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Abstract. We study the asymptotic behavior of geodesics near the boundary of a con-

formally compact Riemannian manifold (X, g). In the case where the sectional curvature

at infinity is constant (the asymptotically hyperbolic case) it is known that non-trapped

geodesics extend to the conformal infinity as smoothly immersed curves in X and that

the conformal infinity can be locally smoothly parametrized by the initial directions

of such non-trapped geodesics starting at a given point. We show that in the general

case non-trapped geodesics typically only extend to the conformal infinity with C1,α

regularity, due to the presence of a logarithmic singularity sourced by the gradient of

the limiting sectional curvature. In spite of this singular behavior, we show that the

endpoints of such geodesics depend smoothly on the initial conditions, so that the con-

formal infinity can still be locally smoothly parametrized using the initial velocities of

geodesics. In particular, the smooth structure of the conformal infinity is canonically

determined by (X, g). We also show how to specify ‘initial data’ for geodesics at the

conformal infinity and obtain an asymptotic expansion that parametrizes the geodesics

tending toward a given boundary point.

1. Introduction and Main Results

The notion of conformal compactification of semi-Riemannian metrics was introduced

by Penrose for the study of asymptotic properties of radiative fields in general relativity

[44, 45]. Although Penrose was initially interested in the case where the curvature tends

to zero at infinity, the case where the curvature is negative near infinity has also proved

to be of great interest. In the Lorentzian setting this gives a class of spacetimes that are

asymptotically similar to anti-de Sitter space, and in the Riemannian setting a class of

Riemannian manifolds whose asymptotic geometry is similar to that of hyperbolic space.

An early application of this class of geometries can be found in the work of Hawking

and Page on black hole thermodynamics [30], but the development of this area really

began with the seminal work of Fefferman and Graham on conformal invariants [19, 20].

Starting in the late 1990s, an explosion of activity was sparked by the work of Maldacena,

Witten and others on the AdS/CFT correspondence in physics [40, 51, 28, 31], and the

area continues to be highly active today.
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In this paper we study the boundary behavior of geodesics in a complete Riemannian

manifold (X, g) of dimension n + 1 that is conformally compact in the sense that X is

the interior of a compact manifold X with boundary ∂X and g is of the form ρ−2h,

where ρ is a defining function for ∂X (with ρ > 0 on X) and h is a metric on X that

is smooth and nondegenerate up to the boundary. We are particularly concerned with

the regularity of the geodesics at the boundary and the smoothness of the dependence of

the boundary endpoints on the initial direction of the geodesic. These questions are well

understood in the asymptotically hyperbolic case, where the limiting sectional curvature of

g is constant on ∂X [36]; it was already noted in [36], however, that when the asymptotic

hyperbolicity condition fails there is an additional singularity present at the boundary

in the (rescaled) geodesic equations and this presents an obstacle to generalizing beyond

the asymptotically hyperbolic setting. The main goal of the present paper is to overcome

this obstacle. We find, moreover, that new phenomena arise when the metric g fails to

be asymptotically hyperbolic.

If (X, g) is conformally compact in the sense just defined, with g = ρ−2h, then it is easy

to show that the sectional curvatures of g all tend towards −|dρ|2h as one approaches a

point of the conformal infinity ∂X (and hence are uniformly negative near ∂X). It follows

that (X, g) is asymptotically hyperbolic if and only if the function κ = |dρ|h on ∂X is

constant. Our investigation shows that, while in the asymptotically hyperbolic case all

geodesics for g near ∂X extend (by appending their boundary endpoints) to give smoothly

embedded curves in X, geodesics that tend towards a point in ∂X with dκ ̸= 0 pick up

a weak singularity at that point arising from the singularity in the geodesic equations

sourced by dκ and are only C1,α up to the boundary in general. Nevertheless, we find

that the dependence of the endpoint of geodesics continues on the initial (point and)

direction continues to be C∞-smooth even when the asymptotic hyperbolicity condition

fails.

While the questions addressed in this paper are of intrinsic interest geometrically, our

initial motivation for the present work came from complex analysis in several variables.

In terms of the behavior of the geodesic equations, generalizing from asymptotically

hyperbolic to merely conformally compact manifolds turns out to be highly analogous

to generalizing from the case where the log-term in the Bergman kernel is absent to the

(generic) case where it is present in Fefferman’s treatment of the boundary behavior of

geodesics of the Bergman metric on strongly pseudoconvex domains in [21] (even though

the presence of the log-term does not correspond to a failure of asymptotic complex

hyperbolicity [17]). A major motivation for the present work was that it gives a simpler

setting in which to consider boundary regularity questions for the cogeodesic flow than
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that of asymptotically complex hyperbolic metrics (or, more generally, of Θ-metrics [17])

where similar issues arise. Fefferman’s treatment of the boundary behavior of geodesics

of the Bergman metric on strongly pseudoconvex domains was a key step in his proof of

the smoothness up to the boundary of biholomorphic mappings between such domains;

this result was subsequently proved by other methods, which have been greatly developed

(see, e.g., [5, 4, 23, 24, 46]), but many open questions remain concerning the boundary

regularity of proper holomorphic mappings in positive codimension (for example, when

N > n > 1, is a proper holomorphic map Bn → BN that is, say, C2 up to the boundary

forced to be C∞ up to the boundary?). In a planned follow-up the authors intend to place

the work of Fefferman [21] in a more general setting that includes, e.g., the canonical

complete Kähler-Einstein metric on strongly pseudoconvex domains in Cn [22, 13], with

a view to applications to boundary regularity of proper holomorphic mappings in several

complex variables. For such applications one expects that it will be necessary to be

flexible with the choice of metric(s) used (unlike in the case of biholomorphic mappings,

one cannot hope to use a “canonical” metric on both the domain and target), hence the

desire to consider a more general family of metrics.

Of course, conformally compact Riemannian metrics are of considerable interest in

their own right and the study of the cogeodesic flow near infinity is well motivated

from the point of view of spectral and scattering theory and microlocal analysis for the

Laplacian and related operators on such manifolds (the cogeodesic flow being precisely

the bicharacteristic flow of the Laplacian on the unit sphere subbundle in the cotangent

bundle). This was the original motivation for the consideration of the geodesic flow

on conformally compact manifolds in [36] (where the Hodge Laplacian on q-forms is

considered, cf. [37]). Although some analytic results can be obtained in the general

conformally compact case without extra difficulty [36, 37, 38], many things simplify

when the limiting sectional curvature −κ2 is constant on ∂X and the asymptotically

hyperbolic case has received considerably more attention than the general case (see, e.g.,

[9, 10, 11, 12, 18, 26, 29, 34, 39, 50]). The nonconstancy of the function κ = |dρ|h on ∂X

complicates both the analysis of the cogeodesic flow near the boundary [36] and of related

geometric operators such as the Laplacian ∆g [6, 8, 48] (since, e.g., for λ > 0 the indicial

roots of ∆g−λ, viewed as a degenerate elliptic operator on X, are constant on ∂X if and

only if κ is constant on ∂X). Although we only address the cogeodesic flow in this paper,

our study demonstrates the significance of the gradient of the limiting sectional curvature

in the asymptotic geometry and analysis of conformally compact manifolds and provides

key tools for the study of geometric inverse problems in this setting (cf., e.g., [26, 15]).
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Motivation for dropping the asymptotic hyperbolicity condition is also provided by

recent interest in submanifolds in Poincaré-Einstein manifolds with prescribed boundary

at infinity (see, e.g., [1, 2, 25, 49, 41, 42, 7]), which is again driven by connections with

physics [27, 47]. Although Poincaré-Einstein manifolds are necesarily asymptotically

hyperbolic, such submanifolds are typically only conformally compact. Our study of

geodesics near the conformal infinity in such (merely) conformally compact manifolds

is also related with the study of minimal submanifolds in Poincaré-Einstein manifolds

(and “partially even” asymptotically hyperbolic manifolds more generally) and could be

seen as extending this work to the general conformally compact setting for the case of

submanifolds of dimension 1; cf. Remark 1.7 below.

1.1. Main Results. Before stating our main results, we briefly recall some basic facts

about conformally compact manifolds. We note first that when (X, g) is a conformally

compact Riemannian manifold with g expressed as ρ−2h, the defining function ρ and the

metric h on X are not canonical; if we replace ρ by ρ̂ = Ωρ and h by ĥ = Ω2h where

Ω > 0 is any smooth function on X, then g = ρ̂−2ĥ. Nevertheless, on ∂X the quantity

κ = |dρ|h is well defined, independent of the particular choice of h and ρ. Indeed, the

quantity −κ2 gives the limiting value of the sectional curvatures of g at any point on

∂X, as can easily be seen by computing the Riemannian curvature tensor of g in terms

of that of h using the standard conformal transformation law. One finds

(1)
Rijkl = −ρ−4|dρ|2h(hikhjl − hjkhil) +O(ρ−3)

= −κ2(gikgjl − gjkgil) +O(ρ−3),

where the O(ρ−3) term is ρ−3 times a tensor that is smooth up to the boundary of X.

Of course, the metric h (or ĥ) determines a canonical conformal structure on X and

hence also on ∂X. In the case when κ ≡ 1, it is standard to normalize a defining

function ρ (equivalently, a choice of h on X) near ∂X in terms of a choice of metric

in the conformal class on ∂X by requiring that h extends this metric and |dρ|h = 1 in

a neighborhood of ∂X; in particular, it is natural to assume in this case that h and

ρ have been chosen so that (near ∂X) ρ is the h-distance from the boundary. In the

general conformally compact case, however, it is not possible to normalize h and ρ in this

way. Given a choice of h and ρ such that g = ρ−2h we then have two natural defining

functions for ∂X, namely, ρ and the h-distance from the boundary, which we will denote

by x. The function x is defined near ∂X and we may use the flow of gradhx to identify

a (closed) neighborhood U of ∂X in X with the product [0, δ] × ∂X so that x becomes

the coordinate on the first factor. Representing a point in U ⊂ X by (x, x′) ∈ [0, δ]×∂X
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our two defining functions are related by

(2) ρ(x, x′) = κ(x′)x+O(x2),

where κ = |dρ|h on ∂X. This relationship will play an important role in our analysis.

Since it is convenient to have a coordinate that increases as one moves towards the

boundary, in the following we typically make use of x0 = −x rather than x. Fixing a local

coordinate system (x1, . . . , xn) for ∂X we obtain a Fermi coordinate chart (x0, x1, . . . , xn)

for ∂X ⊂ X with respect to the metric h. Our first main result is:

Theorem 1.1. Let (X, g) be a conformally compact Riemannian manifold with g = ρ−2h.

Let γ : [0,∞) → X be a geodesic for g that leaves all compact sets. Then

(i) γ(t) tends to a definite point limt→∞ γ(t) = γ∞ ∈ ∂X;

(ii) in a Fermi coordinate chart (x0, x1, . . . , xn) for the boundary ∂X with respect to

the metric h, with x0 < 0 in X, near γ∞ we have

γ̇0(t) = ρ+O(ρ2),

γ̇α(t) = O(ρ2 log ρ) for α = 1, . . . n;

(iii) γ([0,∞)) ∪ {γ∞} is a C1,α-immersed curve in X that meets the boundary orthog-

onally;

(iv) the point γ∞ = limt→∞ γ(t) ∈ ∂X varies smoothly as we vary the initial direction

of γ.

The results of Theorem 1.1 are obvious in the model case of hyperbolic space (Bn+1, g)

and were known previously in the asymptotically hyperbolic case (as were (i) and the

fact that the direction of γ̇(t) tends to that of the outward normal ∂X in the general

case), see [36]. Items (ii), (iii) and (iv), however, are new in the general case where |dρ|h
is not required to be constant on ∂X and their proof in this case is more subtle due to a

singularity in the (suitably reparametrized) geodesic equations at the boundary which is

sourced by the gradient of the function κ = |dρ|h on ∂X. In the asymptotically hyperbolic

case, the singularity is not present and the O(ρ2 log ρ) bound in Theorem 1.1(ii) can be

improved to O(ρ2). It turns out that this gives a characterization of asymptotically

hyperbolic metrics among conformally compact metrics on X:

Theorem 1.2. Let (X, g) be a conformally compact Riemannian manifold with g = ρ−2h.

Suppose ∂X is connected. Then the following are equivalent:

(i) the metric g on X is asymptotically hyperbolic;

(ii) for every geodesic γ : [0,∞) → X for g that tends to a point γ∞ on ∂X, in a

Fermi coordinate chart (x0, x1, . . . , xn) for the boundary ∂X with respect to the
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metric h, near γ∞ we have

γ̇α(t) = O(ρ2) for α = 1, . . . n;

(iii) for every geodesic γ : [0,∞) → X for g that tends to a point γ∞ on ∂X, γ([0,∞))∪
{γ∞} is a C∞-immersed curve in X.

Remark 1.3. In fact, for (iii) we need only require that for each point in ∂X there is one

geodesic γ for g tending to this point such that γ([0,∞))∪{γ∞} is C∞; see Theorem 1.6

and (4) below. A similar comment applies to (ii); see Remark 3.1.

The key observation behind the above two theorems is that, while in the asymptotically

hyperbolic case the cogeodesic flow for geodesics approaching ∂X can be reparametrized

and extended smoothly to ∂X in a certain sense [36, 6, 26], in the general case one can

only obtain an analogous extended flow with coefficients that are smooth on X and on

∂X but have a logarithmic-type conormal singularity at ∂X (meaning regularity is only

lost when one takes derivatives in the normal direction at ∂X); this singularity is absent

precisely when κ is locally constant. The conormal nature of the singularity means that,

although the geodesics pick up a weak singularity at ∂X (being only C1,α and not C2

there in general), the boundary endpoint γ∞ of the geodesic still varies smoothly with

the initial condition (Theorem 1.1(iv)).

