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Abstract

For conformal geometries of Riemannian signature, we provide a comprehensive
and explicit treatment of the core local theory for embedded submanifolds of arbitrary
dimension. This is based in the conformal tractor calculus and includes a conformally
invariant Gauss formula leading to conformal versions of the Gauss, Codazzi, and Ricci
equations. It provides the tools for proliferating submanifold conformal invariants, as
well as for extending to conformally singular Riemannian manifolds the notions of mean
curvature and of minimal and CMC submanifolds.

A notion of distinguished submanifold is defined by asking the tractor second funda-
mental form to vanish. We show that for the case of curves this exactly characterises
conformal geodesics, also called conformal circles, while for hypersurfaces it is the
totally umbilic condition. For other codimensions, this unifying notion interpolates
between these extremes, and we prove that in all dimensions this coincides with the
submanifold being weakly conformally circular, meaning that ambient conformal cir-
cles remain in the submanifold. We prove that submanifolds are conformally circular,
meaning submanifold conformal circles coincide with ambient conformal circles, if and
only also a second conformal invariant also vanishes. We give a number of examples to
show that both situations occur commonly in familiar conformal structures.

We then provide a very general theory and construction of quantities that are
necessarily conserved along distinguished submanifolds. This first integral theory thus
vastly generalises the results available for conformal circles in [68]. We prove that any
normal solution to an equation from the class of first BGG equations yields such a
conserved quantity, and we show that it is easy to provide explicit formulae for these.

Finally we prove that the property of being distinguished is also captured by a type
of moving incidence relation and apply this to show that the distinguished submanifold
condition is forced for zero loci associated with solutions of certain natural geometric
partial differential equations.
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1 Introduction

Submanifolds are one of the fundamental objects of study in any class of differential geometric
structures. They play a crucial role in geometric analysis and a variety of other areas including
several complex variables, and the study of functional analytic inequalities. Their local theory
is essential for the study of many global questions in differential geometry. In the special case
of Riemannian geometry, submanifold theory is a classical area and the basic local theory is well
understood and is founded in the celebrated equations of Gauss, Codazzi, and Ricci, see, e.g.,
[90, 100].

Conformal manifolds (M, ¢) are structures where a smooth n manifold M is equipped not with
a metric, but rather with just an equivalence class of smooth metrics ¢, where g,§ € ¢ means
that § = e??g for some smooth function w. There is currently a growing interest in the study of
conformal submanifolds, and conformally distinguished curves, including the relationships between
these objects [32, 37, 551 [76], [85] [87, 88, 96], [97]. Some of these developments have been inspired and
driven by the links to physics [54] [7§], the discovery that there are higher dimensional analogues
of the classical Willmore energy and invariant [82} [70, 112} [75] [71], [76l, 116], and the development
of a holographic approach to submanifolds (see [69, [71) [73]) that is an analogue of Fefferman and
Graham’s holographic approach to intrinsic conformal geometry as in [47, [48].

In the conformal setting there is no distinguished connection on the tangent bundle, so even
the local theory of submanifolds provides a challenge. Toward resolving this, a logical step is
to use the conformal Cartan/tractor connection of [29, 109, [7, 27], and for the special case of
hypersurfaces, meaning embedded submanifolds of codimension one, an effective approach was
initiated in [7]. With a view to various applications, this hypersurface theory was extended in the
works [14), [79, 107, 63 112] and this approach has proved to be central in a number of further
extensions and applications [4 13, [69) [70, [71), [74] [73, 87]. Rather separately from the general
consideration of submanifolds, the distinguished curves in conformal manifolds known as conformal
circles or conformal geodesics have been studied classically (see, e.g., [50, 08, 09, 114, 115]) and
from various modern perspectives recently [56} 6, [7, 110l 104 [68], 45 [80}, [84] 19].

In the first part of our work here we develop a comprehensive basic local theory for conformal
submanifolds of all proper codimensions. This is based in the conformal tractor calculus, and
by construction is conformally invariant. It builds on the mentioned approach to hypersurfaces
from [7), [14] [79) 112} 41] and its extension into higher codimension by the first and third named
authors in [42] and [105]. There are also links to the somewhat more abstract theory developed
in the preprint [16] (cf. Remark below and also the discussion in [42]). The result is a theory
and collection of explicit calculational tools that treats curves and higher dimensional submanifolds,
embedded in conformal manifolds, by a single uniform approach. These tools may be used to directly
proliferate submanifold invariants, including for curves. Thus they provide a basic machinery that
may solve the conformal submanifold analogue of Fefferman’s parabolic invariant theory programme
[46| 47, [§], and we touch on this in Section Since the first draft of this article, an application
of these tools to a simple direct construction of higher Willmore energies has been provided in
[2]. We also use these tools to effectively capture, via tractors, the mean curvature, and with it
the notions of minimal, constant mean curvature, and parallel mean curvature submanifolds. This
leads immediately to a generalisation of these notions that is applicable for the study of conformally
singular geometries (such as Poincaré-Einstein geometries, and more generally conformally compact
structures). See Section



The point of view that we develop here leads us to introduce the notion of a distinguished
submanifold of arbitrary codimension. By definition this means that an object called the tractor
second fundamental form vanishes (a list of equivalent conditions is given in Theorem [I.1). In
the case of curves this coincides precisely with the unparametrised conformal circle equation, see
Theorem whereas for hypersurfaces it recovers the usual condition of total umbilicity [7]. Thus
the notion interpolates between these. Interestingly, in all codimensions greater than one the
condition is stronger than total umbilicity; distinguished submanifolds must be umbilic, but there
are umbilic submanifolds that are not distinguished (though, when the geometry of the ambient
manifold is special, it often turns out that umbilic submanifolds are forced to be distinguished; see
Section for a list of detailed examples). In the conformally flat setting the notions of umbilic
and distinguished submanifolds coincide, and part of our motivation in introducing the notion of
distinguished submanifold is that (unlike the notion of umbilic submanifold in general codimension)
it allows us to simultaneously generalise certain key results from the codimension one case of umbilic
submanifolds and the dimension one case of conformal circles. These applications form the second
main objective of this work.

It has long been known that Killing tensors and Killing-Yano tensors may be used to provide
first integrals for geodesics [30, 52, [101], 106, 113], and this is used for a host of applications
[3, BT, 33, 57, 58, [89), [86]. Conformal circles are governed by a higher order equation than geodesics,
so an analogous theory has been lacking aside from certain specific examples [110]. However, in
[68] this was solved and a very general theory of first integrals was developed by understanding
a characterisation of conformal circles as a parallel condition on a fundamental tractor 3-form
that one can associate to any non-null curve. Using this, it was established that essentially any
normal solution of a class of equations known as first BGG equations (see [26], 28], or Section
for the meaning of these terms) can provide, or contribute to, such conserved quantities; in
fact in many cases more general solutions produce first integrals. See [80] for some applications
of this perspective. The conformal Killing equations on tensors and the conformal Killing-Yano
equations are all first BGG equations. But in fact the class of first BGG equations is vastly wider
than this suggests. In Section we show that, just as for curves, higher dimensional distinguished
submanifolds can be characterised by a parallel condition on a tractor form. Then, as an application,
we obtain a theory of first integrals for distinguished submanifolds of all codimensions in a form
that includes the case of conformal circles as special case. See Theorem and Corollary

In another direction, an important question for submanifolds of dimension 2 or greater is char-
acterising the conformal analogue of the notion of being totally geodesic; that is, to capture some
sense of “total conformal circularity”. This was touched on in [7] for hypersurfaces, and treated
for submanifolds in general by Belgun [9]. We show in Section [5| that our tools give efficient new
proofs these results, and show that Belgun’s results have an elegant interpretation in this tractor
picture. See Theorem and Theorem [5.9) below. We also introduce a new notion called conformal
circularity, and show that property holds in many situations where the strongest notion conformal
circularity fails.

Finally, in Section [7] we show that distinguished submanifolds can also be characterised by a
very simple moving incidence relation, see Theorem or its paraphrasing in Theorem As
an application we prove that the zero locus of suitable overdetermined PDE solutions are neces-
sarily distinguished submanifolds; see Theorem This shows how distinguished submanifolds
fit into the curved orbit theory of [25, 26] and, along with Proposition is a first step toward
understanding how to generalise the holography approach of [4, 13| [70] [71, [72} [74] [73] to higher



codimensions.

1.1 Main results and a technical overview

Now we give the approach and results with more technical detail. We use lower case abstract
indices a, b, ¢, . . . for ambient tensors and indices i, j, k, . . . from later in the alphabet for submanifold
tensors; we also use the corresponding capital letters as abstract indices for ambient and submanifold
tractors, respectively. The dimension of our ambient manifold M will always be denoted n, and the
submanifold dimension will be denoted m. In the theorems below n = 3, but the results continue
to hold when n = 2 provided M is endowed with a Mobius structure (in the sense of [18]). The
first step in developing a calculus for hypersurfaces in a Riemannian manifold is the observation
that any oriented hypersurface is equipped with a canonical unit conormal field n,. Similarly it
was established in [7] that each hypersurface ¥ in a Riemannian signature conformal manifold
determines canonically a basic conformally invariant tractor field N4 that plays an analogous role
at a tractor level. For example its failure to be parallel along the hypersurface is captured by a
tractor second fundamental form L. In particular one obtains, in a simple explicit way, conformal
analogues of the Gauss-Codazzi-Ricci theory, see [41] and references therein. Moreover the normal
tractor has a remarkable link to other objects in, for example, Poincaré-Einstein manifolds and
related structures, that has led to some deep results (e.g., that link the so-called conformal volume
anomaly to higher Willmore invariants [75, [4] [71]).

Central to our approach to higher codimension submanifold theory is the fact that one higher
codimension analogue of the normal tractor is a conformally invariant alternating tractor form
Na,..a,, where d = n —m is the codimension of the submanifold. An equivalent object to Ng,...4,
is its tractor Hodge-star, that we denote xNA142Am+2 gee . For a submanifold ¥ (of any
non-trivial codimension), the intrinsic tractor bundle 7 can be identified with the annihilator in
TM of Na,a,...a,, see Section (This is still true when 3 has dimension 1 or 2, though in this
case it is less obvious if one starts with the jet bundle construction of 73; see the discussion in
Section [3.5| which treats, from our point of view here, the natural Mobius structures induced on
low dimensional submanifolds, cf. [I§]). Thus one has an orthogonal decomposition of the ambient
tractor bundle T M,

TMlys =TX®N,

which also defines the normal tractor bundle N'. Denote by Ng the projection TM |y, — N (using
abstract index notation). There is also a projector T M|y — T3, and thus (provided dim M > 3
so that the conformal structure on M determines a canonical Cartan/tractor connection) one has
a tractor GauB formula which defines a tractor second fundamental form, L;;; see and its
refinement (cf. |16, [42]). By definition, L. measures the failure of N (or, equivalently, of
TX € TM]s) to be parallel.

Using these tools we develop and present explicitly the fundamental conformal submanifold
calculus in Section and, in particular, the conformal Gauss-Codazzi-Ricci equations ,
, . Also, the normal forms, and their equivalents, may be combined with standard
conformal tractor calculus, and ideas for using this to construct conformal manifold invariants (as
in, e.g., [60]), to manufacture submanifold invariants. This is the subject of Section This
is a powerful application, as without such objects the construction of submanifold invariants is
complicated. Based on the ideas in [60] it seems likely that most, if not all, conformal invariants
will arise using the tools developed here.



Although the tractor approach is conformal, scale-dependent quantities such as the mean cur-
vature can be nicely described by introducing an object called the scale tractor, I, see Section
In particular minimal submanifolds are seen to be exactly those submanifolds whose tractor normal
form is orthogonal to the scale tractor, see Corollary and constant mean curvature notions are
similarly captured, see Proposition [£.4. This means that these concepts generalise to Poincaré-
Finstein, and more generally conformally compact manifolds, with the submanifold extending to
the conformal infinity, as discussed in Section

The definition here of a submanifold being distinguished is that L;;¢ = 0, i.e. the vanishing of
the tractor second fundamental form. A key result is that this may be alternatively captured as in
the following theorem.

Theorem 1.1. Let (M,c) be a conformal manifold and ¥ — M a conformal submanifold of
codimension d. Then the following are equivalent:

1. Li;¢ =0;
2. VN4l =0;
3. ViNa,Agny 14, =05
4. Vi «NA1 A2 Ami2 — 0,
where V; indicates the pullback to X of the ambient tractor connection.

A hypersurface has L;;¢ = 0 if and only if it is totally umbilic, meaning the trace-free second
fundamental form vanishes, but for higher codimension it means a certain conditional invariant
must also vanish. (When the trace-free second fundamental form vanishes this conditional invariant
becomes Belgun’s p invariant [9], and the relationship between p and L is discussed in Section.
Thus for codimensions greater than one, a distinguished submanifold is necessarily totally umbilic,
but the converse is not true in general. Moreover, in the case of 1-dimensional submanifolds (where
the totally umbilic condition becomes vacuous) the vanishing of IL precisely characterises conformal
circles. That is, in our current terminology, 1-dimensional conformally distinguished submanifolds
are exactly unparametrised conformal circles:

Theorem 1.2. Let (M,c) be a conformal manifold and v — M a curve. Then 7 is an un-
parametrised conformal circle if, and only if, L. = 0, or equivalently any one of the conditions in
Theorem [1.1] holds. In particular, L =0 if and only if u = 0, where p is the conformal curvature.

Proof. Proposition 4.13 from [68] asserts that the unparametrised conformal circle equation is
equivalent to a certain 3-tractor being parallel along the curve, and equation of Section
below asserts that this 3-tractor is precisely *N41424s  The theorem therefore follows from the
equivalence of items 1 and 4 in Theorem ]

For the convenience of the reader we discuss Proposition 4.13 from [68] in Section on
conformal circles below.

Next we observe that combining Theorem and Theorem leads naturally to a generalisa-
tion of Theorem that characterises distinguished submanifolds in terms of their relation to the
ambient conformal circles:



Theorem 1.3. A subnozam'fold Y is distinguished (L = 0) if, and only if, it is weakly conformally
circular (equivalently, II =0 and p = 0).

Here, adapting terminology from [9], weakly conformally circular means that an ambient con-
formal circle with tangential initial conditions remains in the submanifold for some time, cf. [7] for
the case of hypersurfaces. Since . = 0 can be seen to be equivalent to I =0 and w = 0 by direct
calculation, this recovers Belgun’s [9, Theorem 5.4(2)].

There is an alternative natural notion of conformal circularity for submanifolds, namely that
any submanifold conformal circle is also an ambient conformal circle. This is stronger than the
previous notion and we refer to such a submanifold as conformally circular. It turns out that for
this property, in addition to any of the requirements of Theorem one also requires that the
trace-free part of the Fialkow tensor vanishes; see Theorem Examples of conformally circular
submanifolds include a factor trivially included in an Einstein product or any umbilic submanifold
in a complex projective space (see Section . Taking into account parametrisations gives rise to
yet another notion of conformal circularity, which we refer to as being strongly conformally circular.
This was considered in [9] and our Theorem should be contrasted with the analogous result
Theorem [5.9) (which recovers Belgun’s [9] Theorem 5.4(3)]) for projectively parametrised conformal
circles. A number of examples are considered in Section [5.4] and we find that strongly conformally
circular submanifolds arise a lot less commonly than conformally circular ones, though they include
the standard umbilic submanifolds in the conformal sphere and any factor trivially included in a
special Einstein product.

In Section [5.4] we clarify by way of a number of examples that, outside of edge cases in the
codimension (i.e. the cases of curves and of hypersurfaces), the notions of umbilic, distinguished,
conformally circular and strongly conformally circular submanifolds are distinct. On the other hand,
we show that when the geometry of (M, ¢) is special then often umbilic submanifolds are automat-
ically distinguished. For example, any umbilc submanifold in real, complex or quaternionic space
form is forced to be distinguished. In support of our contention that the distinguished submanifold
condition is a more natural conformal analog of the totally geodesic condition in Riemannian geom-
etry than the totally umbilic condition, we also observe (in Theorems and that we have
the following conformal analog of the classical de Rham-Wu theorem in Riemannian geometry: A
conformal manifold (M, ¢) is locally the conformal structure of a product manifold if and only if
(M, ¢) possesses a pair of complementary orthogonal foliations by distinguished submanifolds.

Another advantage that distinguished submanifolds posses over (merely) umbilic ones is that
points 2.—4. of Theorem characterise distinguished submanifolds in a way that immediately
allows the proliferation of conserved quantities. As mentioned above, Killing tensors, Killing-Yano
tensors and their conformal analogues are well-established as tools for providing first integrals for
geodesics. These are each examples of solutions to first BGG equations, a large class of overde-
termined natural equations [28 [I7]. For such equations, there is a class of solutions called normal
solutions that are in one-to-one correspondence with parallel sections of the corresponding tractor
bundle [26]. In particular, on conformally flat manifolds, all solutions to first BGG equations are
normal. Let us state our result rather informally as follows.

Corollary 1.4. Suppose a conformal manifold admits a BGG normal solution corresponding to a
parallel tractor S, and ¥ is a distinguished submanifold. Let

(®'S,@"N)



denote a scalar quantity constructed from linear combinations of tensor powers of S and linear com-
binations of tensor powers of the normal tractor form N and with contractions using the conformal
tractor metric and possibly the tractor volume form. Then (®'S,®"N) is a first integral for the
distinguished submanifold.

This result generalises the large family of conformal circle first integrals constructed in [68] to the
case of distinguished submanifolds of arbitrary dimension. We should say that rather than using
the tractor normal form in the Corollary above one may equally alternatively (or additionally
use) *N, or N ‘é‘. Precise statements can be found in Section where we also show that it is easy
to compute explicit examples.

Towards another key application, we show that there is yet another characterisation of distin-
guished conformal submanifolds that takes the form of a moving incidence relation. For this we
need the first elements of conformal tractor calculus. On any smooth manifold, one has the bundle
of conformal 1-densities that we call £[1], which is a root of the squared canonical bundle, see
Section [2 Its 2-jet bundle J2£[1] admits the exact sequence at 2-jets,

0 — S*T*M[1] — J2E[1] — J'E[1] — 0, (1.1)

where V[w] :=V ® E|w] for any vector bundle V and any w € R.

The introduction of a conformal structure determines a canonical splitting of S?T*M][1] as
S2T*M[1] @ g - E[—1], where g € T'(S?T*M][2]) is the conformal metric. The standard conformal
cotractor bundle 7* (or 7*M) is the quotient of J2E[1] by the image of S2T*M[1] and so has a
filtration as given by the exact sequence

0 E[-1] D T* > J'€[1] - 0. (1.2)

(In the case that M is of dimension one then S3T*M][1] is trivial and 7* = J2£[1].) There is
canonically a conformally invariant metric h on the bundle 7*, and hence 7* is identified with its
dual 7, which we call the tractor bundle. The bundle injection X which maps £[—1] — T* is typ-
ically viewed as a section X € I'(T*[1]), and called the canonical tractor. This invariantly encodes
information about position on the manifold and plays a very important role in our developments
here.

A well known feature of 7* is that, in the case where dim M > 3, it is naturally equipped
with the canonical conformally invariant tractor connection [7], which is equivalent (see [22]) to
the normal Cartan connection as in [29]. This preserves the tractor metric. Using this object and
language we have the following result.

Theorem 1.5. Let 3 be an embedded submanifold of codimension d in a conformal manifold (M, c).
Then X5 is distinguished if, and only if, either (equivalently both) of the following holds

e there exists a nontrivial ¥ € T'(AYT*) such that X 3 =0 and V;¥ = 0 along ¥, or

e there exists a nontrivial x¥ € T(A"+274T*) such that X A *¥ =0 and V; ¥ = 0 along ¥.

Again this generalises a result for non-null conformal circles from [68]. If either of the above
conditions hold, then ¥ is necessarily (up to locally constant factor) the tractor normal form of
the submanifold. This will be proved in Section 7/} Note that in the model case of the conformal
sphere, viewed as the projectivised null cone of a Minkowski space M of two higher dimensions, the



distinguished submanifolds all arise from cutting the null cone with a subspace (and projectivising);
in this case the tractor ¥ corresponding to a distinguished submanifold ¥ is constant and simple
(it is the wedge product of vectors that span the corresponding subspace of the Minkowski space)
and, identifying the canonical tractor X with the position vector in M, the condition X A x¥ = 0
is precisely the incidence relation saying that X is a point in the subspace corresponding to V.

Theorem is a useful result in that it allows us to immediately conclude that certain zero
loci of normal solutions of appropriate BGG equations are distinguished submanifolds. Recall that
on a Riemannian manifold, an alternating tensor k of degree d is a conformal Killing form if the
trace-free part of Vk is completely alternating. For a suitable conformal weight, this condition is
conformally invariant, see Section Combining the curved orbit theory of [26] with Theorem (1.5
we obtain the following, where the operator L is explained in (and Theorem [6.1]).

Theorem 1.6. Suppose k is a normal solution of the conformal Killing form equation on (M, c)
of degree d — 1 such that the parallel tractor K = L(k) € T(AYT*) is simple. Then the zero locus of
k is either empty, an isolated point, or a distinguished submanifold of codimension d.

Remark 1.7. (i) The hypothesis that the parallel tractor K be simple is natural in that only in this
case can K be a multiple of the tractor normal form of a codimension d submanifold. Without the
simplicity condition, higher than codimension d zero loci are possible. (ii) If d = 1, then o = k is
a weight 1 conformal density and the theorem still holds if we regard the hypothesis on o = k as
saying that o is an almost-Finstein scale in the sense of [63] and interpret K = L(k) € T(T™*) as
the corresponding parallel scale tractor I. In this case X 1K = o, and the conclusion is a known
result about the zero locus of an almost-Einstein scale [65, [1)]. (iii)) When d = 1,2, k does not need
to be normal; see Section [7.9

In fact finer information about the zero locus is available, see Theorem [7:3] This is an analogue
for normal Killing solutions of the results for almost Einstein scales found in [61], [63], [41]. Those
results for Einstein scales (and their generalisations to so-called ASC scales in [63]) were key in
the previously mentioned development of a holographic approach to hypersurfaces via a singular
Yamabe problem in [4, 13, [70l [71), [73], as well as a boundary calculus of asymptotically hyperbolic
manifolds [69]. We believe the results in Theorem should provide one of the key insights for
the analogous treatment of submanifolds of higher codimension (which need not be distinguished).
Indeed, toward this end we provide a simple direct proof of a similar zero locus result, for fields
satisfying weaker (than normal Killing-Yano) conditions, in Proposition

2 Conventions and conformal geometry

Often we will use the standard abstract index notation of Penrose. For example we may write £¢
for the tangent bundle T'M of a manifold M and v® for a vector field on M. Similarly &, denotes
the cotangent bundle T*M, and w, € I'(&,) a 1-form field. Then we write v%w, for the canonical
pairing between vector fields and 1-forms. We denote by the Kronecker delta 6°, the identity
section of the bundle End(7T'M) of endomorphisms of T'M. Indices enclosed by round (respectively
by square) brackets indicate symmetrisation (respectively skew-symmetrisation) over the enclosed
indices. For example, if T} is a rank 2 tensor then

1 1
Ty = §(Tab +Th,) and T = §(Tab —Tha).



We also use this notation for bundles. For example, &4, 4,...q,) denotes the bundle of d-forms. When
tractor bundles are introduced these will also be adorned with abstract indices when convenient,
with the same convention for symmetrisation and skew-symmetrisation.

For simplicity of exposition we assume throughout that the basic manifold M studied is con-
nected.

2.1 Conventions for Riemannian geometry

A Riemannian manifold is a pair (M™", g), consisting of a manifold M and a positive definite metric
g. We assume that the dimension n (of M) is at least 2. All structures are assumed smooth,
meaning C®. This is to simplify the discussion. For all the theory a much lower level of regularity
is required, but this varies throughout and at any point is easily calculated by the reader. We will
also typically assume for convenience that M is oriented, with volume form €4, 4,...q,, normalised by
€M e, oo.a, = n!, where indices are raised using the inverse of the metric g.

