1, 0). Once again
this bundle will turn out to be canonically isomorphic to a subbundle A™* = N4 of the
ambient cotractor bundle £,]s. (see §§6.3.3), and hence once again N, (1,0) carries a
canonical invariant connection. As before this connection turns out to be explicitly re-
alised as the normal Weyl connection on N, (1,0) of any admissible ambient contact
form. The normal Weyl connection on NV, (1, 0) agrees with the normal Tanaka-Webster
connection when differentiating in contact directions; when differentiating in Reeb di-
rections the two are related by
;

n+2

V(l)MLTa = V(J)_Toz - iNglPa/ﬁT/B + P, (6.3.3)

for any section 7, of N, (1, 0). The curvature RA"N" of this connection on Nay-ay)(d,0)

is again generically non zero, and we have

RAN" = (m+2) (P — pus) + (P = p)hyw (6.3.4)
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(cf. Lemma 6.1.41), R4 = 0, RAN" = 0, and (cf. (6.1.41))

RAN" =~V NP —iT,,. (6.3.5)

We thus define the ratio bundle of densities R(w, w’) as before (Definition 6.1.32) and
see from Corollary 6.3.4 that these bundles carry a canonical connection V”* coming
from the connection VA on AN* = N,,..0,(d,0). We have therefore established
Proposition 4.3.2. Using Corollary 6.3.4 and (6.3.3) we may relate the connection V7 to

the coupled submanifold-ambient Tanaka-Webster connection (cf. Lemma 6.1.38):

Lemma 6.3.5. In terms of a compatible pair of contact forms, 0, Os,, the connection V'~ on

a section ¢ ® o of E(w, w')|y ® Es(—w, —w') is given by
V(o ®0)=(Vup) @0+ ¢ ® (Do), (6.3.6)

VR ®0)=(Vad) ® 0+ ¢ ® (Dpo), (6.3.7)

and

V(o ®0) = (Vo) ® 0+ ¢ @ (Doo) + L5 (iPgN? — —LP)o® 0. (63.8)

6.3.3 Relating Tractors

As before we have a canonical isomorphism from N, (1, 0) to a subbundle N4 of 4|,

given with respect to any admissible ambient contact form 6 by

e Tmaz| o |- (6.3.9)

There is a corresponding isomorphism of N'*(—1, 0) with a subbundle N of £4|y;, and
we alternatively denote the dual pair N4 and N4 by A" and N'* respectively. The normal
tractor connection V/ on V4 agrees with the normal Weyl connection of any admissible

ambient contact form on N, (1, 0) (cf. Proposition 6.2.3).

Sections §§6.2.2 and §§6.2.3 are valid without change in the general codimension case.

In particular, Lemma 6.2.5 and Theorem 6.2.6 hold. Thus we may talk about the twisted
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standard tractor map
TR TS = TM|s ® R(1,0)

and the corresponding sections 14 of £; @ 4|5 @R (1,0) and IT] of EL R E 45 @R(0, 1).
This allows us to define the connection V on 7Y as in (6.2.11); one can then easily
establish the expressions for V given in Proposition 6.2.9 in the general codimension
setting (the proof is essentially the same, with Lemma 6.3.5 generalising Lemma 6.1.38).
The difference tractor S, defined as in Definition 6.2.11, is then still given in component
form by (6.2.19), (6.2.20), and (6.2.21).

We define the tractor second fundamental form I by a tractor Gauss formula as in
Definition 6.2.13. This establishes Theorem 4.3.3. One then also has that

L;z°Ne = —I18'V,;Np (6.3.10)

for any section N4 of V4. From this we get (cf. Proposition 6.2.15):

Proposition 6.3.6. With respect to a compatible pair of contact forms the components

L,5%, Lup®, and Log® of the tractor second fundamental form L are given by

L,sC = I, TIWaWE + PN ZyWC, (6.3.11)
L5 =0, (6.3.12)

and
Lop® = —2iT5N"° ZgW< . (6.3.13)

