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Abstract. The notion of Eliashberg-Gromov convex ends provides
a natural restricted setting for the study of analogs of Moser’s
symplectic stability result in the noncompact case, and this has been
significantly developed in work of Cieliebak-Eliashberg. Retaining
the end structure on the underlying smooth manifold, but dropping
the convexity and completeness assumptions on the symplectic
forms at infinity we show that symplectic stability holds under a
natural growth condition on the path of symplectic forms. The
result can be straightforwardly applied as we show through explicit
examples.

1. Introduction

A fundamental problem in symplectic topology is that of determining
when two symplectic forms are equivalent. Recall the symplectic stability
result of Moser [14] (1965) saying that if ωt, t ∈ [0, 1], is a smooth path
of cohomologous symplectic forms on a smooth manifold M (i.e. an
isotopy), and M is compact, then there exists a smooth path ϕt of
diffeomorphisms of M such that ϕ∗tωt = ω0 (i.e. ωt, t ∈ [0, 1], is a strong
isotopy). Moser’s argument depends strongly on the assumption that
M is compact. The result does not generalize straightforwardly to the
noncompact case. On the one hand, in his work on the h-principle
Gromov showed that two cohomologous symplectic forms ω0 and ω1

on a noncompact manifold may be joined by an isotopy if and only if
they are connected by a path of nodegenerate forms [11] (1969). On
R2n the h-principle says that any two symplectic forms inducing the
same orientation are isotopic. On the other hand, in his paper on
pseudoholomorphic curves [12] (1985) Gromov proved the existence of
exotic symplectic structures on R2n, n > 2 (not symplectomorphic to
the standard structure, though having the same orientation). See also
[3, 15]. In order to give a natural setting within which one may attempt
to generalize stability and other results from compact to noncompact
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symplectic manifolds Eliashberg and Gromov [6] (1991) formalized the
notion of symplectic manifolds with convex ends, which has become
a fundamental concept in symplectic topology. In particular it led to
important work of Cieliebak and Eliashberg, e.g., in their book on Stein
and Weinstein manifolds [5] where stability results are established for
special classes of symplectic manifolds with convex ends, namely for
Liouville manifolds and Weinstein manifolds.

Our goal is to drop the assumption that the symplectic forms be
convex on the ends, keeping only the assumption that the underlying
manifold has an end structure, i.e. can be viewed as the interior of a
manifold with boundary. In order to do so, one must impose a growth
condition on the path of symplectic forms, for which a metric is required.
Recall that a Riemannian manifold (M, g) has cylindrical ends if there
exists a compact codimension 0 submanifold K whose boundary ∂K
is a smooth hypersurface, and an isometry M \ K → ∂K × (1,∞)
where ∂K has the induced metric. The second component of the
isometry may be smoothly extended to a function M → R+ with values
less than 1 on K◦, referred to as the radial coordinate function of
(M, g). The reciprocal of the radial coordinate is a defining function
for the boundary at infinity ∂M , diffeomorphic to ∂K. Let ‖·‖r denote
the uniform norm with respect to the metric over the points with
radial coordinate r. Let Sa(M) be the set of symplectic forms on M
with cohomology class a ∈ H2(M,R). We define the log-variation
LV: Sa(M)× dΩ1(M)→ [0,∞] by

LV(ω, β) = sup
r>1

r−1
∥∥ω−1

∥∥
r

∥∥β∥∥
r
.

Our main result gives a sufficient condition for symplectic stability on
these manifolds.

Main Theorem. Let M be a manifold with cylindrical ends and
H1(∂M,R) = 0. If ωt, t ∈ [0, 1], is a symplectic isotopy with total
log-variation ∫ 1

0

LV(ωt, ω̇t) dt <∞

then it is a strong isotopy.

The condition in the theorem is not necessary, see Example 4.3. It
is natural, however, in the sense that it amounts to a natural growth
condition on the size of the vector field Xt constructed via a general-
ization of Moser’s Path Method to the noncompact case (Section 2).
The difficulty with establishing a necessary condition in terms of the
growth of the family ωt is that Xt may grow rapidly at infinity, yet still
be complete.
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Corollary 1.1. Let M be a manifold with cylindrical ends and with
H1(∂M,R) = 0. Then a symplectic isotopy ωt, t ∈ [0, 1], is a strong
isotopy if there exists C > 0 such that

∥∥ω−1
t

∥∥
r

∥∥ω̇t∥∥r 6 Cr for r � 0, t ∈
[0, 1].

Corollary 1.2. Let M be a manifold with cylindrical ends and with
H1(∂M,R) = 0. Fix a ∈ H2(M,R). Then Sa(M) × Sa(M) → [0,∞]

given by (α, β) 7→ inf
( ∫ 1

0
LV(ωt, ω̇t)dt

)
, where the infimum is taken

over all isotopies from α to β, is a pseudometric. Moreover, forms at
finite distance are strongly isotopic.

Corollaries 1.1 and 1.2 follow immediately from the Main Theorem.

Corollary 1.3. Let M be a manifold with cylindrical ends and radial
coordinate function r, with H1(∂M,R) = 0. Let ω be a symplectic form
and σ a 1-form on M . Suppose that supr∈r(M)‖ω−1‖r‖dσ‖r < 1. Then
ω + tdσ, t ∈ [0, 1], is a strong isotopy of symplectic forms.

Corollary 1.4. A symplectic isotopy ωt, t ∈ [0, 1], on R2n, 2n > 4, is
a strong isotopy if there exists C > 0 such that

∥∥ω−1
t

∥∥
r

∥∥ω̇t∥∥r 6 C log r
for r � 1, t ∈ [0, 1], where ‖ · ‖r is the uniform Euclidean norm over
the sphere of radius r.

Corollary 1.5. Let M be an even dimensional compact manifold,
dimM > 4, and let F be a finite set of points on M . If ωt, t ∈ [0, 1],
is a symplectic isotopy on M \ F for which ω−1

t and ω̇t are bounded
uniformly in t with respect to any fixed metric on M , then ωt is a strong
isotopy on M \ F .

The Main Theorem, and Corollaries 1.3 and 1.5 are proved in Section 3.
Corollary 1.4 follows by noting that, away from the origin, Euclidean
space is conformal to a cylinder.