Writing V for the Levi-Civita connection, the Riemannian curvature tensor Rg°q is defined by

RapCqu? = [Va, Voo, v e T(EY), (2.1)

in the abstract index notation.
In dimensions n = 3, this decomposes into trace-free and a trace part:

Rapea = Wapea + 2gc[apb]d -2 gd[apb]c )

where Wy;¢g is the Weyl tensor and Py, is the Schouten tensor. Equivalently, the Schouten tensor
is characterised by
Rap = (n = 2)Pop + J gab, (2.2)

where Rgp, := Reo is the Ricci tensor, and J := g®P,;. The Weyl tensor is totally trace free, and
satisfies the algebraic Bianchi identities. In dimension 3 this implies that the Weyl tensor is zero.
The Cotton tensor (also for n > 3) is defined by

Cabe := 2V [ Pylc- (2.3)
In dimension 2, it is easy to show that the Riemannian curvature is pure trace:

Raped = K(gikgji — gugjk),

where K is the Gauflian curvature. Hence the Ricci tensor is also pure trace, and the Weyl curvature
is zero.

Later, we will need to consider 1-dimensional submanifolds ¥ equipped with a Riemannian
metric. On a 1-dimensional manifold ¥, a Riemannian metric gs; takes the form u ® u, where u
is a non-vanishing 1-form, and requiring v to be the volume form corresponding to gs; and the
orientation fixes the sign of w. Thus there is a unique connection preserving this metric, namely
the connection D that preserves u. We will term this the Levi-Civita connection for (¥, gs;). The
curvature of any such connection is clearly zero.

10



2.2 Conformal geometry

Two metrics g, g are said to be conformally related if
g =%, (2.4)

where 2 € C®°(M) is a positive function. Then ¢ denotes an equivalence class of conformally related
metrics, i.e. if g,g € ¢, then they are related according to for some smooth €2, and we may
write ¢ = [g]. A conformal manifold is then a pair (M, c).

Recall that on a manifold M, for any « € R, one has the bundle of a-densities. This is the
associated bundle to the linear frame bundle of M via the 1-dimensional GL(n)-representation
A — | det(A)|7“. Sections of this bundle are called a-densities. There is a correspondence between
1-densities and sections of A"T*M when M is oriented, or in general between the square of these
bundles; e.g., if M is oriented then, given a local oriented frame field (eq,...,e,), the function
representing a (local) section v of A"T*M as a 1-density is simply v(eq,...,ep).

Separately, we have the bundle of conformal densities of weight w, which we denote by E[w],
and which are defined by

Elw] := Q x,, R, (2.5)

where Q is the ray bundle of conformally related metrics and p,, is the 1-dimensional R -representation
pw(s)(t) := s~ 2t. The bundles £[w] are evidently oriented and we write £, [w] for the ray subundle
of positive elements. As detailed in, e.g., [23], the conformal densities of weight w are in bijective
correspondence with densities of weight (—%) In particular, this means that 1-densities also cor-
respond to conformal densities of weight —n, and so together with the discussion of the previous
paragraph we have an isomorphism (A"T*M)? 5 £[—2n], and dually (A"TM)? 5 £[2n]. If B is

a vector bundle on M we will write B[w] as a shorthand for B ® [w].

If M is oriented, as we henceforth assume, we write € = €ajay-a, € I'(E[ayag-an][n]) for the
canonical map A"T'M — &[n], given by contraction, and call €4,4,...q,, the conformal volume form
or weighted volume form. Since £[w] is an associated bundle, its sections may be thought of as
equivariant functions f : @ — R such that f(s?g,) = s¥f(gz). So we may think of a section of
E[w] as an equivalence class of pairs (g, f), where (g, f) ~ (229, Q% f). The conformal volume form
can therefore similarly be thought of as the equivalence class of (g, €) for any g € ¢, where € is the
Riemannian volume form of g and (g, €) ~ (22g, Q7).

Corresponding to g € c there is evidently a corresponding section o, € I'(£[1]), represented
by the pair (g,1). It follows that the conformal structure ¢ determines a tautological section
g € T(S?T*M ® £, [2]) that is given by

g = (O'g)2ga (2.6)

for any metric g € ¢ (but which is independent of this choice); equivalently, the tautological section
g € T'(S*T* M ® £, [2]) may be thought of as the equivalence class of (g, g) for any metric g € c,
where (g,9) ~ (22g,92g). This is called the conformal metric. We will henceforth typically use
the conformal metric to raise and lower indices, even when a choice of g € ¢ has been made
(thus raising and lowering indices typically introduces a density bundle weight). For example the
Riemann curvature with indices all down R.p.q will now be considered to have weight 2 as it is

Rabcd = gecRabed ;
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the Weyl-Schouten decomposition of the Riemann curvature becomes
Raped = Wabed + QQC[an]d - 2gd[an]c )

for dimensions n > 3, and J will mean g% P,;, From we see that if we use o, to trivialise density
bundles, then the conformal metric g becomes g. However, usually we will avoid trivialising density
bundles. This becomes significant when we write down conformal rescaling laws, since then there
are two different metrics that could be used to trivialize the density bundles (and correspondingly
two different flat connections on sections of density bundles) and many formulae are simplified
when we work with weighted objects.

Each metric g € ¢ determines a corresponding Levi-Civita connection V. This naturally acts
on sections of density bundles and, tautologically from the construction above, preserves o,. Thus
as well as preserving g, the Levi-Civita connection V preserves g and € (cf. [41]). Under a change
to § = Q%¢g € ¢ we have

@aub = Vub + Youb — Tlu, + Tcucdg, on ube F(Sb), (2.7)
@awb = Vawp — Tawp — Tpwa + TweGan, on wy € I'(&), (2.8)

and R
Vo =Vor +w Y7 on 7€ I'(E[w)), (2.9)

where T, := Q71V,Q.
The Weyl curvature Wy¢; is conformally invariant, while the Schouten tensor transforms ac-
cording to,

~ 1
Pab = Pab — vaTb + TaTb — iTCTCgab- (210)

Equations (2.7) and (2.8) still hold when M has dimension 1, although the final two terms of
both equations cancel. Equation ([2.10)) only holds when dim M > 3, since in lower dimensions the
Schouten tensor is not defined.

2.3 The tractor connection and calculus

Recall from the introduction, the tractor bundle is recovered from jets of the conformal density
bundle £[1]. The inverse of the conformal metric maps S?T*M[1] — E[—1], with kernel S3T* M 1]
and hence we have a decomposition

S2T*M[1] = SET*M[1) @ g - E[-1].

Then the bundle 7* (that we also denote £4 in the abstract index notation) is J2£[1] modulo
the image of S3T*M[1] under the map S*T*M[1] — J?£[1] of the jet exact sequence at 2-jets (L.1)).
Thus we obtain (1.2). From the jet exact sequence at 1-jets

0 — T*M[1] — J*E[1] — E[1] — 0, (2.11)
we then see that 7* has the composition series

T* = £[1]6¢ T* M[1] & E[-1].
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Here the semidirect sum notation & simply encodes the information of the exact sequences (cf.
[7]). Note that this construction still applies when M has dimension 1 or 2, but in dimension
1, S2T*M][1] is trivial and hence T* is simply J2£[1]. Recall that we denote by X4 € I'(€4[1])
the canonical tractor which provides the embedding £[—1] — £4. Let us also note that by the
definition of the tractor bundle, there is an invariant differential operator D : T'(E[1]) — T(T*),
where %]D) is the differential operator corresponding to the linear map J2E[1] — T*.

Let us now fix n > 3. Given a choice of metric g € ¢, the formula

1 o
o —[Dao], = Vo , (2.12)
" —1(A+J)o

where A = V2V, gives a second-order differential operator on £[1] which is a linear map J2E[1] —
E[1] @ Eu[1] @ E[—1] that clearly factors through 7* and so determines an isomorphism

T (7], = E[] @ &[] @ E[-1], (2.13)

and hence the sequences and split, as discussed in, e.g., [21, 41]. When using a choice of
metric g to split the tractor bundle we will typically indicate this by writing Z rather than applying
the bracket notation [ -], to the object we are breaking up into slots.

In the subsequent discussions, we will use to split the tractor bundles without further
comment. Thus, given g € ¢, an element V4 of £4 may be represented by a triple (o, uq, p), or
equivalently by

Va=0Ya~+ pu, 2% + pXa. (2.14)

The last display defines the algebraic splitting operators Y : £[1] - T* and Z : T*M[1] — T* (de-
termined by the choice g € ¢) which may be viewed as sections Y4 € I'(£4[—1]) and Z4 € I'(E4[—1]).
We call these sections X 4, Y4 and Z§ tractor projectors. Note that with this convention, is,
tautologically, an explicit formula for the invariant operator D, in terms of the splitting given by
the choice of metric g.

While X 4 is conformally invariant, a change of tractor splitting given by determines the
transformations

~ ~ 1
Z?‘ = Z?l + T%X 4, Yo=Yy — Tafo‘ — §TaTaXA (2.15)

where, as usual, T, = Q7 'V,Q. These transformations mean that the tractor triples transform by

o 1 0 0\ /o
fa | = 1o b0 (2.16)
p —irer. -1, 1) \p

One then observes that the symmetric tractor field given by
hAB .= ax Ay B) 4 gabz4 7B (2.17)

is invariant under (2.15)), and so determines a conformally invariant metric on 7*. We will hence
use this and its inverse hyp (called the tractor metric) to identify 7* and its dual, the standard
tractor bundle, which we denote by simply 7. Using this we obtain

XAy, =1,  z9z8 =6, (2.18)
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and all other (tractor-index) pairings of the splitting operators give a zero section. For example
XAX, = 0.

The canonical conformally invariant (normal) tractor connection on 7 will also be denoted V,,
or sometimes V! for emphasis. It can be coupled to the Levi-Civita connection of any metric g € ¢,
and its action on the tractor projectors is then given by

VXA =24, VoZ{ = =Py X4 — g Y7, VY4 =Pbz4. (2.19)

In fact, these formulae determine the tractor connection as the general action on a section of
a tractor bundle follows from the Leibniz rule. It is easily verified that the tractor connection is
conformally invariant and preserves the tractor metric. The latter means that the tractor connection
agrees with its dual. It extends in the obvious way to tensor powers of the tractor bundle and these
extensions are all referred to as the tractor connection. The coupled tractor-Levi Civita connection
will always be denoted simply V and will be used, usually without comment, according to context.

As with any linear connection, V = V7T has a curvature. The tractor curvature Q¢ p of the
tractor connection is defined by Q¢ p®P = QV[aVb](IDC, for any ®4 € T'(T). In the splitting
determined by a choice of metric g € ¢ it is given explicitly by the formula

Qavep = WapeaZc Zp® — 2Cane X1 Zp)° (2.20)

A conformal structure is said to be (locally) flat if this tractor curvature vanishes as this happens
if and only if, locally, there is a metric in the conformal class that is flat.

The tractor objects developed above form the initial objects of a conformal tractor calculus
that can be used, for example, to construct conformal invariants [59) 60]. We will not discuss this
in detail, but one particularly important object is the Thomas operator D that extends (2.12)) to a
conformally invariant operator between weighted tractor bundles,

Dy : D(EPw]) — T(Ea ® E%w — 1)),

where £® indicates any tensor power of £4, or SO(h)-invariant part thereof. It is given, with
respect to g € ¢, by the formula

(n+2w—-2)wV
DE®w]) eViDAVE | (n+2w—-2)V,V |. (2.21)
—(AV +wJV)

where (as usual) V is the coupled tractor-Levi-Civita connection and A the corresponding Lapla-
cian.

All of the above has a clear geometric interpretation in the case of the model, the conformal n-
sphere. This should be thought of as the ray projectivisation of C, , where C, is the future directed
part of the null quadric C := {X € R""2 | h(X, X) = 0} in R"*2 equipped with a fixed symmetric
non-degenerate bilinear form h of signature (n+1, 1) and a time-orientation. The resulting resulting
manifold M := P, (C4+) = S™ is acted on transitively by G := SOg(h) = SOq(n + 1, 1), where the
0 here denotes taking the connected component of the identity, and the stabiliser of a point is a
parabolic subgroup that we denote P (so M =~ G/P). Moreover, it is straightforward to verify
that h induces a Riemannian metric on each section of the map C;. — M, and different sections
result in conformally related metrics. Thus M is equipped canonically with a conformal structure,
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and clearly the group G acts on M by conformal isometries, see, e.g., [41l [63] for a more detailed
discussion of this model.

From this point of view the standard tractor bundle for the model is TR"*2|¢, / ~, where the
equivalence relation is U, ~ V; if one is mapped to the other by standard R"™*2 parallel transport
(i.e., from the affine structure of R"*2) along a null ray. The tractor metric is then induced in
an obvious way from the ambient Minkowski signature metric h, and parallel tractor fields are
equivalent to vector fields in I'(TR™*2|¢, ) that are constant along C.. Moreover the parallel tensor
fields on connected regions of C, may all be viewed as arising from the restriction of tensor fields
parallel on R"*b1 and these give the parallel sections of the corresponding tensor powers of the
tractor bundle. Finally, in this picture, the canonical tractor X4 is identified with the Euler vector
field of R™*2 along C .

The Thomas operator D4 also has a concrete geometric interpretation in the model. Sections
of the weight w conformal density bundle on the model can be identified with functions on C, that
are homogeneous of degree w with respect to the R -action. Weighted tractors on the model can
therefore be identified with tensor fields along C; of the appropriate homogeneity. The Thomas
operator D4 on such sections is then given (up to an overall factor) by formally extending such
tensor fields off C, to be “harmonic” with respect to the ambient Minkowski metric h and then
taking the directional derivative (at points along Cy) in the flat ambient space R"*2; see, [23].

2.4 The scale tractor

Recall that, from Section a metric g € ¢ is equivalent to a section o4 € I'(€; [1]) by the relation
g=0,"9.
Given any section o € I'(€[1]) we can form

1
14 := —Dyo,
n

and we will term this a scale tractor if I, is nowhere zero. In this case o is clearly non-vanishing
on an open dense subset of M, on which it determines a metric g := 0~2g from the conformal
class. So for a scale tractor T4 we will term o = XAI4 a generalised scale — or sometimes simply
a scale. Following [63], a conformal manifold (M, ¢) equipped with a scale tractor will said to be
an almost-Riemannian manifold (since it has a metric almost everywhere). Given a Riemannian
metric g = 0529, we term [4 1= %DAUQ the scale tractor of g.

It follows easily from that if a tractor I4 # 0 is parallel then it is a scale tractor and
g := 0 2g is Einstein; see [65, 63]. In this case we say (M, ¢, 1) is almost Einstein.

An important example of almost-Riemannian manifolds arise in connection with conformally
compact manifolds: A complete Riemannian manifold (M, g) is conformally compact if M is the
interior of a manifold with boundary M, and on M there is a metric § (so a metric that is smooth
up to the boundary) such that on M

Jab = 7ﬁiz?ab
for some smooth defining function r for the boundary M (meaning that » > 0 on M, oM is
the zero locus of 7, and dr is nowhere zero on dM). A conformally compact manifold is said to

asymptotically hyperbolic if |dr|g = 1 along 0M (which is equivalent to requiring that the sectional
curvatures of g all tend to —1 as one approaches 0M) and Poincaré-FEinstein if g is Einstein. It
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is easily verified that in the latter case the scalar curvature is negative. If the Poincaré-Einstein
metric is normalised so that
Sc? = —n(n —1)

(as is usually assumed) then the manifold is necessarily asymptotically hyperbolic. These structures
have been the subject of sustained interest; see, e.g., [34, 35l 36 [77, 81, 92, 111] and the many
references therein.

It is easily verified that a conformal compactification of a manifold (M, g) is the same as a
conformal manifold with boundary (M, ¢), with interior M, and equipped with a scale tractor I
with the following properties: the zero locus Z(c) = 071(0) of o := X414 is @M, and along dM the
1-jet jlo (of ), is nowhere zero (we say that o is a defining density for dM). Thus the conformal
compactification is almost-Riemannian; in the following we will therefore think of a conformally
compact manifold as an almost-Riemannian manifold for which ¢ is a defining density for dM.
Such a manifold is asymptotically hyperbolic if 1474 = 1 along M, and Poincaré-Einstein if 14 is
parallel. If 474 = 1 on M then Sc? = —n(n — 1). See, e.g., [63} [73] for more details.

There are many structures such as certain notions of asymptotically flat manifolds that can
be similarly be understood in terms of almost-Riemannian structures. So this notion provides a
uniform framework for approaching a range of singular geometries [41].

2.5 Form tractors

We will use the term form tractor to describe sections of the exterior powers of the tractor bundle
[15, [66]. It is useful to introduce some notation for form tractors. From the composition series
for the standard tractor bundle, one sees that for the k-th exterior power of the standard tractor
bundle, one has the composition series

g[a1a2--~ak,1ak] [k]
EA1 g A1 Ax] = Elaz-ar] [k] & @ G‘g[az...ak] [k —2]. (2.22)
g[a3~~~ak] [k - 2]

The tractor projectors for the standard tractor bundle induce tractor projectors on the bundles

of tractor forms. Since these will be very important for us, we introduce dedicated notation for
these:

az:-ap_10 L a2 | r70k—1 ryag a2 ap_10 _
YAIAQ"'Ak—lAk T Y[Al ZAz ZAk—1ZAk] € g[A1A2~--Ak—1Ak][ k]
a1a2--ap_10 L a1 a2 | 70k—1 ryag a1a2--Gp 10 _
ZA1A2"'Ak—1Ak T Z[A1 ZA2 ZAk—IZAk] € g[AlAQ"'Ak—lAk][ k] (2.23)
as-ax_10 L X Y Za3 . Zak_l Za,;C c g ag--ap_10ak [—k + 2] .
A1Ag Az Ap 1 Ar T [A1 1 A2 44 Ap—17 Ag] [A1 Az Ag—1Ak]
az--ap_1ag o az . r7Ak—1 ryap az--ag_1ak
KAy A = Xy, Ar 12 A € Eluy gy agl =k 2]
For example, Y Alf;:fﬁf;i’f‘k gives the injection
az--ag_1ap
YAIAQ"'AkflAk . g[CLQ"'(lk] [k] —> 5[A1A2"'Ak71Ak]7
determined by a choice of metric g € e. Similarly X A1?422.::'(ch_71;112k
az-agp_1ap
Xgyagay i, ¢ Elagag][k — 2] = Epay Aty A (2.24)
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but in this case the map is not dependent on any choice of metric in ¢. For 1 < k <n + 2 and a
choice of scale, one has

asas-ap aiazas--ay as as--ag
vbYAlAQAg"'Ak = Pbale1A2A3~~-Ak + (k' - 1)Pb WA1A2A3"'Ak

atazar  _ 5. pa asa, . s a ag-ag
vaAlAZ”'Ak =—k Pb XA1A2...Ak k 5b YAlAQ"'Ak
(2.25)
ag-ap ag--ag ag--ap
vbWA1A2A3...Ak = _gb(ZQYAlA2...Ak + Pb(zg§§1¢;1,4;2...1¢;,c

asaz-an a1asaz--ay, as ag--ap,
vaA1A2A3"'Ak = gba1ZA1A2A3...Ak - (k - 1)517 WA1A2A3~--Ak7

where sequentially labeled indices are alternating, and any term involving the alternation of n + 1
or more tensor (i.e. lower case) indices should be interpreted as zero.

In particular, we observe that W, AQZ::ZL:EQ is parallel in any scale, and hence there is a
distinguished parallel section of the top exterior power of the standard tractor bundle, which we

term the tractor volume form
€4y As Az Apys = (N +2) (0 D)€agean s W, 4y ity s (2.26)

where €45..a,,5 € Elaz-ans2][P] 18 the weighted volume form of Section (note that our normali-
sation is such that (—:AlAQA?’"'A"“6A1A2A3...An+2 = —(n+2)!). That this is parallel now follows from
the fact that €4;...q, ., is parallel for any Levi-Civita connection in the conformal class. Of course,
the existence of the tractor volume form also reflects the fact that the conformal tractor connection
is equivalent to an SO(n + 1, 1)-Cartan connection.

Finally in this section we need the tractor Hodge-star. For a tractor k-form W 4,...4, this is

1 4.4
*\IIBl"'Bn+2—k = EE ! kBl...Bn+2_k\I/A1...Ak. (2.27)
This satisfies xx = —(—1)¥("=%) since the tractor metric has Lorentzian signature. Note also that

this tractor Hodge-star operation commutes with the tractor covariant derivative:

1 4.4,

Va *\I/Bl...Bn o p = 7€ BB, 27kva‘l’Al...Ak.
+ k! +

3 Submanifold geometry and submanifold tractors

Given a smooth n-manifold M, a submanifold will mean a smooth embedding ¢ : > — M of
a smooth m-dimensional manifold ¥, where 1 < m < n — 1, and the image has codimension
d := n—m. Typically we will suppress explicit mention of the embedding map and identify X with
its image «(X) ¢ M. We refer to M as the ambient manifold.

Regarding abstract indices, we adopt the convention that Latin letters from the start of the
alphabet (a,b,c,...) will denote ambient tensor indices, while indices from later in the alphabet
(i,4,k,...) will denote submanifold tensor indices. So, for example, £% is the usual tangent bundle
TM, £ is the tangent bundle of the submanifold TS, and &% denotes the bundle T*Y ® TM]|yx.
Note that indices alone will not distinguish sections of TM and T'M |5, so v® could be a section of
either £ or a section of £%|x;, where £%|y; — X is the pullback bundle .*T'M.
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Given a submanifold ¢« : ¥ — M, its derivative Tt : TY — T'M will be written II{ and viewed as
a section of T*X QT M |x. We frequently identify T'Y with its image in T'M |5, under this map. Note
that II¢ also gives the canonical map II¢ : &|x, — &;, which is dual to T.. We will temporarily use
the notation Ty s; for the normal bundle T'M|s/T(T%), and (T /5)* < T* M|y, for the conormal
bundle.

3.1 Basic Riemannian submanifold theory

We now move to the setting of a submanifold ¥ in a Riemannian manifold (M, g) (cf. discussions
in, e.g., [90, 100]). In the Riemannian setting, we only require that dim M > 2, and ¥ satisfies
1 <m =dim¥ <n— 1. The exact sequence defining the normal bundle T}/ then splits

0—— & L 5a|2 E— TM/Z — 0,
K (3.1)
ITg,
where I1Y is the orthogonal projection map TM|ys — TX. We may then identify Tyyys with
the kernel N¥ of II!, via the splitting, and we denote the orthogonal projection onto this by
Ng : %y — NXP. The complementary projection is II? =6y —Nj = H?Hf) which is the orthogonal
projection onto T3 viewed as submanifold of TM|s.
The Riemannian metric g on M induces a Riemannian metric gy, on 3 by restriction, which
we call the induced metric. We usually omit the explicit reference to ¥ when abstract indices are
used. So the induced metric will be denoted by g;;. Note that

gij = T gap. (3.2)

Next we observe that (3.1)) can be used to decompose the ambient Levi-Civita connection. First
and most simply, we have the normal connection V- which is a connection on the bundle N¥ — %
defined by

Vi = N¢V P, (3.3)

where V; denotes the pullback connection of the ambient Levi-Civita connection (meaning, in this
context, its restriction to differentiating along vectors tangent to ¥). Complementary to this, we
also have induced a connection D; on T — 3 defined by

DiVI =TIV, (sz’“) . (3.4)

It is elementary to verify that both and define connections. Indeed, it is also straight-
forward to verify that D is torsion-free and preserves the induced metric, and so is in fact the
Levi-Civita connection of (¥, ¢x). The fundamental ingredient of submanifold calculus, in this
setting, is the Gauf§ formula which, for a section V' € I'(T'Y|y), provides the decomposition of
ViVe = VZ-(H§Vj) into its tangential and normal parts:

ViV© =T5D;V7 + I1;°V, (3.5)
and this defines II;;¢ € I'(S?T*X ® NX), which is the second fundamental form of ¥ in (M, g). We
also define the mean curvature

1 ..
Hc = EQ”IIUC (36)
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and set IT i = ), © the trace-free part of the second fundamental form. Thus one has

)

II;;¢ = 11 + gi; HC. (3.7)
Using , one can derive
Rijii = Rig + 29cally; I 1.7, (3.8)
R;;%N¢ = 2D 11,7, (3.9)
and
R NENY = R;5¢4 — 2gklﬂk[icﬂj]ld7 (3.10)
where R;jp; = HfH?HngRabcd is the curvature of the ambient Levi-Civita connection restricted to

3, R?jkl is the intrinsic Riemann curvature tensor (i.e. the curvature of the connection D), D is the
intrinsic Levi-Civita connection coupled to the normal connection and Rﬂ-jcd is the curvature of
the normal connection V;-. All these formulae are derived by substituting the Gauf formula (3.5))
into equation ([2.1) which defines the curvature of the pullback connection V;, as follows. Using the
decomposition TM|s, = TS @ N, we may write a section V¢ € I'(£¢[x) as a tuple (II5V4, NeV4).
Since H;Vd is a tangent vector to X, we abuse notation slightly and typically write the tuple as
(VF N5V?) where VF =TIV, Computing the action of the Riemann curvature R;;¢; on such a
tuple, we see that

Vk
(VIV] - vjvl) <N§Vd)

_ (BEGNV = 2Dp (TR aV) = 2gep I Iy, eV = 20015 V55 (NGV)
200, (D V) — 29 I 1 gV + 2% (I °VE) + R4V
_ (Rﬁij’fl + 2geq I 1T ;1 —2D1 1k ) ( 1% >
2D[iffj]lc Rl-ljcd — 2gklﬂk[icﬂﬂld Ngve ’

and the equations (3.8)), (3.9) and (3.10]) all follow from this by simply projecting the appropriate
entry of the matrix.

