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Abstract

For conformal geometries of Riemannian signature, we provide a comprehensive
and explicit treatment of the core local theory for embedded submanifolds of arbitrary
dimension. This is based in the conformal tractor calculus and includes a conformally
invariant Gauss formula leading to conformal versions of the Gauss, Codazzi, and Ricci
equations. It provides the tools for proliferating submanifold conformal invariants, as
well as for extending to conformally singular Riemannian manifolds the notions of mean
curvature and of minimal and CMC submanifolds.

A notion of distinguished submanifold is defined by asking the tractor second funda-
mental form to vanish. We show that for the case of curves this exactly characterises
conformal geodesics, also called conformal circles, while for hypersurfaces it is the
totally umbilic condition. For other codimensions, this unifying notion interpolates
between these extremes, and we prove that in all dimensions this coincides with the
submanifold being weakly conformally circular, meaning that ambient conformal cir-
cles remain in the submanifold. We prove that submanifolds are conformally circular,
meaning submanifold conformal circles coincide with ambient conformal circles, if and
only also a second conformal invariant also vanishes. We give a number of examples to
show that both situations occur commonly in familiar conformal structures.

We then provide a very general theory and construction of quantities that are
necessarily conserved along distinguished submanifolds. This first integral theory thus
vastly generalises the results available for conformal circles in [68]. We prove that any
normal solution to an equation from the class of first BGG equations yields such a
conserved quantity, and we show that it is easy to provide explicit formulae for these.

Finally we prove that the property of being distinguished is also captured by a type
of moving incidence relation and apply this to show that the distinguished submanifold
condition is forced for zero loci associated with solutions of certain natural geometric
partial differential equations.
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1 Introduction

Submanifolds are one of the fundamental objects of study in any class of differential geometric
structures. They play a crucial role in geometric analysis and a variety of other areas including
several complex variables, and the study of functional analytic inequalities. Their local theory
is essential for the study of many global questions in differential geometry. In the special case
of Riemannian geometry, submanifold theory is a classical area and the basic local theory is well
understood and is founded in the celebrated equations of Gauss, Codazzi, and Ricci, see, e.g.,
[90, 100].

Conformal manifolds pM, cq are structures where a smooth n manifold M is equipped not with
a metric, but rather with just an equivalence class of smooth metrics c, where g, pg P c means
that pg � e2ωg for some smooth function ω. There is currently a growing interest in the study of
conformal submanifolds, and conformally distinguished curves, including the relationships between
these objects [32, 37, 55, 76, 85, 87, 88, 96, 97]. Some of these developments have been inspired and
driven by the links to physics [54, 78], the discovery that there are higher dimensional analogues
of the classical Willmore energy and invariant [82, 70, 112, 75, 71, 76, 116], and the development
of a holographic approach to submanifolds (see [69, 71, 73]) that is an analogue of Fefferman and
Graham’s holographic approach to intrinsic conformal geometry as in [47, 48].

In the conformal setting there is no distinguished connection on the tangent bundle, so even
the local theory of submanifolds provides a challenge. Toward resolving this, a logical step is
to use the conformal Cartan/tractor connection of [29, 109, 7, 27], and for the special case of
hypersurfaces, meaning embedded submanifolds of codimension one, an effective approach was
initiated in [7]. With a view to various applications, this hypersurface theory was extended in the
works [14, 79, 107, 63, 112] and this approach has proved to be central in a number of further
extensions and applications [4, 13, 69, 70, 71, 74, 73, 87]. Rather separately from the general
consideration of submanifolds, the distinguished curves in conformal manifolds known as conformal
circles or conformal geodesics have been studied classically (see, e.g., [50, 98, 99, 114, 115]) and
from various modern perspectives recently [56, 6, 7, 110, 104, 68, 45, 80, 84, 19].

In the first part of our work here we develop a comprehensive basic local theory for conformal
submanifolds of all proper codimensions. This is based in the conformal tractor calculus, and
by construction is conformally invariant. It builds on the mentioned approach to hypersurfaces
from [7, 14, 79, 112, 41] and its extension into higher codimension by the first and third named
authors in [42] and [105]. There are also links to the somewhat more abstract theory developed
in the preprint [16] (cf. Remark 3.18 below and also the discussion in [42]). The result is a theory
and collection of explicit calculational tools that treats curves and higher dimensional submanifolds,
embedded in conformal manifolds, by a single uniform approach. These tools may be used to directly
proliferate submanifold invariants, including for curves. Thus they provide a basic machinery that
may solve the conformal submanifold analogue of Fefferman’s parabolic invariant theory programme
[46, 47, 8], and we touch on this in Section 3.8. Since the first draft of this article, an application
of these tools to a simple direct construction of higher Willmore energies has been provided in
[2]. We also use these tools to effectively capture, via tractors, the mean curvature, and with it
the notions of minimal, constant mean curvature, and parallel mean curvature submanifolds. This
leads immediately to a generalisation of these notions that is applicable for the study of conformally
singular geometries (such as Poincaré-Einstein geometries, and more generally conformally compact
structures). See Section 4.
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The point of view that we develop here leads us to introduce the notion of a distinguished
submanifold of arbitrary codimension. By definition this means that an object called the tractor
second fundamental form vanishes (a list of equivalent conditions is given in Theorem 1.1). In
the case of curves this coincides precisely with the unparametrised conformal circle equation, see
Theorem 1.2, whereas for hypersurfaces it recovers the usual condition of total umbilicity [7]. Thus
the notion interpolates between these. Interestingly, in all codimensions greater than one the
condition is stronger than total umbilicity; distinguished submanifolds must be umbilic, but there
are umbilic submanifolds that are not distinguished (though, when the geometry of the ambient
manifold is special, it often turns out that umbilic submanifolds are forced to be distinguished; see
Section 5.4 for a list of detailed examples). In the conformally flat setting the notions of umbilic
and distinguished submanifolds coincide, and part of our motivation in introducing the notion of
distinguished submanifold is that (unlike the notion of umbilic submanifold in general codimension)
it allows us to simultaneously generalise certain key results from the codimension one case of umbilic
submanifolds and the dimension one case of conformal circles. These applications form the second
main objective of this work.

It has long been known that Killing tensors and Killing-Yano tensors may be used to provide
first integrals for geodesics [30, 52, 101, 106, 113], and this is used for a host of applications
[3, 31, 33, 57, 58, 89, 86]. Conformal circles are governed by a higher order equation than geodesics,
so an analogous theory has been lacking aside from certain specific examples [110]. However, in
[68] this was solved and a very general theory of first integrals was developed by understanding
a characterisation of conformal circles as a parallel condition on a fundamental tractor 3-form
that one can associate to any non-null curve. Using this, it was established that essentially any
normal solution of a class of equations known as first BGG equations (see [26, 28], or Section
6.1, for the meaning of these terms) can provide, or contribute to, such conserved quantities; in
fact in many cases more general solutions produce first integrals. See [80] for some applications
of this perspective. The conformal Killing equations on tensors and the conformal Killing-Yano
equations are all first BGG equations. But in fact the class of first BGG equations is vastly wider
than this suggests. In Section 3.7 we show that, just as for curves, higher dimensional distinguished
submanifolds can be characterised by a parallel condition on a tractor form. Then, as an application,
we obtain a theory of first integrals for distinguished submanifolds of all codimensions in a form
that includes the case of conformal circles as special case. See Theorem 1.5 and Corollary 1.4.

In another direction, an important question for submanifolds of dimension 2 or greater is char-
acterising the conformal analogue of the notion of being totally geodesic; that is, to capture some
sense of “total conformal circularity”. This was touched on in [7] for hypersurfaces, and treated
for submanifolds in general by Belgun [9]. We show in Section 5 that our tools give efficient new
proofs these results, and show that Belgun’s results have an elegant interpretation in this tractor
picture. See Theorem 1.3 and Theorem 5.9 below. We also introduce a new notion called conformal
circularity, and show that property holds in many situations where the strongest notion conformal
circularity fails.

Finally, in Section 7 we show that distinguished submanifolds can also be characterised by a
very simple moving incidence relation, see Theorem 7.1, or its paraphrasing in Theorem 1.5. As
an application we prove that the zero locus of suitable overdetermined PDE solutions are neces-
sarily distinguished submanifolds; see Theorem 7.3. This shows how distinguished submanifolds
fit into the curved orbit theory of [25, 26] and, along with Proposition 7.5, is a first step toward
understanding how to generalise the holography approach of [4, 13, 70, 71, 72, 74, 73] to higher
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codimensions.

1.1 Main results and a technical overview

Now we give the approach and results with more technical detail. We use lower case abstract
indices a, b, c, . . . for ambient tensors and indices i, j, k, . . . from later in the alphabet for submanifold
tensors; we also use the corresponding capital letters as abstract indices for ambient and submanifold
tractors, respectively. The dimension of our ambient manifold M will always be denoted n, and the
submanifold dimension will be denoted m. In the theorems below n ¥ 3, but the results continue
to hold when n � 2 provided M is endowed with a Möbius structure (in the sense of [18]). The
first step in developing a calculus for hypersurfaces in a Riemannian manifold is the observation
that any oriented hypersurface is equipped with a canonical unit conormal field na. Similarly it
was established in [7] that each hypersurface Σ in a Riemannian signature conformal manifold
determines canonically a basic conformally invariant tractor field NA that plays an analogous role
at a tractor level. For example its failure to be parallel along the hypersurface is captured by a
tractor second fundamental form L. In particular one obtains, in a simple explicit way, conformal
analogues of the Gauss-Codazzi-Ricci theory, see [41] and references therein. Moreover the normal
tractor has a remarkable link to other objects in, for example, Poincaré-Einstein manifolds and
related structures, that has led to some deep results (e.g., that link the so-called conformal volume
anomaly to higher Willmore invariants [75, 4, 71]).

Central to our approach to higher codimension submanifold theory is the fact that one higher
codimension analogue of the normal tractor is a conformally invariant alternating tractor form
NA1���Ad

, where d � n�m is the codimension of the submanifold. An equivalent object to NA1���Ad

is its tractor Hodge-star, that we denote �NA1A2���Am�2 , see (2.27). For a submanifold Σ (of any
non-trivial codimension), the intrinsic tractor bundle T Σ can be identified with the annihilator in
T M of NA1A2���Ad

, see Section 3.3. (This is still true when Σ has dimension 1 or 2, though in this
case it is less obvious if one starts with the jet bundle construction of T Σ; see the discussion in
Section 3.5 which treats, from our point of view here, the natural Möbius structures induced on
low dimensional submanifolds, cf. [18]). Thus one has an orthogonal decomposition of the ambient
tractor bundle T M ,

T M |Σ � T Σ`N ,

which also defines the normal tractor bundle N . Denote by NA
B the projection T M |Σ Ñ N (using

abstract index notation). There is also a projector T M |Σ Ñ T Σ, and thus (provided dimM ¥ 3
so that the conformal structure on M determines a canonical Cartan/tractor connection) one has
a tractor Gauß formula which defines a tractor second fundamental form, LiJ

C ; see (3.22) and its
refinement (3.42) (cf. [16, 42]). By definition, L measures the failure of N (or, equivalently, of
T Σ � T M |Σ) to be parallel.

Using these tools we develop and present explicitly the fundamental conformal submanifold
calculus in Section 3.4, and, in particular, the conformal Gauss-Codazzi-Ricci equations (3.43),
(3.44), (3.45). Also, the normal forms, and their equivalents, may be combined with standard
conformal tractor calculus, and ideas for using this to construct conformal manifold invariants (as
in, e.g., [60]), to manufacture submanifold invariants. This is the subject of Section 3.8. This
is a powerful application, as without such objects the construction of submanifold invariants is
complicated. Based on the ideas in [60] it seems likely that most, if not all, conformal invariants
will arise using the tools developed here.
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Although the tractor approach is conformal, scale-dependent quantities such as the mean cur-
vature can be nicely described by introducing an object called the scale tractor, I, see Section 2.4.
In particular minimal submanifolds are seen to be exactly those submanifolds whose tractor normal
form is orthogonal to the scale tractor, see Corollary 4.2, and constant mean curvature notions are
similarly captured, see Proposition 4.4. This means that these concepts generalise to Poincaré-
Einstein, and more generally conformally compact manifolds, with the submanifold extending to
the conformal infinity, as discussed in Section 4.