Remark 1.1. The assumption H1(∂M,R) = 0 is equivalent to the
natural map H2

c (M,R)→ H2(M,R) being injective. This allows one to
handle the compact part of M separately in constructing the generator
Xt of the strong isotopy via the Path Method (Section 2). More
importantly, this assumption implies injectivity of the map H2

c (V,R)→
H2(V,R) for sets V of the form r−1(r − ε, r + ε), where r is the radial
coordinate function of M . Without this assumption it is impossible
to construct the time dependent vector field Xt with bounds on Xt

which are localized in the radial coordinate on the ends. This makes the
assumption natural, and apparently necessary for our kind of results.
The assumption H1(∂M,R) = 0 also implies dimM > 2. If dimM = 2
a symplectic isotopy is a strong isotopy if

∫
M
ω0 =

∫
M
ω1 and the set of
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ends where ω0 and ω1 give infinite volume coincide up to permutation
by a diffeomorphism [10, 16].

Remark 1.2. The role of the condition
∥∥ω−1

t

∥∥
r

∥∥ω̇t∥∥r 6 Cr in Corol-
lary 1.1 is intuitive and natural: it prevents finite time blow up for
the ordinary differential inequality of the form ṙ(t) 6

∥∥ω−1
t

∥∥
r

∥∥ω̇t∥∥r.
Heuristically, this inequality controls the escape to infinity of the in-
tegral curves for the time dependent vector field Xt, constructed by
generalizing Moser’s Path Method (Section 2), whose flow gives the
strong isotopy. In practice, one only obtains an inequality of (roughly)
this form for r in a set of intervals with arbitrarily small gaps between
them, which makes formalizing this heuristic argument awkward. Our
approach, therefore, is to control the lengths of the integral curves more
directly, leading to the result obtained in the Main Theorem.

Remark 1.3. In stating our Main Theorem and some of its corollaries
we have made use of a Riemannian metric with cylindrical ends. This
metric plays only an auxiliary role, allowing us to give the simplest
formulation of our result. Metrics with different asymptotics can be used.
This is demonstrated for the most basic case of the Euclidean metric in
Corollary 1.4. For concrete examples our conditions are also very easy
to check. The following is a simple application of Corollary 1.4: If f1, f2

are smooth functions bounded away from zero and with bounded time
derivative and c is any constant, then the isotopy of symplectic forms
ωt = f1(t, x1, y1)dx1∧dy1 + f2(t, x2, y2)dx2∧dy2 + cdx1∧dx2, t ∈ [0, 1],
on R4 is a strong isotopy. More generally, the time derivatives of f1 and
f2 may have logarithmic growth in r, the radial coordinate on R4.

Acknowledgments: The last two authors are supported by NSF CA-
REER Grant DMS-1518420. We are very grateful to Roger Casals,
Daniel Cristofaro-Gardiner, Yakov Eliashberg, Larry Guth, Rafe Mazzeo,
Leonid Polterovich, Justin Roberts, Alan Weinstein, Paul Yang, and
Shing-Tung Yau for helpful discussions about symplectic stability.

2. Path Method on noncompact manifolds

For M compact, Moser proved his symplectic stability result by
differentiating ϕ∗tωt = ω0 to get 0 = d

dt
(ϕ∗tωt) = ϕ∗t (ω̇t + LXtωt), where

ω̇t is the time derivative of ωt and Xt is the time-dependent vector
field generating the family ϕt, and then solving for ϕt in terms of Xt.
Since [ωt] is constant, ω̇t is exact for all t ∈ [0, 1]. By Hodge theory
on compact manifolds there exists a smooth family σt of 1-forms such
that ω̇t = dσt for all t ∈ [0, 1]. By Cartan’s formula LXtωt = d(Xt ⌟ ωt)
since ωt is closed for each t ∈ [0, 1]. So ω̇t +LXtωt = d(σt +Xt ⌟ ωt). If
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one chooses Xt to be the vector field determined by σt + Xt ⌟ ωt = 0
then, since M is compact, we may integrate Xt to determine a family
ϕt such that ϕ∗tωt = ω0 for all t ∈ [0, 1]. This technique is usually called
the Path Method. In the noncompact case, the argument above does
not work, and the conclusion is false. The problem lies in being able to
solve ω̇t = dσt for a smooth family of 1-forms σt in such a way that Xt,
t ∈ [0, 1], is complete.

The following is the outline of the steps we carry out to construct
the vector field Xt and provide the L∞ estimates needed to determine
the existence of the flow when M is not compact: In the first step
we consider a compact Riemannian manifold (N, gN) of dimension m
and an open interval J . Combining Hodge theory on (N, gN) with
the Poincaré Lemma one has, for any k with 1 6 k 6 m, an operator
IkN×J : Ωk(N × J) → Ωk−1(N × J) satisfying dIkN×Jω = ω for all ω ∈
dΩk−1(N × J). We bound the L∞ norm of IkN×J by proving (for m > 3)
that IkN = d∗ ◦G : Ωk(N)→ Ωk−1(N) has finite L∞ norm, where G is
the Green’s operator for the Hodge Laplacian on k-forms and d∗ is the
codifferential.

In the second step we solve the d-equation for compactly supported
forms. Let M be a smooth manifold and let V be an open submanifold
of M with compact closure and smooth boundary. We use the weighted
Hodge theory of Bueler-Prohorenkov [4] on noncompact manifolds to
construct an operator IkM,V : Ωk

c(M,V ) → Ωk−1(M,V ) on forms com-

pactly supported in V satisfying d◦IkM,V ω = ω for all ω ∈ dΩk−1
c (M,V ).

In the final step, given an isotopy of symplectic forms ωt, t ∈ [0, 1],
we put the previous steps together to construct a time-dependent vector
field Xt satisfying d(Xt ⌟ωt) = −ω̇t with explicit L∞ estimates in terms
of the L∞ norms of ω̇t, ω

−1
t , and the operators IkN×J and IkM,V for a

collection of precompact pieces U ∼= N × J and V of the underlying
manifold M . To define these pieces we pick a proper smooth function
f and a covering of f(M) by intervals whose preimages give the sets U
and V . For intervals J not containing any critical values of f we identify
U = f−1(J) with N×J , where N = f−1(r0) for some r0 ∈ J , and define
σt = I2

N×J ω̇t, for which we have explicit L∞ estimates from the first
step. We then smoothly extend σt across the remaining gluing regions,
corresponding to the remaining intervals J ′, to solve dσt = ω̇t. This
requires using the operator I2

M,V from the second step with V = f−1(J ′).
This gluing step is topologically obstructed, and we must assume that
H2

c (V,R)→ H2(V,R) is injective (this is the reason for the condition
H1(∂M,R) = 0 in our Main Theorem). We then let Xt = −ω−1

t σt.
Since d(Xt ⌟ ωt) = −ω̇t, the local flow of ϕt of Xt starting from t0 = 0
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satisfies d
dt

(ϕ∗tωt) = 0, where this makes sense. So the problem reduces
to studying the global existence of the flow ϕt for t ∈ [0, 1]. This is
done in Section 3 using the precise estimates on Xt which appear in
Lemma 2.4.