Note that in dimension m = 1, the trace-free part of the second fundamental form is zero. Also,
in dimension m = 1 equations (3.8))-(3.10) are valid, but trivial in that in each case both sides are
identically zero.

3.2 Conformal Submanifolds

Consider now a submanifold ¥ satisfying 1 < dim ¥ < n—1 in a conformal manifold (M, ¢). Observe
that the conformal structure is sufficient to determine an orthogonal complement of T < T'M and
so the splitting of is in fact conformally invariant. We carry over to this setting the same
notation for the normal projection N7 and the orthogonal projection IT:. Since each g € ¢ induces a
Riemannian metric on ¥ by restriction, it follows immediately that ¢ induces a conformal structure
on ¥ that we denote cx.. We therefore have intrinsic to (X, ex) density bundles Ex[w]. In fact, for
any w € R,
Enlw] = Elw]ls,
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which can be seen immediately from the interpretation of densities as equivalence classes of a metric
and a function, see the discussion of Section From these observations, it follows immediately
that the conformal metric gs, is simply the restriction to ®*T'Y of the ambient conformal metric
g. Using these, it is straightforward to see that the orthogonal projection may be thought of as a
composition gy, o1l o g, meaning

IT, = g"Tl g, (3.11)
where we are raising and lowering indices using the conformal metric (and we omit the subscript
> when the indices imply that we are using gs or its inverse). Since this involves g and g~ !, the
resulting section still has conformal weight zero. When a metric g € ¢ is chosen we have as usual the
Gauf}, Codazzi and Ricci equations (, and )7 but it will be convenient to work with
weighted versions of these, with the ambient or intrinsic conformal metrics replacing any instances
of their scale-dependent counterparts. For example the weighted version of the Gaufl equation is

Rijiy = Rigy + 29callyi 1",

where now R;jx; and RiEj 4 have weight 2 (and the second fundamental form naturally has conformal
weight 0).

Coupling the normal connection to the Levi-Civita connection on the bundle £x[—1] yields
a connection on NY[—1], which we shall also denote V. It is easily verified using and
that this is conformally invariant. In fact, more generally, on sections of N¥[w] the transformation
law is

Viv® = Vi + (w+ )T (3.12)

when § = Q2g and T; = Q7'V,;Q. The conformal metric g induces a bundle metric on NX[-1],
and this is preserved by V.

Since the Levi-Civita connection changes under a conformal rescaling, the Gauf§ formula is not
conformally invariant. Using , we conclude that under a conformal transformation,

f[ijc = [[ijc — Gij fle (313)
Since this transformation is by pure trace, it follows immediately that IDIijC is conformally
invariant: e
II;;¢ = II;;°.
Thus the transformation (3.13) is entirely due to the transformed mean curvature, whence
H® = H® — N5Y?, (3.14)

Note that the mean curvature is now defined using the conformal metric: H¢ := %gij II;;¢. As a
consequence of (3.14) we have the following very useful proposition [14], 63}, [42]:

Proposition 3.1. Let ¥ be a submanifold of a conformal manifold (M,c). Then any metric gs, in
the induced conformal class of metrics on ¥ can be extended to a metric g € ¢ such that the mean
curvature of 3 with respect to g vanishes.

Proof. Let gs. be as in the proposition, and let g € ¢ be any extension of gy. We look for a rescaled
metric g satisfying the requirements of the proposition. Set § = g with w to be determined. Since
we require gly, = gx; we set w = 0 along X. Now, by (3.14), H¢ = 0 if, and only if, H® = N§Viw
along 3. Since the latter merely amounts to specifying the normal derivatives of w along ¥, such
an w clearly exists (unique modulo functions that vanish and have vanishing differential along ).
This proves the proposition. ]
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We refer to a metric g € ¢ such that H¢ = 0 as a minimal scale for X. The freedom to work in a
minimal scale when computing conformally invariant quantities helps to simplify many calculations.

Remark 3.2. In the case of a 1-dimensional submanifold a minimal scale g is easily seen to be
one for which the curve is an unparametrised geodesic, since in this case, after parametrising the
curve by arc length, the mean curvature vector can be identified with the acceleration of the curve.
Moreover, in the case where the curve v in (M, ¢) is already parametrised one can take gx. to be the
“metric” on vy corresponding to the parametrisation and extend gs. to g € ¢ as in Proposition
to obtain a metric g for which v, with its original parametrisation, is a parametrised geodesic.

3.3 Submanifold tractors

As a conformal manifold in its own right, (3, cx) possesses its own standard tractor bundle, which
we will call the intrinsic tractor bundle, and denote by T, or £! in abstract indices, carrying over
our convention that later Latin letters will be used for sections of submanifold bundles, with upper
case indices for tractor bundles. We now wish to relate this to the corresponding ambient tractor
bundle, 7 M, which will continue to denote by 7.

As we have already seen in Section the Gaufl formula plays a central role in the setting of
Riemannian submanifold geometry. Crucially, the Gaufl formula uses that 7> may be identified
with a subbundle of T'M. In fact, there is an analogous notion for the intrinsic and ambient tractor
bundles, and this explains our abstract index notation for submanifolds being similar to that for
ambient tractors.

First, there is a mapping NX[—1] — T defined by

0
n® s N4=NApnt L | po |, (3.15)
n.H*¢

This is easily seen to be conformally invariant using the transformation laws for the tractor pro-

jectors (2.15)) and the mean curvature (3.14)):

~

NA =7Z} +h Ho XA
= nYZ} + Yo X)) + ng(H* — TN XA
= nZA 4 o XA + n HOXA — ny TP XA
=n"Z} +ngHOXA
= N4
Thus the image of the injective map defines, along X, a subbundle of 7 which is canonically

isomorphic to NX[—1]. We call this the normal tractor bundle and denote this A, or N4 with
indices. We summarise, as follows.

Lemma 3.3. The map (3.15) defines a conformally invariant isomorphism

NA:NY[-1] S N Tls. (3.16)
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The bundle N admits an orthogonal complement in 7, N*, and so 7 |x decomposes as
Tl =N LeN.

Write Hg : EB - N4 and Ng : EB — N4 for the orthogonal projections onto the respective
factors of this decomposition. So é7 = T4 + N4. Note that for any N € T(N?), one has
hACNCHg = 0 since H‘g is valued in A4, Thus, hACN]‘%Hg = (. Substituting Hg = 5% — N%, it
follows that
_ NANC
Npc = NgNphac.

So Nap and Il4p are symmetric, where in each case an index has been lowered with the tractor
metric, and H’é and Ng give the orthogonal decomposition of the cotractor bundle £4.
Note that
NANS = N5 and N&NP = Ng, (3.17)

where N§ is the inverse to . From the symmetry of Nap, and corresponding observation of
symmetry for Ng,, it follows that N§ is obtained from Nf by raising and lowering indices using
the tractor and conformal metrics.

A straightforward direct calculation shows that the isomorphism intertwines the tractor
and normal Levi-Civita connections in the sense of the following lemma.

Lemma 3.4. For any section n® € T'(NX[—1]) we have
NEVin® = NSVi(NPnb).
Proof. This follows immediately from the definitions if we work in a minimal scale. O

We note here that A is a rank d = n — m vector bundle, and hence A" has rank (n+2) —d =
m + 2, which coincides with the rank of 7. This is not a coincidence, and it turns out that there
is an isomorphism of vector bundles 7% — A, Let us initially understand this in submanifold
dimensions m = 3.

Theorem 3.5. Let X be a submanifold of dimension m > 3 in a conformal manifold (M,c). The
intrinsic tractor bundle TY is canonically isomorphic to the orthogonal complement N'& of the
normal tractor bundle via a bundle isomorphism which preserves both the metric and the filtration.
We denote this isomorphism H‘;‘. Ezxplicitly, in a general ambient scale g € ¢, it is given by

o o
b
TosVvIE [l | po—H o |Z2VAenNt, (3.18)
P p— %HaHaO'

where pu® = Hfui.
The map 11 : TS — Nt is a filtration and metric preserving isomorphism.

Proof. Fix a scale gx; € cx, and let g € ¢ be a scale that satisfies t*g = gx. The map is clearly
injective, and the image is also clearly annihilated by any section of A'. We need to show that
the map (3.18)) is unchanged if we replace g by some conformally related § = Q2%g, and gs by
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7> = Q%¢gs. (In the latter € is restricted to ¥ — this is clear by context and so we do introduce
additional notation.) Equivalently, we need to show that the following diagram commutes

I 15 A
(€], — [E7,]

| | (5.19)

[5‘]]@ T§> [53]§|E

where the vertical maps are conformal change of tractor splitting, as given in , and the
horizontal maps are in the appropriate scale.

Write T, = Q71V,Q, and T; = Q7 'D;Q. Note that Y; = II{Y,. Applying Hf‘ and then
rescaling is given by

1 0 0 1 0 0 1 0 0
Tt 0 —H* II¢ 0}= Tt — H® I o],
—3YY. Y, 1) \-i1H°H. 0 1 —iYY.+ H'Y, — $H°H, -Y; 1

while first rescaling and then applying H? corresponds to the matrix

1 0 0 1 0 0 1 0 0
—H* 1o 17 & 0= —H° + 11579 m o
—iH°H, 0 1) \=3T"0, -T; 1 —iH°H, - ik, -1 1

Using equation (3.14]), we see that
—HY + 1577 = P + NOYC 4+ T10Y7 = —HY + Y
and
1 7yc 1y 1 k 1 c e 1 k cd
—SHH, = ST = —SHH.+ H Te—§<r Te+N TCTd)
1 1
= —SHH,+ H*T, = ST°T.,

whence the above two matrix products are equal. Hence the map is conformally invariant.
It is easily verified that the map H‘I4 is metric preserving and sends X’ to X4, and so is filtration
preserving. An easy calculation shows that it is metric preserving, cf. Remark below.

O]

Remark 3.6. Note that the calculations in the above proof and hence the existence of the canonical
metric and filtration preserving map 11 : TS — N* are greatly simplified if we choose to work
only with minimal scales (g € ¢ with H® = 0, cf. Proposition ; mn a minimal scale, the map
04 simply maps (o, i, p) = (0, e, p) and it is clear that this map preserves the metric and the
filtration.
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Motivated by the result in Theorem above, for the cases of dimensions m = 1,2 we (for
now) define 7Y to be N'*t. (Then Theorem again applies, and is effectively just changing the
splitting to give triples that transform in the usual way.) In Section below we will then show
that in dimension m = 1 and m = 2 it is still that case that TY is canonically J2E[1]/S3T*%[1]
(where in the m = 1 case S3T*3[1] is the “zero vector bundle”), consistent with the discussion
given in the introduction.

For convenience, we will say that sections of A’ are tractors tangent to the submanifold, and
similarly, sections of N are tractors normal to the submanifold.

It will also be convenient to record the relationship between the submanifold and ambient
splitting tractors corresponding to the isomorphism in Theorem namely:

1
xt=mulx4 zl=1minez2, and Y!=1i(y4-HZ! - §H“HQXA) (3.20)

along >, where H,I4 can be interpreted as the inverse of the map H}L‘ given by Theorem or,
better, as the orthogonal projection from 7 to A+ followed by the isomorphism N+ — TX (this
is completely analogous to our use of the notation IT{ applied to tangent vectors, see )

We have already mentioned that there is a tractor Gaufl formula, namely a decomposition of
the ambient tractor connection which is compatible with the decomposition 7 = N @ N. Define
the “checked” connection V on 7% by

ViV =14V, (TRVE), (3.21)

where V; on the right-hand side is the (pullback of the) ambient tractor connection. This is
essentially the tangential part of the ambient connection. We may then define the tractor second
fundamental form L;;¢ analogously to the Riemannian case, namely as the 1-form with values in
maps 7Y — N which characterises the normal part of the ambient connection:

v.vE =1fv, v’ + 1L,V (3.22)

where VB = H? V7 is a section of the ambient tractor bundle which is tangent to the submanifold.
The linear operator L; ;7 is well defined by this since both ¢*V and V satisfy the Leibniz rule. We
call the tractor Gauf$ formula.

The ambient tractor connection also induces a connection on the normal tractor bundle in the

obvious way:
VNN .= N4V, N5, (3.23)

where N4 is a section of M. Such N4 are of the form N4 £ (0,n% n.H¢), where n® € D(NX*[—1]).
As a tractor with zero in the top slot, it follows from that the middle slot of V{v N4 is
necessarily conformally invariant. But this exactly recovers the invariant connection on NX[—1]
discussed in Section (cf. Lemma[3.4). In summary, we have the following.

Proposition 3.7. The canonical isomorphism N¥[—1] S N preserves the invariant parallel trans-
ports defined on each bundle.

Essential to our direction in this article is that the tractor fundamental form may be captured
in several equivalent ways, the first of which we give here.
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Proposition 3.8. The tractor second fundamental form is given by
Lix? = NGV, I, (3.24)

or equivalently,
Lig? = -TIENEV,NE. (3.25)

Proof. Let N4 be a section of the normal tractor bundle A/. Note that HéN 4 = 0, and hence

0 =V;(ITANA) = (V,ITA)N 4 + TAV N4,

whence
MAV;No = —N,V,II8. (3.26)

As a consequence of the tractor Gaufl formula ,
NpLigBVvE = NgV, VP = — VBV, Np = -VETIEV,;Np
for all VE e T'(£K), and therefore
NpLig? = —TIEV;Np = —TI$TIAV,N,4.
Combining this with , we have that
NpLix? = % (=N4V,11E) = NpIIENEV,IIE,

and this must hold for any section NZ of the normal tractor bundle, whence the result follows.
Substituting Hé = 5é — Né into (3.24]) and using that 5("} is parallel for the tractor connection then
gives the second equality of the proposition. ]

It will be convenient to have a second (equivalent) object that we also term the tractor second
fundamental form, which we denote by L and which is the section of T*Y @ N+* @ N defined by

Lia? =L ,5. (3.27)

Since Hil is an isomorphism 7*¥ — A1, this is clearly equivalent to the original tractor second
fundamental form (and eventually when there is no possibility of confusion we will simply denote
both objects by ). The gain of using L is that both its tractor indices are ambient tractor indices,
as we shall see shortly.

It is useful to observe that L. arises naturally in several different ways.

Lemma 3.9. The B index of NGV;N4 is tangential, i.e., for any NB € T(N'B), one has
A
NENGV;N4 = 0.

Proof. Let NB € T(N'B). We calculate V;(N4N?) in two different ways. On the one hand, one
has
Vi(NgNP) = v, N4,

while on the other
Vi(NANB) = N4V, NP + NBY,N4.
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Hence
NBV, N4 = V;N4 - N4V, N5,

Thus
NBNGV, N4 = NG (V;N4 = N4V,;NB) = NGV, N4 —N§V,NB = 0.

O]

Thus we see that the HIC( of equation (3.25]) is merely identifying the already tangential C' index
with a submanifold tractor index. Thus we see the following.

Proposition 3.10. B
L;p" = —NGV,N4. (3.28)

Proof. By equation (3.25) we have
Lig¢ = —NIETENGV,NS = — (68 — NB)NG VN2,
and so the result follows from the previous lemma. ]

Remark 3.11. Note that ([3.28)) is equivalent to L;;¢ = —H?NgviNg. A similar argument shows
that
I1;;¢ = —II'NSV,Ny.

Lemma 3.12. Let Ng be the mormal tractor projector. Then
VNG = —L;“p — L%, (3.29)

where B B
L:%p = h°PhapLip”.

Proof. Noting that NG = NgNg, we have
ViNG = NAVNG + NGV;N4.

The second term is exactly the negative of equation (3.28]). Using that the normal projector is
symmetric, the first term is clearly a transpose of this (so for example on this term, the C' index is
tangential). O

We now use this result to compute an explicit formula for the tractor second fundamental form.
We first prove a lemma about the tractor normal projector.

Lemma 3.13. For a choice of scale, the tractor normal projector is given by
NG =N¢ZAZY + H'ZAXp + Hy XA Z% + (H'H) X4 X p (3.30)

where the H€ is the mean curvature vector in the chosen scale.
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Proof. The right-hand side of (3.30)) defines a conformally invariant bundle map £4 — ANB which
moreover acts as the identity on sections of N4 as defined in following (3.15). The latter is easily
verified by working in a minimal scale.

Alternatively, (3.30) follows immediately from (3.17]), as in any scale
N& = N&Zb + H X,
and N4 = NZANG. O
Theorem 3.14. The tractor second fundamental form is given by

L, = I1,;°2% 2° + N¢ (P* — V;H") X, ZC

R (3.31)
+ H I1;° 75X + Hy (P — V;H") X, X°.

Remark 3.15. Note that, in particular, L = 0 if and only if II = 0 and NS (P — V;H®) =
0. For later use when computing examples it is useful to note that also that N¢ (P,* — V;H*) =
L5 NeRic;” — Vi HE.

Proof. We compute NgVZN é using the formula from Lemma We then apply H? , the formula
for which is given in Theorem [3.5] to complete the proof.

First, differentiating (3.30]) gives
ViNA = (ViN§)ZAZY + N& (=P X4 — giaY4) 20 + Ng 22 (—P;’XB - nyB)
+ (ViHYZ} X g + H* (—Pio X — giY) Xp + H Z Zp;
+ (ViH)XAZY + H,Z2 2% + H, X4 (—PibXB - HfYB)
+ 2(HIVH) X Xp + HIH, Z Xp + HH X Zp;
= (ViN§ + Hgy, + H)I1Y) 22 Z},
+ (—Nsz +ViHy + Hdegib> XAzb
+ (—Nf;Pf +ViH® + Hdﬂdng) ZAX g
+ (~H" P — HyP! + 2H"ViH, ) X*Xp,
where, recall, g;, means 11%gy,. From (3.30)), it follows that
NGZA =NezZ8 + H,X® and NGX4 =0.
Hence
NGV,Na = (ViN¢ + Hegy, + HyI1?) (N2 28 + H,XC) 7,
+ (-NERY + ViH® + HyHME) (N3 2C + HoXC) Xp
= (NSV,N¢ + Hgy) 2525 + NS (V,H® — Pi*) XpZC
+ H, (V;N¢ + H%gyy)) 25X + H, (V;H* — P,*) XpX©.
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All that remains is to apply the tangential tractor projector II%. According to (3.18),
n5zy =17 and NI¥Xp =X, (3.32)
Therefore

MING VNG =I5 (NSViNG + Hegy) 2925 + NG (ViH" — P) X, 28
+ H, I8 (ViN§ + Hgy) 23X + H, (ViH® — P) X, X©
= (—II;; + Hegy;) 7% 2° + NS (V;H* — P*) X ;. Z¢
+ H, (~II;; + Hgy) Z5, X + H, (V;H* — P,%) X; X°
= 11,752 + N (V,H* — P*) X;Z€
— HI1,;°Z,X° + H, (V,H* — P*) X; X€.

where we note that H,V;N? = H.N;V;N7, and we have used the observation from Remark to
replace TISNGV;Ng with —I7;;°.

Finally, applying H]f to equation shows that L; ;¢ is equal to negative of the above, from
which the claim in the theorem follows. O

3.4 Conformal submanifolds of dimension m > 3

For submanifold dimensions m = 3 the conformal structure of ¥ determines a tractor connection D
and compatible tractor metric hy, on 7 3. We refer to these as the intrinsic tractor connection and
metric for 7. We continue to use abstract indices from the later part of the alphabet to distinguish
submanifold objects from their ambient analogues, so, e.g., we write hy as hrj € F(g(IJ)).

Unlike the Riemannian case, the checked connection is not exactly the intrinsic tractor connec-
tion.

Proposition 3.16. Along a submanifold 3 of dimension m = 3 the checked and intrinsic tractor
connections are related by
ViV =Div' + 57 VE, (3.33)

with D; the intrinsic submanifold tractor connection and

o 1 .
SiJk =2 (Pij —Dpi; + HCIIZ‘]'C + QHCHCQU) ZEJXK]’ (334)

where 11;; := H?H?Pab is the restriction of the ambient Schouten tensor to the submanifold and p;;
1s the intrinsic Schouten tensor.

Proof. Fix metrics g € ¢ and gy € cx such that t*¢g = gx to facilitate calculation. The inverse
isomorphism of (3.18) is the map N+ — TX given by the matrix

1 0 0
—H® II¢ 0. (3.35)
—3H°H, 0 1
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Using this we have

1 0 0 1 0 0 o
ViV = 0 I 0]V; —H* 1% 0 p*
—3H°H, —H, 1 | \-3H°H. 0 1 p
1 0 0 o
= 0 I 0]|Vi| wb—Hb
—1H°H, -H, 1 p—3HH.o
1 0 0 Vio — 1;
=\ 0 I o V(e Hbf) + Pto +11% (p — §HH,0)
_§HCHc —H, 1 Vil(p— §HCHCU) — P (Mc - HCU)
1 O 0 VZ‘O' — M
= 0 I 0| Vi’ —(ViH")o — H'V0 + Plo +1IYp — SII’H°H, .0
—1H°H, —H, 1 Vip — (HV;H,)o — AH°H.V;0 — Pjcpi® + P, H
' Vio — i
_ I (V;p — (V;HY)o — H'V ;0 + Po + 11%p — $11°HH.0)
| =3HH(Vio — i) — Hy (Vipb — (ViH")o — H'V,0 + Po + 12p — LIV HH, o)

+Vip — (HV;H.)o — SHH.N 0 — Piop® + Py Heo

Using the agreement of the intrinsic Levi-Civita connection with the pullback of the ambient
Levi-Civita connection then gives

v, V7

= DlTE

where

- Dio = .
Dy + Pio +6lp— IV, H®) o — 16/ H°H,.o
Dip — Picp® + SH Hop; — HyVip®
. o Do .
Dy + pido + 6 p— (=117, — 6] Hy)H 0 — 36/ H°H.o + (P — pif)o
Dip = picpt® + SHHopy — Hy(IL ;% + gi H)p? + (P — pi?)1i?
0

Dz’U - Hi . ) S b 1 gre y
Dip — picp® _ (pij iy + HyITt + %Hbegij) i
o 0 0 0 o
Wi+ | F 0 o)W
p 0 —=Fj 0/ \p
. 1
Fij i= Py —pij + HyIl;;® + iHbegij. (3.36)
]

We call the tensor F;; given in the Fialkow tensor (since this quantity seems to have
appeared first in the work of Fialkow [51], cf. [87, 112]). Since the checked connection, the intrinsic
tractor connection and Z{ ;XK are all conformally invariant, it follows that the Fialkow tensor is
also conformally invariant. Proposition tells us that the Fialkow tensor measures the failure of
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the induced tractor connection V to be normal (in the sense of corresponding to a normal Cartan
connection [22]).