6.4 Invariants of CR Embedded Submanifolds

For many problems in geometric analysis it is important to construct the invariants that
are, in a suitable sense, polynomial in the jets of the structure. Riemannian theory along
these lines was developed by Atiyah-Bott-Patodi for their approach to the heat equation
asymptotics [5], and in [63] Fefferman initiated a corresponding programme for confor-
mal geometry and hypersurface type CR geometry. As explained in [8] there are two
steps to such problems. The first is to capture the jets (preferably to all orders) of the
geometry invariantly and in an algebraically manageable manner. The second is to use
this algebraic structure to construct all invariants. The latter boils down to Lie repre-

sentation theory, for the case of parabolic geometries this is difficult, and despite the
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progress in [8] and [75] for conformal geometry and CR geometry many open problems
remain. For the conformal and CR cases the first part is treated by the Fefferman and
Fefferman-Graham ambient metric constructions [63, 64, 66] and alternatively by the
tractor calculus [7, 27, 75]. It is beyond the scope of the current work to fully set up
and treat the corresponding invariant theory for CR submanifolds. However we wish to
indicate here that the first geometric step, of capturing the jets effectively, is solved via
the tools developed above. In particular we will show that it is straightforward to pro-
liferate invariants of a (transversally embedded) CR submanifold. It seems reasonable
to hope that these methods will form the basis of a construction of all invariants of CR

embeddings (in an appropriate sense).

6.4.1 Jets of the Structure

We now show that the jets of the structure of a CR embedding are captured effectively by

the basic invariants we have introduced in our ‘tractorial’ treatment of CR embeddings.

Observe that the tractor Gauss formula ( 6.2.13) may be rewritten in the form
VxTR=TRoS(X)+L(X)oT™ (6.4.1)

for any X € T'Y, where 7. is interpreted as a section of T M|z @ T*X®R(1,0) and V
here denotes the (pulled back) ambient tractor connection coupled with the submanifold
tractor connection and the canonical connection V*. Using this we have the following

proposition:

Proposition 6.4.1. Given a transversal CR embedding 1 : > — M, the 2-jet of the map ¢
at a point v € ¥ is encoded by (), T.*1, S, and L.

Proof. Recalling §§§6.2.3.1 we note that the twisted tractor map 7 . determines the
adjoint tractor map A (by restricting 7% ® T Ru). Since the adjoint tractor map lifts
the tangent map, the 1-jet (c(z), 7;¢) of ¢ at a point = € X is also determined by the pair
(¢(x), T,R1). The proposition then follows from (6.4.1). O

In the jets of the structure of a CR embedding ¢ : ¥ — M we include the jets of the
ambient and submanifold CR structures, along with the jets of the map ¢. A CR invariant

of the embedding should depend only on these jets evaluated along the submanifold.
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The jets of the ambient and submanifold CR structures are determined by the respective

tractor curvatures. Thus from Proposition 6.4.1 we have:

Proposition 6.4.2. The jets of the structure of a transversal CR embedding are determined
algebraically by the embedding + : ¥ — M, the submanifold and ambient CR structures
(as parabolic geometries), the twisted tractor map T %1, as well as the jets of the difference
tensor S, the tractor second fundamental form 1L, the submanifold tractor curvature K>,

and the full (i.e. ambient) jets of the ambient tractor curvature K.

In order to complete the first step of the invariant theory programme we need to package
the jets of S, I, K and K in an algebraically manageable way. Note that the standard
tractor bundle, tractor metric, and canonical tractor Z are all determined algebraically
from structure of a CR geometry (as a parabolic geometry). Thus if we package the jets
of S, L, k* and K into sequences of CR invariant tractors then one may combine these
tractors by tensoring them and using the submanifold and ambient metrics to contract
indices. One can also use the twisted tractor map to change submanifold tractor indices
to ambient ones before making contractions (the ratio bundle of densities is also deter-
mined algebraically from the submanifold and ambient CR structures). This would not
only complete the first step of the invariant theory programme, but would also suggest

an obvious approach to the second of the two steps.