Since the sectional curvatures of a conformally compact Riemannian manifold (X, g)

tend to −κ2 < 0 on ∂X, they are negative and bounded away from zero there. From

part (iv) of Theorem 1.1 we therefore obtain the following:

Theorem 1.4. Let (X, g) be a conformally compact Riemannian manifold. Then

(i) if p ∈ X is sufficiently close to ∂X then there is an open subset Vp in the unit

tangent space SpX ⊂ TpX such that all geodesics in (X, g) with initial direction

in Vp tend to a point in the boundary ∂X;

(ii) the map expp,∞ : Vp → ∂X that sends the initial velocity of a geodesic to the

endpoint of that geodesic in ∂X is a local C∞-diffeomorphism onto its image;

(iii) for every point p∞ ∈ ∂X there is a point p ∈ X and an open subset Vp,p∞ ⊂ Vp

such that expp,∞ is a C∞-diffeomorphism from Vp,p∞ to an open neighborhood of

p∞ in ∂X.

The above result is again obvious in the model case of hyperbolic space (Bn+1, g) and

was known in the case where (X, g) is asymptotically hyperbolic [36]. The key point in

the above theorem is that we obtain C∞-smoothness in the conformally compact case in

spite of the fact that the geodesics γ used to construct the exponential map only extend

to C1,α-immersed curves in X in general.
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Note that Theorem 1.4 implies the existence of a smooth atlas for ∂X determined

intrinsically by the geometry of (X, g). Putting this result in a broader context we note

that by using the limiting behavior of geodesics a complete noncompact Riemannian

manifold (X, g) with sectional curvature K ≤ −κ2
1 < 0 may be canonically endowed with

a boundary ∂X at infinity in a C0 fashion [16] and that when −κ2
2 ≤ K ≤ −κ2

1 < 0

this boundary has an intrinsically determined Cα-structure, for any α ∈ (0, κ1/κ2) [3]

(of course, one only really needs the sectional curvature bounds near infinity for these

results).

From the point of view of our intended applications to boundary regularity problems,

the smoothness of the local parametrizations of ∂X obtained in Theorem 1.4 is key. In

particular, Theorem 1.4 has the following corollary:

Corollary 1.5. Let (X1, g1) and (X2, g2) be conformally compact Riemannian mani-

folds. Let F be an isometry from (X1, g1) to (X2, g2). Then F extends continuously to a

homeomorphism from X1 to X2 whose restriction to the boundary gives a C∞ conformal

diffeomorphism f : ∂X1 → ∂X2.

Corollary 1.5 is analogous to the result of Fefferman [21] stating that a biholomorphism

F between smoothly bounded strongly pseudoconvex domains (which is necessarily an

isometry for the respective Bergman metrics of the domains) extends continuously to a

C∞ CR diffeomorphism f between the boundaries. In that case the smoothness of the

CR map f on the boundary implies the smoothness of F up to the boundary (by the

Hartogs phenomenon); in other words, in the complex setting one gets smoothness in

the normal direction at the boundary “for free” from the smoothness in the tangential

direction plus the fact that the boundary map is CR (the analog of being conformal

in Corollary 1.5). It is therefore natural to ask whether regularity is implied in the

normal direction for the extension obtained in Corollary 1.5. Unfortunately, there is no

analog of the Bochner-Hartogs theorem in this setting. From our study of the geodesic

flow near infinity, however, it follows that the extension X1 → X2 of the isometry F in

Corollary 1.5 is C1 up to the boundary in the general case, and C∞ in the asymptotically

hyperbolic case; see Theorem 3.7 in Section 3.6 below.

So far the results we have presented concern the behavior of geodesics that are “shot

towards the boundary” from the inside. But, having reparametized and extended the

cogeodesic flow so as to be (suitably) regular up to the conformal infinity, it is also possible

to “shoot geodesics in from the boundary” by prescribing appropriate “initial conditions”

at infinity. The nature of these “initial conditions” can be seen by considering geodesics

in the model hyperbolic space. If we consider 2-dimensional hyperbolic space as the right

half-plane with metric dx2+dy2

x2 then the family of geodesics coming in to a given point
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on the boundary consists of a horizontal ray together with the family of (semi-)circles

tangent to that ray at the boundary point; these curves may be parametrized by their

second-order Taylor coefficient at the common boundary point when locally represented

as the graph of a function y(x) near x = 0. An analogous parametrization exists in the

asymptotically hyperbolic case (where the geodesics are all smooth up to the boundary

point), but in the general case we find that the expansion picks up a singular leading

term proportional to x2 log x:

Theorem 1.6. Let (X, g) be a conformally compact Riemannian manifold with g = ρ−2h.

Let q ∈ ∂X and let (x, y1 . . . , yn) be a Fermi coordinate chart adapted to ∂X in X with

respect to the metric h, with x > 0 in X and centered at q. Then for any vector u ∈ Tq∂X

there is a geodesic γ : (−∞,∞) → X in (X, g) tending to q at infinity such that the curve

γ([0,∞)) ∪ {q} is given near q by y1(x), . . . , yn(x), where

(3) yα(x) = Oαx2 log x+ uαx2 + o(x2),

for some O ∈ Tq∂X depending only on q and not on u. Moreover, the trace of γ is

uniquely determined by u and every geodesic for g that tends toward q is obtained in this

way.

The obstruction O ∈ X(∂X) to higher boundary regularity of geodesics appearing in

Theorem 1.6 can be explicitly computed. In the notation of the theorem we find that, at

a given point q ∈ ∂X,

(4) Oα = −1

2

hαβκβ

κ
,

where κβ = ∂βκ and hαβ is the inverse of hαβ (the metric induced by h on ∂X). Note

that when ∂X is connected, (X, g) is asymptotically hyperbolic if and only if O ≡ 0 on

∂X. Thus the obstruction to higher boundary regularity turns out to be an obstruction

to asymptotic hyperbolicity; cf. Theorem 1.2.

Remark 1.7. It is interesting to compare the asymptotic expansion (3) for geodesics in

conformally compact manifolds tending to a prescribed boundary point with the known

asymptotic behavior of minimal surfaces in Poincaré-Einstein manifolds and (more gen-

erally) asymptotically hyperbolic spaces that are “partially even” to sufficiently high

order. In [41] such minimal surfaces Y are considered, for m = dimY ≥ 2. When m

is odd one finds that, in suitably adapted coordinates (x, s1, . . . , sm−1, y1, . . . , yd), with

s = (s1, . . . , sm−1) giving a local parametrization of ∂Y ⊆ ∂X, x a boundary defining

function in X and d = n+ 1−m, near a point on ∂Y the submanifold Y is the graph of

(y1(x, s), . . . , yd(x, s)) with
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(5)

yα(s, x) = uα
2 (s)x

2+uα
4 (s)x

4+(even powers)+Oα(s)xm+1 log x+uα
m+1(s)x

m+1+o(xm+1),

where uk and O are smooth functions of s (provided ∂Y is smooth). Extrapolating to

the case m = 1 (where the ∂Y becomes a point and so the s is not needed) the expansion

(5) becomes yα(x) = Oαx2 log x + uα
2x

2 + o(x2). So, the position of the log term in our

expansion (3) is consistent with the pattern seen for minimal surfaces of odd dimension

in Poincaré-Einstein manifolds (though, of course, the log term in (3) is only nontrivial

when (X, g) fails to be asymptotically hyperbolic and so would not actually appear in the

Poincaré-Einstein case, whereas the log coefficient O in (5) is a local conformal invariant

of ∂Y ⊆ ∂X; one expects that there should be a simultaneous generalization of these two

quantities for minimal surfaces in conformally compact manifolds, but we do not pursue

this here).

Outline. In Section 2 we study the cogeodesic flow of g near ∂X in Fermi coordinates

with respect to the metric h and, after successive changes of dependent and independent

variables, obtain an equivalent system (35) that extends to the boundary (with suitable

regularity properties). In Section 3 we make use of properties of the extended system

(35) to prove our main results. In Section 4 we illustrate our main results for a simple

family of 2-dimensional examples, with figures obtained by numerically solving (35). For

completeness and ease of reference we have also included an appendix establishing the

required regularity results for certain non-autonomous systems of first order ordinary

differential equations.

Acknowledgements. The authors would like to thank Rafe Mazzeo his interest and

encouragement, and in particular for asking the question answered by Theorem 1.2. S.C.

gratefully acknowledges support provided by the Simons Foundation, grant MPS-TSM-

00002876.

2. The cogeodesic flow near the conformal infinity

Let (X, g) be a conformally compact manifold. We shall begin with a consideration

of the cogeodesic flow for the metric g near the conformal infinity ∂X. The cogeodesic

flow is, of course, just a convenient way of writing the geodesic equations for g as a first

order system. By successive changes of variables, we will show that in a certain sense the

(rescaled) cogeodesic flow can be extended to ∂X.

2.1. Preliminary observations. As in the introduction we fix a smooth defining func-

tion ρ for ∂X with ρ > 0 on X and let h be the metric on X such that g = ρ−2h. Note

that the metric g is complete, since log ρ gives an exhaustion function with bounded
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gradient. Again we let x denote the h-distance from ∂X and use the flow of gradhx to

identify U ⊆ X with [0, δ] × ∂X, δ > 0, so that x becomes the coordinate on the first

factor. We may therefore represent a point p ∈ U as (x, x′) ∈ [0, δ] × ∂X. We let U be

the interior of U . Fixing a local coordinate system (x1, . . . , xn) for ∂X near a given point

we obtain a Fermi coordinate system (x0, x1, . . . , xn) for X with x0 = −x. We denote

the corresponding fiber coordinates for T ∗X by (ξ0, ξ1, . . . , ξn). Note that x0 and ξ0 are

well defined on U (independent of the choice of local coordinates for ∂X). Although for

convenience we make use of coordinates for ∂X, our discussion of the cogeodesic flow

near ∂X really only requires the decomposition U ∼= [0, δ]× ∂X. When working in local

coordinates the latin indices i, j, k, . . . will have range 0, . . . , n whereas the greek indices

α, β, . . . will have range 1, . . . , n.

In an arbitrary local coordinate system for X the Hamiltonian for the cogeodesic flow

of g is given by

(6) H =
1

2
gijξiξj =

1

2
ρ2hijξiξj.

The integral curves (xi(t), ξi(t)) of the flow satisfy

(7)
ẋi =

∂H

∂ξi
= ρ2hijξj,

ξ̇i = −∂H

∂xi
= −ρρih

jkξjξk −
1

2
ρ2∂ih

jkξjξk,

where ∂i =
∂
∂xi , and ρi = ∂iρ. Restricting our attention to unit speed geodesics, we shall

only consider the integral curves that further satisfy the energy surface equation

(8) ρ2hijξiξj = 1.

On the energy surface (8) the cogeodesic flow takes the form

(9)

ẋi = ρ2hijξj,

ξ̇i = −ρ−1ρi −
1

2
ρ2∂ih

jkξjξk.

Since (7) and (9) only differ in the equation for ξ̇i by a term proportional to (1−ρ2hijξiξj)

and since the cogeodesic flow preserves the level sets of ρ2hijξiξj, it follows that if a

solution of (9) satisfies (8) at one time then by uniqueness (since the corresponding

solution of the cogeodesic flow will also solve (9)) it follows that (8) holds for all time

and (xi(t), ξi(t)) also solves (7).
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In Fermi coordinates adapted to ∂X it is natural to write the system (9) as

(10)

ẋ0 = ρ2ξ0,

ẋα = ρ2hαβξβ,

ξ̇0 = −ρ−1ρ0 −
1

2
ρ2∂0h

βγξβξγ

ξ̇α = −ρ−1ρα − 1

2
ρ2∂αh

βγξβξγ,

where we have used that h00 = 1 and h0β = 0. Recalling that x0 = −x, we note that by

(2) we have

(11) ρ0 = −κ+O(x)

and

(12) ρα = καx+O(x2),

where κα = ∂ακ. In particular, while ρ−1ρ0 = −x−1 +O(1) blows up as x → 0, ρ−1ρα =

κ−1κα + O(x) extends smoothly to the boundary x = 0. Note also that that the energy

surface equation becomes

(13) ρ2ξ20 + ρ2hαβξαξβ = 1.

An example of Fermi coordinates in a neighborhood of a given boundary point for

the hyperbolic ball is obtained by identifying hyperbolic space with the upper half space

model (sending the given boundary point to the origin) and taking h to be the Euclidean

metric. In this case it is easy to see that along any geodesic the quantity ξα remains

bounded as the geodesic parameter time t → ∞ (since ξα = ρ−2ẋα with ρ ∼ e−t and

ẋα = O(e−2t)). From the energy surface equation (13) it follows then that ρξ0 must tend

to ±1. Returning to the general setting, we therefore introduce the new variable

(14) ζ0 = ρξ0.

With this change of variables, since ζ̇0 = ρ̇ξ0 + ρξ̇0 with ρ̇ = ρ0ẋ
0 + ραẋ

α, the cogeodesic

flow is given by

(15)

ẋ0 = ρζ0,

ẋα = ρ2hαβξβ,

ζ̇0 = −ρ0(1− ζ20 ) + ρρβξβζ0 −
1

2
ρ3∂0h

βγξβξγ,

ξ̇α = −ρ−1ρα − 1

2
ρ2∂αh

βγξβξγ,
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where ρβ = hiβρi = hαβρα. The energy surface equation then becomes

(16) ζ20 + ρ2hαβξαξβ = 1.

Note, in particular, that we must therefore have |ζ0| ≤ 1 and |ξα| = O(ρ−1) along the flow.

Our observations from the hyperbolic case are generalized in the following proposition:

Proposition 2.1. After shrinking U (equivalently δ > 0) if necessary, the following hold

for all geodesics γ : [0,∞) → X with γ(0) ∈ U :

(i) if ẋ0(0) > 0, then γ remains in U , ẋ0(t) > 0 for all t and x0 → 0 as t → ∞;

(ii) if ẋ0(0) > 0, then ζ0 → 1 as t → ∞.