Step 1: L∞ estimates for solving the d-equation. Let N be a
manifold and J an open interval. The Poincaré Lemma for de Rham
cohomology states that Hk(N × J,R) = Hk(N,R) for any k. This is
proved by fixing any r0 ∈ J and constructing a de Rham homotopy
operator for the pair of maps π : N × J → N , the projection, and
ι : N ↪→ N × J , the inclusion y 7→ (y, r0). An example of such a
homotopy operator is the map Ik0 : Ωk(N × J)→ Ωk−1(N × J) given by
(Ik0ω)(y, r) =

∫ r
r0
∂s ⌟ ω(y, s)ds for each (y, r) ∈ N × J , where ∂s is the

coordinate vector field along J . A straightforward calculation shows that
dIk0ω+Ik0 dω = ω−π∗ι∗ω for any ω ∈ Ωk(N×J), with 0 6 k 6 dimN+1.
We will make use of the following trivial consequence.

Lemma 2.1. Let N be a manifold and J an open interval. Let k ∈
{1, . . . , dimN} and let IkN : Ωk(N) → Ωk−1(N) be a smooth operator
such that dIkN = id on dΩk−1(N). Fix r0 ∈ J and let ι : N ↪→ N × J be
the map y 7→ (y, r0). Then the operator IkN×J : Ωk(N×J)→ Ωk−1(N×J)
given by

(IkN×Jω)(y, r) =

∫ r

r0

∂s ⌟ ω(y, s)ds+ (IkN ι
∗ω)(y)

satisfies dIkN×Jω = ω for all ω ∈ dΩk−1(N × J).

We will be applying Lemma 2.1 in the case of a compact Riemannian
manifold (N, gN ). In order to bound the L∞ norm of IkN×J it suffices to
prove that the natural Hodge theoretic operator IkN has finite L∞ norm.

Theorem 2.2. Let (N, gN) be a compact Riemannian manifold of
dimension m > 3. Let k ∈ {1, . . . ,m} and let IkN = d∗ ◦G : Ωk(N)→
Ωk−1(N) where G is the Green’s operator for the Hodge Laplacian on
k-forms, and d∗ is the codifferential. Then d ◦ IkN is the identity on
dΩk−1(N) and ∥∥IkN∥∥L∞ = sup

ω∈Ωk(N)

∥∥IkNω∥∥L∞(N,gN )

‖ω‖L∞(N,gN )

<∞.

Here ‖·‖L∞(N,gN ) is the uniform norm with respect to gN over N .

Proof. The Green’s operator G : Ωk(N) → Ωk(N) is characterized by
∆Gω = ω for ω ∈ (ker ∆)⊥ and Gω = 0 for ω ∈ ker ∆, where
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∆: Ωk(N) → Ωk(N) is the Hodge Laplacian. It is possible to con-
struct an integral kernel for G; the only difficulty is that the Green’s
kernel must be thought of as a distributional section of the bundle
π∗1Λ2N ⊗ π∗2(Λ2N)∗ → N ×N where π1, π2 : N ×N → N are the pro-
jections onto the first and second factor respectively. We will show
that the Green’s kernel has the same asymptotic behavior at leading
order near the diagonal as the Euclidean Green’s function (cf. [1]
for the case of functions). To construct the Green’s kernel we solve
∆q, distr.G(p, q) = δp(q)− V −1 where ∆q, distr. is the distributional Lapla-
cian, δp(q) is the Dirac delta function at p, and V is the volume of
(N, gN ). We start by formally approximating G(p, q) near the diagonal.
Let f ∈ C∞0 (R) be the standard bump function equal to 1 on (− δ

2
, δ

2
)

and supported in (−δ, δ) where δ is the injectivity radius of (N, gN ). Let

H(p, q) = dist(p,q)2−m

(m−2)σm−1
f(dist(p, q)) where σm−1 is the volume of the (m−1)-

sphere. Let n be an integer larger than m
2

. Let Γ1(p, q) = −∆qH(p, q)
and for 1 6 i 6 n let Γi+1(p, q) = −

∫
N

Γi(p, r)∆qH(r, q) dvolq. We
write

G(p, q) = H(p, q) +
n∑
i=1

∫
N

Γi(p, r)H(r, q) dvolq +F (p, q)

where F (p, q) is a distributional section of π∗1Λ2N⊗π∗2(Λ2N)∗ → N×N ,
and seek to solve for F (p, q). Taking the Laplacian of G(p, q), using
that ∆q, distr.H(p, q) = ∆qH(p, q) + δp(q) by Green’s third identity (see
for instance p. 107 in [1]), and canceling,

(2.1) V −1 = Γn+1(p, q) + ∆q, distr.F (p, q).