6.4.2 Packaging the Jets

One way to define iterated derivatives of the difference tractor S and submanifold cur-
vature K~ would be to repeatedly apply the submanifold fundamental derivative (or
D-operator) of [27]. Denoting the submanifold fundamental derivative by D, if f is S or
Ky, then by Theorem 3.3 of [27] the k-jet of f is determined by the section

(f?Df7D2f""7'Dkf)

of @f:o <®l AE ® W) where W equals A'Y @ AY or A%2Y @ AY respectively. The
ambient jets of K can be similarly captured by iterating the ambient fundamental deriva-
tive, and one can also capture the jets of IL by using the submanifold fundamental deriva-
tive twisted with the ambient tractor connection. Here instead we parallel the approach

taken in [75] to conformal invariant theory by first putting the tractor valued forms S, L,
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k¥ and K into tractors (invariantly and algebraically) using the natural inclusion of the

cotangent bundle into the adjoint tractor bundle, and then using double-D-operators.

Let BY 5 denote the map 7*M — AM given explicitly by (5.3.29) and B 7 denote the
map 773 — AX.

Definition 6.4.3. We define the respective lifted (tractor) expressions of the tractor val-
ued forms S, L, kK* and K to be

_K_ pi_ g K _C _piq. C X _pi_pi s
Sipg = BipSu”, Lpp” = Bplis™,  Kipsypxr = Bip Bl Kk

and
o a b B
Kaapgcd = ByiBggKach-

Explicitly this means, for example, that

Siik” = Suk"WEZ; — S " ZIWY — iSox" Z1 Z 5.

By (5.3.42) the double-D-operator D45 acting on unweighted ambient tractors can be
written as
Dag = B%5Va (6.4.2)

where V is the ambient tractor connection. Similarly the double-D-operator D; 7 acting

on unweighted submanifold tractors can be written as
D;; = B};D; (6.4.3)

where D; denotes the submanifold tractor connection. By coupling D; in (6.4.3) with
V,; we enable the double-D-operator operator D; ; to act iteratively on the unweighted
(mixed) tractor L. Noting that each of the lifted tractor expressions given in Defi-

nition 6.4.3 is unweighted we therefore have:

Proposition 6.4.4. Let . : > — M be a transversal CR embedding, and let D denote the
submanifold double-D-operatorD, ;. If f equalsS, 1L, or K* then the k-jet of f is determined
by the section

(f,Df, D*f,... D) (6.4.4)

of @;ﬂ:o (@l AYX ® W), where [ is the lifted tractor expression for f and W equals

®2?AY, AY @ AM]|s, or @3 AY. respectively.
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6.4 Invariants of CR Embedded Submanifolds

Along with the corresponding proposition for the ambient curvature:

Proposition 6.4.5. Let . : X — M be a transversal CR embedding, and let D denote the
ambient double-D-operator D 45. The k-jet of the ambient curvature K is determined by

the section
(R, DR, DR, ..., DFR) (6.4.5)

of By (@' AM).

By packaging the jets of the basic invariants S, I, k* and K into sequences of tractors
(i.e. sections of associated bundles corresponding to representations of the appropriate

pseudo-special unitary groups) we have solved the first step of the invariant theory.

6.4.3 Making All Invariants

By tensoring together tractors of the form appearing in (6.4.4) and (6.4.5) along >, mak-
ing partial contractions, and taking projecting parts one may proliferate local CR in-
variant (weighted) scalars and tensors. It is an algebraic problem to show that all such
invariants, which are suitably polynomial in the jets of the structure, can be obtained
by such a procedure. This is a subtle and difficult problem, which extends Fefferman’s
parabolic invariant theory programme to the submanifold-relative case (where there are
two parabolics around, P and Px). Even in the original case of invariant theory for CR
manifolds, despite much progress, important questions remain unresolved [8, 92]. We

do not attempt to resolve these issues here.

We do wish to indicate, however, that there is scope for development of the invariant
theory for CR manifolds, and now CR embeddings, along the lines of the treatment of
invariant theory for conformal and projective structures in [71, 72, 73, 75]. The trac-
tor calculus we have developed for CR embeddings provides all the machinery needed
to emulate the constructions of conformal Weyl and quasi-Weyl invariants in [75]. We
anticipate that further insight from the projective case [73] will be needed, and our ma-
chinery is sufficient for this also. With all the tools in hand this article therefore puts
us in good stead in terms of our ability to construct (potentially all) invariants of CR

embeddings.
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6.4.4 Practical Constructions

Although in principle one may need only the invariant tractors appearing in Proposi-
tions 6.4.4 and 6.4.5 for construction of general invariants, in practice it is much more
efficient to use the richer calculus which is available. First of all, there are many alterna-
tive ways to construct tractor expressions from the basic invariants (recall for instance
the curvature tractor of §§5.3.8). Secondly, there are several invariant operators besides

the double-D-operators D; ; and D 4 5 that can be used to act on these tractor expressions.