There is an alternative formula for the Fialkow tensor which is manifestly conformally invariant.
To derive it, one substitutes the Weyl-Schouten decomposition of the ambient and intrinsic Riemann
tensors into the Gaufl formula, and then applies the map

1 T
Tijr = ——5 (Tikjk “3m-n% (3.37)

2 -1)
to both sides (to take the “submanifold Schouten” part). After writing the second fundamental
form as II;; + g;jH® and rearranging, one finds that the Fialkow tensor (3.36]) is equal to

1 T dT™ >
ij

1% Nachd
Fij = <WicdeCd 4 gbedT T

.
o(m—1) 9 I ke

2m —1)? (3.38)

m — 2

All objects on the right-hand side are conformally invariant. Since the Fialkow tensor has already
been observed to be conformally invariant, it it sufficient to establish the formula in a minimal
scale. Let g € ¢ be a minimal scale and g5, = t*¢g. Thus II = 1. Applying the submanifold and
ambient Weyl-Schouten decompositions in the Gauss equation we obtain

Wikt + Pirgji — Pirgi — Pagik + Pjgik = Wijki + pikGjt — Pjk9it — Pugjk + Pj1Gik
+ gea 1 " — Geall);“I;1,"

where W denotes the full projection H?H?HszWabcd of the ambient Weyl curvature, P;; =
H?H?Pab, and w;j; denotes the submanifold intrinsic Weyl tensor. Applying the map Tjji; —

1 T, .k Th™

5 |\ Tk — mgij) on both sides of the above display we get

Wac Nu.chd o o f]klcf] de
m—2 (WicdeCd T 2??;@—1) 9ij> + Bij = pij + m1—2 (I—rikcﬂjkc - 2(m—]f§ gij) ’

noting that gleikﬂ = gleszWicjd =—N CdWide since Wpeq is trace free, and similarly WiF =
W,oaN®Ne, The result then follows from (3.36)).

Remark 3.17. In the m = 2 case (X, ex) we do not have an (intrinsicaly defined) Schouten tensor
for a metric gs, € cx, and the map (3.37)) does not make sense. Crossing off the ﬁ in (3.37)) does

not help, as when m = 2 the map Tjji — Tikjk — %gw s easily seen to be equal to the zero
map. Since in two dimensions the space of algebraic curvature tensors is one dimensional, when
m = 2 the Gauss equation is equivalent to the scalar equation given by its “double trace.” If K
denotes the Gaussian curvature of gy, € ¢y then contracting the Gauss equation twice gives

- 1 o 1
K =g" Py + 5Wijng™g" + 2| H* — S|, (3.39)

We’ll make use of this in Section below when we show that the conformal embedding of (¥, cx)
into (M, c) determines a canonical (extrinsically defined) Schouten tensor p;j for a metric gs, € cx.
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Recall that along ¥ we may decompose the ambient standard tractor bundle 7 = TM as
Tle=TES®N. If VeTI(T|g) is given by (VT, V1) with respect to this decomposition, then by
(3.22), (3.23), (3.33) and the fact that V preserves the ambient tractor metric we have

o= (0 ) (V)

for any X € X(X), where L(X)7 is the transpose of L(X) with respect to the ambient tractor
metric (cf. Proposition . We therefore write

. D+S LT
sy (P ) (3.41)

on Ty = TE@®N. We will most often make use of the above display in the case where V is a
section of 7% (V1 = 0). In this case we obtain the following form of the tractor Gauf formula:

VivE =15 (DiVY + 87 V) + Li PV K, (3.42)

for any section V of TX. For a section

By computing the curvature of +*Q2 of +*V using the decomposition one may easily
obtain conformal tractor analogues of the Riemannian Gauss, Codazzi, and Ricci equations (cf. the
derivation of the Riemannian Gauf}-Codazzi-Ricci equations in Section :

Qijxr = Q%5kL + 2DES 1k + 2S5 rmS) ™M L+ 2L L Lijixe (3.43)
Q" NG = 2D, + 2L “S ;7% 1 (3.44)
Qi BNGNE = V€ p — 2¢5 Ly C Ly, (3.45)

where indices between bars are exempt from antisymmetrisation, Q7 = Q¢ DH%H? for Q50D
the curvature of the pullback connection, and OV is the curvature of the normal tractor connection,
characterised by

OV CpNP = (VNN — vV N, (3.46)
for any section N of the normal tractor bundle N.

Remark 3.18. In [16] Burstall and Calderbank define a ‘Mébius reduction’ to be a rank (m + 2)
subbundle V of T|x. containing the rank m + 1 subbundle spanned by the canonical tractor XA and
its covariant derivatives in submanifold tangential directions (with respect to the ambient tractor
connection coupled with the Levi-Civita connection of some, equivalently any, metric g € ¢). One
then decomposes the ambient tractor connection along ¥ as (using notation similar to the above)

VV _]LVT
oo (T )

on Tlg = V@OV,. The definition of ‘Mébius reduction’ implies that LV ; ;¢ X7 = 0 and LY ; ;¢ X¢ =

0, so that there is a well-defined projection Uvijc = LVUCZJJZCC of]L.K,C. Burstall and Calderbank
then define the unique ‘canonical Mébius reduction’ Vy by imposing an algebraic normalisation

condition on
0 _(LV)T
LY 0
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similar to the algebraic normalisation condition imposed on the curvature of the normal Car-
tan/tractor connection [27, [22], see Section 9.3 of [16]. This algebraic normalisation condition
amounts to the requirement that gijﬂvijc = 0. Since by Theorem the tractor second funda-
mental form has invariant projection IOIijc = ]LiJCZJ‘-]ZCC the ‘canonical Mébius reduction’ Vs is the
same as the orthogonal complement N of the normal tractor bundle and hence gives an abstract
characterization of this bundle (equivalently of the normal tractor bundle N'). Our approach differs
in that we explicitly construct N, and then further explicitly identify N with the intrinsic tractor
bundle TX.

3.5 Low-dimensional conformal submanifolds

In this section we treat submanifolds ¥ such that dim(X) is m = 1 or m = 2. Note that Section
has no restriction on the submanifold dimension m. However in Section just above, we
make the restriction to m = 3 to discuss the intrinsic tractor connection then available. When
m = 1,2 the conformal structure on X is not sufficient to determine a canonical connection on 7.
The purpose of this section is to observe that in these dimensions the conformal embedding does
determine distinguished tractor connections on 7%, and then using this we get analogues of the
results from Section [3.4]

First recall that Equation defines a connection V on the bundle 7% also when dim ¥ is
1 or 2.

Riemannian manifolds of dimension 1 or 2 are not naturally equipped with an (intrinsically de-
termined) Schouten tensor. However conformal submanifolds of these dimensions inherit a natural
replacement, as follows. First recall that for submanifolds of dimension at least 3, the difference
tractor of is equivalent to the Fialkow tensor of the submanifold according to expressions (3.34
and . In dimensions 1 and 2, we will, in essence, turn this around and use the formula (3.36
to determine a submanifold Schouten tensor (for a given gy, € ¢x). In these dimensions all terms in
are well defined, as usual, except the submanifold Schouten p;; and the Fialkow tensor F;;.
Note that fixing one of these two determines the other via . Moreover, from the conformal
transformation formulae of the terms in , it follows that any natural conformally invariant
choice of F;; determines a submanifold tensor p;; € S?T*Y that transforms conformally according
to . From a conformal geometry point of view it makes sense to define F;; first (in a con-
formally invariant fashion) and view the definition of the Schouten tensor p;; of a metric gs, € cx
as a consequence of this. Such a Schouten tensor p;; then yields a conformally invariant tractor
connection D on TX (in a choice of scale) according to the usual formula, namely

o Dio — pi
Di | pj ) = | Dinj + pijo + gijp | (3.47)
p Dip — pijp’

where D on the right-hand side is the intrinsic Levi-Civita connection. Equivalently the tractor
connection is determined by formula (3.33]) with

SiJK = ZEjZfJXK]-

Thus it remains to specify an invariant F;;, or equivalently a p;; that transforms according to
(2.10). Recall that in all dimensions we have the conformally invariant tractor connection V on
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TX. It is given by

Dio — p; ' '
v = | D + <pij + HyIT;3% + %HCHC6§> o+6p|, (3.48)
D;p— (PZJ + Hbffijb + %Hbegij) Mj

where we have computed using a choice of ambient scale ¢ € ¢, and V/ £ (o, 1, p). Note that
although the terms P;; and H® appearing on the right hand side in the above display depend on
the extension g € ¢ of gx, the right hand side itself does not (by the conformal invariance of the
V and the fact that gy is sufficient to determine the tractor bundle splitting); in particular, the
quantity Pj; + Hbe ijb + %HbH bgij is independent of the extension g of gs.. Moreover, from the
conformal invariance of V it can be shown that P + Hbe ijb + %HbH bgij transforms in the same
way as a Schouten tensor when gy, is rescaled conformally. In particular, if we define

o 1
Dij 1= (PU + HbIIijb + 2Hbegij> — ]:ija (3.49)

for any (decreed to be) conformally invariant Fi; € T'(Eqj)), pi; depends only on gs (and the
conformal embedding of ¥ in (M, ¢)), (3.36]) holds, and p;; has conformal transformation

~ 1
Pij = pij — DiTj + ;Y5 — igikaTk. (3.50)

This formula is also easily checked directly. When such a choice of submanifold Schouten tensor
has been made we will denote its trace by

7:=g"pij. (3.51)
Then under conformal change
1= D;T" + (1 — E)TZTZ (352)
In dimension 1 we will simply set F;; := 0. Thus given any submanifold scale g5 and any
extension g € ¢ one has
1
pij = Pij + §Hbegija (3.53)

since, for a curve, the trace-free second fundamental form is trivially zero. In this case, of course,
Pij = J9ij Where j := gijpij. Note that the extension g € ¢ can be chosen such that H® = 0 and
then one simply has p;; := F;;.

In dimension 2 we shall set F{;;, = 0. We are not free to set gt Fi;j equal to zero, though, as
we require that our corresponding Schouten tensor (for gs; € cx) satisfy

R0 = 290iDj) — 291[iPj)k- (3.54)

(This condition on p;; is natural by analogy with higher dimensions, but also from the point of view
of Cartan geometry/tractor calculus. Specifically, requiring is equivalent to requiring that
the submanifold tractor connection D be normal, in the sense of [22]; this is ultimately because it
amounts to vanishing of the “middle slot” of the curvature of the tractor connection D, the slot
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where the Weyl curvature sits in dimensions four and higher, as can be seen by an easy calculation

using (3.47).) Equation (3.54) normalizes the trace of p;;, and hence of F;j;. Indeed, (3.54) is

equivalent to the requirement that the trace 7 = g% pij equals the Gaussian curvature of gs:

g 1 ..
7 =9"pij = ig” Rlclg]?Z =K, (3.55)

where K = K9% is viewed as as section of £[—2]|y; in the natural way. With the trace of p;;
normalized in this way, the trace of F;; is therefore given by (tracing (3.36]) or (3.49))):

Using the (twice contracted) Gauss equation (3.39) for K we have, equivalently,

- 1 1 o 1 - 1 P
g“Fij = §|U|2 — |H? - §Wijklgmg]l = §|U|2 - §Wijk19m9ﬂ- (3.57)
Writing the submanifold total trace Wijklgikgﬂ of the ambient Weyl curvature as tr2:*W the
Fialkow tensor for m = 2 is therefore defined to be

L2 3
Fi=1 (|ﬂ| tr2 4 W) gij. (3.58)

The Schouten tensor p;; of gs; defined by ([3.49) then satisfies (3.54).
With the conventions we have just established for m = 2, the curvature of the tractor connection

D is then given by
QiEjKL = —QCiij[KZL]k’

where ¢;ji := 2D[;pj)- This should be compared with (2.20) in the three dimensional case where
the Weyl tensor term vanishes. Note that, while in three and higher dimensions the Cotton tensor
is trace free, since we are in two dimensions the tensor c¢;j;, can be written as

1
Cijk = 5 €ijCk

where ¢, = €7 ciji and hence c;ji is determined by its trace
- jk_} ) = D1 — DIip..
Cijkg" = 261] = Ly) Pij-

In the 2-dimensional case, the choice of p;; for each scale (with the trace part normalized by setting
gt pi; to be the Gau8 curvature) is equivalent to a choice of Mobius structure on X in the sense
of [18]. The invariant c;j;, which we refer to as the Cotton tensor in this setting, is precisely the
curvature of this Mdbius structure and vanishes if and only if ¥ (with the Mdbius structure just
defined) is locally equivalent to the conformal Mé&bius sphere (i.e. comes from a system of local
coordinates on ¥ related by Md&bius transformations); see [I8] for more details. Note that the
Mobius structure we have just defined on 2-dimensional submanifolds ¥ agrees with the notion of
induced conformal Mébius structure in [16].

In both dimensions 1 and 2 we then have that, in any scale g € ¢, and with g = g¢|ry, the
tractor connection on [TX],, is given by (3.47). We note that this formula exactly agrees with
the formula for the usual tractor connection, as defined by (but has p;; as defined here).
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This connection in turn defines a Thomas-D operator D : £[1] — T X via the usual BGG splitting
operator characterisation (see e.g. [26]), namely that, for any o € I'(£[1]), D;D;o must be 0 in the
top slot and be trace-free in the middle slot. Thus, in a scale g € ¢y, this takes the form

g
1
—Dgo & Dyo , (3.59)
m .
— - (¢ DiDy +j) 0

(cf. (2.12)). It follows at once that (as in higher dimensions m) any parallel standard tractor I is
necessarily in the image of 2. Moreover we have that, for any o € I'(€[1]), and on the set where
o is non-vanishing, the scale tractor

I := —Do
m
satisfies that 5 5
WLl = —=50% = —=49=
m m

where 79° = 502 is the (weight zero true) J-curvature for the scale gx;, and this is thus constant if I
is parallel. (E.g., for surfaces the scale tractor parallel being implies the corresponding metric has
constant Gauf} curvature.) So this fits with the situation in higher dimensions.

Finally observe that the Thomas-D formula evidently provides a conformally invariant
isomorphism

J2Ex[1]/S2T*S[1] = TX,

cf. (2.13)). Thus our description of the tractor bundle from the introduction still applies in dimen-
sions m = 1 and m = 2, where we identify 7% with N'*.

Remark 3.19. In dimension m = 1 parallel transport using (3.47)) is equivalent in an obvious way
to a third order linear ODE along the curve. In dimension m = 2 parallel tractors, with the top
slot o € T'(E[1]) non-vanishing, correspond to solutions of

D(iDj)oU + D(ij)o0 = 0 (3.60)

that also satisfy that the conformal invariant c;;7 = D;j — Dip;; is zero (if (3.60) alone holds
then following the usual prolongation argument one can easily show that I = %]D)KO' satisfies
D;I® = o(Dip;;—D;)) XX, cf. [£1), Section 3.4)); it follows from the above discussion that nontrivial
parallel tractors only exist when the Mdbius structure is locally flat, in which case they define a

metric of constant Gaussian curvature on the open dense set where o # 0.

3.6 Normal forms

Since dim N*¥ = d, A°N*¥. is a line bundle. Moreover, ¥ is oriented and it thus follows that there
is a unique section Ny, g,..a, of AYN*%[d] which is compatible with the orientations of ¥ and M,
and such that

NN oy = d

here by compatible with the orientations we mean that

) —
€drasam N Namiran = €aras-ans
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where €~ and € are the weighted volume forms for ¥ and M respectively. We call Ny a,..q , the
Riemannian normal form for the submanifold . It is not hard to show that this contains the
same data as the normal projector Nj. Indeed, one can obtain the latter from the former via
Ny = ﬁN““Q'“%NbaQ...ad, cf. Proposition @

This object also has a tractor analogue. Recall that the normal tractor bundle N'* is isomorphic
to N*%[1]. Thus it follows that, for any k such that 1 < k < codim¥, one has AFA™* =~ A¥N*S[k].

Explicitly, for ¥4, ay...a, € A¥N*%[k], the isomorphism is given by

aiaz-ay b ag-ag
VallJ,Q"'ak > Va1a2"'akZA1A2"'Ak + k . VbQQ"'akH XAlAQ"'Ak’ (3.61)

by taking the k-th exterior power of (3.15). (Note that in the case £ = 1 this map is simply
the map N*T'[1] — N* of (3.15)).) Invariance of this map may independently be checked via the
transformation formulae for the tractor form projectors and the mean curvature:

~ maiaz---ay s b ao-eay
Valil2"'akZA1A2--~Ak +k Vbag-nakH XAIAQ...Ak,

- wazar L ars azear
— Vasaan (Z350%, +h -T2, 50% )
b b al a- -
T (H ~Nb Y ) X, 2%

=y Za1a2"'ak
— Ya1a2-ap ™A Ag--- Ay

b b ao--a
8 (Vg B + Varazeoan T = Viayeoa No T ) X 527%
_ ailas--ay b ag---ay
- Va1a2"'akZA1A2"'Ak + k N VbGQ"'ak‘H XAlAQ"'Ak'

In particular, it follows that there is a distinguished section of the line bundle A?N*, where
d = codim, given by the image of the Riemannian normal form under this isomorphism. We write
Na, a,...a, for this section and call it the tractor normal form for the submanifold . From the
above isomorphism, one has

_ a1a2+--aq b az--ag
Nayagny = Na1a2"'adZA1A2---Ad +d - Npgy.ayH XAlAQ"'Ad’ (3.62)
and hence
A1A2~--Ad _ blbgmbd aiaz--aq A1A2---Ad
NayazngN = Najag-agN Lig, Kooty Loy ety
— Nala2...adNa1a2...ad
=d!,

since all other contractions of the X and Z projectors are zero, and where the indices of N41424a

have been raised with the tractor metric.
Given a local orthonormal basis {N}, ..., Nﬁ} for the normal tractor bundle, which may be
constructed from a local orthonormal basis of N*3[1], one sees that

dl- Niy - Nij=Ni A~ ANj, (3.63)

is clearly a section of A2N* and satisfies the above normalisation condition. If the chosen basis
is compatible with the orientation, then (3.63|) recovers the tractor normal form Ny, 4,..4,. By
construction one then has that

b _
€A Ag-Apga N NAm+3"'An+2 = €A1 Az Ant2s
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where € and € are the tractor volume forms of ¥ and M respectively.

Our task is now to relate the tractor normal form and its derivative to the other tractor ob-
jects introduced, namely, the tractor normal projector and the tractor second fundamental form.
These relationships will lay the foundation for the notion of distinguished submanifold that we will
introduce in the following chapter.

First, we express the tractor normal projector in terms of the normal tractor form. Note that
the normal tractor can be thought of as a “volume form” for the normal bundle. Recall that for
the volume form € on M we have the following identity

Galmakbk“mb"€b1-~~bkbk+1---bn =kl(n — k)!églll .- 5;:], (3.64)

which can be thought of as an index notation version of the standard identity *x = (—1)kn—F)

on k-forms (since it is equivalent to (n_lk !ebl"'b"—kcl...ck%eal'““kbl,.,bn_k = (_1)’6(”4@)5&11 .. .53:]).
Since the tractor metric is positive definite when restricted to A/, the same algebraic identity applies
to the tractor normal form, giving

A A
NAvABer-BiNg g gy, = KI(d — K)ING - NEH, (3.65)
for ke {1,...,d}. In particular, we have:
Proposition 3.20. The tractor projector Ng s equal to
1
A AB2--B
NB = WN 2 dNBBQ...Bd. (366)
Differentiating the formula obtained in the above display leads to a relationship between the
tractor second fundamental form and the derivative of the tractor normal form. An alternative
route to this is via the following lemma, which we record for completeness.

Lemma 3.21. The derivative of the tractor normal form expressed in the tractor projector notation
18

ViNa Ay, 1A, = [ViNalaz.--ad_lad +d- Nba2...ad_1adegml] o0z .
3.67
+d- [vi (Nbag...ad_ladH ) - Nalag...adﬂadpial] X 4, 200

Proof. Recall

. ajas--aq b as--ag
NA1A2~-~Ad = Nalag-uadZAlAQ...Ad +d- Nbag'“adH XAlAz---Ad'

Differentiating this,
ViNayayag14g = (VilNayaseag) L34, 04,
+ Novazeoag (= POX, 7% = -0 57 )
+d- Vv, (Nba2...ade) X\, %2
- Niyag 1 (i B34, — (4= 1) - 5,2W,, 220

_ ) b, a1a2:-aq
_ [vaam...adflad +d+ Nyageoay o, H gml] VA Y

+d- [vi <Nba2"'ad—1ade) - Na1a2"'ad—1adpia1] XA1?422.:-.~CX1’

where we use the fact that any terms where the 7 index is contracted into the normal form will
vanish, since ¢ is a tangential index. O
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3.7 The proof of Theorem [1.1

Here we give a proof of the equivalence of conditions 1-4 in Theorem This is fairly straight-
forward (in the end all four conditions are equivalent to normal bundle A being parallel). In
establishing the result, however, we will make some calculations which are of independent interest.
Henceforth we will only use indices to distinguish I and IL which (as sections of different bundles)
represent the same object, i.e. we will write ;4% = H;{l]Li 72 instead of .

Toward Theorem first observe that Proposition and Lemma together give equiv-
alence of 1 and 2 in that theorem. The following theorem shows that 1 implies 3.

Theorem 3.22. The derivative of the tractor normal form is given in terms of the tractor second
fundamental form by

ViNaAgeAgsag =~ Lipa,“Na, ay-n, ,1C- (3.68)
Proof. Recall that by (3.66]) we have
VNG = —L;p° — L;%5. (3.69)

In order to utilize the above formula we recall also that

1 A A
SN AN, g, = NN, (3.70)
Differentiating both sides of the above display we obtain that
1 1
E(VZN““ Ad)NBl...Bd + aNAl AdV,-NBI...Bd
A A
= —L;p, [AlNgz .. NBZ] — Np,ML;p, 42 'NBj] —...—Np, [AlNgz .- Lyp, A
A A
— Li[AlglNéi . "NBZ] — N, LA "NBZ] o NBl[AlNgi e LAd g

Note that, since L;g¢ is tangential in the second index and normal in the third, in the right
hand side of the above display the top line is proportional to N414d and has zero contraction
with NB1Ba_ whereas the bottom line is proportional to N B,.-B; and has zero contraction with
Na,...a,. Note also that NAl"'AdNAl...Ad = d! implies that NAl"'AdViNAl...Ad = 0. Contracting
the above display with Ny, ...4, therefore gives

A A A
viNBln-Bd = _LiBl 1NA132~~~Bd _LiBg 2NBlA2-~~Bd — e —]Lin dN3132...Ad

- _d ' Li[BdAdNBlBQN-Bd,l]Ad?
and the result follows by relabeling indices. O
We now invert the relationship between VNN and L to see that 3 implies 1 in Theorem

Theorem 3.23. The tractor second fundamental form is given in terms of the derivative of the
tractor normal form by
NCA2 g Npy, 4, = —(d—1)!-L;g°. (3.71)

Remark 3.24. The formula can be obtained from Theorem by contracting both sides of
with the tractor normal form on d — 1 indices and using (3.66|), but it is also easy to obtain
directly and so we do this below. One can also obtain from by taking the appropriate
product with a normal form and using for k=1.
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Proof. Recall from (3.66]) that NG = ﬁN CAz=AdNpy,..a,. Differentiating both sides of this

identity and using (3.29) on the left hand side we obtain that

1

—Lz‘BC - LiCB = m

((VZ‘NCAQ"'Ad)NBAQ...Ad + NCAT"AdViNBAQ...Ad) . (3.72)
Note that if we project to the normal tractor bundle in the index C in the above displayed equation,
then the left hand side becomes —IL; Y (the L;° 5 term projects to zero since L is tangential in the
second index). We'd like to see that one of the two terms on the right hand side also drops out when
we do this. To this end, note that since NAl'“AdViNAl...Ad = 0 it follows that if N{‘, e ,Nf are
normal tractor fields then NlA - -NjViNAI...Ad = 0. In particular, if N4 is a normal tractor field
then NCNBAQ“'AdViNCAQ...Ad = 0. In other words, (ViNCAQ“'Ad)NBAQ...Ad is tangential in the C'
index. Thus projecting to the normal tractor bundle in the index C' gives the result. O

Theorem follows easily from the above observations:

Proof of Theorem [1.1. As remarked above, the equivalence of 1 and 2 follows from Proposition [3.10
and Lemma The equivalence of 1 and 3 follows from Theorems [3.22] and [3.23] above. The
equivalence of 3 and 4 is a trivial consequence of the definition of the Hodge-* (see ), the fact
that the volume tractor (see ) is parallel, and that xx is & the identity. O

Remark 3.25. Many of the results concerning submanifold tractors that were derived in the above
sections used nothing more than a local orthonormal basis for the normal bundle and the Gaufs
formula. Since the normal tractor bundle is isomorphic to the usual normal bundle, and we have a
Gauf$ formula in both cases, such proofs of these results may be repeated mutatis mutandis for the
Riemannian objects to yield analogous statements and formulae; the one caveat being that one should
keep in mind that the connection V on TY induced from the ambient tractor connection differs in
general from the submanifold tractor connection D by when going from the Riemannian to
the conformal setting.

3.8 Submanifold invariants

We have seen above that trace-free second fundamental form arises from using the (ambient) tractor
connection acting on NV ‘é‘. More generally the tools we have developed can be used to proliferate
submanifold invariants in obvious ways. We sketch some routes.