By a standard Lemma of Giraud [7, p. 150] Γn(p, q) is bounded, and
consequently Γn+1(p, q) is C1. By elliptic theory, for each fixed p
there is a weak solution F (p, q) of (2.1). Then by elliptic regularity for
elliptic operators between vector bundles whose principal part has scalar
coefficients the solution F (p, q) is C2. It follows from the definition of
H(p, q) and the ansatz for G(p, q) above that

G(p, q) =
dist(p, q)2−m

(m− 2)σm−1

(1 +O(dist(p, q)))

near the diagonal. Thus
∣∣ ∫

Bδ(p)
d∗pG(p, q)ω(q) dvolq

∣∣ is at most∣∣∣∣∫
Bδ(p)

r1−m

(m− 2)σm−1

(1 +O(r)) rm−1dr dvolSm−1

∣∣∣∣‖ω‖L∞(N,g)
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where r = dist(p, q). Since the derivative of G(p, q) is bounded outside
of the ball Bδ(p) and N is compact there exists C > 0 for which∣∣(IkNω)(p)

∣∣
g

=

∣∣∣∣∫
N

d∗pG(p, q)ω(q) dvolq

∣∣∣∣
g

6

∣∣∣∣∫
Bδ(p)

d∗pG(p, q)ω(q) dvolq

∣∣∣∣
g

+

∣∣∣∣∫
N\Bδ(p)

d∗pG(p, q)ω(q) dvolq

∣∣∣∣
g

6 C‖ω‖L∞(N,g)

for all p ∈ N . �

Step 2: Solving the d-equation for compactly supported forms.
Our construction of the vector field Xt in Step 3 relies on the following
fact: Let ωt be a smooth family of k-forms, each of which is the exterior
derivative of a compactly supported form, then there exists a smooth
family of compactly supported (k−1)-forms ηt such that dηt = ωt for all
t. There are various ways to prove this fact, see, e.g., [2, Lemme II.2.2],
cf. [8, Lemma, page 617]. The following lemma gives an alternative
approach to this fact using weighted Hodge theory. This approach really
gives more than, say, [2, Lemme II.2.2], since in principle it allows one
to estimate ηt in terms of ωt. We will not need to make use of such
estimates however.

Lemma 2.3. Let M be a smooth manifold and let V be an open sub-
manifold of M with smooth compact boundary. Let Ωk(M,V ) be the
space of k-forms which vanish outside of V . For k ∈ {1, . . . , dimM}
there exists a smooth operator IkM,V : Ωk

c(V ) → Ωk−1(M,V ) such that

(d ◦ IkM,V ω)|V = ω for all ω ∈ dΩk−1
c (V ).

Proof. Let gN be a metric on N = ∂V . Let U be a tubular neighborhood
of N and let ρ be a defining function for N such that U = ρ−1(−1, 1)
and ρ > 0 on V . Fix a diffeomorphism U → N×(−1, 1) with the second
component being ρ. Let f = ρ−1 on V and use this diffeomorphism to
identify U ∩ V with N × (1,∞). The metric gN ⊕ dr2 on N × (1,∞)
may be extended to a complete metric gV on V . Let S(ΛkV ) be the
space of smooth k-forms ω on V with rapid decay in the sense that
limr→∞ |f `∂αω|(y, r) = 0 for any multiindex α, ` ∈ N, and choice of
local coordinates on N (here the coordinate derivatives are with respect
to (y, r) and act only on the coefficients of the differential form). A k-

form ω in e−2f2S(ΛkV ) vanishes to infinite order on N = ∂V , and thus



SYMPLECTIC STABILITY ON MANIFOLDS WITH CYLINDRICAL ENDS 9

extends smoothly by zero to all of M . Let µ = e2f2dvolgV where dvolgV
is the Riemann-Lebesgue measure. Then d∗µ = e−2f2d∗e2f2 is the formal
adjoint of d with respect to µ. Let ∆µ = dd∗µ + d∗µd. By the Hodge
decomposition of [4] there exists a Green’s operator Gµ for ∆µ with

domain and codomain equal to e−2f2S(ΛkV ), which properly contains
Ωk

c(V ). By definition we then have dd∗µGµω = ω for all ω ∈ dΩk−1
c (V ),

and we define IkM,V to be d∗µGµ composed with extension by zero. �

Step 3: Piecewise construction of Xt with estimates. Given a
compact Riemannian manifold (N, gN) we denote, as in Theorem 2.2,
the Hodge theoretic right inverse to the exterior derivative d : Ω1(N)→
Ω2(N) by I2

N .

Lemma 2.4. Let M be a manifold, dimM > 4, and f : M → R an
exhaustion. Let [ai, bi], i ∈ N, be intervals containing no critical values
of f such that ai < bi < ai+1 and bi → ∞. Let X = ∪i∈N[ai, bi] and
suppose that H2

c (M \f−1(X),R)→ H2(M \f−1(X),R) is injective. Let
g be a Riemannian metric on M such that ∇f is a unit Killing vector
field on f−1(X). If ωt, t ∈ [0, 1], is an isotopy of symplectic forms on
M , then there exists a time-dependent vector field Xt on M , t ∈ [0, 1],
satisfying d(Xt ⌟ ωt) = −ω̇t and on each Ui = f−1(ai, bi)

‖Xt‖L∞(Ui,g)
6

(
bi − ai

2
+
∥∥∥I2

f−1(
ai+bi

2
)

∥∥∥
L∞

)∥∥ω−1
t

∥∥
L∞(Ui,g)

∥∥ω̇t∥∥L∞(Ui,g)
.

Proof. For each i ∈ N let Ji = (ai, bi) and choose enlarged intervals

J̃i = (ãi, b̃i) such that the closures [ãi, b̃i] do not contain critical points

of f , and ãi < ai < bi < b̃i < ãi+1 for all i ∈ N. For each i ∈ N let Ĵi =

(ai+2ãi
3

, bi+2b̃i
3

), so that Ji ( Ĵi ( J̃i, and let Ui = f−1(Ji), Ûi = f−1(Ĵi),

and Ũi = f−1(J̃i). Let ri = ai+bi
2

, and let ιri : f
−1(ri) → M be the

inclusion. Using the flow ψ of ∇f we may identify Ũi with f−1(ri)× J̃i.
We thus define the 1-form σit on Ũi by

(2.2) σit(y, r) =

∫ r

ri

∇f ⌟ ψ∗s−r(ω̇t(y, s))ds+
(
I2
f−1(ri)

ι∗riω̇t
)
(y),

for (y, r) ∈ f−1(ri)× J̃i. By Lemma 2.1 we have dσit = ω̇t on Ũi. Let
λi : M → [0, 1] be a smooth function supported in Ũi and equal to 1 in

a neighborhood of Ûi. Let

αt = ω̇t −
∞∑
i=1

d(λiσ
i
t) = −

∞∑
i=1

dλi ∧ σit +
(
1−

∞∑
i=1

λi
)
ω̇t.
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Let J0,1 = (−∞, 2a1+ã1
3

) and for each i ∈ N let Ji,i+1 = (2bi+b̃i
3

, 2ai+1+ãi+1

3
).