6.4.4.1 Alternative tractor expressions

Along with the lifted tractor expressions for the submanifold and ambient tractor cur-
vatures one may of course construct invariants using the curvature tractor of §§5.3.8 or
using the tractor defined in equation (5.3.49) of that section. Correspondingly we may
also use the middle operators of §§§5.3.7.2 to construct tractors from our basic invariants
SandLL

S[JK = M?S#JK, SI‘JK = M?Sﬂ]K, and L[BC = MA;LMBC

using indices to distinguish them from the difference tractor S and the tractor second
fundamental form LL (and from their lifted tractor expressions in §§6.4.2). Recall that

LﬂBC - 0.

From (5.3.4) it follows immediately that

1
ZAWp = Z W)

B _
Z[AWB] = 5(

does not depend on the choice of contact form, so is CR invariant. Using Z AWg} and

Z[ IWj] we construct the tractors
S[[/JK = Z[IW#]SMJK, Sff/JK - Z[I—ng]SﬂJK7
Lipg® = Z[IWIH/}LMBC,
KE, caer = 2o WH Z WY RS-
I'JJ'KL AR URIFAN AN ) ¢ %

and

Kaasacd = ZiaWi Z[BWE,} Rageb-
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Of course one can also make invariant tractors from the invariant components S, ;,
S 75, L, 5%, and so on, by making contractions with the submanifold (or ambient) CR
Levi form. For example, we have the following invariant tractors on X
rg J L v B L AT .5 B D
hszul SDK 5 hMV]LuA SDI_( ; h""h V’{'#EKEL)\A Lﬁc_’ s
where S,;KE = S, kL and ]Lﬁ@D = ]LPCD. One can also contract some, or all, of the
tractor indices. Note that

L,pcltPC = I1,,,, 11" (6.4.6)

wy

whereas
S, gS"* =0 and ILIES, zL"P¢ =0 (6.4.7)

from the explicit formulae for S and L in terms of compatible contact forms and the

orthogonality relations (5.3.10) between the splitting tractors.

Remark 6.4.6. AlthoughsS,,; #S*/K = () one can extract a scalar invariant from the partial
contraction S, ; ZSH'E by observing that this tractor is of the form fZ;Z7', so that the

(—1, —1) density f must be CR invariant. In fact f is simply the invariant
(Pw’ - puﬂ)(PW - puf/)‘

One of the difficulties inherent in constructing all invariants is predicting when this type
of phenomenon will happen when dealing with various contractions of higher order

invariant tractors (such as those appearing in Proposition 6.4.4). 1

6.4.4.2 Invariant operators

Along with the double-D-operators (6.4.2) and (6.4.3) used in §§6.4.2 one may of course
use the submanifold and ambient tractor D-operators of §§§5.3.7.1 and the other double-
D-operators D;; and D 4. In order to act on tractors of mixed (submanifold-ambient)
type, with potentially submanifold and ambient weights, we will need to appropriately
couple the submanifold intrinsic invariant D-operators with the ambient tractor con-
nection and with the canonical connection on the density ratio bundles. Note that these

operators also form the building blocks for constructing invariant differential operators
on CR embedded submanifolds.

We first need to use the ratio bundles to eliminate ambient weights. Let £ denote

any submanifold intrinsic tractor bundle and let £ (w, w’) denote £F ® Ex(w, w’). Let
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E®(w, ') denote any ambient tractor bundle, weighted by ambient densities. We make

the identification
EX(w, w') ® EX (0, )|y = EL(w — b, v — @) ® EX|x @ R(W, &) (6.4.8)
which motivates the following definition:

Definition 6.4.7. We define the reduced weight of a section f‘bi> of the bundle (6.4.8) to

be (0, 0') = (w — w,w" — ).

One can extend any of the submanifold D-operators to act on sections of the bundle
(6.4.8) by taking the relevant D-operator acting on submanifold tractors with the reduced
weight, expressed in terms of a choice of contact form 6y, and coupling the Tanaka-
Webster connection of fy, with the (pulled back) ambient tractor connection and the

ratio bundle connection V.