The definition here of a submanifold being distinguished is that LiJ
C � 0, i.e. the vanishing of

the tractor second fundamental form. A key result is that this may be alternatively captured as in
the following theorem.

Theorem 1.1. Let pM, cq be a conformal manifold and Σ ãÑ M a conformal submanifold of
codimension d. Then the following are equivalent:

1. LiJ
C � 0;

2. ∇iN
A1
A2

� 0;

3. ∇iNA1A2���Ad�1Ad
� 0;

4. ∇i �NA1A2���Am�2 � 0,

where ∇i indicates the pullback to Σ of the ambient tractor connection.

A hypersurface has LiJ
C � 0 if and only if it is totally umbilic, meaning the trace-free second

fundamental form vanishes, but for higher codimension it means a certain conditional invariant
must also vanish. (When the trace-free second fundamental form vanishes this conditional invariant
becomes Belgun’s µ invariant [9], and the relationship between µ and L is discussed in Section 5.2).
Thus for codimensions greater than one, a distinguished submanifold is necessarily totally umbilic,
but the converse is not true in general. Moreover, in the case of 1-dimensional submanifolds (where
the totally umbilic condition becomes vacuous) the vanishing of L precisely characterises conformal
circles. That is, in our current terminology, 1-dimensional conformally distinguished submanifolds
are exactly unparametrised conformal circles:

Theorem 1.2. Let pM, cq be a conformal manifold and γ ãÑ M a curve. Then γ is an un-
parametrised conformal circle if, and only if, L � 0, or equivalently any one of the conditions in
Theorem 1.1 holds. In particular, L � 0 if and only if µ � 0, where µ is the conformal curvature.

Proof. Proposition 4.13 from [68] asserts that the unparametrised conformal circle equation is
equivalent to a certain 3-tractor being parallel along the curve, and equation (5.13) of Section 5.1
below asserts that this 3-tractor is precisely �NA1A2A3 . The theorem therefore follows from the
equivalence of items 1 and 4 in Theorem 1.1.

For the convenience of the reader we discuss Proposition 4.13 from [68] in Section 5.1 on
conformal circles below.

Next we observe that combining Theorem 1.1 and Theorem 1.2 leads naturally to a generalisa-
tion of Theorem 1.2 that characterises distinguished submanifolds in terms of their relation to the
ambient conformal circles:
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Theorem 1.3. A submanifold Σ is distinguished (L � 0) if, and only if, it is weakly conformally
circular (equivalently, I̊I � 0 and µ � 0).

Here, adapting terminology from [9], weakly conformally circular means that an ambient con-
formal circle with tangential initial conditions remains in the submanifold for some time, cf. [7] for
the case of hypersurfaces. Since L � 0 can be seen to be equivalent to I̊I � 0 and µ � 0 by direct
calculation, this recovers Belgun’s [9, Theorem 5.4(2)].

There is an alternative natural notion of conformal circularity for submanifolds, namely that
any submanifold conformal circle is also an ambient conformal circle. This is stronger than the
previous notion and we refer to such a submanifold as conformally circular. It turns out that for
this property, in addition to any of the requirements of Theorem 1.1, one also requires that the
trace-free part of the Fialkow tensor vanishes; see Theorem 5.10. Examples of conformally circular
submanifolds include a factor trivially included in an Einstein product or any umbilic submanifold
in a complex projective space (see Section 5.4). Taking into account parametrisations gives rise to
yet another notion of conformal circularity, which we refer to as being strongly conformally circular.
This was considered in [9] and our Theorem 5.10 should be contrasted with the analogous result
Theorem 5.9 (which recovers Belgun’s [9, Theorem 5.4(3)]) for projectively parametrised conformal
circles. A number of examples are considered in Section 5.4 and we find that strongly conformally
circular submanifolds arise a lot less commonly than conformally circular ones, though they include
the standard umbilic submanifolds in the conformal sphere and any factor trivially included in a
special Einstein product.

In Section 5.4 we clarify by way of a number of examples that, outside of edge cases in the
codimension (i.e. the cases of curves and of hypersurfaces), the notions of umbilic, distinguished,
conformally circular and strongly conformally circular submanifolds are distinct. On the other hand,
we show that when the geometry of pM, cq is special then often umbilic submanifolds are automat-
ically distinguished. For example, any umbilc submanifold in real, complex or quaternionic space
form is forced to be distinguished. In support of our contention that the distinguished submanifold
condition is a more natural conformal analog of the totally geodesic condition in Riemannian geom-
etry than the totally umbilic condition, we also observe (in Theorems 5.19 and 5.20) that we have
the following conformal analog of the classical de Rham-Wu theorem in Riemannian geometry: A
conformal manifold pM, cq is locally the conformal structure of a product manifold if and only if
pM, cq possesses a pair of complementary orthogonal foliations by distinguished submanifolds.

Another advantage that distinguished submanifolds posses over (merely) umbilic ones is that
points 2.–4. of Theorem 1.1 characterise distinguished submanifolds in a way that immediately
allows the proliferation of conserved quantities. As mentioned above, Killing tensors, Killing-Yano
tensors and their conformal analogues are well-established as tools for providing first integrals for
geodesics. These are each examples of solutions to first BGG equations, a large class of overde-
termined natural equations [28, 17]. For such equations, there is a class of solutions called normal
solutions that are in one-to-one correspondence with parallel sections of the corresponding tractor
bundle [26]. In particular, on conformally flat manifolds, all solutions to first BGG equations are
normal. Let us state our result rather informally as follows.

Corollary 1.4. Suppose a conformal manifold admits a BGG normal solution corresponding to a
parallel tractor S, and Σ is a distinguished submanifold. Let

xbℓS,bkNy
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denote a scalar quantity constructed from linear combinations of tensor powers of S and linear com-
binations of tensor powers of the normal tractor form N and with contractions using the conformal
tractor metric and possibly the tractor volume form. Then xbℓS,bkNy is a first integral for the
distinguished submanifold.

This result generalises the large family of conformal circle first integrals constructed in [68] to the
case of distinguished submanifolds of arbitrary dimension. We should say that rather than using
the tractor normal form in the Corollary 1.4 above one may equally alternatively (or additionally
use) �N , or NA

B . Precise statements can be found in Section 6.2, where we also show that it is easy
to compute explicit examples.

Towards another key application, we show that there is yet another characterisation of distin-
guished conformal submanifolds that takes the form of a moving incidence relation. For this we
need the first elements of conformal tractor calculus. On any smooth manifold, one has the bundle
of conformal 1-densities that we call Er1s, which is a root of the squared canonical bundle, see
Section 2. Its 2-jet bundle J2Er1s admits the exact sequence at 2-jets,

0Ñ S2T �M r1s Ñ J2Er1s Ñ J1Er1s Ñ 0, (1.1)

where Vrws :� V b Erws for any vector bundle V and any w P R.
The introduction of a conformal structure determines a canonical splitting of S2T �M r1s as

S2
0T

�M r1s ` g � Er�1s, where g P ΓpS2T �M r2sq is the conformal metric. The standard conformal
cotractor bundle T � (or T �M) is the quotient of J2Er1s by the image of S2

0T
�M r1s and so has a

filtration as given by the exact sequence

0Ñ Er�1s XÑ T � Ñ J1Er1s Ñ 0. (1.2)

(In the case that M is of dimension one then S2
0T

�M r1s is trivial and T � � J2Er1s.) There is
canonically a conformally invariant metric h on the bundle T �, and hence T � is identified with its
dual T , which we call the tractor bundle. The bundle injection X which maps Er�1s Ñ T � is typ-
ically viewed as a section X P ΓpT �r1sq, and called the canonical tractor. This invariantly encodes
information about position on the manifold and plays a very important role in our developments
here.

A well known feature of T � is that, in the case where dimM ¥ 3, it is naturally equipped
with the canonical conformally invariant tractor connection [7], which is equivalent (see [22]) to
the normal Cartan connection as in [29]. This preserves the tractor metric. Using this object and
language we have the following result.

Theorem 1.5. Let Σ be an embedded submanifold of codimension d in a conformal manifold pM, cq.
Then Σ is distinguished if, and only if, either (equivalently both) of the following holds

� there exists a nontrivial Ψ P ΓpΛdT �q such that X ⌟Ψ � 0 and ∇iΨ � 0 along Σ, or

� there exists a nontrivial �Ψ P ΓpΛn�2�dT �q such that X ^ �Ψ � 0 and ∇i �Ψ � 0 along Σ.

Again this generalises a result for non-null conformal circles from [68]. If either of the above
conditions hold, then Ψ is necessarily (up to locally constant factor) the tractor normal form of
the submanifold. This will be proved in Section 7. Note that in the model case of the conformal
sphere, viewed as the projectivised null cone of a Minkowski space M of two higher dimensions, the
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distinguished submanifolds all arise from cutting the null cone with a subspace (and projectivising);
in this case the tractor �Ψ corresponding to a distinguished submanifold Σ is constant and simple
(it is the wedge product of vectors that span the corresponding subspace of the Minkowski space)
and, identifying the canonical tractor X with the position vector in M, the condition X ^ �Ψ � 0
is precisely the incidence relation saying that X is a point in the subspace corresponding to �Ψ.

Theorem 1.5 is a useful result in that it allows us to immediately conclude that certain zero
loci of normal solutions of appropriate BGG equations are distinguished submanifolds. Recall that
on a Riemannian manifold, an alternating tensor k of degree d is a conformal Killing form if the
trace-free part of ∇k is completely alternating. For a suitable conformal weight, this condition is
conformally invariant, see Section 6.3. Combining the curved orbit theory of [26] with Theorem 1.5
we obtain the following, where the operator L is explained in (6.9) (and Theorem 6.1).

Theorem 1.6. Suppose k is a normal solution of the conformal Killing form equation on pM, cq
of degree d� 1 such that the parallel tractor K � Lpkq P ΓpΛdT �q is simple. Then the zero locus of
k is either empty, an isolated point, or a distinguished submanifold of codimension d.

Remark 1.7. (i) The hypothesis that the parallel tractor K be simple is natural in that only in this
case can K be a multiple of the tractor normal form of a codimension d submanifold. Without the
simplicity condition, higher than codimension d zero loci are possible. (ii) If d � 1, then σ � k is
a weight 1 conformal density and the theorem still holds if we regard the hypothesis on σ � k as
saying that σ is an almost-Einstein scale in the sense of [63] and interpret K � Lpkq P ΓpT �q as
the corresponding parallel scale tractor I. In this case X ⌟ K � σ, and the conclusion is a known
result about the zero locus of an almost-Einstein scale [63, 41]. (iii) When d � 1, 2, k does not need
to be normal; see Section 7.2.

In fact finer information about the zero locus is available, see Theorem 7.3. This is an analogue
for normal Killing solutions of the results for almost Einstein scales found in [61, 63, 41]. Those
results for Einstein scales (and their generalisations to so-called ASC scales in [63]) were key in
the previously mentioned development of a holographic approach to hypersurfaces via a singular
Yamabe problem in [4, 13, 70, 71, 73], as well as a boundary calculus of asymptotically hyperbolic
manifolds [69]. We believe the results in Theorem 7.3 should provide one of the key insights for
the analogous treatment of submanifolds of higher codimension (which need not be distinguished).
Indeed, toward this end we provide a simple direct proof of a similar zero locus result, for fields
satisfying weaker (than normal Killing-Yano) conditions, in Proposition 7.5.