Proof. Fix such a geodesic γ. Note that ẋ0(t) > 0 if and only if ζ0(t) > 0. Note also that,

by (11), after shrinking δ > 0 if necessary, we may assume that −ρ0 > 0 in U . To prove

the first part of (i) we observe that if t ≥ 0 is such that γ(t) ∈ U then either |ζ0(t)| ≥ 1/2

or we have |ζ0(t)| < 1/2 and hence (in an appropriate Fermi coordinate chart)

(17) ζ̇0 > −ρ0

(
1− 1

4

)
+ ρρβξβζ0 −

1

2
ρ3∂0h

βγξβξγ =
3

4
κ+O(ρ).

Although (17) depends on a choice of Fermi coordinate chart containing γ(t) ∈ U , since

κ > 0 on ∂X and ∂X is compact, we may cover U with a finite number of preferred

coordinate charts and take δ > 0 small enough such that the right-hand-side 3
4
κ + O(ρ)

of (17) is always positive in such a chart. Thus, if ζ0 is initially positive then either

ζ0 ≥ 1/2 or ζ̇0 > 0 at any time such that γ(t) ∈ U . Clearly, then, ẋ0 = ρζ0 remains

positive, so that x0(t) is strictly increasing and γ(t) can never leave U .

To see that x0 → 0 as t → ∞ we note that limt→∞ x0(t) exists (since x0(t) is increasing

and bounded above). If this limit were not zero then there would be ϵ > 0 such that

ρ(γ(t)) ≥ ϵ for all t, so that the positive quantity ẋ0 = ρζ0 would bounded away from zero

along γ (since ζ0(t) ≥ min{ζ0(0), 1/2} > 0). But this would imply that limt→∞ x0(t) =

+∞, which is impossible. It follows that we must have limt→∞ x0(t) = 0.

It remains to prove (ii). Suppose ζ0(0) > 0, so that ζ0(t) > 0 for all t. Arguing

similarly to the above, for each integer n ≥ 2 there is a δn > 0 and a corresponding

subset Un
∼= (0, δn) × ∂X such that when γ(t) ∈ Un then either ζ0(t) ≥ 1 − 1/n or we

have ζ0(t) < 1− 1/n and hence (in one of our preferred coordinate charts)

(18) ζ̇0 > −ρ0
(
1− (1− 1/n)2

)
+ ρρβξβζ0 −

1

2
ρ3∂0h

βγξβξγ =
2n− 1

n2
κ+O(ρ) > cn > 0.

Since limt→∞ x0(t) = 0, the geodesic γ eventually enters every set Un. Once γ enters a

given set Un, ζ0 must eventually become larger than 1− 1/n (since otherwise ζ̇0 > cn > 0

for all t near ∞ and hence limt→∞ ζ0(t) = +∞, which is impossible) and afterward ζ0
can never again decrease below 1− 1/n. It follows that limt→∞ ζ0(t) = 1. □
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We henceforth assume that U (equivalently, δ > 0) is taken small enough that Propo-

sition 2.1 holds. For convenience, we’ll also suppose that δ < 1 so that log x < 0 in

U .

It follows that if γ : [0,∞) → X is a geodesic for g with γ(0) ∈ U and ẋ0(0) > 0

then x0(t) is a monotone function of t and so can be used as a parameter for γ. When

viewing x0 as a parameter, we will write it as τ . Occasionally we’ll write γ̃ : [−δ0, 0) for

the reparametrized geodesic, so that γ̃(τ) = γ(t) where τ = τ(t) (or t = t(τ)). By the

previous lemma, τ → 0 as t → ∞, but it will be useful to have a more precise asymptotic

relationship. For now, the following lemma will suffice.

Lemma 2.2. Let γ : [0,∞) → X be a geodesic with γ(0) ∈ U and ẋ0(0) > 0. Then there

are constants κ1, κ2 > 0 such that x(0)e−κ1t ≤ x(t) ≤ x(0)e−κ2t for all t. Hence there are

constants C1, C2 > 0 such that

(19) −C1 log |τ | ≤ t ≤ −C2 log |τ |

for all t.

Proof. Since ζ0 > 0 for all t and ζ0 → 1 as t → ∞, ζ0 is bounded above and below by

positive constants. Similarly, ρ/x is a bounded positive function on U that is bounded

away from 0. Hence, the equation ẋ0 = ρζ0 implies that −κ1x ≤ ẋ ≤ −κ2x for some

positive constants κ1, κ2. Thus −κ2 ≤ d
dt
log x ≤ −κ2 and hence x(0)e−κ1t ≤ x(t) ≤

x(0)e−κ2t for all t. This proves the first claim. The second follows easily from the

first. □

Proposition 2.3. For all geodesics γ : [0,∞) → X with γ(0) ∈ U , if ẋ0(0) > 0 then

γ(t) tends to a definite point γ∞ ∈ ∂X as t → ∞.

Proof. Suppose γ is such a geodesic, with ẋ0(0) > 0. Since γ remains in U ∼= (0, δ)×∂X,

γ projects on the second factor to a well-defined smooth curve γ∂X : [0,∞) → ∂X.

In a Fermi coordinate chart where γ̇ has components (ẋ0, ẋα), γ̇∂X has components ẋα.

The energy surface equation (16) combined with ẋα = ρ2hαβξβ gives us the coordinate-

independent identity,

(20) ζ20 + ρ−2|γ̇∂X |2hx
= 1,

where hx is the metric induced by h on the hypersurface {x} × ∂X in U ∼= [0, δ] × ∂X,

viewed as a metric on ∂X. Since ζ0 → 1, it follows that ρ(γ(t))−2|γ̇∂X(t)|2hx(t)
→ 0 as

t → ∞. Since h is a smooth metric on X, hx(t) and h0 are quasi-isometric, uniformly in t.

It follows that ρ(γ(t))−2|γ̇∂X(t)|2h0
→ 0 as t → ∞. In particular, this quantity is bounded

and thus |γ̇∂X(t)|h0 = O(ρ), equivalently, |γ̇∂X(t)|h0 = O(x) (later it will be important
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that |γ̇∂X(t)|h0 = o(ρ) but we do not need this here). Now, by Lemma 2.2, there is a

constant κ2 > 0 such that x(t) ≤ x(0)e−κ2t. Hence |γ̇∂X(t)|h0 = O(e−κ2t). Since (∂X, h0)

is a compact Riemannian manifold (hence complete) it follows that γ∂X(t) must tend to

some fixed point γ∞ ∈ ∂X as t → ∞. Since limt→∞ x0(t) = 0 it then follows that γ(t)

must also tend to γ∞ ∈ ∂X. □

In the above argument, we made a point of not relying on any particular local coordi-

nate system. If we had known that γ remained in a single Fermi coordinate chart, then

we could have argued in essentially the same way to show that ẋα(t) was o(e−Ct) and

hence integrable, so that limt→∞ xα(t) must exist. Of course, now that we know γ tends

to a specific boundary point γ∞, we know that γ(t) eventually remains in some Fermi

coordinate chart. Since the questions we are interested in may all be studied locally near

the boundary endpoint γ∞ of a given geodesic γ : [0,∞) → X that leaves all compact

sets, in the following we will work in a fixed Fermi coordinate chart.

Remark 2.4. Note that from the proof above we know that, in such a chart, ρ−1ẋα → 0

(equivalently, ρξα → 0) as t → ∞. This shows us that, although it is natural to replace

the variable ξ0 by ζ0 = ρξ0, if we wish to be able to “shoot geodesics in” from ∂X then we

should not replace the variables ξα by ζα = ρξα (the ζα go to zero along every geodesic, so

their limiting values at t = ∞ clearly fail to distinguish between the different geodesics

that tend to a given point q ∈ ∂X; hence the limiting values of these variables cannot

be chosen as initial data for a “flow” that goes in the opposite direction). In hyperbolic

space (Bn+1, g) it is easy to see that the family of geodesics tending towards a given

boundary point is parametrized by the limiting values of the variables ξα (not of the ζα).

Hence, in that case, the ξα are already “good” variables. This continues to be the case for

asymptotically hyperbolic manifolds, but we will see below that we need to make some

adjustments to handle general conformally compact manifolds.

2.2. Extending to the boundary. In light of Proposition 2.1, for geodesics γ in U ⊂ X

with ẋ0(0) > 0 it is natural to replace the parameter time variable t with the boundary-

defining function τ = x0 and attempt to extend the (reparametrized) cogeodesic flow up

to ∂X. Before doing this we first replace the momentum variables (ζ0, ξ1, . . . , ξn) with

suitable (equivalent) “velocity variables.” This gives a more direct relation between our

variables and γ̇ (and also facilitates comparison with [36]). We set vi = hijξj = ρ−2ẋi, so

that

(21) v0 = ξ0 = ρ−2ẋ0 and vα = hαβξβ = ρ−2ẋα.

We have already seen that w0 = ζ0 = ρξ0 = ρ−1ẋ0 is a better variable than v0 = ξ0. After

we have examined the equations in these new variables, we will also give replacements



15

wα for the vα (which are needed in the case when asymptotic hyperbolicity fails). Since

we are interested in obtaining a system that is regular up to ∂X, it will be useful to note

that ρα = ∂αρ can be written as ρkα where kα is smooth up to ∂X (and equal to κ−1κα

on ∂X, cf. (12)). Writing kα = hαβkβ, we therefore also have ρα = ρkα.

With (ζ0, ξ1, . . . , ξn) replaced by (w0, v1, . . . , vn) the cogeodesic flow equations become

(22)

ẋ0 = ρw0,

ẋα = ρ2vα,

ẇ0 = −ρ0(1− (w0)2) + ρ2kβv
βw0 − 1

2
ρ3hµβhνγ∂0h

µνvβvγ,

v̇α = −kα + ρhβγ∂0h
αβw0vγ + ρ2hβλ∂γh

αβvλvγ − 1

2
ρ2hµβhνγ∂

αhµνvβvγ,

where the dot still denotes a t-derivative and ∂α = gαλ∂λ (to obtain the last equation we

have used that v̇α = hαβ ξ̇β + ḣαβξβ, where ḣαβ = ∂0h
αβ · ẋ0 + ∂γh

αβ · ẋγ). The energy

surface equation then becomes

(23) (w0)2 + ρ2hαβv
αvβ = 1.

In particular, since we consider only integral curves lying on the energy surface, we may

rewrite the equation for ẇ0 as

(24) ẇ0 = −ρ2ρ0hαβv
αvβ + ρ2kβv

βw0 − 1

2
ρ3hµβhνγ∂0h

µνvβvγ.

Before we make our change of dependent variable, we make one simple observation

concerning solutions of (22):

Lemma 2.5. Let γ : [0,∞) → X be a geodesic for g that remains in a given Fermi

coordinate system for all time. Then, for the corresponding solution of (22) we have

vα = O(t) for t large, and hence vα = O(log ρ) for ρ near 0.

Proof. Note that, by the energy identity, vα = O(ρ−1) and w0 is bounded. (In fact the

energy estimate tells us that vα = o(ρ−1), since w0 → 1 as t → ∞, but we do not need

this for the argument and we get a stronger result as our conclusion.) It follows from the

equation for v̇α in (22) that v̇α is uniformly bounded in t and hence that vα = O(t) for t

large. By Lemma 2.2, this implies vα = O(log |τ |) for τ near 0, equivalently, vα = O(log ρ)

for ρ near 0. This proves the lemma. □

Remark 2.6. It follows from the discussion below that in the asymptotically hyperbolic

case vα = O(1), but that in the general conformally compact case the bound vα =

O(log ρ) cannot be improved. Eventually we will replace vα by a variable wα that is

always O(1) and tends to a finite limit.
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Restricting our attention to geodesics near the conformal infinity with ẋ0(0) > 0, we

now replace the parameter time t with the new independent variable τ = x0 ∈ [−δ, 0).

From (22) we obtain the system

(25)

dxα

dτ
= ρ

vα

w0
,

dw0

dτ
= ρkβv

β − ρ
ρ0hαβv

αvβ

w0
− 1

2
ρ2

hµβhνγ∂0h
µνvβvγ

w0
,

dvα

dτ
= −ρ−1 k

α

w0
+ hβγ∂0h

αβvγ + ρ
hβλ∂γh

αβvλvγ

w0
− 1

2
ρ
hµβhνγ∂

αhµνvβvγ

w0
,

where we have used (24) to obtain the expression for dw0

dτ
. Recalling that ẋ0 > 0 is

equivalent to w0 > 0 and that w0 → 1 as t → ∞ (equivalently, as τ → 0−), we see that

if it weren’t for the term −ρ−1kα/w0 in the third equation, the system would be regular

up to the boundary τ = 0. Moreover, as observed in [36], the expression ρ−1kα = ρ−2ρα

leads to a singularity at τ = 0 if and only if κ fails to be locally constant on ∂X (since

ρ−2ρα = x−1κ−2κα +O(1), where κα(x′) = hαβ(0, x′)κβ(x
′) and the O(1) term is smooth

up to ∂X). In particular, if (X, g) is asymptotically hyperbolic, then ρ−1kα is smooth

up to the boundary and the system (25) is regular for τ ∈ [−δ, 0]. When κ is not locally

constant on ∂X, however, the term ρ−1kα is only O(ρ−1).

We will handle the singularity in the general case by making a singular change of

variables to obtain a more regular system. Since −ρ−1kα/w0 blows up like ρ−1 as one

approaches a boundary point with κβ ̸= 0 (along a geodesic), one is tempted to eliminate

this term from the last equation of (25) by replacing vα by vα plus a logarithmically

divergent term in τ = x0 (or ρ). The problem with this, however, is that the linear term

hβγ∂0h
αβvγ would then pick up a logarithmic singularity, and so the equation would still

fail to be regular at τ = 0 (the other terms in (25) that involve vα would also pick up

singularities, but since these terms each come with a power of ρ the resulting coefficients

would at least still be continuous up to ∂X). We resolve this problem by first dealing

with the linear term hβγ∂0h
αβvγ using an integrating factor (which we must take to be

matrix valued). To this end, we rewrite the last equation of (25) more suggestively as

(26)
dvα

dτ
− hβγ∂0h

αβvγ = −ρ−1 k
α

w0
− 1

2
ρ
hµβhνγ∂

αhµνvβvγ

w0
+ ρ

hβλ∂γh
αβvλvγ

w0
.