Let us fix some submanifold ¥, as usual of dimension 1 < m < n — 1 and codimension d, in
a conformal manifold (M, c). Let us write D for the Thomas operator of the intrinsic conformal
structure (X, ¢). This is given by the formula except that we couple the tractor connection
V7= to the intrinsic Levi-Civita connection D; and replace n with m. Also in dimensions m = 1,2
we replace J with j as described in Section In fact it is straightforward to verify this formula
provides a conformally invariant operator if we couple the Levi-Civita connection to any
invariant connection on any vector bundle. (The key point is that verifying its conformal invariance
does not involve commuting any derivatives.) To exploit this observation, we will write D also for
the conformally invariant operator given by the same formula, but where the intrinsic Levi-Civita
connection is coupled to any invariant connection. In practice here, the latter will be the ambient
tractor connection as well as also the intrinsic tractor connection on 7.
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For example, along X2, ﬁBNg is well defined and conformally invariant, as is EAEBNS. Sim-
ilarly we may instead use the normal form Npg..r,. And this comes to the main point. The
collection

NF1~~~Fd> DENFlmFd, DCDENFlmFda DBDCDENFln-Fd, s

embeds the jets of the submanifold into sections of tractor bundles in a conformally invariant way,
up to any desired order. These objects can then be contracted or partially contracted to produce
non-linear invariants. For example
(D"D"N)(DcDpN)

is a non-trivial scalar conformal invariant of submanifolds for most dimensions m. Similarly (for
m > 4) we may form

—=CDEF /=~ — = =

w (DpDrNg)(DeDeNE),
where W is the W-tractor, as defined in [60], but for the intrinsic geometry of the submanifold
3. In the parlance of invariant theory such obvious complete contractions are called scalar Weyl
invariants [8]. A slightly more subtle construction uses the idea of quasi- Weyl invariants, as in
[60], but this will still proceed using the tools developed here. Indeed the results from [60] (for
conformal invariants) suggest it is likely that these techniques would, in a suitable sense, produce
almost all scalar invariants.

The construction of tensor-valued invariants is slightly more complicated, and involves ideas as
here plus the use of differential splitting operators that map (in a conformally invariant way) be-
tween tensor and tractor bundles (see, e.g., Theorem and in Section@. Some applications
of these for the construction of hypersurface invariants are given in [13].

4 Characterising and generalising mean curvature, and
applications

Our aim in this section is to show that the tractor formalism leads to natural generalizations of
the notions of mean curvature and various conditions on the mean curvature from the Riemannian
to the almost-Riemannian setting. The basic idea is that the mean curvature captures (and is
captured by) the relation of the scale tractor I of the Riemannian metric to the submanifold
tractor bundle, which gives a way of talking about mean curvature that generalizes immediately to
the almost-Riemannian setting. In particular, one gets a notion of “mean curvature tractor” that
is well-defined and smooth up to the conformal infinity.

To motivate this definition we begin with the Riemannian case. Note that for a given subman-
ifold ¥, in a Riemannian manifold (M, g), its mean curvature vector H® = %gijﬂfj e I'(NX[-2])
can equivalently be captured by the mean curvature tractor

HA := ¢NAH* e T(N)

via the isomorphism of Lemma where o € I'(£[1]) is the scale giving g, meaning ¢ = 0~ 2g.
With this terminology and notation, we can state the following result.

Proposition 4.1. Let ¥ be a submanifold in a Riemannian manifold (M,g). Then
HA = NAIP. (4.1)
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Proof. In the scale of the metric ¢ = 0~2g the scale tractor takes to form I* = oY 4 + pX4, for
some weight density p, or weight —1. So from formula (3.30)) in Lemma we see that N ‘é‘X B=0
and

NA{IP = cH Z2 + o(HH,) X 4. (4.2)

But, from (3.15)), this is exactly HA.
O

Thus minimal submanifolds, meaning those with H® = 0, are nicely captured by orthogonality

of the scale tractor to the normal tractors, as follows (as was known in the case of hypersurfaces
[64]).

Corollary 4.2. In a Riemannian manifold (M, g), let I denote the scale tractor of g. A submanifold
3., of dimension m, is minimal if and only if, one of the following equivalent conditions holds

1. IAN¥ =0 ;

2. I Ny, ayn, = 0;

3. Moy NA1A2Amsa] — ().
4. TeT(N?);

5. HAI4 = 0.

Remark 4.3. (i) Corollary[{.4 here generalizes Theorem 2 from [67], as a minimal 1-dimensional
submanifold in a Riemannian manifold is exactly a geodesic. (ii) Note also that the corollary shows
that for a minimal submanifold 3 the ambient scale tractor 14 can, along 32, be identified with a
section of the intrinsic tractor bundle TX via of Theorem .

It is natural to say that a Riemannian submanifold has constant mean curvature (CMC) if the
function

o?HH, e T(£[0]|s)

is constant on X, where o is the scale of the metric g used to calculate the mean curvature (the
reader is cautioned that this is only standard terminology for the case of hypersurfaces; in higher
codimension there are other possibilities for the definition of CMC). We will say that a ¥ has
parallel mean curvature if

ViH" =0,

or equivalently Vf‘(aH b) = 0; clearly this is stronger than the CMC condition. These notions are
also usefully captured by tractors.

Proposition 4.4. In a Riemannian manifold (M, g), let I denote the scale tractor of g. A sub-
manifold X:

e is CMC if and only if
NypIAI®, or equivalently, HAI,

18 constant along X;
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o has parallel mean curvature if and only if

vaHB =0, or equivalently, NgViHB = 0.

Proof. Continuing in notation and choices of the Proof of Proposition the first statement follows
by contracting I4 = cY4 4+ pX4 into ({#.2). The second is immediate from Lemma O

Remark 4.5. Note that if a submanifold X2 in (M, g) has parallel mean curvature, then it is CMC
as, in the scale of the metric g = 0 2g,

Vi(c?H*H,) = 20°HV} H,,.

The converse does not hold. For example in Euclidean 3-space a round 2-circle (say in the x — y-
plane) has is parallel mean curvature (and so is also CMC). But a regular spiral is CMC' (by dint
of its invariance under the obvious group action) but does not have parallel mean curvature.

Note that the stronger notion of parallel mean curvature

Vi(cH*) =0

implies CMC also. Thus |cH| = +/c?H%H, is constant and c H* = |oc H|n® for some a unit normal
along 3 that must be parallel. Such a parallel unit normal means that the acceleration of any curve
in X s orthogonal to 1, so the second fundamental form and H® are orthogonal to n. But the latter
obviously means H* = 0.

Part of the importance of Proposition Corollary and Proposition [4.4] is that in means
that these quantities and notions at once extend to the setting of almost-Riemannian manifolds (as
defined in Section [2.4]). For emphasis we make this a definition.

Definition 4.6. Let (M, ¢, I) be an almost-Riemannian manifold with degeneracy locus Z(o). We
say that an embedded submanifold ¥ of M is an almost-Riemannian submanifold of (M,c,I) if
Y\Z(0) is dense in ¥.. We say that such a submanifold ¥ is, respectively, CMC or has parallel
mean curvature (in the almost-Riemannian sense) if one of the conditions displayed in Proposition
holds. Similarly we say that it is minimal (in the almost-Riemannian sense) if any one of the
equivalent conditions of Corollary holds.

For an almost-Riemannian manifold (M, ¢, I), the zero locus Z(o), of o := X414, is (closed and)
nowhere dense. Thus, by continuity, the notions in the definition extend those on M\ Z(0), as in
the following proposition.

Proposition 4.7. Let (M, c,I) be an almost-Riemannian manifold and o := XAI4. Then an
almost-Riemannian submanifold 3 is minimal, CMC, or mean curvature parallel in the sense of
Deﬁnition if and only if satisfies the corresponding condition (in the non-generalised sense) on
M\Z(o) for the metric g := o~ 2g.

This perspective enables an easy recovery of the following result, which is well-known from
other perspectives.

Proposition 4.8. On a conformally compact manifold, any minimal submanifold that extends
smoothly to the boundary meets the boundary orthogonally.
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Proof. On a conformally compact manifold 0M = Z(o),
oy = (V90) Z2 — %AUXA, (4.3)
and V.o is nowhere-zero along the boundary. See Section Thus if ¥ meets dM then we have
IAN§ = N&V,o along X,
(using (3-30)) and so ¥ minimal, meaning I4 N3 = 0, implies N4V,0 = 0 and hence
NyVao = 0.
That is V40 (the conormal to the boundary 0M) is orthogonal to the normal projector of 3. [

Suppose now that (M, e, I) is an almost-Einstein manifold. If ¥ is minimal then, as observed
above, I 4 may be identified with a submanifold tractor. Since I4 is parallel for the standard tractor
connection, and I4 is a submanifold tractor, I4 is also parallel for the connection V:

Vily =119V, (T 1) = 119 V;14 = 0,

as defined in (3.21)). Therefore, from the decomposition (3.33)), one sees that I is parallel for the
submanifold tractor connection if, and only if, S;-] xkI% =0.
Choosing a background scale to split the tractor bundles, we have that

. A 1
S/ kI = Fy; (ZJJXK —ZiX J) (UYK 4 Veo 2K Z 2 (A o) XK>
n
=Fj (027 —Vigx’).
Recall that on almost-Einstein manifolds the 1-jet j'o can only vanishes at isolated points (see the

discussion of Section and references therein, for details). Therefore away from these points we
must have F;; = 0, and then also at those points by continuity. Thus we have the following result.

Proposition 4.9. Let > — M be a minimal almost-Riemannian submanifold of an almost-Finstein
manifold (M, ¢, I). Then o = XA, defines an almost-Einstein scale on X if, and only if, Fij =0.

By distinguished submanifolds are necessarily totally umbilic. Thus, in a Riemannian
manifold, if ¥ is distinguished and minimal then it is totally geodesic. This has a converse if the
Riemannian manifold is Einstein; a totally geodesic submanifold in an Einstein manifold is both
minimal and distinguished. Moreover, if we say that an almost-Riemannian submanifold in an
almost-Riemannian manifold is totally geodesic (in the almost-Riemannian sense) if it is minimal
(in the sense that N f IA = 0) and totally umbilic, then the proof generalises without change to the
almost-Einstein setting:

Proposition 4.10. Let (M,c,I) be an almost-Einstein manifold, and ¥ an almost-Riemannian
submanifold. If ¥ is totally geodesic (in the almost-Riemannian sense), then X is a distinguished
submanifold.
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Proof. We must show any of the equivalent conditions of Theorem That ¥ is minimal implies
that H? = 0 on X. Since also ¥ is totally umbilic it follows that on ¥\ Z (o) we have that it is totally
geodesic, and hence V; Ny q,...a;, = 0. The almost-Einstein condition implies that Nyq,...q dR-b =0
on M\Z(c), where we calculate in the scale of the metric g = 0~ 2g, with ¢ := X4I,. Combining
these observations and using formula we have that V;Ng, 4,..4, = 0 on M\Z(c). But then
by continuity V;Na, 4,..4, = 0 on X, as Z(o) is nowhere dense. ]

Thus if our ambient space is almost-Einstein, for submanifolds that totally geodesic (in the
generalised /almost-Riemannian sense) first integrals may be proliferated using Corollary (and
the theory to be developed in Section @ These conserved quantities will extend to/across singu-
larity sets of these geometries where they exist.

5 Distinguished submanifolds and conformal circular-
ity

We fix some notational conventions for this chapter. We will denote by + a smooth curve in a

conformal manifold (M, ¢). By this we will here mean a smooth, regular curve v : I — M (for some

interval I'). We will often identify v with its image and we typically assume that this an embedded

submanifold.

The symbols u® and a® will denote, respectively, the velocity and acceleration the curve 7,
so a® = u*V,ub. Note that the acceleration a’ depends on a choice of metric g € ¢ and is not
conformally invariant; it is easy to check that if § = Q2¢ then @® = a® — u u®Y? + 2u*Y ub, where
T, = Q2 'V,Q. We also define u := y/gaputub € T'(E[1]],). For some connection V, we will also use
the notation %, or % when the meaning is clear by context, to mean u*V,. The connection V may
be a Levi-Civita connection or the standard tractor connection; this should be unambiguous from
context. Sometimes we will prefer to work with weighted versions of the velocity and acceleration
vectors. These will be denoted by u® := u tu® € T'([-1]|,) and a’® := u°V.u’ € T(£[-2]|,)
respectively.

5.1 Background on conformal circles

A smooth curve 7 is said to be a (projectively parametrised) conformal circle if, with respect to
some (equivalently any) choice of g € ¢, its velocity and acceleration satisfy [6]

3
uVeab = u?u Pl + 3u~? (ueaf) a® — §u72 (aca®) u® — 2ucud Pqu®, (5.1)

where u? = u-u = u,u® here should be understood to be unweighted. Equation is a third order,
conformally invariant analog of the geodesic equation in Riemannian geometry and solutions of
are sometimes referred to as conformal geodesics [56]. As with the geodesic equation u°V u’ = 0,
equation can be broken up into its tangential and normal components along the curve and any
curve in M can be parametrized so that the tangential part of holds; such a parametrisation
is determined up to the action of PSL(2,R) and a curve with such a parametrisation is said to be
projectively parametrised [6]. (The existence of such a parametrisation, and likely the notion of
conformal circles also, goes back to Elie Cartan; see [29]. For early treatments of conformal circles,
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see [50], 56, O8, Q9] 103, 114, 115]. In the literature conformal circles are sometimes taken to be
parametrised by arclength with respect to chosen metric g rather than projectively parametrised,
and in this case they satisfy a slightly different equation; see, e.g. [I15, Chapter VII, §2].) Asking
only that the normal (to the curve) part of holds gives a notion of conformal circles that does
not depend on the parametrisation, and any such curve can be reparametrised so that holds.

Note that a geodesic for a metric g € ¢ need not be a conformal circle; indeed, this could not
be the case since any curve v in M is locally an affinely parametrised geodesic for some choice
of metric g € ¢ (see Remark . Following this line of thought, however, one sees as a direct
consequence of that a curve 7 is a projectively parametrized conformal circle if and only if
there is a metric ¢ € ¢ with respect to which + is an affinely parametrised geodesic and uP.b = 0
[6]. Note also that in the special case where one has an Einstein metric g in the conformal class it
follows from that geodesics for g are conformal circles, though the unit speed parametrization
is not a projective parametrization except in the Ricci flat case.

The notion of conformal circles arises naturally from the Cartan geometric description of con-
formal structures in dimensions n > 3 (and Mobius conformal structures in two dimensions) and
as such it is natural that they can be simply described using tractor calculus (the corresponding
calculus of associated bundles). With this in mind we now introduce some important tractor fields
associated to the curve 7. Recall that the canonical tractor X can be viewed as a section of £[1].
Hence v ' X% is an unweighted tractor along the curve and so the tractor covariant derivative of
u~'X B along the curve is well defined (conformally invariant). Following [7], we define

UB = u'v, (u_lXB) (5.2)
and
AP =V, UB, (5.3)
which we call the velocity and acceleration tractors respectively. Explicitly, one has
0
ub L u b (5.4)
—u3 (u.af)
and
—u
AB L utab — 2u=3 (uea®)ub ) (5.5)

—u3 (uc%) —u3a.a + 3u*5(ucac)2 —u P gucud
It is easily checked that
UBUp =1, UBAp =0 (5.6)

and that
AP Ap = 3u™2apa’ + 20 2upuVab — 6u~ (uea®)? + 2Pputu’. (5.7)

Consequently, a curve v : I — M is projectively parametrised if, and only if, ABAp = 0. It was
then shown in [7] that a projectively parametrised curve v : I — M is a conformal geodesic if, and
only if, o5
dv A
T 0. (5.8)
More recently, it was shown by the second and third named authors and Taghavi-Chabert [68]
that a curve + is an unparametrised conformal circle if, and only if, d¥ AP /dt is zero modulo UP

45



and X P; given the definitions of the velocity and acceleration tractors this is equivalent to saying
that ~ is an unparametrised conformal circle if, and only if, the 3-tractor

dABC .= 6y L XA B AC] (5.9)
is covariantly constant along «y. To see this we note the following: Firstly,
dABC — gue Xy Bz 4 gubacx4 zP ZzE (5.10)

where u® = v~ !u¢ (so that ggpu®u® = 1) and a® = u’Vyu® = v 2a¢ — u=*(upa®)uc. It is then easy
to show that

wV, HABC = ¢ (udvdac - udeC) wxzpzC7, (5.11)

On the other hand, the requirement that the normal (to the curve) part of (5.1) holds can be
written in terms of the weighted velocity and acceleration as [68, Lemma 4.9]

(udvda[b) ud = ude[buc], (5.12)

from which the claim follows.

Note that from one can easily check that ®4BCd g = 6, and that oo N4 = 0 for
any section N4 of the normal tractor bundle to 7 (the easiest way to see the latter is to compute
in a minimal scale g for 7, equivalently, a scale for which a® = 0). It follows that

apc = +Nizd, (5.13)

the Hodge star of the tractor normal form of v as a submanifold of M.
This observation combined with the result from [68] described in the preceding paragraph shows
that Theorem [L.2] follows from Theorem [1.1]

5.2 Weak conformal circularity of submanifolds

With this background established we begin our discussion of conformal circularity.

Definition 5.1. A submanifold ¥ is weakly conformally circular if any M-conformal circle, whose
2-jet at a point lies in ¥, remains in X. That is, if v is an M-conformal circle whose 2-jet at some
point p lies in ¥ (with v(0) = p), then ~(¢) € X for all ¢.

In the model case of the conformal sphere (see Section both conformal circles and to-
tally umbilic submanifolds arise (by ray projectivisation) from the intersections of suitable linear
subspaces with the forward null cone. Thus the conformal circles are all given by (transverse)
intersections of totally umbilic submanifolds, and a submanifold of the conformal sphere is weakly
conformally circular if and only if it is totally umbilic. It is natural to ask to what extent these
facts generalize to the curved setting. In this case one quickly sees that the condition of being
totally umbilic must be replaced with the stronger condition of being a distinguished submanifold
(in the conformally flat case for submanifolds of dimension greater than one the vanishing of I is
equivalent to the vanishing of the tractor second fundamental form L, but this is no longer true in
general conformal manifolds; see the examples in Section . If two distinguished submanifolds
intersect transversally in a 1-dimensional submanifold « then, since the wedge product of the two
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corresponding normal tractors must be parallel along 7, v must be a conformal circle (but, due to
the sparsity of distinguished submanifolds in the curved setting, conformal circles no longer arise
this way in general). An extension of this idea shows that a submanifold is weakly conformally
circular if, and only if, it is distinguished. That is the content of the following theorem.

Theorem 5.2. A submanifold ¥ < M is weakly conformally circular if, and only if, L;;¢ = 0.

Proof. A one dimensional submanifold ¥ is weakly conformally circular if, and only if, it is a
conformal circle. Thus in the one dimensional case the result follows immediately from Theorem
which states that a curve is a conformal circle if, and only if, when viewed as a submanifold
its tractor second fundamental form IL vanishes.

Suppose now that 3 has dimension at least 2, and is weakly conformally circular. Let v be an
M-conformal circle whose 2-jet at p € X lies in 3. Then by assumption « remains in . We need

to introduce some notation. Let
. E?A%-Ad be the normal form of ¥ — M,

° NZ;"];{.An_l be the normal form of v <— M, and

o NZ;;‘Z._. 4, be the normal form of v <> 3, where we are identifying the tractor bundle of ¥
142 m—1
with A+, and hence this form is a section of A™ 1T M|s.

First we note some important relations between these various normal forms. First, since the curve
v lies in the submanifold ¥, we have

A1B2+*Bm—1 znr8es M
N’yi)g ! A1Ag-Ag — 0. (514)
Second, by using the discussion surrounding equation (3.63)), one can easily show that
) YoM —M
NzhAwAm_l ANZ oA = NXlAzn-An_l‘ (5.15)
Finally, since ~ is an M-conformal circle, it follows from Theorem [I.2] that

i y—M o
U VzNA1A2-~~An_1 =0.

Therefore, using the above,

i ATV SoM Y= i ATO—M _
(U VZN[AlAQ"'Am—l) NAm"'An—l] + N[A1A2~--Am_1 (U vaAm...An_l]) =0,
and hence
iw Ao S M o> ) Ao yE—M =
(U VZN[A1A2"~Am71> NAm"'An—l] + N[A1A2...Am71 ( d-u'lia,_, ONAm--~An,2]AO> =0

by Theorem [3.22] where L is the tractor second fundamental form of 4. Since the downstairs
tractor index on L;4, 40 is “tangential to X" it is easy to see that the two terms on the left
hand side of the above displayed equation lie in complementary subspaces of the bundle of tractor
(n — 1)-forms (the first term is in the ideal generated by N>~ and the second term is in the
orthogonal complement to this ideal) and hence both terms must vanish. Thus, in particular,

Yo

j A YoM
[A1A2---Am,1ulLiAn—1 ON - = 0.

Am"'An72]A0 -
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Contracting the above display with sz MA" 2B (cf. the proof of Theorem } then gives

N[AlAQ"'Am—lljJZLiAnfl] - 07
which is equivalent to |
uw'Lig "I = 0, (5.16)

where II"™> is the projector onto the rank 3 tractor bundle of the 1-manifold ~, viewed as a
subbundle of the ambient tractor bundle along . Therefore it follows that

WL BUA =0,

where U4 is the velocity tractor of the curve (note that U4 may be viewed as a section of the
intrinsic 5tandard tractor bundle of «y; one can easily check this by Workmg in a minimal scale for
7, where upa® = 0). Using Theorem |3.14| we now see that, in particular, II; i€ uJ = 0. But the
above must hold for any M-conformal c1rcle ~, and hence II; sutyd = 0 for all u' € $(EY), whence
> is totally umbilic by polarization.

Since we have already seen that IQIZ-J-C = 0, it suffices to show that Nj (R-b — ViHb) = 0.
Returning to (5.16), if we contract this with Y4 (or 1Y, cf. (3:20)) this gives

uiNg<Pb VH")ZB+qu( —VHb)XB 0,

by Theorem since the other slots of I have already been shown to be zero. Since, again, this
must hold for all u* € T'(£") we obtain the result.
For the converse, let us consider a curve -y in X that satisfies

WViN D . =0 and  APAp=0 (5.17)
where we have used the connection V. Then,

—X Yes M
<u Vi b, 1) NYM =0

Suppose now that L;;¢ = 0. Then,

. E;)M =X i A E%M
<uVN[”AA2 )N NI A (—d.u]LiAn oNT “]AO):O,
and so
—M
WNiN a =0

That is, if v in ¥ satisfies and LL;;¢ = 0 then ~ is a conformal circle for (M, c). Now, it is
straightforward to check that a curve satisfying that is further projectively parametrised with
respect to the conformal structure on M (meaning its M-acceleration tractor satisfies AP Ap = 0)
is determined by its 2-jet in 3 at any point on its path. This follows because, by construction,
a projectively parametrised curve satisfying is characterised by a third order ordinary dif-
ferential equation in any local coordinate chart (analogous to how the (3, cy)-conformal circle
equation is equivalent to the requirement that the curve be X-projectively parametrised and satisfy
UiDiNX:S... 4,,_, = 0, and the (M, ¢)-conformal circle equation is equivalent to the requirement

that the curve be M-projectively parametrised and satisfy u*V, N A A2 A, = 0 cf. Remark
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below). Now, suppose L;;¢ = 0. Then, given any 2-jet of a curve in ¥, the corresponding
M-projectively parametrised solution of is also an M conformal circle. Moreover, since a
conformal circle in (M, ¢) is determined by its 2-jet at any point on its path, all conformal circles
corresponding to two jet initial data lying in X arise this way; in particular, all such curves lie in
3. That is, 3 is weakly conformally circular. O

Remark 5.3. Here we give a version of the proof that L; ;€ = 0 implies weak conformal circularity
that avoids the use of tractor calculus. (This is along the lines of a proof of a similar result in [9],
to an extent the tractor picture provides a conceptual basis for the idea.) For convenience, we work
in a minimal scale g. Rather than considering curves v in % solving we will consider the
curves v in 3 solving the “adapted conformal circle equation”

dPal
dt

o .3 . .
=u? Pl +3u? (ukak> al — §u72 (akak> ! — 2uFul Py, (5.18)

where as usual Py and Py denote the restriction of the ambient Schouten tensor to the intrinsic
tangent and cotangent bundles, and % denotes u' D; where D is the intrinsic Levi-Civita connection
for the pullback gy, of the ambient scale g. We say that v is an “adapted conformal circle” if it
satisfies this equation. (That equation 1s equivalent to should be clear from what
follows, but we do not need this for the argument given in this remark.) Note that equation
is a third order ODE on X, and therefore the initial value problem with given 2-jet initial data has
a unique solution on 3 for some interval centered at 0. This solution may also be viewed as a curve
in M, and one may ask whether it solves a related ODE there. Since the 2-jet of ~v is initially
tangential and L;;¢ = 0 implies in particular that fIijc = 0, it follows that in our minimal scale

H?uj = u?, H?aj =a’ and H? d];fj = dzzlb (the last two identities being consequences of the Gauss
formula with II = 0). Thus ura® = uea®, apa® = aca® and vFul Py = uCu?P.y. Moreover, Li;¢ =0
also implies (again for the minimal scale) that NgPib = 0, and thus one easily sees that, as a curve

i M, v satisfies

avab
dt

o 3
= u? <H?~uZPﬂ) + 3u"2 (uea®) ab — iu*Q (aca®) u® — 2ucul Pgu®

3
u? Pl + 3u7? (uea) a’ — iu_Q (aca®) u® — 2ucul Pgub,

which is exactly the (projectively parametrized) M -conformal circle equation. So ifL;is€ =0, and v
1s an adapted conformal circle, then it is an M -conformal circle, and by the uniqueness of solution
to an initial value problem, the curve -y, which lies in X, is the unique M -conformal circle with the
given initial conditions. Hence any M -conformal circle whose 2-jet at a point p € X is tangential
will remain in X, i.e. X is weakly conformally circular.