2 Conventions and conformal geometry

Often we will use the standard abstract index notation of Penrose. For example we may write Ea

for the tangent bundle TM of a manifold M and va for a vector field on M . Similarly Ea denotes
the cotangent bundle T �M , and ωa P ΓpEaq a 1-form field. Then we write vaωa for the canonical
pairing between vector fields and 1-forms. We denote by the Kronecker delta δba the identity
section of the bundle EndpTMq of endomorphisms of TM . Indices enclosed by round (respectively
by square) brackets indicate symmetrisation (respectively skew-symmetrisation) over the enclosed
indices. For example, if Tab is a rank 2 tensor then

Tpabq �
1

2
pTab � Tbaq and Trabs �

1

2
pTab � Tbaq.
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We also use this notation for bundles. For example, Era1a2���ads denotes the bundle of d-forms. When
tractor bundles are introduced these will also be adorned with abstract indices when convenient,
with the same convention for symmetrisation and skew-symmetrisation.

For simplicity of exposition we assume throughout that the basic manifold M studied is con-
nected.

2.1 Conventions for Riemannian geometry

A Riemannian manifold is a pair pMn, gq, consisting of a manifold M and a positive definite metric
g. We assume that the dimension n (of M) is at least 2. All structures are assumed smooth,
meaning C8. This is to simplify the discussion. For all the theory a much lower level of regularity
is required, but this varies throughout and at any point is easily calculated by the reader. We will
also typically assume for convenience that M is oriented, with volume form ϵa1a2���an normalised by
ϵa1a2���anϵa1a2���an � n!, where indices are raised using the inverse of the metric g.

Writing ∇ for the Levi-Civita connection, the Riemannian curvature tensor Rab
c
d is defined by

Rab
c
dv

d � r∇a,∇bsvc. va P ΓpEaq, (2.1)

in the abstract index notation.
In dimensions n ¥ 3, this decomposes into trace-free and a trace part:

Rabcd �Wabcd � 2 gcraPbsd � 2 gdraPbsc ,

where Wab
c
d is the Weyl tensor and Pab is the Schouten tensor. Equivalently, the Schouten tensor

is characterised by
Rab � pn� 2qPab � Jgab, (2.2)

where Rab :� Rca
c
b is the Ricci tensor, and J :� gabPab. The Weyl tensor is totally trace free, and

satisfies the algebraic Bianchi identities. In dimension 3 this implies that the Weyl tensor is zero.
The Cotton tensor (also for n ¥ 3) is defined by

Cabc :� 2∇raPbsc. (2.3)

In dimension 2, it is easy to show that the Riemannian curvature is pure trace:

Rabcd � Kpgikgjl � gilgjkq,

whereK is the Gaußian curvature. Hence the Ricci tensor is also pure trace, and the Weyl curvature
is zero.

Later, we will need to consider 1-dimensional submanifolds Σ equipped with a Riemannian
metric. On a 1-dimensional manifold Σ, a Riemannian metric gΣ takes the form u b u, where u
is a non-vanishing 1-form, and requiring u to be the volume form corresponding to gΣ and the
orientation fixes the sign of u. Thus there is a unique connection preserving this metric, namely
the connection D that preserves u. We will term this the Levi-Civita connection for pΣ, gΣq. The
curvature of any such connection is clearly zero.
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2.2 Conformal geometry

Two metrics g, pg are said to be conformally related if

pg � Ω2g, (2.4)

where Ω P C8pMq is a positive function. Then c denotes an equivalence class of conformally related
metrics, i.e. if g, pg P c, then they are related according to (2.4) for some smooth Ω, and we may
write c � rgs. A conformal manifold is then a pair pM, cq.

Recall that on a manifold M , for any α P R, one has the bundle of α-densities. This is the
associated bundle to the linear frame bundle of M via the 1-dimensional GLpnq-representation
A ÞÑ |detpAq|�α. Sections of this bundle are called α-densities. There is a correspondence between
1-densities and sections of ΛnT �M when M is oriented, or in general between the square of these
bundles; e.g., if M is oriented then, given a local oriented frame field pe1, . . . , enq, the function
representing a (local) section v of ΛnT �M as a 1-density is simply vpe1, . . . , enq.

Separately, we have the bundle of conformal densities of weight w, which we denote by Erws,
and which are defined by

Erws :� Q�ρw R, (2.5)

whereQ is the ray bundle of conformally related metrics and ρw is the 1-dimensional R�-representation
ρwpsqptq :� s�

w
2 t. The bundles Erws are evidently oriented and we write E�rws for the ray subundle

of positive elements. As detailed in, e.g., [23], the conformal densities of weight w are in bijective
correspondence with densities of weight

��w
n

�
. In particular, this means that 1-densities also cor-

respond to conformal densities of weight �n, and so together with the discussion of the previous
paragraph we have an isomorphism pΛnT �Mq2 �Ñ Er�2ns, and dually pΛnTMq2 �Ñ Er2ns. If B is
a vector bundle on M we will write Brws as a shorthand for B b rws.

If M is oriented, as we henceforth assume, we write ϵ � ϵa1a2���an P ΓpEra1a2���ansrnsq for the
canonical map ΛnTM Ñ Erns, given by contraction, and call ϵa1a2���an the conformal volume form
or weighted volume form. Since Erws is an associated bundle, its sections may be thought of as
equivariant functions f : Q Ñ R such that fps2gxq � swfpgxq. So we may think of a section of
Erws as an equivalence class of pairs pg, fq, where pg, fq � pΩ2g,Ωwfq. The conformal volume form
can therefore similarly be thought of as the equivalence class of pg, ϵq for any g P c, where ϵ is the
Riemannian volume form of g and pg, ϵq � pΩ2g,Ωnϵq.

Corresponding to g P c there is evidently a corresponding section σg P ΓpEr1sq, represented
by the pair pg, 1q. It follows that the conformal structure c determines a tautological section
g P ΓpS2T �M b E�r2sq that is given by

g � pσgq2g, (2.6)

for any metric g P c (but which is independent of this choice); equivalently, the tautological section
g P ΓpS2T �M b E�r2sq may be thought of as the equivalence class of pg, gq for any metric g P c,
where pg, gq � pΩ2g,Ω2gq. This is called the conformal metric. We will henceforth typically use
the conformal metric to raise and lower indices, even when a choice of g P c has been made
(thus raising and lowering indices typically introduces a density bundle weight). For example the
Riemann curvature with indices all down Rabcd will now be considered to have weight 2 as it is

Rabcd � gecRab
e
d ,
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the Weyl-Schouten decomposition of the Riemann curvature becomes

Rabcd �Wabcd � 2 gcraPbsd � 2 gdraPbsc ,

for dimensions n ¥ 3, and J will mean gabPab From (2.6) we see that if we use σg to trivialise density
bundles, then the conformal metric g becomes g. However, usually we will avoid trivialising density
bundles. This becomes significant when we write down conformal rescaling laws, since then there
are two different metrics that could be used to trivialize the density bundles (and correspondingly
two different flat connections on sections of density bundles) and many formulae are simplified
when we work with weighted objects.

Each metric g P c determines a corresponding Levi-Civita connection ∇. This naturally acts
on sections of density bundles and, tautologically from the construction above, preserves σg. Thus
as well as preserving g, the Levi-Civita connection ∇ preserves g and ϵ (cf. [41]). Under a change
to pg � Ω2g P c we have

p∇au
b � ∇au

b �Υau
b �Υbua �Υcu

cδba, on ub P ΓpEbq, (2.7)

p∇aωb � ∇aωb �Υaωb �Υbωa �Υcωcgab, on ωb P ΓpEbq, (2.8)

and p∇aτ � ∇aτ � wΥaτ on τ P ΓpErwsq, (2.9)

where Υa :� Ω�1∇aΩ.
The Weyl curvature Wab

c
d is conformally invariant, while the Schouten tensor transforms ac-

cording to, pPab � Pab �∇aΥb �ΥaΥb � 1

2
ΥcΥ

cgab. (2.10)

Equations (2.7) and (2.8) still hold when M has dimension 1, although the final two terms of
both equations cancel. Equation (2.10) only holds when dimM ¥ 3, since in lower dimensions the
Schouten tensor is not defined.

2.3 The tractor connection and calculus

Recall from the introduction, the tractor bundle is recovered from jets of the conformal density
bundle Er1s. The inverse of the conformal metric maps S2T �M r1s Ñ Er�1s, with kernel S2

0T
�M r1s

and hence we have a decomposition

S2T �M r1s � S2
0T

�M r1s ` g � Er�1s.

Then the bundle T � (that we also denote EA in the abstract index notation) is J2Er1s modulo
the image of S2

0T
�M r1s under the map S2T �M r1s Ñ J2Er1s of the jet exact sequence at 2-jets (1.1).

Thus we obtain (1.2). From the jet exact sequence at 1-jets

0Ñ T �M r1s Ñ J1Er1s Ñ Er1s Ñ 0, (2.11)

we then see that T � has the composition series

T � � Er1s ��� T �M r1s ��� Er�1s.

12



Here the semidirect sum notation ��� simply encodes the information of the exact sequences (cf.
[7]). Note that this construction still applies when M has dimension 1 or 2, but in dimension
1, S2

0T
�M r1s is trivial and hence T � is simply J2Er1s. Recall that we denote by XA P ΓpEAr1sq

the canonical tractor which provides the embedding Er�1s Ñ EA. Let us also note that by the
definition of the tractor bundle, there is an invariant differential operator D : ΓpEr1sq Ñ ΓpT �q,
where 1

nD is the differential operator corresponding to the linear map J2Er1s Ñ T �.
Let us now fix n ¥ 3. Given a choice of metric g P c, the formula

σ ÞÑ 1

n
rDAσsg :�

�� σ
∇aσ

� 1
n p∆� Jqσ

�, (2.12)

where ∆ � ∇a∇a, gives a second-order differential operator on Er1s which is a linear map J2Er1s Ñ
Er1s ` Ear1s ` Er�1s that clearly factors through T � and so determines an isomorphism

T � �ÝÑ rT �sg � Er1s ` Ear1s ` Er�1s, (2.13)

and hence the sequences (1.2) and (2.11) split, as discussed in, e.g., [21, 41]. When using a choice of

metric g to split the tractor bundle we will typically indicate this by writing
g� rather than applying

the bracket notation r � sg to the object we are breaking up into slots.
In the subsequent discussions, we will use (2.13) to split the tractor bundles without further

comment. Thus, given g P c, an element VA of EA may be represented by a triple pσ, µa, ρq, or
equivalently by

VA � σYA � µaZ
a
A � ρXA. (2.14)

The last display defines the algebraic splitting operators Y : Er1s Ñ T � and Z : T �M r1s Ñ T � (de-
termined by the choice g P c) which may be viewed as sections YA P ΓpEAr�1sq and Za

A P ΓpEa
Ar�1sq.

We call these sections XA, YA and Za
A tractor projectors. Note that with this convention, (2.12) is,

tautologically, an explicit formula for the invariant operator D, in terms of the splitting given by
the choice of metric g.

While XA is conformally invariant, a change of tractor splitting given by (2.4) determines the
transformations pZa

A � Za
A �ΥaXA, pYA � YA �ΥaZ

a
A �

1

2
ΥaΥaXA (2.15)

where, as usual, Υa � Ω�1∇aΩ. These transformations mean that the tractor triples transform by�� pσpµapρ
��

�� 1 0 0
Υb δba 0

�1
2Υ

cΥc �Υa 1

��� σ
µb

ρ

�. (2.16)

One then observes that the symmetric tractor field given by

hAB :� 2XpAY Bq � gabZA
a Z

B
b (2.17)

is invariant under (2.15), and so determines a conformally invariant metric on T �. We will hence
use this and its inverse hAB (called the tractor metric) to identify T � and its dual, the standard
tractor bundle, which we denote by simply T . Using this we obtain

XAYA � 1, Za
AZ

A
b � δab , (2.18)
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and all other (tractor-index) pairings of the splitting operators give a zero section. For example
XAXA � 0.