In the domain of our Fermi coordinate chart we therefore define the matrix-valued func-

tion µ = (µα
γ ) by

(27) µα
γ (x

0, x1, . . . , xn) = −
∫ x0

0

hβγ∂0h
αβ
∣∣
(τ,x1,...,xn)

dτ,
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so that ∂0µ
α
γ = −hβγ∂0h

αβ. Applying the matrix exponential we then define M = (Mα
β )

by M = eµ and its inverse L = (Lα
β) by L = e−µ. Note that, in the Fermi coordinate

chart where they are defined, ∂0M
α
γ = Mα

λ ∂0µ
λ
γ and Mα

λL
λ
β = δαβ . Note also that µ, M

and L are C∞ up to ∂X and M is the identity on ∂X. With M thus defined, we introduce

new variables v̂α given by

(28) v̂α = Mα
λ v

λ.

Since, along the solutions of (25), we have

(29)

d

dτ
Mα

γ = ∂0M
α
γ +

dxλ

dτ
∂λM

α
γ

= −Mα
λ hβγ∂0h

λβ + ρ
vλ

w0
∂λM

α
γ ,

the system (25) then becomes

(30)

dxα

dτ
= ρ

Lα
β v̂

β

w0
,

dw0

dτ
= ρkαL

α
β v̂

β − ρ
ρ0hµνL

µ
αL

ν
β v̂

αv̂β

w0
− 1

2
ρ2

hµαhνδ∂0h
µνLα

βL
δ
γ v̂

β v̂γ

w0
,

dv̂α

dτ
= −ρ−1M

α
λ k

λ

w0
+ ρ

Mα
λ hµδ∂ϵh

λµLδ
βL

ϵ
γ v̂

β v̂γ

w0
− 1

2
ρ
Mα

λ hµδhνϵ∂
λhµνLδ

βL
ϵ
γ v̂

β v̂γ

w0

+ ρ
∂ϵM

α
δ L

δ
βL

ϵ
γ v̂

β v̂γ

w0
,

for τ ∈ [−δ, 0).

Remark 2.7. Note that ∂0h
αβ does not vanish on ∂X in general. It is easy to see that

∂0h
αβ = O(ρ) if and only if the second fundamental form of ∂X with respect to h vanishes.

While it is possible to conformally rescale h (and correspondingly rescale ρ, so as to

preserve that ρ−2h = g) so that the mean curvature of ∂X vanishes, the trace free part

of the second fundamental form is a (weighted) conformal invariant and does not vanish

in general. Indeed, the trace free part of the second fundamental form is determined by

g (and can be interpreted as measuring the failure of g to be asymptotically Einstein to a

certain order, see, e.g. [14]). These observations show that the change of variables made

in the preceding paragraph was necessary, in the sense that otherwise our next change of

variables would not lead to a system that extends up to ∂X in the general conformally

compact case.
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We are now in a position to eliminate the singular term −ρ−1Mα
λ k

λ/w0 from the

system. We first note that

(31) −ρ−1Mα
λ k

λ = −ρ−2Mα
λ ρ

λ =
κα

κ2
· 1

x0
+O(1),

where κα(x′) = hαβ(0, x′)κβ(x
′) and the O(1) term, which we will denote by Eα(x0, x′), is

smooth up to ∂X in the given Fermi coordinate system. Thus, defining smooth functions

Aα of the Fermi coordinates (for x0 < 0) and of w0 > 0 by

(32) Aα(x0, x1, . . . , xn, w0) =
1

w0
· κ

α

κ2
· log |x0|,

we have

(33) −ρ−1M
α
λ k

λ

w0
=

∂Aα

∂x0
+

Eα

w0
.

Hence, if we define new variables wα by

(34) wα = v̂α − Aα = Mα
β v

β − Aα,

then the system (30) becomes

(35)

dxα

dτ
= V α := ρ

Lα
β(w

β + Aβ)

w0
,

dw0

dτ
= W 0 := ρkαL

α
β(w

β + Aβ)− ρ
ρ0hµνL

µ
αL

ν
β(w

α + Aα)(wβ + Aβ)

w0

− 1

2
ρ2

hµαhνδ∂0h
µνLα

βL
δ
γ(w

β + Aβ)(wγ + Aγ)

w0
,

dwα

dτ
= Wα :=

Eα

w0
+ ρ

Mα
λ hµδ∂ϵh

λµLδ
βL

ϵ
γ(w

β + Aβ)(wγ + Aγ)

w0

− 1

2
ρ
Mα

λ hµδhνϵ∂
λhµνLδ

βL
ϵ
γ(w

β + Aβ)(wγ + Aγ)

w0

+ ρ
∂ϵM

α
δ L

δ
βL

ϵ
γ(w

β + Aβ)(wγ + Aγ)

w0
− V λ∂λA

α −W 0∂w0Aα,

which now makes sense for τ ∈ [−δ, 0] (since x log x, x(log x)2 and x(log x)3 extend

continuously from x > 0 to x = 0).

Letting y stand for the (2n+1)-tuple of independent variables (x1, . . . , xn, w0, w1, . . . wn),

the system (35) is of the form

(36)
dy

dτ
= V (τ, y),

where V is C∞ in (τ, y) for τ < 0 but only continuous at τ = 0. Note, however, that we

have good deal more control over the right hand side V (τ, y) than this would suggest.
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Indeed, from (35) and (32) it follows that V (τ, y) is of the form

(37) V (τ, y) = V0(τ, y) + τ(log |τ |)V1(τ, y) + τ(log |τ |)2V2(τ, y) + τ(log |τ |)3V3(τ, y),

where the functions V0, V1, V2, V3 are smooth up to τ = 0 in (τ, y). In particular, this

means that not only V but also all of its y-partial derivatives are C∞ in (τ, y) for τ < 0

and continuous at τ = 0. This puts us in a setting very similar to that of Fefferman in

his work on the boundary behavior of geodesics for the Bergman metric [21], and allows

us to make use of the regularity results established in Appendix A to prove our main

results.

2.3. Extending solutions to the boundary. Before we prove our main results, how-

ever, we wish to establish that geodesics for g that approach ∂X give rise to solutions of

(35) that extend to τ = 0. This is shown in the following lemma.

Lemma 2.8. Let γ : [0,∞) → X be a geodesic for g with γ(0) ∈ U and ẋ(0) > 0 and let

(x0, x1, . . . , xn) be a Fermi coordinate system in a neighborhood of γ∞. Then the smooth

solution (xα, w0, wα) of (35) obtained from γ for τ ∈ [−δ0, 0) extends to τ = 0, giving a

C1 solution for τ ∈ [−δ0, 0].

Proof. As observed previously, the system (35) is of the form (36) with V (τ, y) smooth in y

for each fixed τ ∈ [−δ, 0]. Moreover, the y-partial derivatives of V (τ, y) vary continuously

with τ ∈ [−δ, 0], and hence V (τ, y) is locally Lipschitz in y uniformly in τ ∈ [−δ, 0]. It

therefore follows from the standard Picard–Lindelöf existence theorem that if y(τ) solves

(35) for τ ∈ [−δ0, 0) and remains in a bounded set (with w0(τ) bounded away from

0 and the xα(τ) bounded away from the boundary of the region where the coordinate

system is defined) for all τ ∈ [−δ, 0) then the solution y(τ) extends to τ ∈ [−δ0, 0]

and is C1 in τ . Since the functions xα tend to the coordinates of γ∞ as τ → 0− and

w0 = ζ0 → 1 as τ → 0−, it remains only to see that the functions wα are also bounded

for τ ∈ [−δ0, 0). To see this it is helpful to write the system (35) back in terms of the

variables vα = Lα
β(w

α + Aβ). We obtain (cf. (25)):

(38)

dxα

dτ
= V α := ρ

vα

w0
,

dw0

dτ
= W 0 := ρkβv

β − ρ
ρ0hαβv

αvβ

w0
− 1

2
ρ2

hµβhνγ∂0h
µνvβvγ

w0
,

dwα

dτ
= Wα :=

Eα

w0
+ ρ

hβλ∂γh
αβvλvγ

w0
− 1

2
ρ
hµβhνγ∂

αhµνvβvγ

w0
+ ρ

∂γM
α
β v

βvγ

w0

− V λ∂λA
α −W 0∂w0Aα.

Recalling from Lemma 2.5 that vα = O(log ρ), it follows that V α = O(ρ log ρ) and

W 0 = O(ρ(log ρ)2). Hence, all terms in the expression for Wα remain bounded (indeed,
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the first term, Eα/w0, is smooth up to ∂X and therefore bounded; noting that V λ∂λA
α =

O(ρ(log ρ)2) and W 0∂w0Aα = O(ρ(log ρ)3), it is easy to see that all other terms go to

zero as τ → 0−). It follows easily that limτ→0− wα(τ) exists, and, in particular, that the

functions wα are bounded for τ ∈ [−δ0, 0). Therefore, by the classical existence theory

for ordinary differential equations, the solution (xα, w0, wα) extends to τ = 0 as a C1

solution of (35). This proves the lemma. □

3. Proofs of the main results

3.1. Proof of Theorem 1.1. Here we prove Theorem 1.1 from the introduction, which

shows, in particular, that geodesics leaving all compact sets tend to a definite point in the

conformal infinity and that this point varies smoothly as one varies the initial direction

of the geodesic.

Let (X, g) be a conformally compact Riemannian manifold with g = ρ−2h. Let γ :

[0,∞) → X be a geodesic for g that leaves all compact sets. To prove (i) we note that,

since γ leaves all compact sets, γ must eventually enter U . Clearly we must also have

limt→∞ x0(t) = 0, where x0(t) = x0(γ(t)). It follows that there is a parameter time t0
such that γ(t0) ∈ U and ẋ0(t0) > 0. After an affine change of parameter, we may assume

without loss of generality that t0 = 0. It then follows from Proposition 2.3 that γ(t)

tends to a definite point γ∞ ∈ ∂X as t → ∞. This proves part (i).

To prove part (ii) we first note that we may again assume, without loss of generality,

that γ(0) ∈ U and that ẋ0(0) > 0. Then γ remains in U and ẋ0 remains positive for

all t > 0. Thus we may reparametrize γ in terms of τ = x0. Fixing a Fermi coordinate

system (x0, x1, . . . , xn) in a neighborhood of γ∞ we therefore obtain a (smooth) solution

(xα, w0, wα) of the system (35) for τ ∈ [−δ0, 0) from γ, for some δ0 ∈ [δ, 0). By Lemma 2.8

this solution extends to a C1 solution of (35) for τ ∈ [−δ0, 0]. In particular, w0 is C1 up to

τ = 0. Thus, since w0 → 1 as τ → 0− it follows that w0 = 1+O(τ). Hence w0 = 1+O(ρ),

and recalling that ẋ0 = ρw0 we see that

(39) ẋ0 = ρ+O(ρ2).

Similarly, from Lemma 2.5 we have that vα = O(log ρ) and recalling that ẋα = ρ2vα it

follows that

(40) ẋα = O(ρ2 log ρ).

This proves (ii).

Remark 3.1. In fact, from the formula ẋα = ρ2vα = ρ2Lα
β(w

β +Aβ) and the fact that wβ

is bounded we obtain a more precise asymptotic statement than (40). Since L is smooth
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up to ∂X (in the Fermi coordinates) and equal to the identity on ∂X, from the definition

(32) of Aβ we see that

(41) ẋα =
κα

κ2
· ρ2 log ρ+O(ρ2),

where we have used that w0 = 1 + O(ρ) and log |x0| = log ρ + O(1). In particular, the

coefficient of ρ2 log ρ in (41) depends only on the boundary endpoint q = γ∞ and not

on the particular geodesic γ tending to q. Moreover, the ρ2 log ρ-coefficient vanishes at

q if and only if dκ|q = 0. We will make use of this remark in the proof of Theorems 1.2

and 1.6.

We now turn to the proof of (iii). Since the image of a geodesic is a smooth immersed

curve, the problem localizes near γ∞. We therefore assume, without loss of generality,

that γ(0) ∈ U , ẋ0(0) > 0 and that γ([0,∞)) ∪ {γ∞} is contained in a single Fermi

cordinate chart. As before, we reparametrize γ using τ = x0 and obtain a smooth

solution of (35) for τ ∈ [−δ0, 0) that extends to a C1 solution for τ ∈ [−δ0, 0]. It follows

that γ([0,∞)) ∪ {γ∞} is a C1-embedded curve in X (recall that we have localized near

γ∞). That the curve meets the boundary orthogonally then follows from part (ii) and the

fact that (x0, xα) are Fermi coordinates for h, since (ii) implies that ẋα/ẋ0 = O(ρ log ρ)

and hence ẋα/ẋ0 → 0 as t → ∞, equivalently, dxα

dτ
→ 0 as τ → 0−. Since γ([0,∞))∪{γ∞}

is smooth away from γ∞ it remains only to show that the curve is C1,α up to the conformal

infinity, for α ∈ (0, 1). To see this we note that dxα

dτ
= ρLα

β(w
β + Aβ)/w0 (α = 1, . . . , n).

Since (xα, w0, wα) is C1 on [−δ0, 0] it follows that
dxα

dτ
is Cα as a function of τ ∈ [−δ0, 0].

Thus γ([0,∞)) ∪ {γ∞} is C1,α-embedded near ∂X. This proves (iii).