For his approach to submanifold circularity, Belgun [9] introduced a conformal invariant p €
[(T*¥ ® NX[-2]) given by

1
m—1

1€ = N¢ (R-b — V;H" + Djffijb) , (5.19)

when m # 1 and where the intrinsic Levi-Civita connection D is coupled to the normal connection

V1 (Belgun terms this the mized Schouten-Weyl tensor since the main term is the tangential-
normal part of the ambient Schouten tensor, which he calls the Schouten-Weyl tensor). In the

49



m = 1 case (i.e. when ¥ is a curve) Belgun defines u to be the conformal curvature of the curve X,
pi€ = Nj (Bb — ViHb) when m = 1. (5.20)

When dimX» = 1, IQIZ-]-C = 0, so that Nj (Bb — VZ-Hb) can be obtained from IL by an invariant
projection and therefore must be conformally invariant. The conformal invariance of y in the m # 1
case can be shown by direct calculation, or by substituting the Weyl-Schouten decomposition of
the ambient curvature tensor into the Codazzi equation to obtain [105]

1 .

From the above displayed formula it is also clear that 4 = 0 when X is a hypersurface (since
Wi 9NG = — ~ade“bN§ and the normal bundle has rank 1). In [9] Belgun characterises weakly

conformal circular submanifolds (termed weakly conformal geodesic in [9]) as those for which II=0
and p = 0. Inspecting (3.31]), in Theorem one sees immediately that this is equivalent to the
vanishing of L.

Proposition 5.4. Let ¥ < M be a submanifold in a conformal manifold with L;;€ its tractor
second fundamental form. Then L;;¢ = 0 if, and only if, II;;¢ = 0 and p;¢ = 0.

In fact the invariant p arises naturally from L. The projecting part of L. is necessarily invariant
and this is II. An obvious question is whether conversely L is then image of a natural linear
differential operator acting bij , in which case they would be equivalent. (For example as the tractor
curvature is the image of the Weyl curvature in dimensions at least 4.) This leads us to the following
lemma, which exhibits a conformally invariant differential operator between the relevant bundles:

Lemma 5.5. There is an invariant map M : SgT*E@NE S T*SRT*SQN. Written in tractor
projectors, this takes the form

. 1 )
Wi M(w)ijc :zwich(J]ZCC — mDJWijCXJZg

1

. ' (5.22)
+ Huw;;Z3 X9 — mHCDJMJ-CX X,

where again the intrinsic Levi-Civita connection D is coupled to the normal Levi-Civita connection
V+ when acting on w.

Proof. Given w;;¢ € T(SET*E @ NX), using (2.8) and (3.12)), one computes that
ﬁjwijc = Djwijc + (m — 1)Tjwijc — Tiwklcgkl = Djwijc + (m — 1)Tjwijc (5.23)

since w;;¢ is trace-free over the pair of indices (3, j).
Therefore, using the above together with equations (3.14)) and (2.15)), and that the X tractor
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is conformally invariant,
5 5C L mi e 50 F . enigC L s a8 oo sc

—wy® (2 +7X,) (28 +1.X°)
— Tl_ : (DIw;j® + (m — 1) Yw;;©) X (25 + LX)
+ (Hc — NgTd) wijc (Z§ + TjXJ) Xco
1

- (H - Ngrd) (Diwi© + (m — 1)YIw;;¢) X, XC
p—
1

= w7l 7C _
= wij 232, m_1

DjwijCXJZCC + (chijc — wichc + wz-jCTc) Z§Xc

1

1 TCDjwijc + cu,-chch — wijCTch
m —

1 . )
+ (—m — 1HCDJWZ']‘C — chijc"fj +
1 . , . .
—71 TCDJwijC + chichj — wich] T, + wichch) XJXC
m —
1

H.DIw;;°X ; X°,
which verifies the claimed conformal invariance of the operator M, ;7€ O
Asking whether L is the image of IT under M then immediately leads to the p invariant:
Theorem 5.6. The tensor u;¢ is equal to the projecting part of the tractor
Lis¢ — M(II);;€. (5.24)
In particular, ;¢ is a conformal invariant of the embedding.

Proof. By inspection, one sees that has zero in the Z§Zg slot (since ZJKZ]CDLZ»KD = Iolijc)
and hence projecting out the X ;Z¢ slot must yield a conformally invariant object. Such projection
is accomplished by contraction with Y/ Z¢,, and from equations (3.31]) and (5.22)) one sees that this
projection is equal to

1

Y7 Z¢ (LiJC - M(ff)uc> =Nj (B'b - ViHb) +— 1Djflijc, (5.25)
which is exactly u;¢ as defined in (5.19)) (since the ¢ index of DJ Vi i;¢ is already normal). O

In fact, the data (II i, 11i€) is equivalent to the tractor second fundamental form. We have
seen how to obtain II;;° and p;¢ from IL; ;€. For the reverse direction, note that L;;© may be
constructed from (II;;¢, 11;,°) according to

. . . 1 .
(Ifijc, wi€) — Ifich§Zg + (uic =1 DJI[Z‘]‘C) XJZCC
m —
(5.26)
. : 1 .
+ HCIIUCZ§XC + H,. (uic — TrL—lDJIIijC> XJXC.
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5.3 Strong conformal circularity

Unlike the situation for geodesics in Riemannian geometry, in conformal geometry if a submanifold
is weakly conformally circular the submanifold conformal circles need not be ambient conformal
circles. This leads to the following two stronger notions of conformal circularity.

Definition 5.7. Let X be a submanifold in a conformal manifold M. Then X is strongly conformally
circular if any projectively-parametrised Y-conformal circle is also a projectively-parametrised M-
conformal circle. For the cases of submanifolds of dimensions 1 and 2, recall that the intrinsic
conformal structure does not determine a conformal circle equation, however, the induced Mobius
structures defined in Section do determine a conformal circle equation (the usual conformal
circle equation with the Schouten tensor being as defined in Section , and that is the

notion we are using here.

Definition 5.8. Let X be a submanifold in a conformal manifold M. Then ¥ is conformally
circular if any unparametrised 3-conformal circle is also an unparametrised M-conformal circle.

Definition appears in [9], where the term strongly conformally geodesic is used. In the
following two theorems we characterise these two notions of conformal circularity in terms of the
basic tractor invariants I and S of the conformal submanifold 3. The first theorem below is
easily seen to be equivalent to [9, Theorem 5.4(3)], but we include proofs of both theorems for
completeness.

Theorem 5.9. Let X be a submanifold in a conformal manifold M. Then X is strongly conformally
circular if, and only if L;;¢ =0 and S;jc = 0 (i.e. Fij =0).

Theorem 5.10. Let X be a submanifold in a conformal manifold M. Then ¥ is conformally
circular if, and only if L;;¢ = 0 and S;jx o gijZfJXK] (i.e. Fij o gij).

Note that following our conventions for the Fialkow tensor in Section these results still hold
when X is a submanifold of dimension 2. The X-conformal circle equation is then the usual con-
formal circle equation (either the projectively parametrized equation or the parametrization-
independent weighted equation ) with the Schouten tensor defined in Section playing the
role of the usual Schouten tensor. For a 1-dimensional submanifold, weakly conformally circular
and strongly conformally circular are equivalent (and the Fialkow tensor is defined to be zero), so
in this case Theorems [5.9) and reduce to the fact that a conformal circle is characterized by
L=0.

Proof of Theorem[5.9. First suppose that ¥ is strongly conformally circular. Since ¥ is then also
weakly conformally circular, we must have L;;¢ = 0 by Theorem In particular, ¥ is totally
umbilic (II i7¢ = 0). Now, suppose that v is a projectively parametrised ¥-conformal circle with
initial data a given 2-jet at p € ¥. Then by assumption v is also an M-conformal circle with the
same initial data, now viewed as the 2-jet of a curve in M. Let g € ¢ be a minimal scale for X. The
curve v must satisfy the intrinsic and ambient versions of the conformal circle equation, namely

dPal 5 2 K ;3 o A koL g
il ~u'p? + 3u” (uka )aj — §u_ (aka )uj — 2u U pu? (5.27)
and b .
i u? - uPLb + 3u7? (uea) a’ — §u_2 (aca®) u® — 2uCud Pgu® (5.28)
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respectively. From the GauBl formula (3.5) and the fact that ¥ is totally geodesic with respect to
g, we have that ‘ . ‘ o '
al = u'vub = H?ulDiuJ + IIijbulu] = H?a”

and
d¥a® B pdPal
a7 odt’
where a/ = d];fj, i.e. the acceleration of the curve calculated intrinsically. Therefore, applying HZ

to (5.28) and subtracting (5.27)) from the result, we see that

uw? uF P — 0Pl Py? = - ukpkj — 2ukulpkluj,

where we have used that ngb = u, Hgab = a/, u.a® = upa® (which follows from the Gaufl
formula without the need for g to be a minimal scale since u® is tangent to the submanifold X),

and a‘a. = aFay, (since ¥ is totally geodesic with respect to g). Contracting the above display with
u; yields . ‘

u?- ujukij — 2kl Py - u? = u? - ujukpk] — 2uFulpy - u?,
and hence

(Pij - pij) uiuj = 0. (529)

Since II;;¢ = 0, the term in parentheses in the above display is exactly the Fialkow tensor F;;
from . Now, at any point p € X, any v € T2 can arise as the velocity of a conformal circle,
and hence must hold for all v’ € £. Hence Fi;j = 0. Together with our earlier observation
that strong conformal circularity implies weak conformal circularity, this establishes that L;;¢ = 0
and Sl JK = 0.

Conversely, suppose that L;;¢ = 0 and S;;x = 0. Let v be a projectively parametrized ¥-

D AJ
d df = 0. We must also

show that ~ satisfies the ambient (projectively parametrized) conformal circle equation.

For any parametrized curve in ¥, writing U for its velocity tractor, we see from explicit form of
the velocity tractor and the formula for the isomorphism H]f that UP = H? U’, where
again we use the tangentiality of u¢ together with the GauB formula to conclude that uc.a® = uga®.
Then applying the tractor Gauf3 formula shows that the ambient acceleration tractor is given

by

conformal circle. Then the intrinsic acceleration tractor A7 of ~ satisfies

dVUB
= 7
since . = 0 and S = 0. Similarly, it follows that

BdDUJ

AB il
St

=05 (W' DU’ + S/ kUX) + 'Ly, PU7 =TI — b,

dv AB - dP A7

a7 dt

So if moreover « satisfies d” A7 /dt = 0, then also d¥ AP /dt = 0. Finally, recall that the isomorphism
H{? is also metric-preserving, and so

ABAp=A"A; =0,

since AP = H?AJ and we assumed ~ is »-projectively parametrised. Thus, by the characteri-
sation from [7], v is a projectively-parametrised M-conformal circle, and therefore ¥ is strongly
conformally circular. O
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We next prove the parametrization-independent version of Theorem [5.9] namely Theorem
As this theorem is a statement about unparametrised conformal circles, we use the 3-tractor ®
(which equals the Hodge-star of the normal tractor form) discussed in Section

Proof of Theorem [5.10, First, suppose that ¥ is conformally circular, that is, every unparametrised
Y-conformal circle is an unparametrised M-conformal circle. Let v be a X-conformal circle. In the
previous proof, we observed that strong conformal circularity implies weak conformal circularity.
Parametrisation was not used at all in this part of the proof and hence we may employ the same
argument here. Thus L;;¢ = 0 by Theorem

As described in Section ~ determines an intrinsic 3-tractor ¢//% e VK] which satisfies
XU @KLl — 0 and ! D;¢!'’5 = 0, where X7 is the intrinsic canonical tractor and Dj is the intrinsic
tractor connection. Explicitly,

oK = 6yt x U AK]

with U7 and AX defined as in equations (5.2) and (5.3) respectively, using the intrinsic position
tractor and tractor connection.
On the other hand, viewing v as an ambient curve also defines a 3-tractor,

®ABC _ gy~ x A B ACT

where X4 is the ambient position tractor and UZ and A€ are the velocity and acceleration tractors
of v as a curve in (M, ¢) (note that while U = IIFUY, we are abusing notation slightly in that
the ambient acceleration tractor A® need not equal H%AK , as can be seen from the tractor Gaufl
formula). Since ¥ is conformally circular, v is an M-conformal circle and so ® must be parallel
along the curve, i.e. u*V,®48¢ = 0.

Fix a reference metric g € ¢. By the derivatives of the intrinsic and ambient 3-tractors
are

wi DK = 6 (uiDiak ~ ulplk> wxlz) 7,

and
wiv;ABC = ¢ (w‘viac - udec> w x4 zB 70,
respectively. Both of the above displays are zero and hence
0 = TAITLNE (W'V,@4PC¢) —u'D;¢! 7K
=6 [(uiDiak — ulPlk) — (uiDiak — ulplk)] qu[IZJJZé{]
K]

— —6u (Plk - plk> wxlz) 7K,

where we have used (3.32)) and the Gauf} formula in going from the first to second lines. It follows
that the antisymmetric part of u' (Plk — plk) u/ equals zero. Thus

d (Plk _plk) o u.
Since we have already seen that II ;7€ = 0, this means that
o 1

u' A =d (Plk — p* + H I, + QHCHC(Sf) ocuf.
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Now, since the (weighted) velocity of a X-conformal circle passing through a point p € ¥ can be
any unit vector of T,3[—1], it follows that Fi¥ must equal fd;-“ for some smooth weight —2 density
on X, and hence F;; = fgi;.

Conversely, suppose that L;;¢ = 0 and Fij = fgij for some —2 density on X, and let v be a X-
conformal circle. The ¥-conformal circle v determines an intrinsic 3-tractor ¢//% = 6u~ 1 XU {77 AK]
which is parallel along ~ for the intrinsic tractor connection. To show that v is an M-conformal
circle, we need to show that the ambient 3-tractor ®ABC = 6u 1 XIAUB AC] satisfies these same
properties. We show this by using the conditions on the tractor second fundamental form and the
difference tractor to relate the ambient X, U and A tractors to their intrinsic counterparts.

From the isomorphism of Theorem (cf. the proof of Theorem , it follows that X4 =
H‘I4X I'and UP = H? U’, where X! and U’ are the intrinsic submanifold canonical tractor and
velocity tractor of «y respectively. From the tractor Gauf§ formula (3.42)) we therefore have

AP = uiv,UP = uwiv,(Fu’)
— [uiDiUJ +u'fgi; (ZJjXK . Z};XJ) UK]
=15 (A7 —ufXx’)
=T7A7 —ufx?,
and
u'V;AY = uw'V(TIF A7) — ' Vi(uf X )
=5 (' D; A7 + ful(Z] X — Z; X7) AK)
— 'V (uf)XC —ufuz¢
=I5 (u'D; A7) — 2ufucZ8 + pX©, (5.30)

where we have collected all the terms in the bottom slot into p (the exact form of p will not be
important). Now, recall that UP = «'V;(u ' XP) and AP = «'V,;UP. Hence, using the skew-
symmetry,

WV BABC = iy, <6u_1X[AUBAC]) = 6u XTAUB (uiv; AD).

Substituting (5.30) for the derivative of the acceleration into the above it is easy to see that the
—2ufucZS + pX© terms drop out due to the skewing with X A and with UP (which is proportional
to ubZlf3 modulo the canonical tractor) and thus we obtain,

u'V; 08¢ = TG D 7K (5.31)
Finally, the right-hand side of (5.31) is zero, since 7 is a Y-conformal circle. Thus 7 is an M-

conformal circle. O

5.4 Examples

We collect here some elementary examples of distinguished submanifolds in conformal manifolds.

Example 5.11. (The Model Case.) Let (S™,¢) be the standard conformal sphere (additionally
endowed with its standard Mobius conformal structure if n = 2, which is induced by the standard
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embedding S%2 € R3). When m = dim ¥ > 1 the invariant p is given by , and hence is trivial
due to the vanishing of the ambient Weyl curvature (when m = dim ¥ = 1 this formula does not
apply and the vanishing of 1 characterizes conformal circles). Also, from the vanishing of the ambi-
ent Weyl curvature together with (3.38)) and (3.58) it follows that F;; = 0 for umbilic submanifolds.
Therefore, in the model case, the notions of strongly conformally circular, conformally circular, and
weakly conformally circular (i.e. distinguished) submanifolds are all equivalent; the distinguished
submanifolds of S™ are precisely the umbilic ones when m > 1 and conformal circles when m = 1.

Remark 5.12. The equivalence of all these conditions to I. = 0 in the model case leads to a very
simple proof of the classical characterisation of umbilic submanifolds in the sphere: The condition
L =0 on X < S™ implies that the tractor bundle of ¥ is parallel in the (flat) ambient tractor bundle
and hence corresponds to a fized subspace V of R"T 11 viewing S™ as the ray projectivisation of the
forward null cone C in R"*L1 it follows that ¥ must be a piece of the subsphere P, (V nCy) < S,
which corresponds to the intersection of S™ < R™ ! with an affine subspace of dimension dim ¥ +1.
The simplicity of this, and related arguments, is one of the reasons we believe the distinguished
submanifold condition should be seen as fundamental in conformal geometry.

Consideration of the model case leads us to ask whether the various notions of conformal
circularity defined above are independent in general. Note that when m = 1 umbilicity is a trivial
condition (satisfied by any curve) and the notions of strong, weak, and conformal circularity are
all equivalent to being a conformal circle. When m = 2 the notions of weak conformal circularity
and conformal circularity are equivalent (as we have required Flij), to be zero when defining the
induced Mé&bius structure on ¥). Also, note that when ¥ is a hypersurface (and n > 3) then the
invariant p is trivial, and hence being weakly conformally circular (distinguished) is equivalent to
being umbilic. Outside of these cases, however, these notions are distinct, as shown by the following
examples:

Example 5.13. (Extending (3, cy) with prescribed II, p1, and F.) Let (3,cx) be an m-
dimensional conformal manifold and M = ¥ x R? with d > 1 (or, more generally, let M be a rank
d vector bundle over ¥.). By considering the freedom in the 2-jet along ¥ of an arbitrary extension
g of gs € ey to M one can show that the geometric quantities I , i, and F can be freely prescribed
along ¥ by an appropriate choice of extension, where the trace free tensor T is trivially zero if
m = 1, u must be zero if d = 1 (unless m also equals 1 and M is taken to have a conformal Mébius
tructure) and F must be pure trace if m = 2 and zero if m = 1; see, [9, Theorem 4.22]. (Note
that when m > 2 our F is equivalent to the relative Schouten-Weyl tensor p in [9], but we when
m = 2 or 1 we do not assume that ¥ has its own Md&bius/Laplace structure, and hence we define
F differently from p in [9].)

It follows that when m > 2 and d > 1 being strongly conformally circular (II =0, =0and
F = 0) is a stronger notion than being conformally circular (I = 0, = 0 and F = 0), which
is itself a stronger notion than being weakly conformally circular (II = 0 and p = 0, equivalently,
L = 0), and this in turn is a stronger notion than being umbilic.

We can also easily see these inequivalences by considering simple examples.

Example 5.14. (A factor in a product of Einstein metrics.) If (M, g1) and (Ma, g2) are
Einstein manifolds and ¥ = M; x {p2} then ¥ is totally geodesic in the Riemannian product (M, g)
of My and M7y, hence II = 0. Moreover, since the Ricci curvature of the product metric is the sum
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of the Ricci curvatures of the factors it is readily seen that IV, lfPib = H?NbCPab = 0 (when computing
with respect to g), hence p = 0. Similarly, it follows that the Fialkow tensor must be pure trace
since (if m > 2) Fj; = P;j — pi; in the scale g and both P;; and p;; must be proportional to g;; (the
metric on ¥). However, since the formula for P;; involves both the ambient scalar curvature and the
ambient dimension, it will typically differ from p;;. For example, if ¥ = S™ x {p} in S™ x Sk with
m > 2 and k > 1 then it is readily checked that F = ¢, pgs. with ¢, 1, # 0. If m = 2 we find the
same result using the formula for F instead, since the Weyl curvature is readily computed in
terms of Kulkarni-Nomizu products of g; and gy from which one can easily check that tr? (*W # 0.
Thus, in these cases ¥ = S™ x {p} is conformally circular, but not strongly conformally circular.

It is possible to characterize the Einstein products for which the submanifolds of the form
M x {p2} and {p1} x My are strongly conformally circular. A special Einstein product is the
Riemannian product (M, g) of a pair of Einstein manifolds (M, g1) and (M, g2) with the property
that Ric9! = (n1 —1)Ag1 and Ric9? = —(ng —1)Ag2 for some constant A, where n; = dim M;, see e.g.
[64]. (The simplest example of such a product is S™ x H¢ with the standard product metric.) Given
a general product of (Mi,g1) and (Ma, go) with Ric9' = (ny — 1)\g1, a straightforward calculation
shows that a submanifold of the form M; x {p2} has F = 0 if and only if Ric?? = —(ny — 1)Aga.
Thus we have:

Theorem 5.15. Let (M, g) be a product of Einstein manifolds (M, g1) and (Ma, g2). The subman-
ifolds of the form M x {p2} (or, equivalently, those of the form {p1} x Ma) are strongly conformally
circular if and only if (M, g) is a special Einstein product.

On the other hand, a factor in a generic product will typically only be weakly conformally
circular:

Example 5.16. (A factor in a generic product.) Let (M,g) = (M, g1) x (Ma,g2) and
Y = Mj X pg, where m = dim ¥ > 2 and (M1, g1) is not Einstein. Then, ¥ is again totally geodesic
and by the product formula for the Ricci curvature one still has that NIfPib = H?NfPab = 0,
when computing with respect to g. Hence we have the conformally invariant conditions II =0 and
p# = 0. On the other hand, with respect to g we have F;; = P;; — p;; and this will not typically
be proportional to the metric g;; on Y. For a concrete example that is easy to compute, take,
say, M; = S? x S with the product metric and M = R% d > 1, with the Euclidean metric.
Let h denote the pullback of the round metric on S? to M; = S? x S and let df? denote the
pullback of the metric on S'. The Ricci curvature of g; = h + d6? on M is then h and the Ricci

curvature of My is zero. It follows that p = %h — %d@Q, but *P = 2(d+261£)JE3+2)h — 2(d+1§(d+2) d#? and

hence F = 1*P — p is never proportional to gs. = h + df?. Thus, ¥ is weakly conformally circular
(distinguished) but not conformally circular.