We illustrate how this works for the submanifold tractor D-operator D;. We define the

CR invariant operator

Dy : E2(w, ') ® E%|g @ R(w, W) — & ® EX (0 — 1,0) ® |y @ R(w, &)

W(m + 1+ ') f22
D, fo% & (m + + ') D, f®? (6.4.9)

— (DD + Do f*P 4 (1 + L )p o)

where D denotes the Tanaka-Webster connection of 6y, coupled with the submanifold
tractor connection, the (pulled back) ambient tractor connection, and the ratio bundle

connection V7.

6.4.4.3 Computing higher order invariants

Using the tractor calculus we have developed it is now straightforward to construct fur-
ther local (weighted scalar, or other) invariants of a CR embedding. One can differentiate
the various tractors constructed from the basic invariants in §§6.4.2 and §§§6.4.4.1 us-
ing the invariant operators of §§§5.3.7.1 and §§§6.4.4.2, tensor these together, and make
contractions using the tractor metrics (and the twisted tractor map). One can also make

partial contractions and take projecting parts.
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6.4 Invariants of CR Embedded Submanifolds

To illustrate our construction we give an example invariant and compute the form of the
invariant in terms of the Tanaka-Webster calculus of a pair of compatible contact forms:

Consider the nontrivial reduced weight (—2, —2) density
T = D'D/ (P TIY W he gL, 5 L, 5 ). (6.4.10)

Since H?H? is by definition a section of £ ;®EPP |y @R (1,1), and R(1, 1) is canonically

trivial and flat, we see that
17 =PI R he gL, pLy 5" (6.4.11)

has reduced weight (—1, —1) and no ratio bundle weight (diagonal ratio bundle weights
can be ignored). Therefore in this case we do not need to couple the submanifold tractor
D-operator with any ambient connection in order to define D’ D’ f, 7. From the definition

of D; we have

DY fr7 = —(m —2)Y7 f,; 4+ (m — 2)W"/D, f;;
— 27 (D"D, f15 —iDo f15 — pf1J) (6.4.12)

where D denotes the submanifold tractor connection coupled with the Tanaka-Webster
connection of some submanifold contact form 6y, and Z, W, Y are the splitting trac-
tors corresponding to the choice of fy,. The tractor D” f; ; has weight (—2, —1) and so,

applying D; and contracting, we have

D[Djflj = —2(m — 3)Y1Djf1j + (m — 3)Wﬂ1DﬂDjflj

_ 7 , 7 m+3 5
— 7! <D“DHDJij — 2iDyD7 f17 — Qm—HpDJf[j) . (6.4.13)

If we choose 6 admissible and compatible with ., then (6.3.11) implies
fr7 = )15, W e W)W + PaNP* Py W 7, 7. (6.4.14)

In each term on the right hand side of (6.4.12) and (6.4.13) there is a contraction with a
tractor, using the orthogonality relations between the tractor projectors simplifies the

calculation significantly since one can ignore terms that will vanish after these contrac-
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tions. So, for example, one easily computes that
WD, f17 = DP(IL\"IT* ,,W}) +m PN Pyt 7,

Another efficient way to compute terms is to commute the splitting tractors forward past

each appearance of the connection D using the submanifold versions of (5.3.16)-(5.3.24).

Since Z” f;7 = 0 and [D,, Z’] = D, Z7 = 0 we have Z’D, f;; = 0, from which we get
2'D"D, fi;=-W"'D,f1;

using [D", Zj] = Dr7l = WVj; thus two of the terms in (6.4.12) coincide, up to a factor,

simplifying our calculations significantly. Computing similarly

ZDofr5 = Do(Z7 f17) — (DoZ7) f15
= iP, NPy Z;

using that Z7f17=0and DyZ7 = —iY7 + mLHij. Putting these together yields
D’ fr7 = (m — 1) DP(IL\ 1" 5, W) + (m — 1)2P,aNP Py 7, (6.4.15)
Repeating this procedure for (6.4.13) we eventually obtain

Z=(m—1)[(m—2)D*DP(II,\"II";,)
+ (DD, — 2iDy — T2 ) (g7 (V[

m+2
— (m —2)(m — 4)p™ I\ "5,
+ (m—1)(m — 2)(m — 4)P,aN"*Pg#] . (6.4.16)