To prove (iv) we note first that for any v ∈ Tγ(0)X there is a smooth 1-parameter family

of geodesics γs : [0,∞) → X with initial velocity given by γ̇s(0) = cos(s)γ̇(0) + sin(s)v

for s ∈ R. Let T > 0 be such that γ(T ) ∈ U and ẋ0(T ) > 0, then for all s near 0 we

also have γs(T ) ∈ U and ẋ0
s(T ) > 0. It follows that there is a Fermi coordinate chart

containing γ∞ such that the closure of γs([T,∞)) lies in the chart for all s near 0. Hence

there is a δ0 > 0 such that for all s near 0 the curve γs gives rise to a solution (xα
s , w

0
s , w

α
s )

of the system (35) for τ ∈ [−δ0, 0). Moreover, by Lemma 2.8, for all s near 0 the solution

(xα
s , w

0
s , w

α
s ) extends to τ = 0, giving a C1 solution for τ ∈ [−δ0, 0]. Now, from the smooth

dependence of γs on s it follows that the initial conditions (xα
s (−δ0), w

0
s(−δ0), w

α
s (−δ0))

of these solutions vary smoothly with s. By the results of Appendix A it follows that

the values of the solution (xα
s , w

0
s , w

α
s ) at τ = 0 depend smoothly on the initial condition

(and hence vary smoothly with s). In particular, the coordinates xα
s |τ=0 of the boundary

limit point limt→∞ γs(t) of γs vary smoothly with s. This proves (iv).

This concludes the proof of Theorem 1.1.
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3.2. Geodesics with prescribed data at the conformal infinity. Before we prove

our other main theorems, we need some results on going from solutions of (35) for τ ∈
[−δ0, 0] to geodesics for g that tend to a point in the boundary. For τ < 0 the system

(35) is equivalent to (25), and hence equivalent to (9) (on the open subset of T ∗X

where the Fermi coordinates are defined and ξ0 > 0). When a solution of any of these

systems satisfies the energy condition 2H = 1 at some τ < 0 (or some t) then it satisfies

2H = 1 for all τ < 0 (or all t) and hence gives a solution of the original cogeodesic flow.

Moreover, when the energy condition holds for τ < 0 it clearly also holds at τ = 0, where

it is equivalent to the condition w0|τ=0 = 1 (cf. (23)). Our first lemma shows that by

specifying that w0 = 1 at τ = 0 one also ensures that the energy condition holds for

τ < 0.

Lemma 3.2. If (xα, w0, wα) is a solution of (35) for τ ∈ [−δ0, 0] with w0|τ=0 = 1, then

the energy condition (23) holds for all τ ∈ [−δ0, 0], where vα is given by Lα
λ(w

λ + Aλ).

Proof. Fix a Fermi coordinate system. Note that for x0 < 0 and w0 > 0 the variables

(w0, wα) and (w0, vα) are smoothly related to (ξ0, ξα) and can be regarded as nonstandard

fiber coordinates for T ∗X. If we augment the system (35) with the trivial equation
dx0

dτ
= 1 then, in the open subset of T ∗X where the Fermi coordinates are defined and

ξ0 > 0 (equivalently, w0 > 0), we may think of the augmented system as describing the

flow of a vector field on T ∗X of the form ∂
∂x0 + V (where V depends on x0 but has no

∂
∂x0 -component). Clearly (9) also describes the flow of a vector field, and we denote this

vector field by ṼH (note that ṼH is not the Hamiltonian vector field, VH , of H, but differs

from VH by a vector field that vanishes on the energy surface 2H = 1). By construction,
∂

∂x0+V is proportional to ṼH ; indeed,
∂

∂x0+V = 1
ρw0 ṼH (where w0 = ρξ0). For x

0 < 0 both

of these vector fields are tangent to the energy surface 2H = 1. Fixing (x0, xα, w0, wα)

as our preferred coordinates on T ∗X, the vector field ∂
∂x0 + V extends continuously to

x0 = 0 (though not as a vector field on T ∗X, as our coordinate system is singular relative

to a coordinate system for T ∗X about a point with x0 = 0; we are now forgetting about

the cotangent bundle and working only in the (x0, xα, w0, wα)-coordinates). Since

(42) H =
1

2

(
(w0)2 + ρ2hαβL

α
γL

β
δ (w

γ + Aγ)(wδ + Aδ)
)

is C1 up to x0 = 0 in this coordinate system, it follows that ∂
∂x0 + V remains tangent to

the level set 2H = 1 up to x0 = 0. Therefore, an integral curve of ∂
∂x0 +V that lies on the

energy surface 2H = 1 at one point (with x0 ≤ 0) must lie entirely in the energy surface.

Note that at x0 = 0 the energy condition 2H = 1 is equivalent to w0 = 1 (w0 = −1 is

ruled out because we require w0 > 0). Since solutions of (35) correspond to the integral

curves of ∂
∂x0 + V with x0(τ) = τ , the result follows. □
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Lemma 3.2 ensures that we obtain solutions to the cogeodesic flow for g near ∂X from

solutions of (35) with w0|τ=0 = 1. We state this as another lemma:

Lemma 3.3. If (xα, w0, wα) is a solution of (35) for τ ∈ [−δ0, 0] with w0|τ=0 = 1, then

the curve γ̃ : [−δ0, 0) → X defined in the given Fermi coordinate system by γ̃(τ) =

(τ, xα(τ)) is a geodesic for g reparametrized in terms of minus the h-distance from ∂X.

Proof. Fix a Fermi coordinate chart for ∂X and suppose (xα, w0, wα) is a solution of (35)

for τ ∈ [−δ0, 0] with w0|τ=0 = 1. Then, Lemma 3.2, (xα, w0, wα) satisfies the energy

condition 2H = 1 for all τ . Hence, setting vα = Lα
λ(w

λ+Aλ) we obtain a solution of (25)

satisfying the energy condition (23) for τ ∈ [−δ0, 0). Using that ρ2hαβv
αvβ = 1 − (w0)2

it is straightforward to show that

(43)

∣∣∣∣ ddτ γ̃
∣∣∣∣2
g

= ρ−2

(
1 +

ρ2hαβv
αvβ

(w0)2

)
=

1

(ρw0)2
,

and it follows that if we introduce an arclength parameter t for γ̃ with the same orientation

as the parameter τ then dτ
dt

= ρw0. For convenience, we fix t by requiring that t = 0

when τ = −δ0. Considering x0 and the solution (xα, w0, vα) of (25) as functions of t

rather than τ we therefore obtain a solution of (22) satisfying (23). This is, of course,

equivalent to a solution of (9) satisfying (8) and hence an integral curve of the cogeodesic

flow (7) corresponding to a unit speed geodesic. Clearly this geodesic is the arclength

reparametrization γ : [0,∞) → X of γ̃ by t. This proves the result. □

From Lemma 3.3 we immediately obtain the following useful lemma:

Lemma 3.4. For every point q ∈ ∂X there is a geodesic γ : [0,∞) → X for g with

limt→∞ γ(t) = q.

Proof. Given q ∈ ∂X we fix a Fermi coordinate system containing q and consider the

initial value problem for the system (35) with “initial” condition at τ = 0 given by

requiring xα|τ=0 to be the coordinates of q, w0|τ=0 = 1 and wα|τ=0 = 0 (the choice of

wα|τ=0 does not matter). There is then δ0 > 0 and a solution of (35) for τ ∈ [−δ0, 0]

with these “initial” conditions, and γ̃ : [−δ0, 0) → X defined by γ̃(τ) = (τ, xα(τ)) is then

the required geodesic (up to reparametrization). This proves the lemma. □

3.3. Proof of Theorem 1.2. Here we prove Theorem 1.2, which characterizes asymp-

totically hyperbolic manifolds in terms of the boundary regularity of geodesics.

Let (X, g) be a conformally compact Riemannian manifold with g = ρ−2h and suppose

∂X is connected. That asymptotic hyperbolicity (condition (i)) implies (ii) and (iii) is

well known and follows easily from the regularity of the system (25) in the asymptotically
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hyperbolic case (and the fact that ẋα = ρ2vα for (ii)), cf. [36, 10]. (That (i) implies (ii)

is also easily seen from Remark 3.1.)

To see that (ii) implies (i) we note that, by (41), if γ̇α = ẋα is O(ρ2) then κα = 0 at

γ∞. Since there is a geodesic tending toward every boundary point it follows that (ii)

implies dκ = 0 on ∂X and hence κ is constant. Thus (ii) implies (i). Clearly then (ii)

also implies (iii).

To see that (iii) implies (ii), suppose (ii) does not hold. Then, again by (41), there

is a point q and a geodesic γ : [0,∞) → X tending to q such that dκ|q ̸= 0. Moreover,

ẋα = κ−2κα|q · ρ2 log ρ+O(ρ2) implies that dxα

dτ
= κ−2κα|q · ρ log ρ+O(ρ), which implies

that xα(τ) is not smooth up to τ = 0. Hence, if (ii) does not hold, then (iii) does not

hold. Thus (iii) implies (ii).

This concludes the proof of Theorem 1.2.

3.4. Proof of Theorem 1.4. Here we prove Theorem 1.4 from the introduction.

We first prove (i), stating that if p ∈ X is sufficiently close to ∂X then there is an

open subset Vp in the unit tangent space SpX ⊂ TpX such that all geodesics in (X, g)

with initial direction in Vp tend to a point in the boundary ∂X. For this we only require

the results of Section 2.1. If p ∈ U then, taking Vp ⊆ SpX to be all unit tangent vectors

with positive ∂
∂x0 -component, we know from Propositions 2.1 and 2.3 that any geodesic

γ : [0,∞) → X with γ̇(0) ∈ Vp tends to a definite point in the boundary ∂X as t → ∞.

This proves (i).

With Vp thus defined for p ∈ U we let expp,∞ : Vp → ∂X denote the map that takes the

initial velocity γ̇(0) ∈ Vp of a geodesic γ : [0,∞) → X emanating from p to the endpoint

γ∞ = limt→∞ γ(t) ∈ ∂X. Before we prove part (ii) of Theorem 1.4 we establish another

lemma.

Lemma 3.5. Let γ : [0,∞) → X be a geodesic for g with γ(0) ∈ U and ẋ0(0) > 0. Then

ρ ∼ e−κt along γ, where κ is evaluated at q = γ∞. That is, there are constants C1, C2 > 0

such that C1e
−κ(q)t ≤ ρ(γ(t)) ≤ C2e

−κ(q)t for all t ∈ [0,∞).

Proof. Since ρ/x0 is negative, bounded and bounded away from zero on U it suffices to

show that x0 ∼ −e−κt. To see this we recall that (with τ = x0) we have dt
dτ

= 1
ρw0 =

− 1
κτ

+O(ρ) = − 1
κτ

+O(τ), where κ is evaluated at q = γ∞. Hence −κ dt
dτ

= 1
τ
+O(τ), so

that −κt = log |τ | + O(1). It follows that |τ | ∼ e−κt and hence τ ∼ −e−κt. This proves

the result. □

We now establish part of (ii) Theorem 1.4 by showing that for each p ∈ U the

map expp,∞ is a local C∞-diffeomorphism. That expp,∞ is C∞-smooth follows from

Theorem 1.1(iv). Moreover, from the results above, for a unit vector v orthogonal to
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v0 ∈ Vp ⊆ SpX it follows that if γs : [0,∞) → X is the family of geodesics with initial

velocity cos(s)v0 + sin(s)v ∈ Vp defined for s near 0 and γ∞(s) = γs,∞ is the curve in ∂X

traced by the boundary endpoints of the curves γs then

(44)
d

ds

∣∣∣∣
s=0

γ∞(s) = lim
t→∞

J(t),

where J(t) = d
ds

∣∣
s=0

γs(t) is the Jacobi field associated with the variation γs of the

geodesic γ = γ0. To show that expp,∞ is a local diffeomorphism it suffices to show that
d
ds

∣∣
s=0

γ∞(s) ̸= 0 when v ̸= 0. Note that, by (1), the maximumK1(t) and minimumK2(t)

of the sectional curvatures at γ(t) are both of the form −κ2 + O(ρ) = −κ2 + O(e−κt),

where κ is evaluated at γ∞. It therefore follows from the Rauch comparison theorem that

(45) |J(t)|g ∼ eκt|v|g
for t large (note that if (X, g) were the hyperbolic space with constant sectional curvature

κ then the length of the Jacobi field J(t) with respect to g would be κ−1 sinh(κt)|v|g).
Hence, by Lemma 3.5,

(46) |J(t)|h = ρ|J(t)|g ∼ |v|g
for t large. In particular, when v ̸= 0 the length |J(t)|h of the Jacobi field is bounded

away from zero for large t and hence d
ds

∣∣
s=0

γ∞(s) = limt→∞ J(t) ̸= 0. It follows that the

differential of expp,∞ is injective at v0. Since v0 was arbitrary, we conclude that expp,∞

is a local diffeomorphism. This proves part (ii) of Theorem 1.4

It remains to prove part (iii), which states that for every point p∞ ∈ ∂X there is a

point p ∈ U and a subset Vp,p∞ of Vp such that expp,∞ restricts to a diffeomorphism from

Vp,p∞ to a neighborhood of p∞ in ∂X. This follows easily from part (ii) and Lemma 3.3,

since for every point p∞ ∈ ∂X there is a point p ∈ U and a geodesic γ : [0,∞) → X

with ẋ0(0) > 0 such that limt→∞ γ(t) = p∞. Without loss of generality, we can assume

that γ(0) ∈ U and ẋ0(0) > 0 (so that γ̇(0) ∈ Vp by definition). Therefore, being a local

diffeomorphism, the map expp,∞ : Vp → ∂X must restrict to a diffeomorphism from some

neighborhood Vp,p∞ of γ̇(0) to a neighborhood of p∞. This proves (iii).

This concludes the proof of Theorem 1.4.

3.5. Proof of Corollary 1.5. Here we give a proof of Corollary 1.5. Before we give

the proof it is useful to note that if (X, g) is a conformally compact manifold, then the

topological manifold structure of X = X ∪ ∂X is determined by the geometry of (X, g).