Similar examples can be found by considering factors in warped product metrics, or doubly
warped products, since these are conformal to Riemannian products. On the other hand, twisted
products are not typically conformal to a Riemannian product and give a new class of examples.
In what follows we will abuse notation by writing g; for the pullback 7g; of a metric on M; via
the projection to the ith factor m; : My x My — M;. Let (Mj,g1) and (Ms, g2) be Riemannian
manifolds. A doubly warped product metric on M = My x Ms is a metric of the form g = fog1 + f190,
where f; : M; — R, is a smooth function for ¢ = 1, 2; such a doubly warped product g is conformal
to the product metric § = g1 + g2, where g1 = fflgl and go = f{lgg. Hence the two natural
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foliations of a doubly warped product manifold are foliations by distinguished submanifolds (we
will call such foliations distinguished). If (M, g) is a warped product (fa = 1) then the fact that
these foliations are distinguished can also easily be seen by computing in the scale g, since the
submanifolds of the form M; x {ps} are totally geodesic, the submanifolds of the form {p;} x My
are umbilic with parallel mean curvature, and the mixed part of the Ricci tensor vanishes. For a
general doubly warped product, however, then fact that these foliations are distinguished is less
obvious from a Riemannian point of view since computing p or IL in the scale g becomes nontrivial:

Example 5.17. (A doubly warped product.) Let M = R* = R? x R? with the doubly warped
product metric
g = "3 (dx? + da3) + e*1 (da? + dx?).

We know that the two natural foliations of M are distinguished, but we wish to show this from
the point of view of the metric g. Consider, say, ¥ = R? x {(0,0)}. Clearly ¥ is umbilic. Indeed,
in the standard coordinates (x1,x2,x3,x4) the second fundamental form of ¥ is given in terms
of the Christoffel symbols by II;;¢ = T'¢; for i,j € {1,2} and ¢ € {3,4}, where I'};; = 0 and
F?’ij = —62“33_2””15” = —e_gxlgij for 4,7 € {1,2}. Thus, ¥ has mean curvature vector H = —e 27173,
Using that T''j3 = I'313 = 1 and I'?13 = I'*;3 = 0 it follows that Vo, H = 4e—273 83—26*2‘”3(61 +03) =
2e7230; — 2¢72%39,. A straightforward calculation also shows that Ricis = 2. Thus, from the
formula for p and the definition of the Schouten tensor, we compute that p1® = P;3 — V{H? =
%Ricf’ — V1 H? = e72%1 — 7221 = (), The other “mixed” components of the Schouten tensor and
the other components of V- H are all zero. Hence, 1 = 0 and ¥ is a distinguished submanifold.

As noted above, we can get away from examples that are conformal to products by considering
generic twisted products. Again let (M, g1) and (Ma,g2) be Riemannian manifolds. A doubly
twisted product metric on M = M; x My is a metric of the form g = hig1 + hogo, where h; :
My x My — R, is a smooth function for ¢ = 1, 2; such a doubly twisted product metric is clearly
conformal to the twisted product metric g1 + fgo, where f : My x My — Ry is given by ha/hi, but
such a metric is not typically conformally equivalent to a product metric on M7 x Ms. The conformal
structures arising from twisted products give rise to umbilic but not distinguished foliations:

Example 5.18. (A twisted product.) Let M = R* = R? x R? with the twisted product metric
g = da? + dad + ¥ (dad + dad)

and let ¥ = R? x {(a,b)}. Then ¥ is totally geodesic for g, and hence umbilic. Thus s is given by
the mixed part of the Schouten tensor. By the diagonal form of the metric, this is precisely half of
the mixed part of the Ricci tensor. But by a straightforward calculation we find that Ri3 = —1 # 0
and hence p1% # 0. Therefore ¥ is umbilic, but not distinguished.

In fact, the distinguished submanifold condition characterises precisely when a doubly twisted
product metric is conformal to a product metric. Since doubly twisted product are conformal to
twisted products, we need only consider the latter. One of the two natural foliations of a twisted
product manifold is distinguished if and only if both are, and this is equivalent to the twisted
product metric being a warped product and hence conformal to a product:

Theorem 5.19. Let (M, g1) and (Ma, g2) be Riemannian manifolds of dimension at least two,
: My x My — Ry a smooth function and g = g1 + fgo a twisted product metric on M = M; x Ms.
Then the following are equivalent:
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(i) The umbilic submanifolds My x {p2} are distinguished for every ps € Ma;
(ii) The umbilic submanifolds {p1} x My are distinguished for every p; € My;

(iii) The function f : My x My — Ry can be written as a product f = fi1fo of functions f; : M; —
R, i=12.

(iv) g is a warped product metric g1 + fi1ge for some metric ga conformal to g.
(v) g is conformal to a product metric g1 + go on My x M.

Proof. We first note that the equivalence of (iii) and (iv) is obvious, and that these clearly imply
(v). To see that (v) implies (iv) we note that if g1 + fg2 = A(g1 + g2) for some smooth function
A My x My — Ry, then (from g1 = Ag1) it follows that A must be independent of the M factor
and hence g = g1 + f1g2 where f; = A. From the discussion above we also know that (v) implies
(i) and (ii). To establish the result it is therefore enough to show that (i) implies (iii) and that (ii)
implies (iii).

Suppose (i) holds. Let n = dim M and n; = dim M;. For i = 1,2, let X; be a vector field on
M = M; x M tangent to the ith factor. Then the mixed-part of the Ricci tensor is given by (see,
e.g., [49])

RiC(Xl,XQ) = (1 - TlQ)XlXQ log(f).

But the submanifolds of the form M; x {p2} are totally geodesic in (M, g) and hence for these
submanifolds p is given by the mixed-part of the Schouten tensor, which (due to the diagonal form
of the metric with respect to the product decomposition M = Mj x My) is ﬁ times the mixed-part
of the Ricci tensor. Thus, since (i) holds we must have X; Xslog(f) = 0 for any pair of vector fields
X1, Xo, with X, tangent to the first factor and X, tangent to the second factor. It follows easily
that log(f) is the sum of a function on M; and a function on Ms, and hence (iii) holds.

Since the distinguished submanifold condition is conformally invariant, the fact that (ii) also
implies (iii) follows from the same argument we just used but now applied to the conformally related
metric f~1g; + g2 (with the roles of M; and My interchanged). This proves the result. O

The classical de Rham-Wu theorem states that a Riemannian manifold (M, g) possessing a pair
of complementary orthogonal totally geodesic foliations is locally a product Riemannian manifold,
and this holds globally if (M, g) is complete and simply connected. An analogue of this result for
twisted products is given in [102]: A Riemannian manifold (M, g) possessing a totally geodesic
foliation and a complementary orthogonal totally umbilic foliation is locally a twisted product
manifold. This result easily implies the following conformally invariant result: A Riemannian
manifold (M, g) possessing a pair of complementary orthogonal totally umbilic foliations is locally
a doubly twisted product manifold. To see this one merely rescales g to make one of the umbilic
foliations totally geodesic (which can always be done locally), and then applies the result of [102] to
conclude that the rescaled metric is a twisted product. Combining these observations with Theorem
we readily obtain the following conformal extension of the (local version) of the de Rham-Wu
theorem:

Theorem 5.20. A conformal manifold (M, c) is locally the conformal structure of a product man-
ifold if and only if (M, c) possesses a pair of complementary orthogonal foliations by distinguished
submanifolds.
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Remark 5.21. In fact, as can easily be seen from Theorem it suffices to know that one of
the foliations is distinguished and the other is umbilic (as it is then forced to be also distinguished).

The above considerations suggest that the “generic” umbilic hypersurface will not be distin-
guished. On the other hand, there are many situations in which the geometry of the ambient
manifold (M, g) forces any umbilic submanifold to be distinguished, as we will see below. Towards
this end, it is helpful to introduce Nomizu and Yano’s notion of extrinsic spheres: A submanifold
¥ in a Riemannian manifold (M, g) is called an extrinsic sphere if it is umbilic and has parallel
mean curvature vector (for the connection on the normal bundle). We then have the following easy
observation:

Theorem 5.22. An extrinsic sphere in an Einstein manifold is conformally distinguished.

Remark 5.23. If ¥ is an umbilic hypersurface in an Einstein manifold (M, g) then by contracting
the Codazzi equation one readily finds that ¥ has parallel mean curvature vector (equivalently,
constant mean curvature) [39,[91] and hence is an extrinsic sphere. Of course, umbilic hypersurfaces
are all distinguished so the above theorem teaches us nothing new in this case. On the other hand,
the fact that umbilic hypersurfaces are all distinguished, together with the definition of u, furnishes
an easy proof that an umbilic hypersurface in an Einstein manifold is an extrinsic sphere: in the
Einstein scale one finds that ;¢ = Vi H® (and u is zero).

Returning to Example we note that since (real) Riemannian space forms are conformally
flat it follows that any umbilic submanifold of a real space form is a distinguished submanifold.
The same holds for complex space forms (the simply connected examples of which are complex
projective spaces, complex Euclidean spaces and complex hyperbolic spaces):

Example 5.24. (Umbilic submanifolds in complex space forms.) An inspection of the
classification of umbilic submanifolds in complex space forms in [40] shows that all are extrinsic
spheres (counting totally geodesic submanifolds as extrinsic spheres). Hence, since complex space
forms are Einstein, every umbilic submanifold in a complex space form is conformally distinguished.

To be more concrete, we discuss the example of complex projective space in more detail and
compute the Fialkow tensor of the umbilic submanifolds:

Example 5.25. (Conformal circularity of umbilic submanifolds in CP".) Let (M,g) =
(CP", gps), where gpg is the Fubini-Study metric. Let J denote the complex structure on M
and let Jup = gacJ . With our conventions, the curvature tensor of g is guc9pd — Gadgve + JacTpd —
JadIpe +2JapJcq. The (real) Ricci tensor is Ric = (2n+2)g and the Schouten tensor is P = 2’:;:119. It
follows that the Weyl curvature is given by Wypeq = ﬁ(gacgbd— 9ad9ve) + JacTvd — JadTve +2JapJcd-
Following the classification in [40] the umbilic submanifolds are of three kinds. The first case is
when X is a totally geodesic CP™ in CP" (m < n). In this case one readily computes that the

Fialkow tensor is given by F = (& — mEL) g0 when m > 1 and it turns out that the same formula

2n—1 2m-—1
holds when m = 1 (since in the latter case the ambient Weyl curvature pulls back to ¥ = CP! as

Wiji = (=25 + 3)(gikgjt — gugjk) so that tr? *W = 125=L and F = =37~ gy = (F= — 2)gy).
So, a totally geodesic CP" in CP" is conformally circular, but not strongly conformally circular.
The second case is when 3 is a totally real and totally geodesic RP™ in CP" or a totally geodesic

RP™ inside of such an RP". The third case is when ¥ is an umbilic, but not totally geodesic, RP™
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in such a totally real and totally geodesic RP" (note that such an embedded RP" necessarily has
parallel mean curvature in RP" and in CP"); in this case the induced metric has constant sectional
curvature K > 1 and the mean curvature squared is given by |H|?> = K — 1 (when K = 1 we are
back in the second case). Interestingly, in either the second or the third case we find that when
dim X > 2 the Fialkow tensor is given by F = 47%292 (the dependence on the intrinsic sectional
curvature K of ¥ drops out). When dim ¥ = 2 in either the second or the third case the ambient
Weyl tensor pulls back to ¥ as Wi = Z;—EI(gikgﬂ — gigjk) so that tr2 W = 2;%1 and once
again finds that F = ﬁ gx. Hence for a totally real umbilic submanifold ¥ ¢ CP" (of dimension
at least two) the Fialkow tensor is universally given by F = ﬁgg. It follows that the umbilic

submanifolds of CP™ are all conformally circular, but none are strongly conformally circular.

Note that in the above example we have only described the conformally distinguished subman-
ifolds of CP" of dimension at least two. The 1-dimensional distinguished submanifolds in complex
projective spaces have been characterised in [I] (strictly speaking, the paper is concerned with
“Riemannian” circles in CP", but since the Fubini-Study metric gpg is Einstein these are precisely
the conformal circles of (CP", [grs]) parametrized by arclength with respect to grg); see also [45],
where the results of [I] are recovered for CP? using the first integrals arising from the conformal
Killing-Yano tensors on CP? (a construction which we generalise in Section @ below). The notion
of

Having discussed the umbilic submanifolds in complex space forms (K&hler manifolds with
constant holomorphic sectional curvature) it is natural to next consider the quaternionic Kéhler
analogues:

Example 5.26. (Umbilic submanifolds in quaternionic space forms.) Umbilic submanifolds
in quaternionic space forms are classified in [38], and all are extrinsic spheres (again, we are counting
totally geodesic submanifolds as extrinsic spheres). Since quaternionic space forms are Einstein, it
follows that every umbilic submanifold in a quaternionic space form is conformally distinguished.

Summarizing what we have learned from Examples [5.11] [5.24] and [5.26] we have the following
theorem:

Theorem 5.27. An umbilic submanifold in a real, complex or quarternionic space form is a con-
fomally distinguished submanifold.

The various kinds of space forms we discussed above were Einstein (and the umbilics were all
extrinsic spheres). Sasakian space forms, however, are typically only “n-Einstein” (meaning that
eigenvalues of the Ricci tensor in the horizontal and characteristic directions are two, possibly
different, constants). Nevertheless, in most cases the umbilic submanifolds are still forced to be
distinguished:

Example 5.28. (Umbilic submanifolds in Sasakian space forms.) Let (M, g) be a Sasakian
space form of dimension 2n+1 and ¢-sectional curvature c. Let £ denote the characteristic direction
of g and 7 the corresponding 1-form (the underlying contact form of the Sasakian structure). The
Ricci curvature of g is given by Ric = 3(n(c+3) + ¢ —1)g — 3(n + 1)(c — 1)n®n [11]. Given any
submanifold 3 of M we may decompose the characteristic direction & along ¥ as € = ' +&+, where
€7 is tangent and &1 is normal to ¥. Writing n and n* for the corresponding 1-forms, the mixed
part of the Schouten tensor is —Q(STJF_IH(C — D" ®nt, or —Q(STJF_II)(C — 1)’ @& when viewed as a
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normal bundle valued 1-form on 3. On the other hand, when ¥ is umbilic it is shown (by contracting
the Codazzi equation) in [12] that VL H = —i(c —1)nT ® &+, Combining these observations gives

— 4%(207;11)) n' ® &L, In the classification of umbilic
submanifolds in Sasakian space forms in [I2] there are four classes of examples. In classes (i)—(iii)
(c—1)n" ® &+ = 0; indeed, (i) corresponds precisely to the case when ' = 0 (¥ is everywhere
tangent to kern), (ii) to the case when &+ = 0 (¢ is tangent to ) and (iii) to the case when ¢ = 1
(in which case (M, g) is a real space form). Thus, umbilic submanifolds in classes (i)—(iii) are all
distinguished. Class (iv), on the other hand, corresponds precisely to those umbilic submanifolds
for which p # 0; it is shown in [I2] that these occur when ¢ < —3, equivalently, when ¢ has strictly

negative sectional curvatures in the ordinary Riemannian sense.

that, for an umbilic hypersurface in (M, g), pu =

In particular, we have:

Theorem 5.29. Let (M, g) be a Sasakian space form of ¢-sectional curvature ¢ > —3, then ev-
ery umbilic submanifold of (M, g) is conformally distinguished. When ¢ < —3 there are umbilic
subamnifolds in (M, g) that are not conformally distinguished.

We conclude with an example that motivated the definition and consideration of the invariants
L and F:

Example 5.30. (Conformal infinities of Poincaré-Einstein manifolds.) Let (M, g) be a
Poincaré-Einstein manifold with conformal infinity (3,cy). Then ¥ is a strongly conformally
circular submanifold in M. This follows from [63, Theorem 4.5] where it is shown that the tractor
bundle 7Y is parallel as a subbundle of the standard tractor bundle of M (which is equivalent to
L = 0) and the ambient tractor connection induces the standard submanifold tractor connection
on 7% (which is equivalent to 7 = 0). The key observation behind this result is that the scale
tractor I corresponding to the Einstein metric ¢ on M extends continuously to M to give the
normal tractor N4 to ¥ on ¥; the vanishing of L then immediately follows from the fact that 4
is parallel, and the fact that / = 0 can be seen from the fact that V,Vy I ¢ =0 (since from this
one can deduce that the induced tractor connection V on T is normal and therefore must agree
with the submanifold one).

One of our motivations for the consideration of I and F in the hypersurface case (in which case
L is equivalent to II) is that if (M, g) is a conformally compact manifold with conformal infinity
(3, ex) then the trace-free second fundamental form II of X represents the first order obstruction
to the existence of a (formal) Poincaré-Einstein metric on M in the conformal class of g, and F
represents the next order obstruction (recall that in the Poincaré-Einstein case one obtains that
IT = 0 from VoIB|s = 0 and that F = 0 from V,V,IC|s = 0); see [13] for further development of
this idea in the hypersurface case.

While we have given many examples above of distinguished submanifolds and of conformally
circular manifolds above, we are just as much interested in situations where these conditions fail (as
measured by the nontriviality of 7 and ). For hypersurfaces, we can interpret this failure either in
terms of the difference between intrinisic and ambient conformal circles or in terms of the failure to
be (formally) the conformal infinity of a Poincaré-Einstein metric to a given order. The conformal
circles interpretation of course holds in all codimensions, and it seems natural to ask whether these
invariants are also related to the possibility of realising a general codimension submanifold ¥ as a
zero locus associated to a (formally) parallel tractor field along 3. We will return to this idea in
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Section[7], after considering the interaction between distinguished submanifolds and parallel tractors
in Section [6l

6 First integrals

Here we show that a class of solutions to a very large collection of linear differential equations
provide first integrals for distinguished submanifolds. This provides a uniform framework which
generalises to submanifolds (of any proper codimension) the advance for conformal circles in [68].
In [68] it is explained in detail how the ideas there extend the usual construction of first integrals
for geodesics, using for example solutions of the Killing equation, Killing tensors, and Killing-Yano
tensors. So we do not repeat that here.

6.1 Review of relevant BGG theory

The class of equations that we interested are the so-called (conformal) first BGG equations. This
is a very large class of conformally invariant linear overdetermined PDE. It includes the conformal
Killing equation, more generally the conformal Killing tensors equations of any rank, the conformal
Killing-Yano equations. To understand this infinite class of equations we recall here some elements
of the BGG theory. To put this into context we first recall the homogeneous model for conformal
geometry, discussed in Section The model for oriented conformal geometries of Riemannian
signature is conformal n-sphere (S™, ¢) viewed as the ray projectivisation of the forward null cone
in (n + 2)-dimensional Minkowski space. The group G = SOg(n + 1,1) acts on the forward null
cone and descends to an action by conformal isometries of S”; the conformal n-sphere is therefore
naturally viewed as a homogeneous geometry on G/P =~ S™, for P an appropriate (parabolic)
subgroup of G. Again, see, e.g., [41} [63] for a more detailed discussion.

Generalising from the model case, it is well known that a conformal manifold (M, c) (of di-
mension n > 3) determines a canonical Cartan bundle and connection (the additional choice of a
Mobius structure is required for this in dimension n = 2). This consists of a P-principal bundle
G — M equipped with a canonical Cartan connection w which is a suitably equivariant g-valued
1-form that provides a total parallelisation of T'G. Here g denotes the Lie algebra of G. In the case
of the model, G = G and w is the Maurer-Cartan form.

For any representation U of P, one has a corresponding associated bundle G x p U. For example
it follows from the equivariance properties of w that the tangent bundle T'M can be identified with
G xp (g/p) where p is the Lie algebra of P, and the P action is induced from its adjoint action on
g.

The tractor bundles are the associated bundles W := G x p W where W is a linear representation
space of G (and hence also of P by restriction). On each of these the Cartan connection induces
a linear connection VY and this the tractor connection for the given bundle. In particular the
standard tractor bundle 7 is W := G xp R"*2, with R"*? denoting the defining representation
of G. From the latter (for example) the Cartan bundle G can be recovered as an adapted frame
bundle and, on this, the Cartan connection w can be recovered from the tractor connection, see
[22].

Now recall the bundle embedding (with k& = 2)

X:T*M — A*T < End(T),

63



where the tractor metric is used in the obvious way to identify elements of A>T with skew elements
of End(7T). Sections of End(7) act on tractor bundles in the obvious tensorial way and so, via
each respective X, we have a canonical action of T*M on any tractor bundle V and this induces a
sequence of invariant bundle maps

AT MY 5> AFIT*M VY, k=1,---,n+1. (6.1)

This is the (bundle version of the) Kostant codifferential for conformal geometry and satisfies
0* o 0* = 0; so it determines subquotient bundles Hy(M,V) := ker(0*)/im(7*) of the V-valued
tractor bundles A*T* M ® V.

Now, for each tractor bundle V = G xp V, with V irreducible for G, there is a canonical
differential BGG-sequence [28, [17],

HO%%ID_}: ...Dz;l H, .
Here Hy = Hi(M,V) and each DZV is a linear conformally invariant differential operator.

We are, in particular, interested in the operator DY = D(‘f , which defines an overdetermined
differential system. The parabolic subgroup P — G determines a filtration on V by P—invariant
subspaces. Denoting the largest proper filtration component by V? c V, it is straightforward to
show that Hy is the quotient V/VY. Here, W is the corresponding associated bundle for VY, and
we write m : V — Hy for the natural projection. We recall here the construction of the first BGG
operators DY, as summarised in [24], and also the definition of the special class of so called normal
solutions (cf. [93]) for these operators.

Theorem 6.1 ([24]). Let V be an irreducible G-representation and let V := G xp V. There is a
unique invariant differential operator L : Hy — V such that 7 o L is the identity map on Ho and
Vo L lies in ker(6*) ¢ T*M ® V. For o € T(Hy), DVo is given by projecting V(L(c)) to T'(H1),
i.e. DVo = n(V(L(0))).

Furthermore the bundle map © induces an injection from the space of parallel sections of V to
a subspace M(DY) of T'(Ho) which is contained in the kernel of the first BGG operator

DY : Ho — Hi . (6.2)
The operator L restricts to an isomorphism from M(DY) to the space of parallel tractors in T'(V).

The differential operator L : Hg — V, in the Theorem, is called a BGG splitting operator. We
sometimes denote this LY to emphasise the particular tractor bundle involved. Using the notation
and setting of the Theorem, we also use the following terminology:

Definition 6.2. Elements of the subspace M(DY) < I'(H,) are called normal solutions to the BGG
equation DYo = 0.

By definition normal solutions to are in 1-1 correspondence with parallel sections of the
corresponding tractor bundle V. On geometries which are conformally flat all solutions are normal,
and clearly there is dim(V)-parameter family of such normal solutions locally.

For the standard tractor bundle the corresponding first BGG equation is the equation

V(avb)od + P(ab)OO' =0, (6.3)
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on sections o € I'(£[1]), and all solutions are normal (on any conformal manifold admitting such
solutions). However, this is not typical. In general, for solutions o € I'(Hg) of DY (o) = 0, VL(0)
is given by curvature terms acting on L(o) (see, e.g., [20, 62, 66, 83]). Normal solutions, for
which these curvature terms necessarily annihilate L(o), often correspond to interesting geometric
conditions on the underlying manifold.

6.2 The First Integral Theorem

We work on an arbitrary conformal manifold (M",¢). Let ¥ be an embedded submanifold of
codimension d. Recall that ¥ determines its normal form Na,..a, € ['(AYN). This is parallel if
(and only if) ¥ is distinguished. Thus if the manifold (M", ¢) is equipped with a parallel tractor
S that can be contracted non-trivially into say mg copies of Nga,..4, to yield a function, then this
scalar is necessarily constant if 3 is distinguished. Thus we obtain a first integral for such ¥. In
general the parallel tractor S would not necessarily itself come from a G-irreducible representation,
but rather a tensor product of such. Thus we have the following result.

As earlier, view R"*2 as the defining representation for G := SO(h) =~ SO(p + 1,q + 1). Define

W(d) := AR"2 d=1,---,n—1.
For each d, this is also a representation space for G. Then we have:

Theorem 6.3. Let Vy,---,V;, be irreducible representation spaces of G, V; = G xp V;, and DVi,
i€ {l,---,k} the corresponding respective first BGG operators.
For each i € {1,--- ,k}, suppose that o; is a normal solution to the first BGG equation

DVig; = 0, (6.4)
and m; € Z=o. Then for each copy of the trivial G-representation R in
(@™W(d)) ® (@™ V1) ®- - ® (O™ Vy) (6.5)
there is a corresponding distinguished first integral for submanifolds of codimension d.

Proof. The proof is an easy consequence of the reasoning above. Otherwise the formal proof is a
trivial adaption of the proof of Theorem 6.1 in [68], which treats the case of curves. O

The theorem has used the normal form Ny, ...4, as the basis for producing first integrals. One can
equivalently use its Hodge dual Ny, ...,,.,, or the normal projector N ‘g, or any combination of
these, as by Theorem any of these are parallel for distinguished submanifolds.