For all i ∈ N ∪ {0} let Vi,i+1 = f−1(Ji,i+1). Note that αt is supported
in the union of the gluing regions Vi,i+1, moreover αt|Vi,i+1

is com-
pactly supported in Vi,i+1. Since αt is exact on M and, by assumption,
H2

c (Vi,i+1)→ H2(Vi,i+1) is injective we have [αt|Vi,i+1
]H2

c (Vi,i+1) = 0. By

Lemma 2.3, there is βi,i+1
t ∈ Ω1(M) which vanishes outside Vi,i+1,

and satisfies dβi,i+1
t = αt on Vi,i+1. Let βt =

∑∞
i=0 β

i,i+1
t and let

σt =
∑∞

i=1(λiσ
i
t) +βt. Then ω̇t = dσt. Hence the time-dependent vector

field given by Xt = −ω−1
t σt for t ∈ [0, 1] satisfies d(Xt ⌟ωt) = −ω̇t. The

estimate follows from (2.2). �

3. Symplectic stability on manifolds with cylindrical ends

Lemma 3.1. Let M be a smooth manifold and Xt, t ∈ [0, 1], a smooth
time-dependent vector field on M . Let γ : J →M be the maximal flow
line of Xt with γ(0) = x0. If γ(J) is contained in a compact set then
J = [0, 1].

Proof. Suppose that J 6= [0, 1], then there is T ∈ (0, 1] such that
J = [0, T ). Define X̃ on M × [0, 1] by X̃ = Xt + ∂t, and let γ̃ be the
maximal integral curve of X̃ with γ̃(0) = (x0, 0). Then γ̃ has maximal
domain J and is given by γ̃(t) = (γ(t), t). By the standard Escape
Lemma [13, Lemma 9.19] γ̃(J) is not contained in any compact subset
of M× [0, 1]. But this implies that γ(J) is not contained in any compact
subset of M . �

Lemma 3.2. Suppose that M is a noncompact manifold and f : M → R
is an exhaustion such that H1(f−1(r),R) = 0 for r > R. Let {ri}i∈N ⊂
R>R, {δi}i∈N ⊂ R>0, and {αi}i∈N ⊂ R>0 be sequences such that the
intervals [ri − δi, ri + δi] are disjoint and contain no critical values of
f , and

∑∞
i=1 αiδi =∞. Let g be a metric on M which is a product on

each Ui = f−1((ri − δi, ri + δi)) ∼= f−1(ri)× (ri − δi, ri + δi). Then an
isotopy of symplectic forms ωt, t ∈ [0, 1], such that∫ 1

0

sup
i∈N

αi

(
δi +

∥∥∥I2
f−1(ri)

∥∥∥
L∞

)∥∥ω−1
t

∥∥
L∞(Ui,g)

∥∥ω̇t∥∥L∞(Ui,g)
dt <∞.

is a strong isotopy.

Proof. Let Ji = (ai, bi) = (ri − δi, ri + δi) for each i ∈ N. The assump-
tion that H1(f−1(r),R) = 0 for all r > R implies that dimM > 2
and H2

c (M \ f−1(X),R) → H2(M \ f−1(X),R) is injective for X =
∪i∈N[ai, bi]. Hence dimM > 4 and we can apply Lemma 2.4. Let Xt

be the time-dependent vector field of Lemma 2.4. It suffices to show
that the flow of Xt starting at t0 = 0 exists globally for all t ∈ [0, 1].
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Let x ∈ M . Fix i0 such that f(x) < ai0 . Let γ be the maximal flow
line of Xt with γ(0) = x. Suppose that the maximal domain of γ
is [0, T ) with 0 < T 6 1. Then by Lemma 3.1 the image γ([0, T ))
must not be contained in any compact set. So limt→T f(γ(t)) = ∞.
It follows that γ must pass through each set Ui with i > i0. For
each i let `i =

∫
γ−1(Ui)

|X(γ(t))|g dt. Then `i > δi for each i > i0, so∑∞
i=i0

αi`i >
∑∞

i=i0
αiδi =∞.

On the other hand, by the bound on ‖Xt(x)‖L∞(Ui,g)
from Lemma 2.4

`i 6
∫
γ−1(Ui)

(
δi +

∥∥∥I2
f−1(ri)

∥∥∥
L∞

)∥∥ω−1
t

∥∥
L∞(Ui,g)

∥∥ω̇t∥∥L∞(Ui,g)
dt

and thus αi`i 6
∫
γ−1(Ui)

αi(δi+
∥∥∥I2

f−1(ri)

∥∥∥
L∞

)
∥∥ω−1

t

∥∥
L∞(Ui,g)

∥∥ω̇t∥∥L∞(Ui,g)
dt.

Since the subsets γ−1(Ui) of [0, 1] are disjoint we have that
∞∑
i=i0

αi`i 6
∫ 1

0

sup
i∈N

αi

(
δi +

∥∥∥I2
f−1(ri)

∥∥∥
L∞

)∥∥ω−1
t

∥∥
L∞(Ui,g)

∥∥ω̇t∥∥L∞(Ui,g)
dt,

where the right hand side is finite, a contradiction. We conclude that γ
has domain [0, 1]. �

Proof of Main Theorem. Let (M, g) be a Riemannian manifold with
cylindrical ends and f : M → R+ its radial coordinate function. Let
ωt, t ∈ [0, 1], be an isotopy of symplectic forms with total log-variation∫ 1

0
LV(ωt, ω̇t) dt < ∞. Since M is symplectic and H1(∂M,R) = 0,

dimM > 4. Let ∆ denote the diagonal in (1,∞) × (1,∞). The
finiteness of the total log-variation is equivalent to∫ 1

0

sup
(f(x),f(x′))∈∆

f(x)−1
∣∣ω−1

t (x)
∣∣
g
|ω̇t(x′)|gdt <∞.

By continuity, any point (c, c, t) ∈ ∆× [0, 1] has an open neighborhood
Wc,t such that

f(z)−1
∣∣ω−1

s (z)
∣∣
g
|ω̇s(z′)|g < sup

(f(x),f(x′))∈∆

f(x)−1
∣∣ω−1

s (x)
∣∣
g
|ω̇s(x′)|g + 1

for all z, z′ and s with (f(z), f(z′), s) ∈ Wc,t. So by the compactness of
[0, 1] there exists a neighborhood W of ∆ ⊂ (1,∞)× (1,∞) such that

(3.1)

∫ 1

0

sup
(f(x),f(x′))∈W

f(x)−1
∣∣ω−1

t (x)
∣∣
g
|ω̇t(x′)|gdt <∞.