6.5 A CR Bonnet Theorem

In classical surface theory the Bonnet theorem (or fundamental theorem of surfaces)
says that if a covariant 2-tensor I on an abstract Riemannian surface (X, g) satisfies the
Gauss and Codazzi equations then (locally about any point) there exists an embedding
of (¥, g) into Euclidean 3-space which realises the tensor I/ as the second fundamental
form. A more general version of the Bonnet theorem states that if we specify on a Rie-

mannian manifold (X™, g) a rank d vector bundle N¥ with bundle metric and metric
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preserving connection and an /N >-valued symmetric covariant 2-tensor I/ satisfying the
Gauss, Codazzi and Ricci equations then (locally) there exists an embedding of (X, g)
into Euclidean n-space, where n = m + d, realising N as the normal bundle and I as

the second fundamental form. Here we give a CR geometric analogue of this theorem.

6.5.1 Locally Flat CR Structures

The Bonnet theorem given in §§6.5.3 generalises and is motivated by the following well
known theorem on locally flat CR structures. The proof we give will be adapted to give

a proof of the Bonnet theorem.

Theorem 6.5.1. A nondegenerate CR manifold (M*"* H, J) of signature (p,q) with
vanishing tractor curvature is locally equivalent to the signature (p, q) model hyperquadric

H.

Proof. The signature (p, ¢) model hyperquadric H can be realised as the space of null (i.e.
isotropic) complex lines in the projectivisation of CP™14™!  Since the tractor curvature
vanishes one may locally identify the standard tractor bundle 7 M with the trivial bundle
M x CP+14+1 50 that the tractor connection becomes the trivial flat connection and the
tractor metric becomes the standard inner product on CP*1¢!, The canonical null line
subbundle L = 7'M of T M (spanned by the weighted canonical tractor Z4) then gives

rise to a map from M into the model hyperquadric given by
M >z — L, C CPThatt (6.5.1)

We need to show that the map f : M — P(CPt14F1) given by (6.5.1) is a local CR

diffeomorphism.

The maximal complex subspace in the tangent space to H at the point ¢, where ¢ C
CP*19+1 is an isotropic line, is the image of /- under the tangent map of the projection
Crthatl — P(CPT14t1). Choosing a nowhere zero local section p of L = £(—1,0) we
get a lift of the map f toamap f, : M — CP™4" Themap L = £(—1,0) = TM =
E4 is given explicitly by p —+ pZ4. Since the tractor connection is flat the tangent map
of f,atx € M is given by

T.M > X s Vx(pz?) € crrhatl,
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By the respective conjugates VBZA =0and VgZ4 = WﬁA of (5.3.18) and (5.3.21) (fixing
any background contact form and raising indices using the tractor metric) the tangent
map T, f, restricted to contact directions maps onto a complementary subspace to L,
inside L and induces a complex linear isomorphism of H, with L /L,; combined with
(5.3.24) we see that T, f, is injective and its image is transverse to L,. Now f is the
composition of f, with the projectivisation map CP*1¢+1\ {0} — P(CPT14t1); thus we
have that T} f is injective, and further that f is a local CR diffeomorphism from M to
the signature (p, ¢) model hyperquadric in P(CP+14a+1), O

Remark 6.5.2. Throughout this article we have implicitly identified the CR tractor bun-
dle 7'M with the holomorphic part of its complexification in the standard way. In the

+1,q+1 at

above proof we have therefore also implicitly identified the tangent space to C?
any point with the holomorphic tangent space; the section pZ“ should be understood
as a section of the holomorphic tractor bundle, the map f, being determined by the

corresponding section of the real tractor bundle. 1

The map constructed in the proof is the usual Cartan developing map for a flat Cartan
connection, though constructed using tractors and the projective realisation of the model
hyperquadric. The fact that the map constructed is a local CR diffeomorphism relies
on the soldering property of the canonical Cartan/tractor connection on M, which is
captured in the formulae (5.3.18), (5.3.21), and (5.3.24).