Points in ∂X can be thought of as equivalence classes of geodesics γ : [0,∞) → X in

(X, g) that tend to the same endpoint in ∂X (this can be charaterized intrinsically using

the notion of asymptotic geodesics from [16]). One can also construct C0 coordinate
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charts for X in a neighborhood of any point p∞ ∈ ∂X intrinsically from the geometry of

(X, g). We briefly sketch one way to do this: Fix a unit speed geodesic γ : [0,∞) → X

tending to p∞ such that γ(0) ∈ U and ẋ0(0) > 0 and set p = γ(0). Let Vp,p∞ ⊂ Vp be a

neighborhood of γ̇(0) such that the map Vp,p∞ × (0,∞) → X defined by (v, t) 7→ expp(tv)

is injective. Viewing (v, r = e−t) ∈ Vp,p∞ × (0, 1) as coordinates for the image of this map

and extending r to ∂X by zero (and shrinking Vp,p∞ if necessary), the coordinates (v, r)

extend to a C0 coordinate system for X containing p∞ with (v, r) ∈ Vp,p∞ × [0, 1).

Remark 3.6. Note that, geometrically, it would be better to take r = e−κt along each

geodesic with initial velocity v, where κ is evaluated at the endpoint of the geodesic, since

then r ∼ ρ (as opposed to a variable power of ρ) but this does not matter at present

since we only require C0 regularity. We will return to this point in Section 3.6 below.

From the above discussion it is clear that an isometry between two conformally com-

pact manifolds must extend continuously to the boundary (since it clearly takes such

a coordinate system for the domain to another such coordinate system for the target,

and when viewed with respect to these two C0 coordinate systems therefore becomes the

trivial map (v, r) 7→ (v, r) for r > 0 which is, of course, continuous up to the boundary

r = 0). The continuous extension is clearly also a homeomorphism.

To prove Corollary 1.5 it remains to show that if (X1, g1) and (X2, g2) are conformally

compact Riemannian manifolds and F is an isometry from (X1, g1) to (X2, g2) then the

continuous extension F : X1 → X2 restricts to a C∞-smooth conformal diffeomorphism

f : ∂X1 → ∂X2. The smoothness of the map f follows easily from Theorem 1.4: If p∞ ∈
∂X1 then there is p ∈ X1 such that expg1

p,∞ : Vp,p∞ → ∂X1 gives a smooth parametrization

of a neighborhood of p∞. Since F is an isometry (and extends to a homeomorphism

X1 → X2) it follows that if p′ = F (p), p′∞ = f(p∞) and V ′
p,p∞ = dFp(Vp,p∞) then

expg2
p′,∞ : Vp′,p′∞ → ∂X2 gives a smooth parametrization of a neighborhood of p′∞ = f(p).

Moreover, since f takes the endpoint γ∞ of a geodesic γ in X1 to the endpoint γ′
∞ of the

geodesic γ′ = F ◦ γ in X2, near p∞ we have

(47) f = expg2
p′,∞ ◦ dFp ◦ (expg1

p,∞)−1,

which is clearly smooth. Hence f : ∂X1 → ∂X2 is C∞.

It now remains only to show that f : ∂X1 → ∂X2 is a conformal diffeomorphism. One

way to see this is as follows: Let p∞ ∈ ∂X1 and let γ : [0,∞) be a geodesic tending to p∞
with γ(0) = p ∈ U and ẋ0(0) > 0. Let v0 = γ̇(0) and let (v1, . . . , vn) be an orthonormal

frame for γ̇(0)⊥ ⊆ TpX1 and for each α ∈ {1, . . . , n} let Jα be the Jacobi field along γ

with Jα(0) = 0 and ∇γ̇(0)Jα = vα. Then J1(t), . . . , Jn(t) are linearly independent for all

t > 0. Moreover, Jα,∞ = limt→∞ Jα(t) is equal to d expg1
p,∞ |p(vα) and (J ′

1,∞, . . . , J ′
n,∞) is
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a basis for Tp∞∂X1. Now, since F is an isometry, it takes γ to a geodesic γ′ and each

Jα to a Jacobi field J ′
α along γ′ such that J ′

1(t), . . . , J
′
n(t) are linearly independent for all

t > 0. Moreover, γ′ tends to p′∞ = f(p∞) as t → ∞ and if J ′
α,∞ = limt→∞ J ′

α(t) then

(J1,∞, . . . , Jn,∞) is a basis for Tp′∞∂X2 and is the image of (J1,∞, . . . , Jn,∞) under the map

dfp∞ . Writing g1 = ρ−2
1 h1 and g2 = ρ−2

2 h2, where the hi are smooth and nondegenerate up

to the respective conformal infinities, and setting hαβ = h1(Jα, Jβ) and h′
αβ = h2(J

′
α, J

′
β),

since F ∗g2 = g1 we have that

(48) h′
αβ(t) = λ(t)hαβ(t),

for all t ∈ (0,∞). Finally, by continuity, h∞
αβ = limt→∞ hαβ(t) = h1(Jα,∞, Jβ,∞) and

h′∞
αβ = limt→∞ h′

αβ(t) = h2(J
′
α,∞, J ′

β,∞), and since the matrices (h∞
αβ) and (h′∞

αβ) are both

nondegenerate, it follows from (48) that

(49) h′∞
αβ = λ∞h∞

αβ,

for some λ∞ > 0. But, since dfp∞ takes the frame (Jα,∞) to the frame (J ′
α,∞), equation

(49) is equivalent to

(50) f ∗h2 = λ∞h1

at p∞. Since the point p∞ ∈ ∂X1 was arbitrary, we conclude that f is a conformal

diffeomorphism. This proves Corollary 1.5.

3.6. Regularity in the normal direction. In this section we supplement Corollary 1.5

with the following boundary regularity result.

Theorem 3.7. Let (X1, g1) and (X2, g2) be conformally compact Riemannian manifolds.

Let F be an isometry from (X1, g1) to (X2, g2). Then F extends to a C1 diffeomorphism

from X1 to X2. If (X1, g1) is asymptotically hyperbolic, then the extension is C∞.

Remark 3.8. (i) Note that, in contrast to our previous results, the result that the extension

is C1 in the general case may not be optimal. Since our proof makes use of coordinates

constructed from the solutions of our extended flow (35), which are only C1 up to the

boundary in general, we cannot establish higher boundary regularity by this method.

Nevertheless, it is useful to know that the extended map F : X1 → X2 is at least C1 up

to the boundary. (ii) We could have used this result to establish the conformality of f in

the previous section, but we wanted to emphasize that Corollary 1.5 follows directly from

Theorem 1.4 (and also to separate out the discussion of tangential and normal regularity

at the conformal infinity).
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To prove Theorem 3.7 we modify the canonical C0 boundary coordinate charts con-

structed in Section 3.5 to improve the regularity. As before, given a point p∞ ∈ ∂X we

fix a point p ∈ U and a subset Vp,p∞ ⊂ Vp such that the map Vp,p∞ × (0,∞] ∋ (v, t) 7→
expp(tv) ∈ X (extended continuously to t = ∞ in the obvious way) parametrizes a

neighborhood N of the point p∞ in X. Identifying Vp,p∞ with its image in ∂X under

expp,∞ we may think of κ as a C∞ function of v ∈ Vp,p∞ . With κ interpreted this way

we define the function r on N by r = e−κt when t ∈ [0,∞) and r = 0 when t = ∞. The

new coordinates (v, r) ∈ Vp,p∞ × [0, 1) for N are C∞ away from ∂X (r = 0). Up to the

boundary we have:

Lemma 3.9. The smooth coordinates (v, r = e−κt) ∈ Vp,p∞ × (0, 1) for N \ ∂X extend

to C1 coordinates (v, r) ∈ Vp,p∞ × [0, 1) for N with r a local defining function for ∂X. If

(X, g) is asymptotically hyperbolic then the extension is C∞.

Proof. We assume, without loss of generality, that N is contained in a single Fermi coor-

dinate chart (x0, x1, . . . , xn). For each v ∈ Vp,p∞ , let γv(t) = exp(tv) be the corresponding

geodesic (for t ≥ 0) and let γ̃(τ) be its reparametrization in terms of minus the h-distance

from the boundary (τ ∈ [−δ0, 0)). Writing the (x0, x1, . . . , xn)-coordinates of γ̃v(τ) as

(x0(v, τ), . . . , xn(v, τ)) gives a C∞-diffeomorphism

(51) Vp,p∞ × (−δ0, 0) ∋ (v, τ) 7→ (x0(v, τ), . . . , xn(v, τ)) ∈ N \ ∂X.

By our previous discussion of the system (35) and the regularity results of Appendix A,

the map (51) extends to τ = 0 as a C1-diffeomorphism Vp,p∞ × (−δ0, 0] → N (and in the

asymptotically hyperbolic case this map is C∞). We may therefore view (v, τ) as a C1

coordinate system on N . The result will follow (in the general case) if we can show that

r is a C1 function of (v, τ) up to τ = 0.

Viewing v as a parameter, we write ∂τr = ∂0r as r′. Along each geodesic dt
dτ

= 1
ρw0 ,

and hence for τ < 0 we have

(52) r′ =
dr

dt
· dt
dτ

=
−κr

ρw0
,

where κ is a smooth function of v, and ρ and w0 are viewed as smooth functions of (v, τ)

that are C1 up to τ = 0. For τ < 0 we define the smooth function ω of (v, τ) by requiring

r = −eωτ . Then r′ = −ω′eωτ − eω, where ω′ = ∂τω, and it follows easily that

(53) ω′ =
1

τ

(−κτ

ρw0
− 1

)
=: φ,

for τ < 0. Now, ρ = −κτ + βτ 2, where β is a C∞ function of the Fermi coordinates (up

to ∂X) and hence is C1 up to τ = 0 as a function of (v, τ). Similarly, w0 = 1+ τα, where
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α is a C1 function of (v, τ) up to τ = 0. It follows that

(54) ρw0 = −κτ + στ 2,

where σ = −κα + β + αβτ . Hence

(55) φ =
1

τ

(
ρw0 − στ 2

ρw0
− 1

)
=

στ

ρw0
.

Since σ/w0 is C1 up to τ = 0 and ρ/τ = −κ+ βτ is C1 up to τ = 0 and nonvanishing, it

follows that φ is C1 up to τ = 0 in the variables (v, τ). In particular, φ is continuous up

to τ = 0. It follows easily that ω is continuous on N . Since r(v,−δ0) = e−κt|t=0 = 1 for

all v, we have r(v, τ) = 1 +
∫ τ

−δ0
(−φeως − eω)|(v,ς) dς on N . Hence ∂τr exists on N (not

just N \ ∂X) and is continuous up to τ = 0.

In the general setting, therefore, it remains only to consider the first order v-partial

derivatives. For clarity, we identify Vp,p∞ with it’s image in ∂X under expp,∞, so that

the cartesian coordinates (x1, . . . , xn) can be used for v when defining partial derivatives.

Now, the function r is smooth for τ < 0 and the v-partial derivatives of r are zero when

τ = 0. Moreover, since the v-partial derivatives of r (of any order) tend to zero as

τ → 0−, they are clearly continuous on N . Thus r is a C1 function of (v, τ) on N .

To see that (v, r) extend smoothly to ∂X in the asymptotically hyperbolic case, we

note that in this case (v, τ) are C∞ coordinates on N and the functions φ and ω are C∞

up to ∂X so that r(v, τ) = 1 +
∫ τ

−δ0
(−φeως − eω)|(v,ς) dς is C∞ on N . □

Theorem 3.7 then clearly follows from Lemma 3.9 by the same argument that was used

to establish the continuous extension to the boundary in the Section 3.5. An isometry

F : X1 → X2 between conformally compact manifolds will take a coordinate system of

the form appearing in Lemma 3.9 to another of the same kind, and when viewed in these

coordinates becomes the trivial map (v, r) 7→ (v, r), for r > 0. Since the coordinates

extend to be C1 up to the boundary (C∞ in the asymptotically hyperbolic case), the map

F trivially extends with the same regularity.

3.7. Proof of Theorem 1.6. Here we prove Theorem 1.6, which includes the asymptotic

expansion (3) for a geodesic when viewed as a function of x = −x0 in a Fermi coordinate

chart.

Let q ∈ ∂X and let (x, y1 . . . , yn) be a Fermi coordinate chart adapted to ∂X in X

with respect to the metric h, with x > 0 in X and centered at q. In the notation that we

have been using more frequently, we have (x0, x1, . . . , xn) = (−x, y1 . . . , yn). We wish to

show that (as unparametrized curves) the geodesics approaching q ∈ ∂X have asymptotic

expansion (3) and are parametrized by u ∈ Tq∂X. Since we know that we can obtain the

geodesics (near ∂X) by solving (35) with for τ ≤ 0 near 0 with xα|τ=0 = 0, w0|τ=0 = 1



30 SEAN N. CURRY AND ACHINTA K. NANDI

and wα|τ=0 prescribed freely (see Section 3.2), the proof boils down to establishing the

asymptotic expansion of the form (3) and showing that the uα appearing in that expansion

are in one-to-one correspondence with the wα|τ=0. Theorem 1.6 will therefore follow easily

from the following lemma:

Lemma 3.10. If (xα, w0, wα) is a solution of (35) for τ ∈ [−δ0, 0] with xα|τ=0 = 0 and

w0|τ=0 = 1, then

(56) xα(τ) = −κα

2κ
· τ 2 log |τ | −

(
κ

2
wα|τ=0 −

κα

4κ

)
· τ 2 + o(τ 2),

where κ and κα are evaluated at the origin xα = 0 in the coordinate system for ∂X.

Proof. Recall that the solution is C1 and that dxα

dτ
= ρLα

β(w
β + Aβ)/w0. Recall also that

Lα
β is smooth and equal to δαβ for τ = 0 (x0 = 0) and that ρ = −κτ + O(τ 2). Since

w0 = 1 +O(τ) and wα = wα|τ=0 +O(τ) it follows that

(57)
dxα

dτ
= −κα

κ
· τ log |τ | − κwα|τ=0 · τ +O(τ 2 log |τ |).