Let µ : (1,∞)→ R+ be a continuous function such that r 7→ r + µ(r)
is strictly increasing and

{
(r, s) ∈ R2

+

∣∣ −µ(r) < r − s < µ(s)
}
⊂ W.

We construct disjoint subintervals {(ri − δi, ri + δi)}i∈N in (1,∞) as



12 SEAN CURRY ÁLVARO PELAYO XIUDI TANG

follows. Let δ1 = min{1, µ(2)/2} and r1 = 2 + δ1. Then inductively let
δi+1 = min{1, µ(ri + δi)/2} and ri+1 = ri + δi + δi+1 for all i ∈ N. We
have ri →∞ as i→∞, since otherwise the sequence ri would converge
to some point r∞ with µ(r∞) = 0.

For each i ∈ N, let αi = 1/(ri + δi). Then
∞∑
i=1

2αiδi =
∞∑
i=1

(
1− ri − δi

ri+1 − δi+1

)
>

∞∑
i=1

min

{
1

2
,
1

2
log

(
ri+1 − δi+1

ri − δi

)}
.

In the last sum there are either infinitely many i for which the ith

summand is 1
2
, or there is some fixed i0 ∈ N such that ith sum-

mand is 1
2

log( ri+1−δi+1

ri−δi ) for all i > i0. In either case the sum di-

verges. So
∑∞

i=1 αiδi = ∞. By reducing each δi a little bit we can
ensure that ri + δi < ri+1 − δi+1 with

∑∞
i=1 αiδi still being ∞. For

each i ∈ N let Ji = (ri − δi, ri + δi) and Ui = f−1(Ji). Note that
(3.1) holds with W replaced by the subset ∪i∈NJi × Ji, which im-

plies
∫ 1

0
supi∈N αi

∥∥ω−1
t

∥∥
L∞(Ui,g)

∥∥ω̇t∥∥L∞(Ui,g)
<∞, since αi 6 f(x)−1 for

x ∈ Ui, i ∈ N. Now since the hypersurfaces f−1(ri) are all isometric to

f−1(r1), the quantity
∥∥∥I2

f−1(ri)

∥∥∥
L∞

is independent of i, and since δi 6 1

for all i we have∫ 1

0

sup
i∈N

αi

(
δi +

∥∥∥I2
f−1(ri)

∥∥∥
L∞

)∥∥ω−1
t

∥∥
L∞(Ui,g)

∥∥ω̇t∥∥L∞(Ui,g)
dt

6
(

1 +
∥∥∥I2

f−1(r1)

∥∥∥
L∞

)∫ 1

0

sup
i∈N

αi
∥∥ω−1

t

∥∥
L∞(Ui,g)

∥∥ω̇t∥∥L∞(Ui,g)
.

The result then follows from Lemma 3.2. �

Proof of Corollary 1.3. Suppose A = supr∈f(M)‖ω−1‖r‖dσ‖r < 1. For

any x ∈ M , ω−1(x)dσ(x) is an endomorphism of (TxM, | · |g) with

operator norm at most A. If t < A−1, then |tω−1(x)dσ(x)|g < 1 for any

x ∈M , which means 1 + tω−1(x)dσ(x) is invertible. So ωt = ω + tdσ is
symplectic for all t ∈ [0, 1]. Moreover, for any x ∈M∣∣ω−1

t (x)
∣∣
g
6
∣∣(1 + tω−1dσ)−1(x)

∣∣
g

∣∣ω−1(x)
∣∣
g
6 (1− tA)−1

∣∣ω−1(x)
∣∣
g
.

Thus by assumption we have∫ 1

0

LV(ωt, ω̇t) dt 6
∫ 1

0

sup
r>1

(1− tA)−1
∥∥ω−1

∥∥
r

∥∥dσ
∥∥
r
dt 6

A

1− A
<∞.

�

Proof of Corollary 1.5. Note that Corollary 1.4 generalizes trivially to
manifolds equipped with a metric which is Euclidean on the end(s).
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We will make use of this generalization, rather than arguing directly
from the Main Theorem, because it makes the coordinate computations
easier. It suffices to treat the case where F contains just one point p.
Let g be a metric on M , and let U be geodesic ball about p. Scaling
g if necessary we may take U to be a unit geodesic ball, and we may
use normal (exponential) coordinates to identify (U, p) with (B2n, 0)

where B2n is the unit ball in R2n. Let φ : U \ {p} → R2n \B2n be the
diffeomorphism which in normal coordinates sends x ∈ B2n \ {0} to
x
|x|2 . Under φ the radial coordinate r on R2n \ B2n pulls back to the

reciprocal of the geodesic distance from p on U \ {p}. Let (xi) denote

the standard coordinates on B2n and (x̄i) those on R2n \ B2n. Then

φ∗dxi =
∑2n

i=1(
δij

|x̄|2 + 2
x̄ix̄j

|x̄|4 )dx̄j and φ∗∂xi =
∑2n

i=1(|x̄|
2δij + 2x̄ix̄j)∂x̄j .

Since ω̇t is bounded with respect to g, uniformly in t, the corresponding
forms ˙̄ωt = φ∗ω̇t on R2n\B2n are O(r−4), uniformly in t. Similarly, from
the differential of φ one has that ω̄−1

t = φ∗ω
−1
t is O(r4) uniformly in t.

Pulling the Euclidean metric on R2n\B2n back to U \{p} and extending
this to a metric g′ on M \ F we may apply (a trivial generalization of)
Corollary 1.4 to conclude that ωt is a strong isotopy on M \ F . �

4. Examples

Example 4.1. Consider R2n, 2n > 4, with standard coordinates
(x1, y1, . . . , xn, yn). Let U be an open subset of R2n. Let fi ∈ C∞(U),
for i = 1, . . . , n. Then ω =

∑n
i=1 fidxi ∧ dyi is a symplectic form

if and only if each of the fi is nowhere vanishing and depends only
on the coordinates xi and yi. The isotopy of symplectic forms ωt =∑n

i=1 fi(t, xi, yi)dxi ∧ dyi, t ∈ [0, 1], satisfies the assumption of Corol-
lary 1.4 if the functions fi are bounded away from zero and have bounded
time derivative. Suppose ai ∈ R \ {0}. Consider the symplectic forms

ωt = a1

√
x2

1 + y2
1 + 1 + t2 dx1 ∧ dy1 +

∑n
i=2 aidxi ∧ dyi, t ∈ [0, 1]. By

Corollary 1.4 there is a smooth path of diffeomorphisms ϕt of R2n,
t ∈ [0, 1], such that ϕ∗tωt = ω0.