The canonical conformally invariant (normal) tractor connection on T will also be denoted ∇a,
or sometimes ∇T

a for emphasis. It can be coupled to the Levi-Civita connection of any metric g P c,
and its action on the tractor projectors is then given by

∇aX
A � ZA

a , ∇aZ
A
b � �PabX

A � gabY
A , ∇aY

A � Pa
bZA

b . (2.19)

In fact, these formulae determine the tractor connection as the general action on a section of
a tractor bundle follows from the Leibniz rule. It is easily verified that the tractor connection is
conformally invariant and preserves the tractor metric. The latter means that the tractor connection
agrees with its dual. It extends in the obvious way to tensor powers of the tractor bundle and these
extensions are all referred to as the tractor connection. The coupled tractor-Levi Civita connection
will always be denoted simply ∇ and will be used, usually without comment, according to context.

As with any linear connection, ∇ � ∇T has a curvature. The tractor curvature Ωab
C
D of the

tractor connection is defined by Ωab
C
DΦ

D :� 2∇ra∇bsΦ
C , for any ΦA P ΓpT q. In the splitting

determined by a choice of metric g P c it is given explicitly by the formula

ΩabCD �WabcdZC
cZD

d � 2CabcXrCZDs
c. (2.20)

A conformal structure is said to be (locally) flat if this tractor curvature vanishes as this happens
if and only if, locally, there is a metric in the conformal class that is flat.

The tractor objects developed above form the initial objects of a conformal tractor calculus
that can be used, for example, to construct conformal invariants [59, 60]. We will not discuss this
in detail, but one particularly important object is the Thomas operator D that extends (2.12) to a
conformally invariant operator between weighted tractor bundles,

DA : ΓpEΦrwsq Ñ ΓpEA b EΦrw � 1sq,

where EΦ indicates any tensor power of EA, or SOphq-invariant part thereof. It is given, with
respect to g P c, by the formula

ΓpEΦrwsq P V ÞÑ DAV
g�
�� pn� 2w � 2qwV

pn� 2w � 2q∇aV
�p∆V � wJV q

�. (2.21)

where (as usual) ∇ is the coupled tractor-Levi-Civita connection and ∆ the corresponding Lapla-
cian.

All of the above has a clear geometric interpretation in the case of the model, the conformal n-
sphere. This should be thought of as the ray projectivisation of C�, where C� is the future directed
part of the null quadric C :� tX P Rn�2 | hpX,Xq � 0u in Rn�2 equipped with a fixed symmetric
non-degenerate bilinear form h of signature pn�1, 1q and a time-orientation. The resulting resulting
manifold M :� P�pC�q � Sn is acted on transitively by G :� SO0phq � SO0pn � 1, 1q, where the
0 here denotes taking the connected component of the identity, and the stabiliser of a point is a
parabolic subgroup that we denote P (so M � G{P ). Moreover, it is straightforward to verify
that h induces a Riemannian metric on each section of the map C� Ñ M , and different sections
result in conformally related metrics. Thus M is equipped canonically with a conformal structure,
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and clearly the group G acts on M by conformal isometries, see, e.g., [41, 63] for a more detailed
discussion of this model.

From this point of view the standard tractor bundle for the model is TRn�2|C�{ �, where the
equivalence relation is Up � Vq if one is mapped to the other by standard Rn�2 parallel transport
(i.e., from the affine structure of Rn�2) along a null ray. The tractor metric is then induced in
an obvious way from the ambient Minkowski signature metric h, and parallel tractor fields are
equivalent to vector fields in ΓpTRn�2|C�q that are constant along C�. Moreover the parallel tensor
fields on connected regions of C� may all be viewed as arising from the restriction of tensor fields
parallel on Rn�1,1, and these give the parallel sections of the corresponding tensor powers of the
tractor bundle. Finally, in this picture, the canonical tractor XA is identified with the Euler vector
field of Rn�2 along C�.

The Thomas operator DA also has a concrete geometric interpretation in the model. Sections
of the weight w conformal density bundle on the model can be identified with functions on C� that
are homogeneous of degree w with respect to the R�-action. Weighted tractors on the model can
therefore be identified with tensor fields along C� of the appropriate homogeneity. The Thomas
operator DA on such sections is then given (up to an overall factor) by formally extending such
tensor fields off C� to be “harmonic” with respect to the ambient Minkowski metric h and then
taking the directional derivative (at points along C�) in the flat ambient space Rn�2; see, [23].

2.4 The scale tractor

Recall that, from Section 2.2, a metric g P c is equivalent to a section σg P ΓpE�r1sq by the relation

g � σ�2
g g.

Given any section σ P ΓpEr1sq we can form

IA :� 1

n
DAσ,

and we will term this a scale tractor if IA is nowhere zero. In this case σ is clearly non-vanishing
on an open dense subset of M , on which it determines a metric g :� σ�2g from the conformal
class. So for a scale tractor IA we will term σ � XAIA a generalised scale – or sometimes simply
a scale. Following [63], a conformal manifold pM, cq equipped with a scale tractor will said to be
an almost-Riemannian manifold (since it has a metric almost everywhere). Given a Riemannian
metric g � σ�2

g g, we term IA :� 1
nDAσg the scale tractor of g.

It follows easily from (2.19) that if a tractor IA � 0 is parallel then it is a scale tractor and
g :� σ�2g is Einstein; see [65, 63]. In this case we say pM, c, Iq is almost Einstein.

An important example of almost-Riemannian manifolds arise in connection with conformally
compact manifolds: A complete Riemannian manifold pM, gq is conformally compact if M is the
interior of a manifold with boundary M , and on M there is a metric g (so a metric that is smooth
up to the boundary) such that on M

gab � r�2gab

for some smooth defining function r for the boundary BM (meaning that r ¡ 0 on M , BM is
the zero locus of r, and dr is nowhere zero on BM). A conformally compact manifold is said to
asymptotically hyperbolic if |dr|g � 1 along BM (which is equivalent to requiring that the sectional
curvatures of g all tend to �1 as one approaches BM) and Poincaré-Einstein if g is Einstein. It
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is easily verified that in the latter case the scalar curvature is negative. If the Poincaré-Einstein
metric is normalised so that

Scg � �npn� 1q
(as is usually assumed) then the manifold is necessarily asymptotically hyperbolic. These structures
have been the subject of sustained interest; see, e.g., [34, 35, 36, 77, 81, 92, 111] and the many
references therein.

It is easily verified that a conformal compactification of a manifold pM, gq is the same as a
conformal manifold with boundary pM, cq, with interior M , and equipped with a scale tractor IA
with the following properties: the zero locus Zpσq � σ�1p0q of σ :� XAIA is BM , and along BM the
1-jet j1σ (of σ), is nowhere zero (we say that σ is a defining density for BM). Thus the conformal
compactification is almost-Riemannian; in the following we will therefore think of a conformally
compact manifold as an almost-Riemannian manifold for which σ is a defining density for BM .
Such a manifold is asymptotically hyperbolic if IAIA � 1 along BM , and Poincaré-Einstein if IA is
parallel. If IAIA � 1 on M then Scg � �npn� 1q. See, e.g., [63, 73] for more details.

There are many structures such as certain notions of asymptotically flat manifolds that can
be similarly be understood in terms of almost-Riemannian structures. So this notion provides a
uniform framework for approaching a range of singular geometries [41].

2.5 Form tractors

We will use the term form tractor to describe sections of the exterior powers of the tractor bundle
[15, 66]. It is useful to introduce some notation for form tractors. From the composition series
for the standard tractor bundle, one sees that for the k-th exterior power of the standard tractor
bundle, one has the composition series

ErA1A2���Ak�1Aks � Era2���aksrks �
�� Era1a2���ak�1aksrks

`
Era3���aksrk � 2s

��� Era2���aksrk � 2s. (2.22)

The tractor projectors for the standard tractor bundle induce tractor projectors on the bundles
of tractor forms. Since these will be very important for us, we introduce dedicated notation for
these:

Y a2���ak�1ak
A1A2���Ak�1Ak

:� YrA1
Za2
A2
� � �Zak�1

Ak�1
Zak
Aks

P E a2���ak�1ak
rA1A2���Ak�1Aks

r�ks
Za1a2���ak�1ak
A1A2���Ak�1Ak

:� Za1
rA1

Za2
A2
� � �Zak�1

Ak�1
Zak
Aks

P Ea1a2���ak�1ak
rA1A2���Ak�1Aks

r�ks
W a3���ak�1ak

A1A2A3���Ak�1Ak
:� XrA1

YA2Z
a3
A3
� � �Zak�1

Ak�1
Zak
Aks

P E a3���ak�1ak
rA1A2���Ak�1Aks

r�k � 2s
X a2���ak�1ak
A1A2���Ak�1Ak

:� XrA1
Za2
A2
� � �Zak�1

Ak�1
Zak
Aks

P E a2���ak�1ak
rA1A2���Ak�1Aks

r�k � 2s

(2.23)

For example, Y a2���ak�1ak
A1A2���Ak�1Ak

gives the injection

Y a2���ak�1ak
A1A2���Ak�1Ak

: Era2���aksrks Ñ ErA1A2���Ak�1Aks,

determined by a choice of metric g P c. Similarly X a2���ak�1ak
A1A2���Ak�1Ak

X a2���ak�1ak
A1A2���Ak�1Ak

: Era2���aksrk � 2s Ñ ErA1A2���Ak�1Aks, (2.24)
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but in this case the map is not dependent on any choice of metric in c. For 1 ¤ k ¤ n � 2 and a
choice of scale, one has

∇bY a2a3���ak
A1A2A3���Ak

� Pba1Z
a1a2a3���ak
A1A2A3���Ak

� pk � 1qPb
a2W a3���ak

A1A2A3���Ak

∇bZa1a2���ak
A1A2���Ak

� �k � Pb
a1X a2���ak

A1A2���Ak
� k � δba1Y a2���ak

A1A2���Ak

∇bW a3���ak
A1A2A3���Ak

� �gba2Y a2���ak
A1A2���Ak

� Pba2X
a2���ak

A1A2���Ak

∇bX a2a3���ak
A1A2A3���Ak

� gba1Z
a1a2a3���ak
A1A2A3���Ak

� pk � 1qδba2W a3���ak
A1A2A3���Ak

,

(2.25)

where sequentially labeled indices are alternating, and any term involving the alternation of n� 1
or more tensor (i.e. lower case) indices should be interpreted as zero.

In particular, we observe that W a3���an�2

A1A2A3���An�2
is parallel in any scale, and hence there is a

distinguished parallel section of the top exterior power of the standard tractor bundle, which we
term the tractor volume form

ϵA1A2A3���An�2
:� pn� 2qpn� 1qϵa3���an�2W

a3���an�2

A1A2A3���An�2
, (2.26)

where ϵa3���an�2 P Era3���an�2srns is the weighted volume form of Section 2.2 (note that our normali-

sation is such that ϵA1A2A3���An�2ϵA1A2A3���An�2 � �pn� 2q!). That this is parallel now follows from
the fact that ϵa3���an�2 is parallel for any Levi-Civita connection in the conformal class. Of course,
the existence of the tractor volume form also reflects the fact that the conformal tractor connection
is equivalent to an SOpn� 1, 1q-Cartan connection.

Finally in this section we need the tractor Hodge-star. For a tractor k-form ΨA1���Ak
this is

�ΨB1���Bn�2�k
� 1

k!
ϵA1���Ak

B1���Bn�2�k
ΨA1���Ak

. (2.27)

This satisfies �� � �p�1qkpn�kq, since the tractor metric has Lorentzian signature. Note also that
this tractor Hodge-star operation commutes with the tractor covariant derivative:

∇a �ΨB1���Bn�2�k
:� 1

k!
ϵA1���Ak

B1���Bn�2�k
∇aΨA1���Ak

.

3 Submanifold geometry and submanifold tractors

Given a smooth n-manifold M , a submanifold will mean a smooth embedding ι : Σ Ñ M of
a smooth m-dimensional manifold Σ, where 1 ¤ m ¤ n � 1, and the image has codimension
d :� n�m. Typically we will suppress explicit mention of the embedding map and identify Σ with
its image ιpΣq �M . We refer to M as the ambient manifold.