Since xα|τ=0 = 0 it follows that

(58) xα(τ) = −κα

2κ
·
(
τ 2 log |τ | − 1

2
τ 2
)
− κ

2
wα|τ=0 · τ 2 +O(τ 3 log |τ |).

The result follows. □

From the lemma we see that every geodesic γ(t) in (X, g) that tends to q as t →
∞ is given near q by (3), with Oα given by (4). Moreover, when the geodesic (as

unparametrized curve) is viewed as a solution to (35) with xα|τ=0 = 0, w0|τ=0 = 1, the

vector u ∈ Tq∂X appearing in (3) is given by

(59) uα = −κ

2
wα|τ=0 +

κα

4κ
.

Since wα|τ=0 may be prescribed freely when solving (35) (near τ = 0) and this choice

parametrizes the geodesics tending to q (viewed as unparametrized curves), it follows

from (59) that one may equivalently parametrize the geodesics using the second order

coefficient u ∈ Tq∂X in the asymptotic expansion (3). This proves Theorem 1.6.

Remark 3.11. Although, as defined in (4), O depends on the choice of metric h (such

that g = ρ−2h with ρ a defining function for ∂X), when interpreted as a vector field on

∂X of conformal weight −2 it is independent of this choice.
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4. A family of examples

Here we illustrate some of our main results in a simple setting by considering the family

of metrics on the upper half plane X = {y > 0} in R2 defined by

(60) gϵ =
dx2 + dy2

y2e2εx
.

Letting h = dx2 + dy2 and ρ = yeεx we have gϵ = ρ−2h and so we are in the setting

described above (of course, X = {y ≥ 0} is not compact, but this is of no consequence if

we consider geodesics that start near y = 0 with initial velocity directed downward and

sufficiently close to the vertical). Note that κ = eεx, and we have the standard hyperbolic

metric when ε = 0.

A straightforward calculation shows that the geodesic equations for the metric gϵ are

given by

(61)

ẍ− 2

y
ẋẏ − ε

(
ẋ2 − ẏ2

)
= 0

ÿ +
1

y

(
ẋ2 − ẏ2

)
− 2εẋẏ = 0.

When ε = 0 these equations can be explicitly integrated and give the familiar circular

(and straight) geodesics of the hyperbolic metric on the upper half plane. One way to

see this is to define the normalized velocity variable vx = y−2ẋ and observe that the

geodesic equations imply that v̇x = 0 so that vx must be constant. Thus ẋ = cy2,

where c = vx(0), and for a unit speed geodesic one finds that ẏ2 = y2(1 − cy2), so that
dx
dy

= ±cy(1− cy2)−1/2. The solutions of this last equation are circular arcs (of curvature

|c|) when c ̸= 0 and vertical line segments when c = 0.

When ε ̸= 0, if we take vx = ρ−2ẋ (as in Section 2) then the geodesic equations imply

that v̇x = −ε (cf. (22)), so that vx = c − εt with c = vx(0). Note that, while for this

simple family of examples vx appears to be a “good” choice of velocity variable for the x-

direction, from the discussion above we know that it is the linear behavior in t of vx that

ultimately leads to the (weak) logarithmic singularity of the geodesics at the conformal

infinity (since, along a geodesic that tends to the boundary as t → ∞, y ∼ e−κt, where κ

is evaluated at the boundary endpoint of the geodesic). Moreover, while we can explicitly

solve for vx, when ε ̸= 0 we can no longer straightforwardly integrate the full system (61).

Using the (weakly) regular system (35) obtained in Section 2, however, we can easily

numerically integrate the geodesic equation up to y = 0 (see Figure 1). Of course, one

can also fairly easily create such figures by numerically solving the geodesic equations

(61), rewritten as a first order system, but this has the disadvantage of requiring the

equation to be solved on an parameter time interval [0, T ] that is long enough for the
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geodesic to reach a Euclidean distance of, say, 10−4 from the boundary (and for ε = 1

the minimum parameter time T required increases rapidly as the initial velocity of the

geodesic points more to the left).

−0.5 0 0.5
0

0.5

1

−0.5 0 0.5 −0.5 0 0.5

Figure 1. Five geodesics with initial position (0, 1) and initial velocities

(0,−1), (± sin(π/8),− cos(π/8)), and (± sin(π/4),− cos(π/4)) are plotted

for the metric gε for ε = 0 (left), ε = 0.5 (center) and ε = 1 (right).

Of course, one cannot test the smooth dependence of the boundary endpoints on the

initial direction by numerical computations such as those in Figure 1. But the figure is

at least suggestive. On the other hand, even with a modest level of computation, one can

see the direction of the geodesics tending towards the normal direction to the boundary

as y → 0+. In fact, when ε ̸= 0 one can also see the leading order y2 log y behavior of

the geodesics: Note that for our examples the obstruction (4) to boundary regularity

has only one component, O = −1
2
ε, and this is constant on ∂X. It follows that for a

given ε, a geodesic reaching the boundary at a point x∞ is asymptotically of the form

x = x∞− 1
2
εy2 log y+O(y2). This explains why for a given ε > 0 the geodesics in Figure

1 all bend slightly to the right at y = 0 in approximately the same fashion (note that

−1
2
εy2 log y is positive near y = 0). A further observation concerning Figure 1 is that

increasing ε causes the geodesics to “drift to the left.” This can also be seen without

numerically plotting the geodesics: If one considers a segment of a hyperbolic geodesic

and then increases ε the geodesic segment between those two endpoints will move to the

right due to the e2εx in the denominator of (60) (for example, consider the segement

of the second geodesic from the right with ε = 1 in Figure 1 that begins and ends on

the y-axis; it clearly lies to the right of the corresponding hyperbolic geodesic segment).

Correspondingly, the geodesics with initial velocity pointing downward as in the figure

will move to the left. With these observations one can produce a fairly accurate sketch

of the geodesics shown in Figure 1 without computation.

A more important application of (35) (from the point of view of constructing figures) is

that it easily allows us to shoot geodesics in from the boundary, with prescribed quadratic
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term in the expansion (3) of the geodesic. Noting the (invertible, affine) relationship (59)

between uα and the initial condition at at ∂X for the variable wα used in (35), one can

easily produce Figure 2.

−0.25 0 0.25
0

0.25

0.5

−0.25 0 0.25 −0.25 0 0.25

Figure 2. The five geodesics of the metric gε with prescribed asymptotic

expansion x = −1
2
εy2 log y + uy2 + o(y2), for u = 0,±0.5,±1, are plotted

near (0, 0) for ε = 0 (left), ε = 0.5 (center) and ε = 1 (right).

Note that although for ε ̸= 0 the geodesics appear to be slightly tilted away from

the vertical at the origin, this is not the case (as could be easily seen by looking

at the geodesics on a smaller scale). For each ε the geodesics have leading behavior

x = −1
2
εy2 log y + O(y2), which ensures that they are indeed vertical at the origin. A

comparison of the five geodesics with their leading asymptotics is given for ε = 1 in the

following figure.

−0.25 0 0.25
0

0.25

0.5

Figure 3. The blue dotted curves are the asymptotic solutions x =

−1
2
y2 log y+uy2 of the geodesic equation when ε = 1, with u = 0,±0.5,±1.

Superimposed in black are the five geodesics for g1 from Figure 2 that

correspond to these five asymptotic curves. The second geodesic from the

left can barely be distinguished from the asymptotic solution.
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We conclude by noting that for the special family of metrics gε the construction of

the system (35) simplifies. In particular, the change of variables going from the system

(22) to (30) is trivial since for these examples we have ∂0h
αβ = 0 (equivalently, since the

level sets of y = −x0 form a geodesic foliation for the metric h). Hence in this case the

variable v̂x = v̂1 is the same as vx = v1. It follows that if wy = −w0 and wx = w1, then

(62) wx = vx − A,

where A(x, y, wy) = A1(x, y, wy) is given by

(63) A(x, y, wy) = − 1

wy

· ε

eεx
· log y.

The system (35) then becomes

(64)

dx

dy
= yeεx

wx + A

wy

dwy

dy
= εyeεx(wx + A)− ye2εx

(wx + A)2

wy

dwx

dy
= −yeεx

wx + A

wy

· ∂A
∂x

−
(
εyeεx(wx + A)− ye2εx

(wx + A)2

wy

)
· ∂A

∂wy

.

Note that when ε = 0, A = 0 and the above system simplifies to

(65)

dx

dy
= y

wx

wy

dwy

dy
= −y

w2
x

wy

dwx

dy
= 0,

which can easily be integrated. Although when ε ̸= 0 the right hand side of (64) is no

longer smooth up to y = 0, it is continuous up to ∂X due to the factor of y that appears

in each term. The (weakly) regular system (64) was used to construct Figures 1–3 above.

Appendix A. Regularity results for ordinary differential equations

In this section we prove some regularity results for a class of non-autonomous first

order systems of ordinary differential equations (ODE) that arise naturally in the study

of geodesics in conformally compactified and related geometries. The results will follow

from a straightforward modification of the standard argument for the smoothness of the

flow of a time-dependent vector field, but we include it anyway for completeness. The

only real catch is that, while in the smooth case the smoothness of the flow of a time-

dependent vector field Vτ on a manifold M follows from the smoothness of the flow of the
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vector field ∂
∂τ

+ Vτ on R×M (with τ the coordinate for the R-factor) and hence from a

standard result on smooth dependence on initial conditions of solutions of autonomous

first order ODE (see, e.g., [35, Appendix D]), when Vτ is no longer smooth in τ we must

work directly with the corresponding non-autonomous system.

We therefore let U be a domain in Rn and I an interval and consider a first order

system of the form

(66)
y′(τ) = V (τ, y(τ)),

y(τ0) = x,

where (τ0, x) ∈ I × U and V : I × U → Rn is a continuous function satisfying some

additional regularity hypotheses that will be specified below. Since our considerations

are local it will be convenient to take I = R and U = Rn. For simplicity we will also

assume that V is bounded. In our intended applications we will always be able to assume

that V has been extended to a bounded function on all of R×Rn in a way that respects

the regularity hypotheses.

The first additional condition we will impose on V : R × Rn → Rn is the standard

hypothesis that it be uniformly Lipschitz in the second factor, with Lipschitz constant

C > 0. By this we mean that there is C > 0 such that

(67) ∥V (τ, y1)− V (τ, y2)∥ ≤ C∥y1 − y2∥

for all τ ∈ R and y1, y2 ∈ Rn. It then follows from the classical Picard-Lindelöf theorem

that for any (τ0, x) ∈ R× Rn there is a unique solution y : (τ0 − δ, τ0 + δ) → Rn of (66)

provided δ < 1
C
. Since for completeness we would also like to consider the initial time τ0

as a variable, we note that this implies that if I0 is an open interval of length less than
1
C
then for any τ0 ∈ I0 and x ∈ Rn there is a unique solution y : I0 → Rn of (66). Fixing

such an interval I0 it follows that there is a map θ : I0 × I0 × Rn → Rn such that the

solution y : I0 → Rn of (66) with initial condition (τ0, x) ∈ I0 × Rn is given by

(68) y(τ) = θ(τ, τ0, x).

We will refer to the map θ : I0 × I0 × Rn → Rn as the local flow map of V . For fixed

(τ, τ0) ∈ I0 × I0 we also define the map Flτ,τ0 : Rn → Rn by

(69) Flτ,τ0(x) = θ(τ, τ0, x).

We are interested in the regularity of the maps θ and Flτ,τ0 under additional regularity

hypotheses on V .
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A.1. Basic properties of the local flow map. Note that, under the present hypothe-

ses, for fixed (τ0, x) ∈ I0×Rn the local flow map θ(τ, τ0, x) is clearly C1 in τ . Importantly,

the local flow map θ also inherits a uniform Lipschitz property (in the third argument)

from the the uniform Lipschitz condition on V (in the second argument). To see this, fix

any τ0 ∈ I0 and x1, x2 ∈ Rn and let yi(τ) = θ(τ, τ0, xi) for i = 1, 2. Then the Lipschitz

property of V implies that

(70) ∥y′1(τ)− y′2(τ)∥ = ∥V (τ, y1(τ))− V (τ, y2(τ))∥ ≤ C∥y1(τ)− y2(τ)∥

for all τ ∈ I0, and hence ∥y1(τ) − y2(τ)∥ ≤ eC|τ−τ0|∥x1 − x2∥. In particular, since

|τ − τ0| < 1
C
it follows that for any τ, τ0 ∈ I0 we have

(71) ∥θ(τ, τ0, x1)− θ(τ, τ0, x2)∥ ≤ e∥x1 − x2∥,

for all x1, x2 ∈ Rn.

Using (71) one can then easily show that θ : I0 × I0 × Rn → Rn is continuous. To see

this, note that

(72) θ(τ, τ0, x) = x+

∫ τ

τ0

V (s, θ(s, τ0, x)) ds

so that

(73)

θ(τ̃ , τ̃0, x̃)− θ(τ, τ0, x) = (x̃− x) +

∫ τ

τ0

(
V (s, θ(s, τ̃0, x̃))− V (s, θ(s, τ0, x))

)
ds

+

∫ τ0

τ̃0

V (s, θ(s, τ̃0, x̃)) ds+

∫ τ̃

τ

V (s, θ(s, τ̃0, x̃)) ds.

Viewing (τ, τ0, x) as fixed, the only term on the right hand side of the above display that

does not obviously go to zero as (τ̃ , τ̃0, x̃) → (τ, τ0, x) is the first integral. To estimate

this term we note that setting y(s) = θ(s, τ0, x) we have

(74) θ(s, τ0, x) = θ(s, τ̃0, y(τ̃0)).