Example 4.2. Here we apply our result to an isotopy ωt, t ∈ [0, 1],
for which the norm of the derivative grows with r, while the norm of
the inverse decays. Let φ : [0,+∞) → [0,+∞) be a diffeomorphism

such that φ|[0,1) = id, and φ(r)/r is increasing. Then φ̂ : R4 → R4,

φ̂(x) = φ(|x|)
|x| x is a diffeomorphism. If ω = φ̂∗ω0, then with r = |x| we
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have

ω(x1, . . . , x4) =
(
A+B(x2

1 + x2
2)
)
dx1 ∧ dx2

+
(
A+B(x2

3 + x2
4)
)
dx3 ∧ dx4

−B(x1x4 − x2x3)(dx1 ∧ dx3 + dx2 ∧ dx4)

+B(x1x3 + x2x4)(dx1 ∧ dx4 − dx2 ∧ dx3),

where A = (φ(r)
r

)2 and B = φ(r)
r2

(φ(r)
r

)′ > 0. Let us fix p > 1, c ∈ (0, 1)
and define φ by φ(r) = rp for r > 1. Since we want φ to be smooth, we
should perturb it in a neighborhood of r = 1. None of our estimates
are affected if this perturbation is sufficiently small, so we proceed as if
φ were given by the exact formula. Then for r > 1 we have A = r2p−2,
B = (p− 1)r2p−4, and

r4−2pω(x1, . . . , x4)

=
(
px2

1 + px2
2 + x2

3 + x2
4

)
dx1 ∧ dx2 +

(
x2

1 + x2
2 + px2

3 + px2
4

)
dx3 ∧ dx4

− (p− 1)(x1x4 − x2x3)(dx1 ∧ dx3 + dx2 ∧ dx4)

+ (p− 1)(x1x3 + x2x4)(dx1 ∧ dx4 − dx2 ∧ dx3).

Let λ : [0,+∞) → [0,+∞) be an increasing smooth function which
vanishes on [0, 1

2
], equals 1 in [1,+∞), and satisfies λ′ 6 3. Let

σ =
cp

6(2p− 1)2
λ(r)r2p−1(dx1 + dx2 + dx3 + dx4).

Then dσ = cp
6(2p−1)2

((2p−1)λ+λ′r)r2p−3
∑

i<j(xi−xj)dxi∧dxj . For an

m×m-matrix Q = (qij), the `1 operator norm is |Q|`1 = max
16i6m

m∑
j=1

|qij|.

For convenience we define ‖·‖r as the supremum over the sphere of
radius r of this pointwise norm (rather than of the equivalent `2 norm).
We then have ‖ω−1‖r 6 (2 − p−1)r2−2p if r > 1, and ‖ω−1‖r = 1 if
r < 1. Similarly ‖dσ‖r 6

cp
2p−1

r2p−2 if r > 1, and
∣∣dσ(x)

∣∣ 6 c if

r < 1. Since |ω−1(x)|
∣∣dσ(x)

∣∣ 6 c < 1 the 2-form ωt = ω + tdσ is
nondegenerate for every t ∈ [0, 1] (cf. the proof of Corollary 1.3).

Moreover,
∫ 1

0
supr>1

∥∥ω−1
t

∥∥
r

∥∥ω̇t∥∥rdt < ∞. So ωt, t ∈ [0, 1], is a strong
isotopy by Corollary 1.4.

Example 4.3. Here we give an example of a strong isotopy with
infinite log variation. Consider the unit sphere S3 contained in R4 with
coordinates (x1, y1, x2, y2), and let α0 = 1

2
(x1dy1−y1dx1+x2dy2−y2dx2)

be the standard contact form on S3. Consider the rescaled contact form
α = (2x2

1 + y2
1)α0 on S3. The structure (S3, α) can be realized as the

boundary of a Liouville domain (Ω, ω, V ) in the sense of [5] (in fact this
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may be taken to be the boundary of a star convex domain in R4 with
the standard symplectic form). The Liouville completion of (Ω, ω, V ) is
constructed by attaching S3 × [0,∞) to Ω, where the symplectic form
on S3 × [0,∞) is d(erα) with r the coordinate on [0,∞). The resulting
symplectic manifold (M,ω) is symplectomorphic to the standard R4, but
this construction allows us to more easily write down the required family
of diffeomorphisms of M . For t ∈ R define φt : S3×[0,∞)→ S3×[0,∞)
by (x, r) 7→ (eitr

p ·x, r), where eiθ acts on S3 by a rotation through angle
θ in the (x1, y1)-plane. The family φt may be extended to a smooth 1-
parameter family of diffeomorphism of M , which we still denote φt. Let
ωt = φ∗tω, t ∈ [0, 1]. Then on M \Ω = S3 × [0,∞) we have ωt = er[(1 +
cos2(trp))x2

1− sin(2trp)x1y1 + (1 + sin2(trp))y2
1](dα0 + dr∧α) + er[2(1 +

cos2(trp))x1dx1− sin(2trp)(x1dy1 + y1dx1) + 2(1 + sin2(trp))y1dy1]∧α0.
From this it is easy to see that

∥∥ω−1
t

∥∥
r
∼ e−r whereas

∥∥ω̇t∥∥r ∼ rper, so

that
∥∥ω−1

t

∥∥
r

∥∥ω̇t∥∥r ∼ rp and hence the Main Theorem does not apply.
Although this is a path of Liouville structures by construction, it is not
obvious from the formula for ωt.

5. Concluding remarks

5.1. Näıve symplectic stability on R2n. For R2n it is possible to
get a naive symplectic stability result with a completely elementary
proof as follows. Let ωt, t ∈ [0, 1], be an isotopy of symplectic forms on

R2n with
∫ 1

0
supx∈R, s∈[0,1] s|x|

∣∣ω−1
t (x)

∣∣
gE
|ω̇t(sx)|gEdt finite. Then ωt is a

strong isotopy. To verify this let E be the Euler vector field on R2n and
I : Ω2(R2n)→ Ω1(R2n) be given by Iω(x) =

∫ 1

0
E(sx) ⌟ ω(sx) ds. Then

dIω = ω for any exact 2-form ω. Let σt = Iω̇t and let Xt = −ω−1
t σt.