Regarding abstract indices, we adopt the convention that Latin letters from the start of the
alphabet (a, b, c, . . .) will denote ambient tensor indices, while indices from later in the alphabet
(i, j, k, . . .) will denote submanifold tensor indices. So, for example, Ea is the usual tangent bundle
TM , E i is the tangent bundle of the submanifold TΣ, and Eia denotes the bundle T �Σ b TM |Σ.
Note that indices alone will not distinguish sections of TM and TM |Σ, so va could be a section of
either Ea or a section of Ea|Σ, where Ea|Σ Ñ Σ is the pullback bundle ι�TM .
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Given a submanifold ι : ΣÑM , its derivative Tι : TΣÑ TM will be written Πa
i and viewed as

a section of T �ΣbTM |Σ. We frequently identify TΣ with its image in TM |Σ under this map. Note
that Πa

i also gives the canonical map Πa
i : Ea|Σ Ñ Ei, which is dual to Tι. We will temporarily use

the notation TM{Σ for the normal bundle TM |Σ{TιpTΣq, and pTM{Σq� � T �M |Σ for the conormal
bundle.

3.1 Basic Riemannian submanifold theory

We now move to the setting of a submanifold Σ in a Riemannian manifold pM, gq (cf. discussions
in, e.g., [90, 100]). In the Riemannian setting, we only require that dimM ¥ 2, and Σ satisfies
1 ¤ m � dimΣ ¤ n� 1. The exact sequence defining the normal bundle TM{Σ then splits

0 E i Ea|Σ TM{Σ 0,
Πa

i

Πi
a

(3.1)

where Πi
a is the orthogonal projection map TM |Σ Ñ TΣ. We may then identify TM{Σ with

the kernel NΣ of Πi
a, via the splitting, and we denote the orthogonal projection onto this by

Nb
a : Ea|Σ Ñ NΣb. The complementary projection is Πa

b � δab �Na
b � Πa

iΠ
i
b which is the orthogonal

projection onto TΣ viewed as submanifold of TM |Σ.
The Riemannian metric g on M induces a Riemannian metric gΣ on Σ by restriction, which

we call the induced metric. We usually omit the explicit reference to Σ when abstract indices are
used. So the induced metric will be denoted by gij . Note that

gij � Πa
iΠ

b
jgab. (3.2)

Next we observe that (3.1) can be used to decompose the ambient Levi-Civita connection. First
and most simply, we have the normal connection ∇K which is a connection on the bundle NΣÑ Σ
defined by

∇K
i ν

a :� Na
b∇iν

b, (3.3)

where ∇i denotes the pullback connection of the ambient Levi-Civita connection (meaning, in this
context, its restriction to differentiating along vectors tangent to Σ). Complementary to this, we
also have induced a connection Di on TΣÑ Σ defined by

DiV
j :� Πj

b∇i

�
Πb

kV
k
	
. (3.4)

It is elementary to verify that both (3.3) and (3.4) define connections. Indeed, it is also straight-
forward to verify that D is torsion-free and preserves the induced metric, and so is in fact the
Levi-Civita connection of pΣ, gΣq. The fundamental ingredient of submanifold calculus, in this
setting, is the Gauß formula which, for a section V P ΓpTΣ|Σq, provides the decomposition of
∇iV

c � ∇ipΠc
jV

jq into its tangential and normal parts:

∇iV
c � Πc

jDiV
j � IIij

cV j , (3.5)

and this defines IIij
c P ΓpS2T �ΣbNΣq, which is the second fundamental form of Σ in pM, gq. We

also define the mean curvature

Hc :� 1

m
gijIIij

c (3.6)
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and set I̊Iij
c :� IIpijq0

c, the trace-free part of the second fundamental form. Thus one has

IIij
c � I̊Iij

c � gijH
c. (3.7)

Using (3.5), one can derive

Rijkl � RΣ
ijkl � 2gcdIIlri

cIIjsk
d, (3.8)

Rij
c
kN

d
c � 2DriIIjsk

d, (3.9)

and
Rij

a
bN

c
aN

b
d � RK

ij
c
d � 2gklIIkri

cIIjsld, (3.10)

where Rijkl :� Πa
iΠ

b
jΠ

c
kΠ

d
lRabcd is the curvature of the ambient Levi-Civita connection restricted to

Σ, RΣ
ijkl is the intrinsic Riemann curvature tensor (i.e. the curvature of the connection D), D is the

intrinsic Levi-Civita connection coupled to the normal connection and RK
ij
c
d is the curvature of

the normal connection ∇K
i . All these formulae are derived by substituting the Gauß formula (3.5)

into equation (2.1) which defines the curvature of the pullback connection ∇i, as follows. Using the
decomposition TM |Σ � TΣ`NΣ, we may write a section V c P ΓpEc|Σq as a tuple pΠc

dV
d,Nc

dV
dq.

Since Πc
dV

d is a tangent vector to Σ, we abuse notation slightly and typically write the tuple as
pV k,Nc

dV
dq where V k � Πk

dV
d. Computing the action of the Riemann curvature Rij

c
d on such a

tuple, we see that

p∇i∇j �∇j∇iq
�

V k

Nc
dV

d



�
�
RΣ

ij
k
lV

l � 2Dri

�
IIjs

k
dV

d
�� 2gefII

k
ri
fIIjsl

eV l � 2IIri
k
|e|∇K

js

�
Ne

dV
d
�

2IIkri
c
�
DjsV

k
�� 2gklIIkri

cIIjsldV
d � 2∇K

ri

�
IIjsk

cV k
��RK

ij
c
dV

d

�

�
�
RΣ

ij
k
l � 2gcdIIlri

cIIkjs
d �2DriIIjs

k
d

2DriIIjsl
c RK

ij
c
d � 2gklIIkri

cIIjsld


�
V l

Nd
eV

e



,

and the equations (3.8), (3.9) and (3.10) all follow from this by simply projecting the appropriate
entry of the matrix.

Note that in dimension m � 1, the trace-free part of the second fundamental form is zero. Also,
in dimension m � 1 equations (3.8)-(3.10) are valid, but trivial in that in each case both sides are
identically zero.

3.2 Conformal Submanifolds

Consider now a submanifold Σ satisfying 1 ¤ dimΣ ¤ n�1 in a conformal manifold pM, cq. Observe
that the conformal structure is sufficient to determine an orthogonal complement of TΣ � TM and
so the splitting of (3.1) is in fact conformally invariant. We carry over to this setting the same
notation for the normal projection Na

b and the orthogonal projection Πi
a. Since each g P c induces a

Riemannian metric on Σ by restriction, it follows immediately that c induces a conformal structure
on Σ that we denote cΣ. We therefore have intrinsic to pΣ, cΣq density bundles EΣrws. In fact, for
any w P R,

EΣrws � Erws|Σ,
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which can be seen immediately from the interpretation of densities as equivalence classes of a metric
and a function, see the discussion of Section 2.2. From these observations, it follows immediately
that the conformal metric gΣ is simply the restriction to b2TΣ of the ambient conformal metric
g. Using these, it is straightforward to see that the orthogonal projection may be thought of as a
composition g�1

Σ �Π � g, meaning
Πi

a � gijΠb
jgab, (3.11)

where we are raising and lowering indices using the conformal metric (and we omit the subscript
Σ when the indices imply that we are using gΣ or its inverse). Since this involves g and g�1, the
resulting section still has conformal weight zero. When a metric g P c is chosen we have as usual the
Gauß, Codazzi and Ricci equations ((3.8), (3.9) and (3.10)), but it will be convenient to work with
weighted versions of these, with the ambient or intrinsic conformal metrics replacing any instances
of their scale-dependent counterparts. For example the weighted version of the Gauß equation is

Rijkl � RΣ
ijkl � 2gcdIIlri

cIIjsk
d,

where now Rijkl and RΣ
ijkl have weight 2 (and the second fundamental form naturally has conformal

weight 0).
Coupling the normal connection (3.3) to the Levi-Civita connection on the bundle EΣr�1s yields

a connection on NΣr�1s, which we shall also denote ∇K. It is easily verified using (2.7) and (2.9)
that this is conformally invariant. In fact, more generally, on sections of NΣrws the transformation
law is p∇K

i ν
a � ∇K

i ν
a � pw � 1qΥiν

a (3.12)

when pg � Ω2g and Υi � Ω�1∇iΩ. The conformal metric g induces a bundle metric on NΣr�1s,
and this is preserved by ∇K.

Since the Levi-Civita connection changes under a conformal rescaling, the Gauß formula is not
conformally invariant. Using (2.7), we conclude that under a conformal transformation,pIIijc � IIij

c � gijN
c
dΥ

d. (3.13)

Since this transformation is by pure trace, it follows immediately that I̊Iij
c is conformally

invariant: x̊
IIij

c � I̊Iij
c.

Thus the transformation (3.13) is entirely due to the transformed mean curvature, whencepHc � Hc �Nc
dΥ

d. (3.14)

Note that the mean curvature is now defined using the conformal metric: Hc :� 1
mgijIIij

c. As a
consequence of (3.14) we have the following very useful proposition [14, 63, 42]:

Proposition 3.1. Let Σ be a submanifold of a conformal manifold pM, cq. Then any metric gΣ in
the induced conformal class of metrics on Σ can be extended to a metric g P c such that the mean
curvature of Σ with respect to g vanishes.

Proof. Let gΣ be as in the proposition, and let g P c be any extension of gΣ. We look for a rescaled
metric pg satisfying the requirements of the proposition. Set pg � e2ωg with ω to be determined. Since
we require pg|Σ � gΣ we set ω � 0 along Σ. Now, by (3.14), pHc � 0 if, and only if, Hc � N c

d∇dω
along Σ. Since the latter merely amounts to specifying the normal derivatives of ω along Σ, such
an ω clearly exists (unique modulo functions that vanish and have vanishing differential along Σ).
This proves the proposition.
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We refer to a metric g P c such that Hc � 0 as a minimal scale for Σ. The freedom to work in a
minimal scale when computing conformally invariant quantities helps to simplify many calculations.

Remark 3.2. In the case of a 1-dimensional submanifold a minimal scale g is easily seen to be
one for which the curve is an unparametrised geodesic, since in this case, after parametrising the
curve by arc length, the mean curvature vector can be identified with the acceleration of the curve.
Moreover, in the case where the curve γ in pM, cq is already parametrised one can take gΣ to be the
“metric” on γ corresponding to the parametrisation and extend gΣ to g P c as in Proposition 3.2
to obtain a metric g for which γ, with its original parametrisation, is a parametrised geodesic.

3.3 Submanifold tractors

As a conformal manifold in its own right, pΣ, cΣq possesses its own standard tractor bundle, which
we will call the intrinsic tractor bundle, and denote by T Σ, or EI in abstract indices, carrying over
our convention that later Latin letters will be used for sections of submanifold bundles, with upper
case indices for tractor bundles. We now wish to relate this to the corresponding ambient tractor
bundle, T M , which will continue to denote by T .

As we have already seen in Section 3.1, the Gauß formula plays a central role in the setting of
Riemannian submanifold geometry. Crucially, the Gauß formula uses that TΣ may be identified
with a subbundle of TM . In fact, there is an analogous notion for the intrinsic and ambient tractor
bundles, and this explains our abstract index notation for submanifolds being similar to that for
ambient tractors.

First, there is a mapping NΣr�1s Ñ T defined by

na ÞÑ NA � NA
a na g�

�� 0
na

ncH
c

�. (3.15)

This is easily seen to be conformally invariant using the transformation laws for the tractor pro-
jectors (2.15) and the mean curvature (3.14):

pNA � pna pZA
a � pna

pHa pXA

� napZA
a �ΥaX

Aq � napHa �ΥbNa
b qXA

� naZA
a � naΥaX

A � naH
aXA � nbΥ

bXA

� naZA
a � naH

aXA

� NA.

Thus the image of the injective map (3.15) defines, along Σ, a subbundle of T which is canonically
isomorphic to NΣr�1s. We call this the normal tractor bundle and denote this N , or NA with
indices. We summarise, as follows.