6.5.2 CR Tractor Gauss-Codazzi-Ricci Equations

Our tractor based treatment of transversal CR embeddings in §6.2 and §6.3 has shown
us exactly what data should be prescribed on a CR manifold in a CR version of the
Bonnet theorem: Consider a transversal CR embedding Y*"*! < A[?"*! between non-
degenerate CR manifolds. Then along > the ambient standard tractor bundle splits as an
orthogonal direct sum (7X ® R(—1,0)) & N with the ratio bundle R(—1, 0) being the
dual of an (m + 2)" root of the top exterior power A°A/ of the normal tractor bundle
N. 1t is also easy to see that the (pulled back) ambient tractor connection decomposes

along X as

. N ® (6.5.2)

<D®vR+S —]U) TY®R(-1,0)
V= on
N
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where D ® V® denotes the coupled connection on 7X ® R(—1,0), with D the subman-
ifold tractor connection and V* the connection induced on R(—1,0) by the normal
tractor connection V. The objects S and L are as defined in §§6.2.4 and §§6.2.5, and
LT(X) is the Hermitian adjoint of I.(X') with respect to the ambient tractor metric for
any X € X(X). The bundle A carries a Hermitian metric "\ induced by the ambient
tractor metric. We refer to the triple (N, VY, V) along with (R(—1,0), V*) and the

invariants S and L as the (extrinsic) induced data coming from the CR embedding.

The above observations also establish Proposition 4.3.1.

Remark 6.5.3. The Hermitian adjoint L™ of IL appears because of (6.3.10). Note that

LIBC = ;¥ 5 so that in particular IL;BC = IL,PB and ]LLBC = (. Note also that for any

X € X(%)
S(X) —Li(X) (653)
L(X) 0 -

is a skew-Hermitian endomorphism of 7 M |5, since each of the connections appearing

in (6.5.2) preserves the appropriate Hermitian bundle metric. 1

We can also easily see what the integrability conditions should be on this abstract data:

Observe that the curvature of the connection (6.5.2) acting on sections of 7 M|, is given

by
DVR+S —Lf DVR+S —Lf
A
L vV L vV

( KPEVEHS T AL —dLf — S AL )

dL+1LAS KN —L ALt

where KP®V™+S is the curvature of D@ V™ + S, dL and dLL' are the respective covariant
exterior derivatives of L and L' with respect to D ® VR ® VV, and KV is the curva-
ture of V/. The above display expresses the pullback of the ambient curvature by the
embedding in terms of the induced data of the CR embedding. Writing these relations
component-wise leads to the CR tractor Gauss, Codazzi, and Ricci equations; denoting

the pullback of the ambient curvature simply by K these are, respectively,
Mokoll = KPEVEHS LI AL, (6.5.4)

Nokoll=dL+LAS, (6.5.5)
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and
NokoN=xrV-LAL! (6.5.6)

where IT and N denote the complementary ‘tangential’ and ‘normal’ projections acting

on a section v = (v',v1) of T M|x. Of course
RPOVES = ¥ — gROO £ dS+SAS

where K710 denotes the curvature of R(1,0) acting as a bundle endomorphism via
multiplication, K* is the submanifold tractor curvature, and dS is the covariant exterior
derivative of S with respect to the submanifold tractor connection. Note that the equa-
tion [To ko N = —dLf — S AL is determined by (6.5.5). Note also that the tractor Ricci
equation (6.5.6) determines the normal tractor curvature 5" in terms of the ambient

curvature and the tractor second fundamental form.

Remark 6.5.4. One can easily write the terms appearing in the tractor Gauss, Codazzi,

and Ricci equations more explicitly using abstract indices. For instance we have
L _ort L E _ L E

where we use L;jx” = L;c"I1% and LI F = LI, PII} since we are identifying A" C
TM|s with TY @ R(—1,0). 1

6.5.3 The CR Bonnet Theorem

With the notion of induced data on the submanifold from a CR embedding given in the

previous section we can now give the following theorem:

Theorem 6.5.5. Let (X! H, J) be a signature (p, q) CR manifold and suppose we have
a complex rank d vector bundle N on 3 equipped with a signature (p', ¢') Hermitian bundle
metric N and metric connection V. Fix an (m + 2)" root R of A°N', and let V* denote
the connection induced by V. Suppose we have a N @ T*L ® R valued 1-form L which
annihilates the canonical tractor of 3 and an A°Y valued 1-form S on ¥ such that the
connection

V=

L vV N

(D@VRJrS —LT) TE @R
on
N
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is flat (where D is the submanifold tractor connection), then (locally) there exists a transver-
sal CR embedding of 3 into the model (p + p', q + ¢') hyperquadric H, unique up to auto-

morphisms of the target, realising the specified extrinsic data as the induced data.