Let x ∈ R2n and let γ be the maximal flow line of Xt with γ(0) = x. If
the maximal domain of γ is [0, T ) with 0 < T 6 1, then by Lemma 3.1
the image of γ must not be contained in any compact set. But the length

of γ is bounded by
∫ T

0
supx∈R, s∈[0,1] s|x|

∣∣ω−1
t (x)

∣∣
gE
|ω̇t(sx)|gEdt < ∞ so

γ([0, T )) is precompact. So the flow ϕt of Xt starting from t0 = 0 exists
for all t ∈ [0, 1].

5.2. Symplectic stability for compactly supported isotopies.
Using Lemma 2.3 one can generalize Moser’s stability theorem to apply
to compactly supported isotopies: Let ωt, t ∈ [0, 1], be an isotopy of
symplectic forms on a manifold M such that supp(ωt − ω0) ⊂ W for
all t, where W ⊂M is an open submanifold with compact closure and
smooth boundary, and the cohomology class of (ωt−ω0)|W in H2

c (W,R)
is trivial for all t. Then for any smoothly bounded precompact open
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submanifold V of M with W ⊂ V there exists a smooth path of diffeo-
morphisms of M fixing M \ V such that ϕ∗tωt = ω0 for all t. Indeed,
let I2

M,V be as in Lemma 2.3. Let σt = I2
M,V ω̇t, then dσt = ω̇t. Then

Xt = −ω−1
t σt is compactly supported in W and therefore complete;

the flow of Xt fixes points in M \ V . By the Path Method the flow
ϕt of Xt satisfies ϕ∗tωt = ω0 for all t. In fact, the result holds for W
any precompact open set, cf. [5, Theorem 6.8] or [8, Lemma, page 617]
for alternative approaches (we chose to keep with the Hodge theoretic
approach in establishing Lemma 2.3).

This result was used in the proof of the stability result [5, Proposi-
tion 11.8] for “Liouville homotopies” of Liouville manifolds, where it
plays a role analogous to our use of Lemma 2.3 on the gluing regions:
By assuming the existence of smoothly varying families of compact
hypersurfaces transverse to the (radial) Liouville vector field Cieliebak
and Eliashberg are able to construct the required 1-parameter family of
diffeomorphisms on certain primary regions by applying Gray’s theorem
[9] to these hypersurfaces and then using the local product structure
coming from the Liouville vector field; the resulting 1-parameter family
of diffeomorphisms can be fixed up on the remaining gluing regions by
using the above generalization of Moser’s theorem. Without the convex-
ity assumptions on the symplectic forms, however, and the compatible
“Liouville homotopy” giving the smooth families of contact hypersurfaces
on which one can apply Gray’s theorem, the generator Xt for the strong
symplectic isotopy one is trying to construct needs to be estimated to
determine its integrability.

5.3. Punctured compact manifolds. Considering punctured com-
pact manifolds allows for a comparison of sorts between our result and
the original result of Moser. Corollary 1.5 states that a symplectic
isotopy on a punctured compact manifold M \ F such that ω−1

t and
ω̇t are uniformly bounded with respect to a metric defined on M is a
strong isotopy, provided dimM > 4. Slightly modifying Moser’s proof
in the compact case one has a direct elementary proof of the weaker
result: Let M be a compact manifold and let F be a finite set of points
on M . If ωt, t ∈ [0, 1], is a symplectic isotopy on M \ F which is the
restriction of a symplectic isotopy on M , then ωt is a strong isotopy on
M \F . To demonstrate this let ωt also denote the symplectic isotopy on
M whose restriction is the isotopy ωt on M \F . Construct Xt on M as
in the usual proof of Moser’s theorem. Since F is finite, for each t one
can choose a Hamiltonian vector field Yt (Hamiltonian with respect to
ωt) for which Yt|F = −Xt|F . Since Xt is smooth in t, Yt can be chosen
smooth in t. By the usual argument the flow ϕt, t ∈ [0, 1], generated
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by Xt + Yt satisfies ϕ0 = id and ϕ∗tωt = ω0. Moreover, by construction
ϕt preserves F . So ϕt|M\F is the required strong isotopy.

5.4. Contact stability. The previous ideas apply trivially to contact
manifolds. Let (M, g) be a complete oriented odd dimensional Rie-
mannian manifold. Let θt, t ∈ [0, 1], be a smooth path of contact

forms on M with
∫ 1

0
supM

∣∣(dθt|Ht)−1θ̇t|Ht
∣∣
g
dt <∞ where Ht = ker θt.

Then there exists a smooth path ϕt of diffeomorphisms of M and ft
of positive smooth functions on M such that ϕ0 = id and ϕ∗t θt = ftθ0

for t ∈ [0, 1]. Indeed, this case is easy because one does not need to
invert the exterior derivative to construct the time-dependent vector
field (using the ‘path method’). Let Ht = ker θt, and let H = H0. Let

Xt be the time dependent vector field −(dθt|Ht)−1(θ̇t|Ht). Let x ∈ M
and let γ be the maximal flow line of Xt with γ(0) = x. If the maximal
domain of γ is [0, T ) with 0 < T 6 1, then by Lemma 3.1 the image
of γ must not be contained in any compact set. However, the length

of γ is bounded by
∫ 1

0
supM

∣∣∣(dθt|Ht)−1θ̇t|Ht
∣∣∣
g
dt and therefore γ([0, T ))

is precompact. So the flow ϕt of Xt starting from t0 = 0 exists for all
t ∈ [0, 1]. Let Rt denote the Reeb vector field of θt and let ht = θ̇t(Rt).
We compute, using Cartan’s formula and θt(Xt) = 0,

d

dt
(ϕ∗t θt) = ϕ∗t (LXtθt + θ̇t) = ϕ∗t (−θ̇t|Ht + θ̇t) = ϕ∗t (θ̇t(Rt)θt) = htϕ

∗
t θt.

Since ϕ∗0θ0 = θ0 there exists ft such that ϕ∗t θt = ftθ0 for all t ∈ [0, 1].
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