Lemma 3.3. The map (3.15) defines a conformally invariant isomorphism

NA
a : NΣr�1s �ÝÑ N � T |Σ. (3.16)
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The bundle N admits an orthogonal complement in T , NK, and so T |Σ decomposes as

T |Σ � NK `N .

Write ΠA
B : EB Ñ NKA and NA

B : EB Ñ NA for the orthogonal projections onto the respective
factors of this decomposition. So δAB � ΠA

B � NA
B. Note that for any NB P ΓpNBq, one has

hACN
CΠA

B � 0 since ΠA
B is valued in NKA. Thus, hACN

A
BΠ

C
D � 0. Substituting ΠC

D � δCD �NC
D, it

follows that
NBC � NA

BN
C
DhAC .

So NAB and ΠAB are symmetric, where in each case an index has been lowered with the tractor
metric, and ΠA

B and NA
B give the orthogonal decomposition of the cotractor bundle EA.

Note that
NA

a Na
B � NA

B and Na
BN

B
b � Na

b , (3.17)

where Na
A is the inverse to (3.16). From the symmetry of NAB, and corresponding observation of

symmetry for Nab, it follows that Na
A is obtained from NB

b by raising and lowering indices using
the tractor and conformal metrics.

A straightforward direct calculation shows that the isomorphism (3.16) intertwines the tractor
and normal Levi-Civita connections in the sense of the following lemma.

Lemma 3.4. For any section na P ΓpNΣr�1sq we have

NC
b ∇K

i n
b � NC

B∇ipNB
b nbq.

Proof. This follows immediately from the definitions if we work in a minimal scale.

We note here that N is a rank d � n�m vector bundle, and hence NK has rank pn� 2q � d �
m� 2, which coincides with the rank of T Σ. This is not a coincidence, and it turns out that there
is an isomorphism of vector bundles T Σ Ñ NK. Let us initially understand this in submanifold
dimensions m ¥ 3.

Theorem 3.5. Let Σ be a submanifold of dimension m ¥ 3 in a conformal manifold pM, cq. The
intrinsic tractor bundle T Σ is canonically isomorphic to the orthogonal complement NK of the
normal tractor bundle via a bundle isomorphism which preserves both the metric and the filtration.
We denote this isomorphism ΠA

I . Explicitly, in a general ambient scale g P c, it is given by

T Σ Q V I gΣ�
��σ
µi

ρ

� ΠA
IÞÝÑ
�� σ

µa �Haσ
ρ� 1

2H
aHaσ

� g� V A P NK, (3.18)

where µa � Πa
i µ

i.
The map Π : T ΣÑ NK is a filtration and metric preserving isomorphism.

Proof. Fix a scale gΣ P cΣ, and let g P c be a scale that satisfies ι�g � gΣ. The map is clearly
injective, and the image is also clearly annihilated by any section of N . We need to show that
the map (3.18) is unchanged if we replace g by some conformally related pg � Ω2g, and gΣ by
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xgΣ � Ω2gΣ. (In the latter Ω is restricted to Σ – this is clear by context and so we do introduce
additional notation.) Equivalently, we need to show that the following diagram commutes

rEIsgΣ rEAsg|Σ

rEJ s
xgΣ

rEBs
pg|Σ

ΠA
I

ΠB
J

(3.19)

where the vertical maps are conformal change of tractor splitting, as given in (2.16), and the
horizontal maps are (3.18) in the appropriate scale.

Write Υa � Ω�1∇aΩ, and Υi � Ω�1DiΩ. Note that Υi � Πa
iΥa. Applying ΠA

I and then
rescaling is given by�� 1 0 0

Υb δba 0
�1

2Υ
cΥc �Υa 1

��� 1 0 0
�Ha Πa

i 0
�1

2H
cHc 0 1

��
�� 1 0 0

Υb �Hb Πb
i 0

�1
2Υ

cΥc �HaΥa � 1
2H

cHc �Υi 1

�,

while first rescaling and then applying ΠB
J corresponds to the matrix�� 1 0 0

� pHb Πb
j 0

�1
2
pHc pHc 0 1

��� 1 0 0

Υj δji 0
�1

2Υ
kΥk �Υi 1

��
�� 1 0 0

� pHb �Πb
jΥ

j Πb
i 0

�1
2
pHc pHc � 1

2Υ
kΥk �Υi 1

�.

Using equation (3.14), we see that

� pHb �Πb
jΥ

j � �Hb �Nb
cΥ

c �Πb
jΥ

j � �Hb �Υb

and

�1

2
pHc pHc � 1

2
ΥkΥk � �1

2
HcHc �HeΥe � 1

2

�
ΥkΥk �NcdΥcΥd

	
� �1

2
HcHc �HeΥe � 1

2
ΥcΥc,

whence the above two matrix products are equal. Hence the map is conformally invariant.
It is easily verified that the map ΠA

I is metric preserving and sends XI to XA, and so is filtration
preserving. An easy calculation shows that it is metric preserving, cf. Remark 3.6 below.

Remark 3.6. Note that the calculations in the above proof and hence the existence of the canonical
metric and filtration preserving map Π : T Σ Ñ NK are greatly simplified if we choose to work
only with minimal scales (g P c with Hc � 0, cf. Proposition 3.2); in a minimal scale, the map
ΠA

I simply maps pσ, µi, ρq ÞÑ pσ, µa, ρq and it is clear that this map preserves the metric and the
filtration.
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Motivated by the result in Theorem 3.5 above, for the cases of dimensions m � 1, 2 we (for
now) define T Σ to be NK. (Then Theorem 3.5 again applies, and is effectively just changing the
splitting to give triples that transform in the usual way.) In Section 3.5 below we will then show
that in dimension m � 1 and m � 2 it is still that case that T Σ is canonically J2Er1s{S2

0T
�Σr1s

(where in the m � 1 case S2
0T

�Σr1s is the “zero vector bundle”), consistent with the discussion
given in the introduction.

For convenience, we will say that sections of NK are tractors tangent to the submanifold, and
similarly, sections of N are tractors normal to the submanifold.

It will also be convenient to record the relationship between the submanifold and ambient
splitting tractors corresponding to the isomorphism in Theorem 3.5, namely:

XI � ΠI
AX

A, ZI
i � ΠI

AΠ
a
iZ

A
a , and Y I � ΠI

ApY A �HaZA
a � 1

2
HaHaX

Aq (3.20)

along Σ, where ΠI
A can be interpreted as the inverse of the map ΠA

I given by Theorem 3.5 or,
better, as the orthogonal projection from T to NK followed by the isomorphism NK Ñ T Σ (this
is completely analogous to our use of the notation Πi

a applied to tangent vectors, see (3.1)).
We have already mentioned that there is a tractor Gauß formula, namely a decomposition of

the ambient tractor connection which is compatible with the decomposition T � NK `N . Define
the “checked” connection ∇̌ on T Σ by

∇̌iV
J :� ΠJ

B∇i

�
ΠB

KV K
�
, (3.21)

where ∇i on the right-hand side is the (pullback of the) ambient tractor connection. This is
essentially the tangential part of the ambient connection. We may then define the tractor second
fundamental form LiJ

C analogously to the Riemannian case, namely as the 1-form with values in
maps T ΣÑ N which characterises the normal part of the ambient connection:

∇iV
B � ΠB

J ∇̌iV
J � LiJ

BV J , (3.22)

where V B � ΠB
J V

J is a section of the ambient tractor bundle which is tangent to the submanifold.
The linear operator LiJ

B is well defined by this since both ι�∇ and ∇̌ satisfy the Leibniz rule. We
call (3.22) the tractor Gauß formula.

The ambient tractor connection also induces a connection on the normal tractor bundle in the
obvious way:

∇N
i NA :� NA

B∇iN
B, (3.23)

where NA is a section of N . Such NA are of the form NA g� p0, na, ncH
cq, where na P ΓpNΣar�1sq.

As a tractor with zero in the top slot, it follows from (2.15) that the middle slot of ∇N
i NA is

necessarily conformally invariant. But this exactly recovers the invariant connection on NΣr�1s
discussed in Section 3.2 (cf. Lemma 3.4). In summary, we have the following.

Proposition 3.7. The canonical isomorphism NΣr�1s �Ñ N preserves the invariant parallel trans-
ports defined on each bundle.

Essential to our direction in this article is that the tractor fundamental form may be captured
in several equivalent ways, the first of which we give here.
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Proposition 3.8. The tractor second fundamental form is given by

LiK
B � ΠC

KNB
A∇iΠ

A
C , (3.24)

or equivalently,
LiK

B � �ΠC
KNB

A∇iN
A
C . (3.25)

Proof. Let NA be a section of the normal tractor bundle N . Note that ΠA
CNA � 0, and hence

0 � ∇ipΠA
CNAq � p∇iΠ

A
CqNA �ΠA

B∇iNA,

whence
ΠA

C∇iNA � �NA∇iΠ
A
C . (3.26)

As a consequence of the tractor Gauß formula (3.22),

NBLiK
BV K � NB∇iV

B � �V B∇iNB � �V KΠB
K∇iNB

for all V K P ΓpEKq, and therefore

NBLiK
B � �ΠB

K∇iNB � �ΠC
KΠA

C∇iNA.

Combining this with (3.26), we have that

NBLiK
B � �ΠC

K

��NA∇iΠ
A
C

� � NBΠ
C
KNB

A∇iΠ
A
C ,

and this must hold for any section NB of the normal tractor bundle, whence the result follows.
Substituting ΠA

C � δAC �NA
C into (3.24) and using that δAC is parallel for the tractor connection then

gives the second equality of the proposition.

It will be convenient to have a second (equivalent) object that we also term the tractor second
fundamental form, which we denote by L and which is the section of T �ΣbNK� bN defined by

LiA
B � ΠJ

ALiJ
B. (3.27)

Since ΠJ
A is an isomorphism T �Σ Ñ NK�, this is clearly equivalent to the original tractor second

fundamental form (and eventually when there is no possibility of confusion we will simply denote
both objects by L). The gain of using L is that both its tractor indices are ambient tractor indices,
as we shall see shortly.

It is useful to observe that L arises naturally in several different ways.

Lemma 3.9. The B index of NC
A∇iN

A
B is tangential, i.e., for any NB P ΓpNBq, one has

NBNC
A∇iN

A
B � 0.

Proof. Let NB P ΓpNBq. We calculate ∇ipNA
BN

Bq in two different ways. On the one hand, one
has

∇ipNA
BN

Bq � ∇iN
A,

while on the other
∇ipNA

BN
Bq � NA

B∇iN
B �NB∇iN

A
B.
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Hence
NB∇iN

A
B � ∇iN

A �NA
B∇iN

B.

Thus
NBNC

A∇iN
A
B � NC

Ap∇iN
A �NA

B∇iN
Bq � NC

A∇iN
A �NC

B∇iN
B � 0.

Thus we see that the ΠC
K of equation (3.25) is merely identifying the already tangential C index

with a submanifold tractor index. Thus we see the following.

Proposition 3.10.
LiB

C � �NC
A∇iN

A
B. (3.28)

Proof. By equation (3.25) we have

LiB
C � �ΠK

BΠD
KNC

A∇iN
A
D � �pδDB �ND

B qNC
A∇iN

A
D,

and so the result follows from the previous lemma.

Remark 3.11. Note that (3.28) is equivalent to LiJ
C � �ΠB

J N
C
A∇iN

A
B. A similar argument shows

that
IIij

c � �Πb
jN

c
a∇iN

a
b .

Lemma 3.12. Let NC
B be the normal tractor projector. Then

∇iN
C
B � �Li

C
B � LiB

C , (3.29)

where
Li

C
B � hCDhABLiD

A.

Proof. Noting that NC
B � NC

AN
A
B, we have

∇iN
C
B � NA

B∇iN
C
A �NC

A∇iN
A
B.

The second term is exactly the negative of equation (3.28). Using that the normal projector is
symmetric, the first term is clearly a transpose of this (so for example on this term, the C index is
tangential).

We now use this result to compute an explicit formula for the tractor second fundamental form.
We first prove a lemma about the tractor normal projector.