Note that to apply of the Theorem for a given . we require normal solutions to k first
BGG equations. For case of curves, several examples are given in [68], as is also the explanation
of how this is linked to familiar first integrals for geodesics as obtained from Killing vectors and
Killing tensors (which are solutions of projective BGG equations). Given that resource we treat
just one example here.
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6.3 First integrals from a normal conformal Killing-Yano form

We give an example to show how this machinery yields conserved quantities for distinguished
submanifolds. It is easy to follow the ideas here to produce other examples, see [68] for the case of
m=1.

The space &g [ay.-ag][W] = Eay ® E[ag..ay)[w] is completely reducible under the action of O(g),
and has the decomposition

gal[a2~~~ad] [w] = 5[a1a2...ad] [w] ® 5{@1[a2-“ad]}0 [w] ® 5[(13...%] [w—2], (6.6)

where &4, [ay-aq]}, (W] consists of tensors sq,...a; € Eqy[ay-ay)[w] Which are, metric trace-free, com-
pletely skew on the indices az,...aq, and for which s[4, 0.0, = 0. A (d — 1)-form Kgy..ap €
L(Elag-aq)ld]) is said to be a conformal Killing-Yano form or simply conformal Killing form if it
satisfies

Vakayag = Par-aq T Gai[asVas--aq]s (6.7)
where ¢q,...ay € E[a;.aq)[d] a0d Vag...ay € E[ay...ay)[d — 2]. Equivalently,
V{a1ka2~--ad}0 =0, (6.8)

where the braces and subscript zero denote projection onto the middle factor of . This equation
can be checked to be conformally invariant, and is moreover a first BGG equation (which in this
context implies conformal invariance). Thus solutions to this equation correspond bijectively to a
class of sections of a certain tractor bundle. To understand this, we proceed as follows. For this
equation, it is shown in [66] that the corresponding tractor bundle is AYT, and it follows from the
formulae there that the BGG splitting operator L : Eq,...q][d] = Ea;...a,] is:

1 d—1
Varkagaa Z3 5, + — sV heagaa W oag a5,

n—d+2
1 b
— (n(d— 1)V Vipk

L(Kayeay) = Kageag¥ 4, %255 +

1 b b
azaglo = = g g ¥ ezl Y Fblagag] — Plao) kba3~--ad]> X gyt
(6.9)
The general theory immediately gives us the following.

Proposition 6.4. Let kg, ...ay_; € Eq;..a,_,1ld] be a normal solution to the conformal Killing-Yano
equation and X a distinguished submanifold of codimension d, with corresponding tractor normal
form Na,..a,. Let Ka,..a, := L(kqyeeay ,) € &1a,.-A,) be the image of kay..a,_, under the BGG
splitting operator L of (6.9). Then the scalar function

KAl...AdNAl"'Ad (6.10)
s constant along 2.

Remark 6.5. (i) Here d > 2, but the result still holds in the case where d = 1 of we understand
the hypothesis in this case to mean that o = k € E[1] satisfies the almost-FEinstein equation (6.3)
and take L to be the corresponding BGG splitting operator. (ii) Note that one can of course use xN
rather than N to construct conserved quantities, and in this case we obtain a conserved quantity
KAy Ao xN ALz Amt2 b en ka1 -ams:1 18 @ normal solution to the conformal Killing-Yano equation
(this is the approach used to construct first integrals for conformal circles in [68, Theorem 6.8]).
However, since the Hodge-x operator takes conformal Killing forms to conformal Killing forms, we
obtain the same first integrals this way.
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Proof. Since kg, ...q,;_, is a normal solution, we have that V;K4,...4, = 0. Moreover, since X is a dis-
tinguished submanifold, V;N4144 = ( by Theorem Hence the scalar quantity Ku,...4,N Ar--Aa
is constant. [

We show the non-triviality of the first integral quantity (6.10]) by calculating it directly. From
the explicit forms of K4,..4, and Ny, ...4,, we see that

Al"'Ad _ . chb1-bg_1 . ag-ag A1As--Ay
KAlAdN = d kal"'ad—lN HC YAlAQAdX bl"'bd—l

1 bibo-eb A1 Ag-A
+ d (valka2~-~ad) N Zillﬁz.fbﬁdzblllnf.bd ¢
1
= kayoeay NV H + p (Va kageoay) N2 (6.11)
which verifies non-triviality.
For the case of d = n — 1, meaning curves, it was seen in [68] that, for many examples,

normality of the BGG solution is actually not required in order to obtain a first integral. In the
general codimension case, however, when the BGG solution is not normal we may or may not obtain
a conserved quantity depending on the situation. The condition required for to give rise to
a conserved quantity is weaker than the normality of K, and depends on the submanifold ¥, which
we see as follows: If ¥ is distinguished then N4144 is parallel for the tractor connection and we
have

Vi (Kayooa, N 4) = (ViKayn,) N4

where Ky,..4, = L(k) for a general rank (d — 1) conformal Killing-Yano form k. Theorem 3.9
of [66] gives
(Ve—U)Ka,on, =0,

where V. is the standard tractor connection and W : £4,...4,] = &c[A,...4,] 15 defined by

1
P IT/’ e a1a2a3--+aq YWV asz--aq
\pC(KAlAQAg"'Ad) = —5 Wajaze kea3-~~adZA1A2A3...Ad + ¢ca3~~-ad A1 AgAs--Ay

2 (6.12)

as--aq
+ 5“2"'adXA1A2~--Ad’

where only the explicit form of the Z slot will be important. Therefore one has

Vi (KAIAQ...AdNAlAQ'"Ad) = (viKA1A2---Ad) NA1A2-Ag
= \I/i(KAlAZ...Ad)NAIAQ'"Ad

1 b1babs-++b ajazaz--a, A1AgA3--A
= _§Wa1a2i6kea3~~adN 1720370 ZAlljz23...%4de11[3253..?@ ¢
1
= — 5 WaraaiKeag ay N 19254, (6.13)
the vanishing of which is a weaker condition than normality.
To see that (6.13]) may indeed be zero or not zero when k is not normal, we consider the following

simple examples:

Example 6.6. (Non-normal BGG solutions and conserved quantities.) Let M = 52 x S2,
equipped with the standard product metric g and let g;, i = 1, 2, denote the pullback of the standard
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round metric on S? by the projection on the ith factor (so g = g1 +g¢2). Then the Weyl tensor of g is
given in terms of the Kulkarni-Nomizu products of g1 and g3 by W = %(gl ®gi—91® g2+ 92 @ g2)-
When the codimension d is 2 (so d — 1 = 1) the BGG solutions k appearing in are just the
conformal Killing fields of (M, [g]), of which there are many (e.g., the trivial lift of a Killing field of
one of the round S? factors). From the formula for the Weyl tensor it is easy to see that none of the
conformal Killing fields on (M, [g]) are normal (as the map k% — k®Wpq is injective). In this case,
given a distinguished submanifold ¥, the quantity in becomes simply —%Wabicch“b. From
the formula for W it is easy to see that this always gives zero in the case where X is S? x {p} or
{p} x S? for some p € S? (since then W; N = abechN“b = (). Thus, in these cases KapN AB
is a conserved quantity (i.e. is constant) along 3 for any conformal Killing vector field k. On the
other hand, if ¥ is the diagonal submanifold in M = S? x S§? then only for a subset of the conformal
killing fields do we obtain a conserved quantity in this way. To see this, let (p,p) € %, let X,Y
normal vectors to ¥ at (p,p) with projection on the first factor given by X,Y € T,5? respectively,
let Z be a tangent vector to ¥ at (p,p) with projection on the first factor given by Z € 1,52, and
let k be a conformal Killing vector field on M with components in the direction of the first and
second factors at (p, p) given by ki, ko € T,S?, respectively. Then, noting that X, Y and Z are all
determined by their components in the direction of the first factor, a straightforward calculation
shows that at (p,p), W(X,Y,Z, k) = (X, Z)((Y, k1) + Y, k2)) — Y, Z)({X, k1) + (X, k2)), where
{, ) denotes the round metric on S?. From this we see that KypN4P is constant along X when k&
is orthogonal to ¥ (i.e. when ko = —k; at each point (p,p) € 3) but not otherwise.

7 Distinguished submanifolds from curved orbits

In this section we show that distinguished submanifolds arise naturally as curved orbits, in the sense
of [26], in the presence of certain Cartan holonomy reductions of the conformal structure. We then
show (without using the curved orbit theory of [26]) that the same continues to hold under weaker
hypotheses. Before coming to the curved orbit theory result and its generalisation, however, we
prove Theorem as this will be needed in the discussion that follows.

7.1 Distinguished submanifolds via a moving incidence relation

Recall that a conformally embedded submanifold, of codimension d, determines the fundamental
and equivalent objects Nﬁ, Na,...a,, and *NA1=Am+2 and then we have Theorem For our
purposes, however, it is important to have a characterisation of distinguished submanifolds that
does not use an initial knowledge of these. Theorem gives us such a characterisation, which we
state more explicitly here:

Theorem 7.1. Let ¥ — M be a submanifold of codimension d in a conformal manifold (M, c).
Then Y. is distinguished if, and only if, there evists a nowhere-zero W a, a,...a, € D(AYT*|s) such
that \I/AIAQ...AdXAl =0 and VZ'\I/AlAQ...Ad = 0 along X.

Remark 7.2. From the proof we will see that such a tractor field ¥ must be a (locally) constant
multiple of the tractor normal form along X, and is therefore simple. This observation will become
relevant when we connect certain BGG solutions with distinguished submanifolds in Section [7.9
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Proof. If ¥ is distinguished, then by Theorem the tractor normal form is parallel in tangen-
tial directions. Moreover, it is clear from the definition of the tractor normal form that
NAIAQ...AdXAl = 0. Thus we may take W 4,...4, to be the tractor normal form.

Conversely, suppose that we have ¥ € F(Ad’T*|E) which satisfies W4, 4,...4 dXA1 = 0 and
ViV4,4,..4, = 0 along ¥. From , we know that, in a background scale, ¥ can be writ-
ten

\I/AlAQ...Ad = 0a2~--adYA1?422':ﬁixid + I/alag...adzzllﬁ;?zd

az--aq ag-ag

+ ¢a3---adWA1A2A3...Ad + paz"'adXA1A2~~-Ad'

But the condition \I/Al...AdXAl = ( together with implies that 04,...q; = 0 and ¢g;...q, = 0.
Moreover, if u! € T(£%), the incidence relation W4, 4,...4,X%1 = 0 together with the parallel
condition means that
0=u'V; (XMW g ay00,) = 0 ZMW A 4500,

S0 uiZZAI\IIAlAQ...Ad = 0 for all w € I'(T'Y). Expanding this, again using and the linear
independence of the X and Z projectors, one sees that vg qy..q,u* = 0 and pgy..q,u* = 0.
Since u’ was an arbitrary submanifold tangent vector, we conclude that v € (AYN*¥)[d] and
p € (A~IN*%)[d—2]. Thus in particular Varas--ay = fNajag--ay, Where Ng,gy...q, is the Riemannian
normal form of ¥ and f is a function on X.

Now note that, since V¥ is parallel, \IfAlAQ"'Ad\I/AlAZ...Ad is constant along .. On the other hand,

A1Az--A ajag---q, 2 pnTaiaz--a 2
PAAL A ) = My, fENSe N = 2,

and therefore the function f is locally constant and nowhere-zero. Thus on each connected com-
ponent of X, Vg, qy...q, is a constant multiple of the Riemannian normal form.

From equation (2.25)), we calculate

0= v’i‘lelAgmAd = (fviNalagn-ad + pag...adgml) Zjllaj;ﬁjd

(7.1)
+ (Vipagag = f - d- Noyageag BH) X 227%

Now, note that the same argument that yielded equation may be repeated replacing normal
tractors with normal vectors (as per Remark to give
ViNayayaqg = —=d - ifq,“Najag.oay y]e- (7.2)
Substituting this into gives that in particular
—f-d-1lijq,“Nayageay 1]c T Gifar Pas--ay_1ag] = 0- (7.3)

Contracting the above with g'® = H};gba1 allows us to express pg,..q, explicitly. Since the
expression I;q,“Ng,ay--ay ¢ 15 already skew in the indices aiasz - --aq—1 we have:

. 1 .
9" iay Nayar-ag_iJe = 79 (Ilia, “Neag---aq rag + ias Nayeeag 1ag +**+ + Hiay Nayage-ag_1c)
m

_ C
= HNeayeay 10,
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Similarly, since gi‘“pal...ad_1 =0,
iaq 1 iay
g gi[a1 Pas-aq] = gg (gia1 Pas-—aq — GiazParaz-aqg — " giadpa2~--ad_1a1)
m
= Epa?..ad.
Thus

_ aijaz---q, b ag---q,
U, dgedy = f Naragean L0579 4 f (d H Nba2...ad) X 0,20
= fNa Ay Ay

where N4, a,...4, is the tractor normal form.

Since the function f is locally constant and nowhere-zero, V; W4, 4,..4, = 0 implies that the
tractor normal form is parallel. Thus X satisfies ones of the equivalent conditions of Theorem [1.1
and is therefore a distinguished submanifold. O

Note that Theorem follows as the tractor Hodge-* operation ([2.27)) commutes with the tractor
covariant derivative.

7.2 Curved orbits and generalisations

The following result shows one way in which distinguished submanifolds arise as curved orbits, in
the sense of [26]. It generalises [68, Proposition 7.1]. Before stating the theorem we introduce
some terminology: we shall say that a tractor (or vector) Ka,...a, is timelike if KAl...AdKAl"'Ad is
negative, spacelike if this is positive and null if it is zero.

Theorem 7.3. Suppose kq,...q,_, 15 a normal solution of the conformal Killing form equation on
(M, c) such that the parallel tractor Ka,..a, = L(kgy..ay_,) is simple. Then the zero locus of
k is either empty, an isolated point, or a distinguished conformal submanifold of codimension d.
Moreover, writing Z(k) for this zero locus:

e if K is timelike, then Z(k) is necessarily empty;
e if K is null, Z(k) consists only of isolated points;

e if K is spacelike, then Z(k) is either empty or is a distinguished submanifold of codimension
d.

Remark 7.4. (i) In the proof we will observe that in all cases Z(k) = Z(X 2K). In particular,
fizing any metric g € ¢, when d > 1 we find that Z(k) = Z(K) where K := (kay..ay_y> Vkcag--ay_,)-
(ii) The result still holds in the d = 1 case if we take o = k to be an almost-FEinstein scale and
K = L(k) to be the corresponding scale tractor (cf. [63, [41] and Ezample[5.50).

Proof. Suppose kg, ...ay_; € E[q;..a,_,1ld] is a normal solution to (6.7) such that K = L(k) is simple.
Fix any metric g € ¢. Note that from equation , at a point where k = 0 we have

1
Ka,.a, K444 = @Ilcﬁll2 + 1, (7.4)
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where ¢g,a9-a; = V[alka?,,ad] and Vgy...q; = %V%cw“uw In particular, if K is timelike then &
clearly cannot have any zero and if K is null then at any zero of k¥ we must have Vk = 0 (moreover,
these results hold without needing the simplicity of K). Now, our goal is to apply the curved
orbit theory of [26], and to this end we note that from one sees that £k = 0 at the point

az-=-adq _

p e M if, and only if, X JK =0 mod X (note that a term of the form Va3...adXA0WAOA1A2__.Ad =
—ﬁuag...a X Ali&'::ﬁd is zero mod X). In particular, the condition k = 0 determines a P-type, in
the language of [26] and so Theorem 2.6 of that article applies. It will be more convenient, however,
to consider the simpler condition X 1K, which also determines a P-type. From one sees that
X 14K = 0 at some point p € M if, and only if, (kq,..ay, Vkecag--a,) = 0 at the point p, i.e. k =0
and v = 0 at the point p. Let K := X 1 K. From the preceding discussion, if K is timelike or null
then clearly Z(K) = Z(k) (without the need for K to be simple). On the other hand, in the case
when when K is spacelike, it is easily checked that & = 0 implies K = 0 due to the simplicity of K
(this fails when K is not simple); to see this one merely writes K at a point as a wedge product of
orthogonal spacelike tractor 1-forms I' A --- A I? and examines the resulting expression K to see
that K = 0 mod X only if K = 0 (since X is null); in this case the zero locus of k turns out to
be Z(oy,...,04) where 0; = X 1 I*. Thus, in all cases Z(k) = Z(K) and we can consider the zero
locus of K := X 4K instead of k. Apart from the distinguished submanifold property in the third
bullet point (which will follow afterward from Theorem Theorern by Theorem 2.6 of [26]
this reduces to an elementary consideration of the model case.

Recall that in the model case parallel tractors correspond to constant tensor fields on R™*2
and the canonical tractor X4 is identified with the position vector field of R™*?2 along C,. Hence,
in the model case, if K4,..4, is a parallel simple d-cotractor and X 1K is zero at some point p,
then X K is zero along a submanifold p, given as follows. The form K determines in R"*2 a
unique (m + 2)-plane through p (as usual m = n — d and (m + 2)-plane means a linear subspace
of that dimension) consisting of the vectors X4 in R"*2 that are in the nullity of Ka,..a,. The
submanifold is then the ray projectivisation of the intersection of this hyperplane with the null
quadric for the Minkowski signature inner product on R**2.

We now treat the three cases in the statement of the theorem by considering the distinct ways
that this hyperplane can intersect the null cone. First, if Ky,..4, is simple and timelike, then
non-zero vectors in the nullity of K4,...4, are spacelike. No non-zero vector in their span is null or
timelike. Therefore in this case the (m + 2)-plane has no intersection with C.. Thus the zero locus
Z(K) is empty (of course, we had already seen this). For the second case, note that if Ky, ...a, is
null, then, using the Minkowski signature, it follows that the simple d-tractor K can be obtained
as the exterior product of covectors that are spacelike except for exactly one which is null. Dually,
this implies that there is a collection of vectors which span the nullity (m + 2)-hyperplane that
consists of a single null vector and m + 1 spacelike vectors. Thus the hyperplane is tangent to
the null cone, and after ray projectivisation the intersection descends to an isolated point. Finally,
suppose that K4,...4, is spacelike. Then the hyperplane defined by vectors in the nullity of K4, ...,
can be spanned by one timelike vector and m + 1 spacelike vectors. Such an (m + 2)-plane meets
the null cone C. transversely, and hence, under ray projectivisation, will descend to a submanifold
Z(K) of S™ of codimension d. Now by Theorem 2.6 of [26] it then follows that on M the zero
locus of the simple d-tractor K will take the same form as on the model. Thus the three bullet
points follow from the analysis just done, of the corresponding cases on the model, save for the
very final statement that if Z(K) is nonempty and does not just consist of isolated points, then
the codimension d submanifold Z(K) is distinguished. But this follows from Theorem O
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We note that such simple parallel tractors K have arisen in the study of holonomy and gen-
eralisations of almost Einstein structures [5, 94, ©95]. In particular, in the presence of multi-
ple (independent) almost-Einstein scales o71,...,0q with scale tractors I'---I% such a simple
parallel tractor Ky,..4, is given by d!I[lA1 ---Iff‘d] and arises from the conformal Killing form
Kayraqg = Dlses, 8i80(8)05(1)Vay0g2)  * Vay05)- In this case, when K is spacelike one finds that
Z(K) = Z(o1,...,04), which was our motivation for considering this zero locus.

In the case of the model, meaning S™ with its usual conformal structure, all solutions to first
BGG equations are normal (and all cases arise in all codimensions d, which is the idea behind the
proof). Moreover, it is easily seen that, in this setting, the space of solutions to the conformal
Killing-Yano equation , of a given rank, is spanned by solutions k with L(k) satisfying the
conditions of the Theorem above. It is interesting and valuable to determine the extent to which
similar results hold in more general settings (see, e.g., [10, 43, 44, [53] for some related results in the
case of conformal Killing fields). The first and third bullet point of Theorem generalise quite
easily, as we see in the following proposition.

Proposition 7.5. Let kgy..ay_y € U'(E[q;.ay 41[d]) and Ka,..a, = L(kay..ay_,). Then
1. If K is timelike, then Z(k) is necessarily empty.

2. If K is spacelike and simple, and k satisfies (6.7)) along Z(k), then Z(k) is either empty or
1s a submanifold of codimension d.

3. If K is spacelike, simple, and satisfies VK = 0 at all points of Z(k), then Z(k) is either
empty or is a distinguished submanifold of codimension d.

Remark 7.6. As in Theorem above, firing any g € ¢, we find in all of the above cases that
Z(k) = Z(K) where K := (kay.ay_y> Vkecag-ay_,)-

Proof. From , , and it follows that any tractor d-form K satisfying X 1K = 0 at
p € M has KAI...AdKAl”'Ad = 0 at p. This proves 1.

We now consider 2. For convenience, we fix g € ¢ and use g to trivialise the density bundles.
Let I',...,I% be a collection of orthogonal spacelike tractor 1-forms such that K = I' A --- A I¢
and let o; = X 1 I' (which we think of as functions). It follows that k takes the form

o1w1 + -+ + oqwg (7.5)

where the w;, i = 1,--- ,d, are each simple (d — 1)-forms. Moreover, as argued in the proof of
Theorem above, from the simplicity of K we have that £ = 0 implies X 4K = 0 (again this is
comes from examinining the for K in terms of the spacelike tractors I',...,I% and using that X
is null to see that K = 0 mod X only if K = 0). It follows that Z(k) = Z(K) = Z(0o1,...,04),
where the last inequality follows from the expression for K in terms of I', ..., I% and their linear
independence. Since v = 0 when k = 0 and K is spacelike, it follows that ¢ # 0 at any point where
k = 0. From this and the formulae for ¢ and wy,...,wq in terms of the components of I',... I¢it
follows that the (d — 1)-forms wy,...,wy are linearly independent at any point where k& = 0 (and
hence in a neighborhood of Z(k)). Moreover, from the equation (6.7) we have that, along Z(k),

Vk = ¢. (7.6)
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The above display puts conditions on the o; and their relation to the w;. In particular one easily
concludes that, at each point in Z(k), the equation implies that {doy,--- ,dog} is a linearly
independent set. Thus from the constant rank theorem it follows that Z(K) is either empty or is
a submanifold of codimension d. This establishes 2.

Item 3 then follows from 2 together with Theorem since if VK = 0 at all points of Z(K)
then kg, ...q, , satisfies along Z(K). O

Proposition shows that in fact no hypothesis on k is needed for the first bullet point of
Theorem to hold, and that the third bullet point holds under much weaker hypotheses. In
particular, in the d = 2 case (where k is a conformal Killing vector field) Propositionshows that
normality is not required for the third bullet point to hold, since at points where k = 0 the prolonged
conformal Killing equation VK = k 1 reduces to VK = 0. For a simple example of non-normal
conformal Killing vector field that gives rise to a codimension 2 distinguished submanifold, consider
CP" equipped with the Fubini-Study metric: the 1-parameter family of maps [z9,21---,2,] —
[20, €21 - -+, e2,] corresponds to a Killing vector field that vanishes on the totally geodesic cpr!
given by {zp = 0}. One can also show that when d = 2 the second bullet point of Theorem
continues to hold without the assumption of normality. To see this, note that, fixing any ¢ € c,
the hypothesis that K is null implies that the components ¢ and v of K = L(k) are zero on Z(k).
Hence, at such points k and Vk vanish. But since K # 0 we must have V,V%k;, # 0 at such points
and it follows that any point of Z(k) is an essential point of k; see, e.g., [44, Theorem 3.4]. But such
essential points are isolated [I0] and hence the result follows. Thus the assumption of normality is
not required in Theorem [7.3] when d = 1 or d = 2 (cf. Remark [7.4{(ii) for the d = 1 case). We leave
it as an open question whether one can also drop the normality condition when d > 2.

Although one of the themes of this article has been that of distinguished submanifolds, we are
interested in developing conformal submanifold theory in general. From this point of view a key
message of this section is that it is natural for codimension d submanifolds to arise as the zero locus
of a weighted (d — 1)-form k, and that we can make geometric conclusions about this submanifold
by considering the behavior of the corresponding form tractor K along the submanifold. The results
above are highly suggestive of a holographic approach to higher codimension submanifold theory
generalising the approach of [4], [13], [70] [71], [72], [74], [73] from the hypersurface case, where the role
of the scale o and scale tractor I are played by a weighted form k and the corresponding tractor
form K, but we leave this to be taken up elsewhere.
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