37

Using the Lipschitz property of V in the second argument and (71) we therefore have

(assuming for simplicity that τ > τ0)

(75)

∥∥∥∥∫ τ

τ0

(
V (s, θ(s, τ̃0, x̃))− V (s, θ(s, τ0, x))

)
ds

∥∥∥∥
≤ C|τ − τ0| sup

s∈[τ0,τ ]
∥θ(s, τ̃0, x̃)− θ(s, τ0, x))∥

≤ sup
s∈[τ0,τ ]

∥θ(s, τ̃0, x̃)− θ(s, τ0, x))∥

= sup
s∈[τ0,τ ]

∥θ(s, τ̃0, x̃)− θ(s, τ̃0, y(τ̃0))∥

≤ e∥x̃− y(τ̃0)∥
≤ e∥x̃− x∥+ e∥y(τ̃0)− x∥.

Since y(s) = θ(s, τ0, x) is continuous, it follows easily that the right hand side of (73)

goes to zero as (τ̃ , τ̃0, x̃) → (τ, τ0, x). Hence θ is continuous.

Note that, since ∂θ
∂τ
(τ, τ0, x) = V (τ, θ(τ, τ0, x)), the continuity of θ implies that ∂θ

∂τ
is

continuous on I0 × I0 × Rn (not merely on I0 for each fixed (τ0, x) ∈ I0 × Rn).

A.2. A regularity theorem. In our intended applications V (τ, y) will have a given

regularity that is preserved under partial differentiation with respect to the y-variables,

but not with respect to τ . Taking our basic level of regularity in (τ, y) to be continuity,

we therefore consider the the regularity of the maps θ and Flτ,τ0 under the additional

hypothesis that the y-partial derivatives of V (τ, y) of order k exist and are everywhere

continuous in the variables (τ, y).

Theorem A.1. Let V : R×Rn → Rn be a continuous function that is uniformly Lipschitz

in the second factor, with Lipschitz constant C > 0. Suppose in addition that the kth order

partial derivatives of V with respect to the coordinates of the second factor exist and are

continuous on R× Rn (k ≥ 1). Let I0 be an open interval of length less than 1
C
. Then

(i) the local flow map θ : I0 × I0 × Rn → Rn is C1;

(ii) the kth order partial derivatives of θ with respect to the coordinates of the third

factor exist and are continuous on I0 × I0 × Rn;

(iii) for fixed (τ, τ0) ∈ I0 × I0 the map Flτ,τ0 : Rn → Rn is Ck.

Remark A.2. Note that, although Theorem A.1 was stated for finite k, the case where

k = ∞ clearly follows from the finite regularity case.

The key point here is that the regularity condition we imposed in the dependent

variables holds uniformly in the independent variable, and this property is passed on to

the local solution maps.
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We will prove Theorem A.1 in stages in the subsections that follow. The proof is a

straightforward modification of the standard argument for the case when V is Ck in both

variables (see, e.g., [35, Theorem D.5]). The catch, as we have mentioned, is that since

the regularity in τ and y is now different we cannot reduce to the time-independent (i.e.

autonomous) case.

A.3. Existence and continuity of first partials. In this subsection we prove the

theorem Theorem A.1 for k = 1. Since (iii) clearly follows from (ii), it suffices to prove

(i) and (ii).

Suppose that V satisfies the hypotheses of the Theorem A.1 for k = 1. That ∂θ
∂τ

exists

and is continuous on I0 × I0 × Rn has already been observed. We therefore consider the

partial derivative of θ with respect to the y-coordinates (and afterward the τ0 coordinate).

The key observation here is that when τ = τ0, θ(τ, τ0, x) = x so that ∂θi

∂xj (τ, τ0, x) = δij.

We use this fact together with the differential equation ∂θ
∂τ
(τ, τ0, x) = V (τ, θ(τ, τ0, x))

satisfied by θ to gain an understanding of ∂θi

∂xj for general (τ, τ0).

Fix any closed interval J0 ⊂ I and any compact subset U0 ⊂ Rn and consider the

n× n matrix valued map ∆h : J0 × J0 × U0 → Mn×n(R) defined by

(76) (∆h)
i
j(τ, τ0, x) =

θi(τ, τ0, x+ hej)− θi(τ, τ0, x)

h
,

where ej is the jth standard basis vector in Rn. Note that by (71) we have

(77) |(∆h)
i
j(τ, τ0, x)| ≤ eC|τ−τ0| < e

for each i and j. From the differential equation satisfied by θ it follows that

(78)
∂

∂τ
(∆h)

i
j(τ, τ0, x) =

1

h

(
V i(τ, θ(τ, τ0, x+ hej))− V i(τ, θ(τ, τ0, x))

)
.

For each (τ, τ0, x) ∈ J0 × J0 × U0 (and each i and j), consider the C1 function

(79) u(s) = V i(τ, (1− s)θ(τ, τ0, x) + sθ(τ, τ0, x+ hej)).

By the mean value theorem there is a point c ∈ (0, 1) such that u(1) − u(0) = u′(c).

Hence, if ϑ = (1− c)θ(τ, τ0, x) + cθ(τ, τ0, x+ hej) then

(80)
∂

∂τ
(∆h)

i
j(τ, τ0, x) =

n∑
k=1

∂V i

∂yk
(τ, ϑ) · (∆h)

k
j (τ, τ0, x).

Note that ϑ depends on (τ, τ0, x) ∈ J0×J0×U0 (and i and j), but, since it lies on the line

segment between θ(τ, τ0, x) and θ(τ, τ0, x+hej) and θ is continuous, ϑ tends to θ(τ, τ0, x)

as h → 0 (uniformly in (τ, τ0, x), since J0 × J0 × U0 is compact). If h̃ is another (small,
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nonzero) real number, we define θ̃ similarly. Letting Qh,h̃ = (∆h)(τ, τ0, x)− (∆h̃)(τ, τ0, x)

it follows that

(81)

∂

∂τ
(Qh,h̃)

i
j =

∂

∂τ

(
(∆h)

i
j(τ, τ0, x)− (∆h̃)

i
j(τ, τ0, x)

)
=

n∑
k=1

∂V i

∂yk
(τ, ϑ) · (∆h)

k
j (τ, τ0, x)−

n∑
k=1

∂V i

∂yk
(τ, ϑ̃) · (∆h̃)

k
j (τ, τ0, x)

=
n∑

k=1

∂V i

∂yk
(τ, ϑ) ·

(
(∆h)

k
j (τ, τ0, x)− (∆h̃)

k
j (τ, τ0, x)

)
+

n∑
k=1

(
∂V i

∂yk
(τ, ϑ)− ∂V i

∂yk
(τ, ϑ̃)

)
· (∆h̃)

k
j (τ, τ0, x).

Now, since θ is continuous, the image of J0 × J0 × U0 is a compact set. Moreover,

requiring that |h| < 1, x+hej will always lie in the compact set U1 = U0+Bn and hence

ϑ will always lie in the convex hull W1 of the image of J0×J0×U1 under θ, which is also

compact. Since the (first order) y-partial derivatives of V are continuous in (t, y), they

are bounded on J0 ×W1. It therefore follows from (81) that there is a constant E > 0

such that

(82)

∣∣∣∣ ∂∂τ (Qh,h̃)
i
j

∣∣∣∣ ≤ E
∥∥Qh,h̃

∥∥+ e

∥∥∥∥∥
n∑

k=1

(
∂V i

∂yk
(τ, ϑ)− ∂V i

∂yk
(τ, ϑ̃)

)∥∥∥∥∥ ,
provided |h| < 1 and |h̃| < 1. Since the y-partial derivatives of V are also uniformly

continuous on J0 ×W1, for any ϵ > 0 there is a δ > 0 such that

(83)

∣∣∣∣∂V i

∂yk
(τ, ϑ)− ∂V i

∂yk
(τ, ϑ̃)

∣∣∣∣ < ϵ, for all i and k,

provided |ϑ̃− ϑ| < δ. Now, for each i and j, the ϑ and ϑ̃ in (81) and (82) can be viewed

as functions of (τ, τ0, x) that converge uniformly to θ(τ, τ0, x) on J0 × J0 × U0 as h → 0

and h̃ → 0, respectively. Hence, for any ϵ > 0, by taking |h| and |h̃| sufficiently small we

may ensure that (83) holds (for all relevant indices) and hence that

(84)

∥∥∥∥ ∂

∂τ
Qh,h̃

∥∥∥∥ ≤ nE
∥∥Qh,h̃

∥∥+ ϵn2e.

Note that when τ = τ0 we have Qh,h̃ = (∆h)(τ0, τ0, x)−(∆h̃)(τ0, τ0, x) = x−x = 0. For

general (τ, τ0) it therefore follows by an ODE comparison argument that for any ϵ > 0

one has

(85) ∥Qh,h̃∥ = ∥(∆h)(τ, τ0, x)−(∆h̃)(τ, τ0, x)∥ ≤ ϵne

E

(
enE|τ−τ0| − 1

)
≤ ϵne

E

(
enE/C − 1

)
,
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provided h and h̃ are sufficiently close to 0. It follows that for any sequence of nonzero

numbers hk that tends to zero, the corresponding sequence of matrix-valued functions

∆hk
is uniformly Cauchy and hence uniformly convergent. Since the limit is clearly

independent of the choice of hk it follows that limh→0∆h exists (and is continuous). In

particular, ∂θi

∂xj exists and is continuous (on J0×J0×U0) for each i and j. Since compact

sets of the form J0 × J0 × U0 exhaust I0 × I0 × Rn, the first order x-partial derivatives

of θ exist and are continuous on I0 × I0 × Rn.

It remains to show that the same holds for the partial derivative of θ with respect

to τ0 (i.e. the second factor). To see this, we note that Flτ,τ0 ◦ Flτ0,τ : Rn → Rn is

the identity map. Thus Flτ,τ0 = Fl−1
τ0,τ

, and hence the existence and continuity of the τ0-

partial derivative of θ(τ, τ0, x) = Fl−1
τ0,τ

(x) follows from the existence and continuity of the

partial derivatives of θ in the other two arguments (and the inverse function theorem).

Moreover, differentiating the expression θ(τ, τ0, θ(τ0, τ, x)) = x with respect to τ0 (and

setting set x0 = θ(τ0, τ, x), so that x = θ(τ, τ0, x0)) we find that

(86)
∂θi

∂τ0
(τ, τ0, x0) = −

n∑
k=1

∂θi

∂xk
(τ, τ0, x0) ·

∂θk

∂τ
(τ0, τ, θ(τ, τ0, x0)).

This proves Theorem A.1 in the case where k = 1.

A.4. Higher regularity. It remains to prove Theorem A.1(ii) for k > 1 (part (iii) then

follows). We do this by induction on k. Let k ≥ 1 and suppose that Theorem A.1(ii) is

known to hold for this k. Suppose that V satisfies the hypotheses of Theorem A.1 with

k replaced by k + 1.

By the previous subsection, the local flow map θ : I0 × I0 × Rn → Rn of V is C1.

Moreover, from (72) we have

(87)
∂θi

∂xj
(τ, τ0, x) = δij +

n∑
k=1

∫ τ

τ0

∂V i

∂yk
(s, θ(s, τ0, x)) ·

∂θk

∂xj
(s, τ0, x) ds.

It follows that for each i and j the τ -partial derivative of the function ∂θi

∂xj exists (and is

continuous in (τ, τ0, x)) and satisfies

(88)
∂

∂τ

∂θi

∂xj
(τ, τ0, x) =

n∑
k=1

∂V i

∂yk
(τ, θ(τ, τ0, x)) ·

∂θk

∂xj
(τ, τ0, x).

We therefore augment the independent variable y = y(τ) in our initial value problem (66)

with an n× n matrix valued function of Y = Y (τ) and consider the following following
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initial value problem for (y, Y ):

(89)
y′(τ) = V (τ, y(τ)) y(τ0) = y0

Y ′(τ) = DyV (τ, y(τ)) · Y (τ) Y (τ0) = Y0.

After fixing a compact subset U0 ⊂ Rn and redefining V by extending it from I0 × U0,

if necessary, the augmented system (89) satisfies the hypotheses of Theorem A.1 for our

given k (for a possibly larger Lipschitz constant Ĉ). It follows that for any sufficiently

small open subinterval I1 of I0 there is a well-defined local flow

(90) (Θ,Ψ) : I1 × I1 × Rn → Rn ×Mn×n(R)

for the system (89), and that Θ and Ψ have kth order partial derivatives with respect to

the third factor. Since y(τ) = θ(τ, τ0, x) and Y (τ) = Dxθ(τ, τ0, x) solve this system with

initial conditions y0 = x and Y0 = Id, we have

(91) θ(τ, τ0, x) = Θ(τ, τ0, (x, Id)) and Dxθ(τ, τ0, x) = Ψ(τ, τ0, (x, Id))

when (τ, τ0, x) ∈ I1× I1×U0. It follows that the first order x-partial derivatives
∂θi

∂xj have

kth order x-partial derivatives that are continuous on I1 × I1 × U0. Since I0 × I0 × Rn

can be exhausted by sets of the form I1 × I1 × U0 it follows that this holds on all of

I0 × I0 × Rn. Thus θ has x-partial derivatives of order k + 1 that are continuous on

I0 × I0 × Rn. This proves the inductive step.

It follows by induction that Theorem A.1(ii) holds for all k ≥ 1. This concludes the

proof of Theorem A.1.
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406 (2025), no. 3, Paper No. 53, 49 pp.



42 SEAN N. CURRY AND ACHINTA K. NANDI

[8] N. Charalambous and J. Rowlett. The Laplace spectrum on conformally compact manifolds. Trans.

Amer. Math. Soc. 377 (2024), no. 5, 3373–3395.

[9] X. Chen. Resolvent and spectral measure on non-trapping asymptotically hyperbolic manifolds III:

Global-in-time Strichartz estimates without loss. Ann. Inst. H. Poincaré C Anal. Non Linéaire 35
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