Lemma 3.13. For a choice of scale, the tractor normal projector is given by

NA
B � Na

bZ
A
a Z

b
B �HaZA

a XB �HbX
AZb

B � pHdHdqXAXB (3.30)

where the Hc is the mean curvature vector in the chosen scale.
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Proof. The right-hand side of (3.30) defines a conformally invariant bundle map EA Ñ NB which
moreover acts as the identity on sections of NA as defined in following (3.15). The latter is easily
verified by working in a minimal scale.

Alternatively, (3.30) follows immediately from (3.17), as in any scale

Na
B � Na

b Z
b
B �HaXB,

and NA
B � NA

a Na
B.

Theorem 3.14. The tractor second fundamental form is given by

LiJ
C � I̊Iij

cZj
JZ

C
c �Nc

a pPi
a �∇iH

aqXJZ
C
c

�HcI̊Iij
cZj

JX
C �Ha pPi

a �∇iH
aqXJX

C .
(3.31)

Remark 3.15. Note that, in particular, L � 0 if and only if I̊I � 0 and Nc
a pPi

a �∇iH
aq �

0. For later use when computing examples it is useful to note that also that Nc
a pPi

a �∇iH
aq �

1
n�2N

c
aRici

a �∇K
i H

c.

Proof. We compute NC
A∇iN

A
B using the formula from Lemma 3.13. We then apply ΠB

J , the formula
for which is given in Theorem 3.5 to complete the proof.

First, differentiating (3.30) gives

∇iN
A
B � p∇iN

a
b qZA

a Z
b
B �Na

b

��PiaX
A � giaY

A
�
Zb
B �Na

bZ
A
a

�
�P b

i XB �Πb
iYB

	
� p∇iH

aqZA
a XB �Ha

��PiaX
A � giaY

A
�
XB �HaZA

a ZBi

� p∇iHbqXAZb
B �HbZ

A
i Z

b
B �HbX

A
�
�Pi

bXB �Πb
iYB

	
� 2pHd∇iHdqXAXB �HdHdZ

A
i XB �HdHdX

AZBi

� p∇iN
a
b �Hagib �HbΠ

a
i qZA

a Z
b
B

�
�
�Na

bPia �∇iHb �HdH
dgib

	
XAZb

B

�
�
�Na

bPi
b �∇iH

a �HdH
dΠa

i

	
ZA
a XB

�
�
�HaPia �HbPi

b � 2Hd∇iHd

	
XAXB,

where, recall, gia means Πb
igba. From (3.30), it follows that

NC
AZ

A
a � Nc

aZ
C
c �HaX

C and NC
AX

A � 0.

Hence

NC
A∇iN

A
B � p∇iN

a
b �Hagib �HbΠ

a
i q
�
Nc

aZ
C
c �HaX

C
�
Zb
B

�
�
�Na

bPi
b �∇iH

a �HdH
dΠa

i

	 �
Nc

aZ
C
c �HaX

C
�
XB

� pNc
a∇iN

a
b �HcgibqZb

BZ
C
c �Nc

a p∇iH
a � Pi

aqXBZ
C
c

�Ha p∇iN
a
b �HagibqZb

BX
C �Ha p∇iH

a � Pi
aqXBX

C .
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All that remains is to apply the tangential tractor projector ΠB
J . According to (3.18),

ΠB
J Z

b
B � Πb

jZ
j
J and ΠB

J XB � XJ . (3.32)

Therefore

ΠB
J N

C
A∇iN

A
B � Πb

j pNc
a∇iN

a
b �HcgibqZj

JZ
C
c �Nc

a p∇iH
a � Pi

aqXJZ
C
c

�HaΠ
b
j p∇iN

a
b �HagibqZj

JX
C �Ha p∇iH

a � Pi
aqXJX

C

� p�IIijc �HcgijqZj
JZ

C
c �Nc

a p∇iH
a � Pi

aqXJZ
C
c

�Hc p�IIijc �HcgibqZj
JX

C �Ha p∇iH
a � Pi

aqXJX
C

� �I̊IijcZj
JZ

C
c �Nc

a p∇iH
a � Pi

aqXJZ
C
c

�HcI̊Iij
cZj

JX
C �Ha p∇iH

a � Pi
aqXJX

C .

where we note that Ha∇iN
a
b � HcN

c
a∇iN

a
b , and we have used the observation from Remark 3.11 to

replace Πb
jN

c
a∇iN

a
b with �IIijc.

Finally, applying ΠB
J to equation (3.29) shows that LiJ

C is equal to negative of the above, from
which the claim in the theorem follows.

3.4 Conformal submanifolds of dimension m ¥ 3

For submanifold dimensions m ¥ 3 the conformal structure of Σ determines a tractor connection D
and compatible tractor metric hΣ on T Σ. We refer to these as the intrinsic tractor connection and
metric for T Σ. We continue to use abstract indices from the later part of the alphabet to distinguish
submanifold objects from their ambient analogues, so, e.g., we write hΣ as hIJ P ΓpEpIJqq.

Unlike the Riemannian case, the checked connection is not exactly the intrinsic tractor connec-
tion.

Proposition 3.16. Along a submanifold Σ of dimension m ¥ 3 the checked and intrinsic tractor
connections are related by

∇̌iV
J � DiV

J � Si
J
KV K , (3.33)

with Di the intrinsic submanifold tractor connection and

SiJK :� 2

�
Pij � pij �HcI̊Iij

c � 1

2
HcH

cgij



Zj
rJXKs, (3.34)

where Πij :� Πa
iΠ

b
jPab is the restriction of the ambient Schouten tensor to the submanifold and pij

is the intrinsic Schouten tensor.

Proof. Fix metrics g P c and gΣ P cΣ such that ι�g � gΣ to facilitate calculation. The inverse
isomorphism of (3.18) is the map NK Ñ T Σ given by the matrix�� 1 0 0

�Ha Πa
i 0

�1
2H

cHc 0 1

�. (3.35)
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Using this we have

∇̌iV
J �

�� 1 0 0

0 Πj
b 0

�1
2H

cHc �Hb 1

�∇i

���� 1 0 0
�Hb Πb

k 0
�1

2H
cHc 0 1

��� σ
µk

ρ

���
�
�� 1 0 0

0 Πj
b 0

�1
2H

cHc �Hb 1

�∇i

�� σ
µb �Hbσ

ρ� 1
2H

cHcσ

�
�
�� 1 0 0

0 Πj
b 0

�1
2H

cHc �Hb 1

��� ∇iσ � µi

∇i

�
µb �Hbσ

�� Pi
bσ �Πb

i

�
ρ� 1

2H
cHcσ

�
∇i

�
ρ� 1

2H
cHcσ

�� Pic pµc �Hcσq

�
�
�� 1 0 0

0 Πj
b 0

�1
2H

cHc �Hb 1

��� ∇iσ � µi

∇iµ
b � p∇iH

bqσ �Hb∇iσ � Pi
bσ �Πb

iρ� 1
2Π

b
iH

cHcσ
∇iρ� pHc∇iHcqσ � 1

2H
cHc∇iσ � Picµ

c � PicH
cσ

�

�

����
∇iσ � µi

Πj
b

�
∇iµ

b � p∇iH
bqσ �Hb∇iσ � Pi

bσ �Πb
iρ� 1

2Π
b
iH

cHcσ
�

�1
2H

cHcp∇iσ � µiq �Hb

�
∇iµ

b � p∇iH
bqσ �Hb∇iσ � Pi

bσ �Πb
iρ� 1

2Π
b
iH

cHcσ
�

�∇iρ� pHc∇iHcqσ � 1
2H

cHc∇iσ � Picµ
c � PicH

cσ

���
Using the agreement of the intrinsic Levi-Civita connection with the pullback of the ambient

Levi-Civita connection then gives

∇̌iV
J �

�� Diσ � µi

Diµ
j � Pi

jσ � δji ρ� pΠj
b∇iH

bqσ � 1
2δ

j
iH

cHcσ
Diρ� Picµ

c � 1
2H

cHcµi �Hb∇iµ
b

�
�
�� Diσ � µi

Diµ
j � pi

jσ � δji ρ� p�I̊Iijb � δjiHbqHbσ � 1
2δ

j
iH

cHcσ � pPi
j � pi

jqσ
Diρ� picµ

c � 1
2H

cHcµi �HbpI̊Iijb � gijH
bqµj � pPi

j � pi
jqµj

�

�
�� Diσ � µi

Diµ
j � pi

jσ � δji ρ
Diρ� picµ

c

��
����

0�
Pi

j � pi
j �HbI̊Ii

jb � 1
2H

cHcδ
j
i

	
σ

�
�
Pij � pij �HbI̊Iij

b � 1
2HbH

bgij

	
µj

���
� DT Σ

i

�� σ
µj

ρ

��
�� 0 0 0
Fi

j 0 0
0 �Fij 0

��� σ
µj

ρ

�.

where

Fij :� Pij � pij �HbI̊Iij
b � 1

2
HbH

bgij . (3.36)

We call the tensor Fij given in (3.36) the Fialkow tensor (since this quantity seems to have
appeared first in the work of Fialkow [51], cf. [87, 112]). Since the checked connection, the intrinsic
tractor connection and Zj

rJXKs are all conformally invariant, it follows that the Fialkow tensor is

also conformally invariant. Proposition 3.16 tells us that the Fialkow tensor measures the failure of
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the induced tractor connection ∇̌ to be normal (in the sense of corresponding to a normal Cartan
connection [22]).

There is an alternative formula for the Fialkow tensor which is manifestly conformally invariant.
To derive it, one substitutes the Weyl-Schouten decomposition of the ambient and intrinsic Riemann
tensors into the Gauß formula, and then applies the map

Tijkl ÞÑ 1

m� 2

�
Tikj

k � Tkl
kl

2pm� 1qgij



(3.37)

to both sides (to take the “submanifold Schouten” part). After writing the second fundamental
form as I̊Iij

c � gijH
c and rearranging, one finds that the Fialkow tensor (3.36) is equal to

Fij � 1

m� 2

�
WicjdN

cd � WabcdN
acNbd

2pm� 1q gij � I̊Ii
kcI̊Ijkc � I̊IklcI̊I

klc

2pm� 1qgij
�
. (3.38)

All objects on the right-hand side are conformally invariant. Since the Fialkow tensor has already
been observed to be conformally invariant, it it sufficient to establish the formula (3.38) in a minimal
scale. Let g P c be a minimal scale and gΣ � ι�g. Thus II � I̊I. Applying the submanifold and
ambient Weyl-Schouten decompositions in the Gauss equation we obtain

Wijkl � Pikgjl � Pjkgil � Pilgjk � Pjlgik � wijkl � pikgjl � pjkgil � pilgjk � pjlgik

� gcdIIli
cIIjk

d � gcdIIlj
cIIik

d

where Wijkl denotes the full projection Πa
iΠ

b
jΠ

c
kΠ

d
lWabcd of the ambient Weyl curvature, Pij �

Πa
iΠ

b
jPab, and wijkl denotes the submanifold intrinsic Weyl tensor. Applying the map Tijkl ÞÑ

1
m�2

�
Tikj

k � Tkl
kl

2pm�1qgij

	
on both sides of the above display we get

� 1
m�2

�
WicjdN

cd � WacbdN
abNcd

2pm�1q gij

	
� Pij � pij � 1

m�2

�
I̊Ii

kcI̊Ijkc � I̊Iklc I̊Iklc
2pm�1q gij

	
,

noting that gklWikjl � gklΠc
kΠ

d
lWicjd � �N cdWicjd since Wabcd is trace free, and similarly Wkl

kl �
WacbdN

abNcd. The result then follows from (3.36).