Proof. Since the complex line bundle A“A is normed by /", the bundle R is also normed.

h7% induces a Hermitian bundle metric on 7Y ® R*,

This means that the tractor metric
which we again denote by h7*. We therefore have a Hermitian bundle metric h =
h7> 4+ 1 on the bundle (72 ® R*) @ N. Since S is adjoint tractor valued (i.e. skew-
Hermitian endomorphism of 7Y valued) the connection D @ V® + S on 7Y ® R*

hT*. Collectively, the terms involving L. and LT in the displayed definition of

preserves
V constitute a one form valued in skew-Hermitian endomorphisms of (72 @ R*) ®N.
Combined with the fact that V/ preserves h*' this shows that V preserves the Hermitian

bundle metric h.

The signature (p + p/, ¢ + ¢') model hyperquadric H can be realised as the space of null
complex lines in the projectivisation of T = CP+#'+1.4+4'+1 Since the connection V on
(TX ®@R*) @ N is flat and preserves h one may locally identify this bundle with the
trivial bundle ¥ x T such that V becomes the trivial flat connection and & becomes
the standard signature (p + p’ + 1,¢ + ¢’ + 1) inner product on T; this trivialisation is
uniquely determined up to the action of SU(p+p'+1, ¢+¢'+1) on T. The canonical null
line subbundle Ex;(—1,0) of 7Y gives rise to a null line subbundle L = Ex(—1,0) ® R*
of ¥ x T. The null line subbundle L then gives rise to a smooth map into the model

(p+p + 1,9+ ¢ + 1) hyperquadric given by
Y3z L, C T =CPHo+latd+l (6.5.7)

Since the local trivialisation of (72 ® R*) &N is uniquely determined up to the action
of SU(T) the above displayed map from ¥ to H is determined up to automorphisms of
‘H. It remains to show that this map is a transversal CR embedding inducing the specified

extrinsic data.

Let us denote the map (6.5.7) by f : ¥ — H C P(T). Given a nowhere zero local section
pof L = Ex(—1,0) ® R* we may think of the section pZ’ of TX ® R* as a section of
¥ x T via inclusion; this section gives rise to a lifted map f,, : ¥ — T. The tangent map

of f,at x € X is given by

T.%2> X = Vx(pZ") € T.
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From (5.3.18) and (5.3.21) we have that D;Z! = 0 and D,Z! = W! (fixing some
background contact form on Y); using these, the definition of V, and the facts that
Si/%Z7 mod Z¥ = 0 (since S is adjoint valued) and that L. annihilates the canoni-
cal tractor Z!, we see that 7, f, restricted to contact directions is injective and induces
a complex linear isomorphism of H, onto a subspace of L-/L,; combined with (5.3.24)
we see that T}, f, is injective and its image is transverse to L,. This implies that the com-
position f of f, with the projectivisation map T \ {0} — P(T) is a local CR embedding
into the model hyperquadric . Equation (5.3.24) further shows that 7, f,(1,X) ¢ Lx

so f is transversal.

To see that this embedding induces back the specified extrinsic data we simply need to
note that we may identify (72 ® R*) N = X x T with TH

flat tractor connection on 7 H|s; and h with the tractor metric 277 along ¥.. Then

s, identifying V with the

TY®R*
TH|x = @
N

is the usual decomposition of the ambient tractor bundle along the submanifold, and the
definition of V in the statement of the theorem gives the usual decomposition of the

ambient tractor connection. ]

Our formulation and proof of this CR Bonnet theorem is inspired by the conformal Bon-
net theorem formulated and proved in terms of standard conformal tractors by Burstall
and Calderbank in [23]. The condition that the connection V we define be flat is alterna-
tively given in terms of the prescribed data on (3, Hy,, J5,) by the tractor Gauss, Codazzi,
and Ricci equations (6.5.4), (6.5.5), and (6.5.6) with the left hand sides equal to zero.
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