Remark 3.17. In the m � 2 case pΣ, cΣq we do not have an (intrinsicaly defined) Schouten tensor
for a metric gΣ P cΣ, and the map (3.37) does not make sense. Crossing off the 1

m�2 in (3.37) does

not help, as when m � 2 the map Tijkl ÞÑ Tikj
k � Tkl

kl

2pm�1qgij is easily seen to be equal to the zero
map. Since in two dimensions the space of algebraic curvature tensors is one dimensional, when
m � 2 the Gauss equation is equivalent to the scalar equation given by its “double trace.” If K
denotes the Gaussian curvature of gΣ P cΣ then contracting the Gauss equation twice gives

K � gijPij � 1

2
Wijklg

ikgjl � 2|H|2 � 1

2
|II|2. (3.39)

We’ll make use of this in Section 3.5 below when we show that the conformal embedding of pΣ, cΣq
into pM, cq determines a canonical (extrinsically defined) Schouten tensor pij for a metric gΣ P cΣ.
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Recall that along Σ we may decompose the ambient standard tractor bundle T � T M as
T |Σ � T Σ `N . If V P ΓpT |Σq is given by pV J, V Kq with respect to this decomposition, then by
(3.22), (3.23), (3.33) and the fact that ∇ preserves the ambient tractor metric we have

∇XV �
�

DX � SpXq �LpXqT
LpXq ∇N

X


�
V J

V K



(3.40)

for any X P XpΣq, where LpXqT is the transpose of LpXq with respect to the ambient tractor
metric (cf. Proposition 3.8). We therefore write

ι�∇ �
�

D � S �LT

L ∇N



(3.41)

on T |Σ � T Σ ` N . We will most often make use of the above display in the case where V is a
section of T Σ (V K � 0). In this case we obtain the following form of the tractor Gauß formula:

∇iV
B � ΠB

J

�
DiV

J � Si
J
KV K

�� LiK
BV K , (3.42)

for any section V of T Σ. For a section
By computing the curvature of ι�Ω of ι�∇ using the decomposition (3.41) one may easily

obtain conformal tractor analogues of the Riemannian Gauss, Codazzi, and Ricci equations (cf. the
derivation of the Riemannian Gauß-Codazzi-Ricci equations in Section 3.1):

ΩijKL � ΩΣ
ijKL � 2DriSjsKL � 2Sri|KMS|js

M
L � 2Lri|LCL|jsKC (3.43)

Ωij
E
LN

C
E � 2DriLjsL

C � 2Lri|KCS|js
K

L (3.44)

Ωij
A
BN

C
AN

B
D � ΩN

ij
C
D � 2gKLLriKCLjsLD, (3.45)

where indices between bars are exempt from antisymmetrisation, ΩijKL � ΩijCDΠ
C
KΠD

L for ΩijCD

the curvature of the pullback connection, and ΩN is the curvature of the normal tractor connection,
characterised by

ΩN
ij
C
DN

D � �∇N
i ∇N

j �∇N
j ∇N

i

�
NC , (3.46)

for any section N of the normal tractor bundle N .

Remark 3.18. In [16] Burstall and Calderbank define a ‘Möbius reduction’ to be a rank pm � 2q
subbundle V of T |Σ containing the rank m� 1 subbundle spanned by the canonical tractor XA and
its covariant derivatives in submanifold tangential directions (with respect to the ambient tractor
connection coupled with the Levi-Civita connection of some, equivalently any, metric g P c). One
then decomposes the ambient tractor connection along Σ as (using notation similar to the above)

ι�∇ �
�

∇V �pLVqT
LV ∇VK



on T |Σ � V`VK. The definition of ‘Möbius reduction’ implies that LV

iJ
CXJ � 0 and LV

iJ
CXC �

0, so that there is a well-defined projection IIV ij
c :� LV

iJ
CZJ

j Z
C
c of LV

iJ
C . Burstall and Calderbank

then define the unique ‘canonical Möbius reduction’ VΣ by imposing an algebraic normalisation
condition on �

0 �pLVqT
LV 0
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similar to the algebraic normalisation condition imposed on the curvature of the normal Car-
tan/tractor connection [27, 22], see Section 9.3 of [16]. This algebraic normalisation condition
amounts to the requirement that gijIIV ij

c � 0. Since by Theorem 3.14 the tractor second funda-
mental form has invariant projection I̊Iij

c � LiJ
CZJ

j Z
C
c the ‘canonical Möbius reduction’ VΣ is the

same as the orthogonal complement NK of the normal tractor bundle and hence gives an abstract
characterization of this bundle (equivalently of the normal tractor bundle N ). Our approach differs
in that we explicitly construct N , and then further explicitly identify NK with the intrinsic tractor
bundle T Σ.

3.5 Low-dimensional conformal submanifolds

In this section we treat submanifolds Σ such that dimpΣq is m � 1 or m � 2. Note that Section
3.3 has no restriction on the submanifold dimension m. However in Section 3.4, just above, we
make the restriction to m ¥ 3 to discuss the intrinsic tractor connection then available. When
m � 1, 2 the conformal structure on Σ is not sufficient to determine a canonical connection on T Σ.
The purpose of this section is to observe that in these dimensions the conformal embedding does
determine distinguished tractor connections on T Σ, and then using this we get analogues of the
results from Section 3.4.

First recall that Equation (3.21) defines a connection ∇̌ on the bundle T Σ also when dimΣ is
1 or 2.

Riemannian manifolds of dimension 1 or 2 are not naturally equipped with an (intrinsically de-
termined) Schouten tensor. However conformal submanifolds of these dimensions inherit a natural
replacement, as follows. First recall that for submanifolds of dimension at least 3, the difference
tractor of is equivalent to the Fialkow tensor of the submanifold according to expressions (3.34)
and (3.36). In dimensions 1 and 2, we will, in essence, turn this around and use the formula (3.36)
to determine a submanifold Schouten tensor (for a given gΣ P cΣ). In these dimensions all terms in
(3.36) are well defined, as usual, except the submanifold Schouten pij and the Fialkow tensor Fij .
Note that fixing one of these two determines the other via (3.36). Moreover, from the conformal
transformation formulae of the terms in (3.36), it follows that any natural conformally invariant
choice of Fij determines a submanifold tensor pij P S2T �Σ that transforms conformally according
to (2.10). From a conformal geometry point of view it makes sense to define Fij first (in a con-
formally invariant fashion) and view the definition of the Schouten tensor pij of a metric gΣ P cΣ
as a consequence of this. Such a Schouten tensor pij then yields a conformally invariant tractor
connection D on T Σ (in a choice of scale) according to the usual formula, namely

Di

�� σ
µj

ρ

��
�� Diσ � µi

Diµj � pijσ � gijρ
Diρ� pijµ

j

�, (3.47)

where D on the right-hand side is the intrinsic Levi-Civita connection. Equivalently the tractor
connection is determined by formula (3.33) with

SiJK :� 2FijZ
j
rJXKs.

Thus it remains to specify an invariant Fij , or equivalently a pij that transforms according to
(2.10). Recall that in all dimensions we have the conformally invariant tractor connection ∇̌ on
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T Σ. It is given by

∇̌iV
J �

����
Diσ � µi

Diµ
j �

�
Pi

j �HbI̊Ii
jb � 1

2H
cHcδ

j
i

	
σ � δji ρ

Diρ�
�
Pij �HbI̊Iij

b � 1
2HbH

bgij

	
µj

���, (3.48)

where we have computed using a choice of ambient scale g P c, and V J gΣ� pσ, µj , ρq. Note that
although the terms Pij and Ha appearing on the right hand side in the above display depend on
the extension g P c of gΣ, the right hand side itself does not (by the conformal invariance of the
∇̌ and the fact that gΣ is sufficient to determine the tractor bundle splitting); in particular, the
quantity Pij � HbI̊Iij

b � 1
2HbH

bgij is independent of the extension g of gΣ. Moreover, from the

conformal invariance of ∇̌ it can be shown that Pij �HbI̊Iij
b � 1

2HbH
bgij transforms in the same

way as a Schouten tensor when gΣ is rescaled conformally. In particular, if we define

pij :�
�
Pij �HbI̊Iij

b � 1

2
HbH

bgij



� Fij , (3.49)

for any (decreed to be) conformally invariant Fij P ΓpEpijqq, pij depends only on gΣ (and the
conformal embedding of Σ in pM, cq), (3.36) holds, and pij has conformal transformation

ppij � pij �DiΥj �ΥiΥj � 1

2
gijΥ

kΥk. (3.50)

This formula is also easily checked directly. When such a choice of submanifold Schouten tensor
has been made we will denote its trace by

ȷ :� gijpij . (3.51)

Then under conformal change

pȷ � ȷ �DiΥ
i � p1� m

2
qΥiΥi. (3.52)

In dimension 1 we will simply set Fij :� 0. Thus given any submanifold scale gΣ and any
extension g P c one has

pij :� Pij � 1

2
HbH

bgij , (3.53)

since, for a curve, the trace-free second fundamental form is trivially zero. In this case, of course,
pij � ȷgij where ȷ :� gijpij . Note that the extension g P c can be chosen such that Hb � 0 and
then one simply has pij :� Pij .

In dimension 2 we shall set Fpijq0 � 0. We are not free to set gijFij equal to zero, though, as
we require that our corresponding Schouten tensor (for gΣ P cΣ) satisfy

RgΣ
ijkl � 2gkripjsl � 2glripjsk. (3.54)

(This condition on pij is natural by analogy with higher dimensions, but also from the point of view
of Cartan geometry/tractor calculus. Specifically, requiring (3.54) is equivalent to requiring that
the submanifold tractor connection D be normal, in the sense of [22]; this is ultimately because it
amounts to vanishing of the “middle slot” of the curvature of the tractor connection D, the slot
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where the Weyl curvature sits in dimensions four and higher, as can be seen by an easy calculation
using (3.47).) Equation (3.54) normalizes the trace of pij , and hence of Fij . Indeed, (3.54) is
equivalent to the requirement that the trace ȷ � gijpij equals the Gaussian curvature of gΣ:

ȷ � gijpij :� 1

2
gij RicgΣij � K, (3.55)

where K � KgΣ is viewed as as section of Er�2s|Σ in the natural way. With the trace of pij
normalized in this way, the trace of Fij is therefore given by (tracing (3.36) or (3.49)):

gijFij � gijPij �K � |H|2. (3.56)

Using the (twice contracted) Gauss equation (3.39) for K we have, equivalently,

gijFij � 1

2
|II|2 � |H|2 � 1

2
Wijklg

ikgjl � 1

2
|I̊I|2 � 1

2
Wijklg

ikgjl. (3.57)

Writing the submanifold total trace Wijklg
ikgjl of the ambient Weyl curvature as tr2 ι�W the

Fialkow tensor for m � 2 is therefore defined to be

Fij � 1

4

�
|I̊I|2 � tr2 ι�W

	
gij . (3.58)

The Schouten tensor pij of gΣ defined by (3.49) then satisfies (3.54).
With the conventions we have just established form � 2, the curvature of the tractor connection

D is then given by
ΩΣ
ijKL � �2cijkXrKZLs

k,

where cijk :� 2Dripjsk. This should be compared with (2.20) in the three dimensional case where
the Weyl tensor term vanishes. Note that, while in three and higher dimensions the Cotton tensor
is trace free, since we are in two dimensions the tensor cijk can be written as

cijk � 1

2
ϵijck

where ck � ϵijcijk and hence cijk is determined by its trace

cijkg
jk � 1

2
ϵijc

j � Diȷ �Djpij .

In the 2-dimensional case, the choice of pij for each scale (with the trace part normalized by setting
gijpij to be the Gauß curvature) is equivalent to a choice of Möbius structure on Σ in the sense
of [18]. The invariant cijk, which we refer to as the Cotton tensor in this setting, is precisely the
curvature of this Möbius structure and vanishes if and only if Σ (with the Möbius structure just
defined) is locally equivalent to the conformal Möbius sphere (i.e. comes from a system of local
coordinates on Σ related by Möbius transformations); see [18] for more details. Note that the
Möbius structure we have just defined on 2-dimensional submanifolds Σ agrees with the notion of
induced conformal Möbius structure in [16].

In both dimensions 1 and 2 we then have that, in any scale g P c, and with gΣ � g|TΣ, the
tractor connection on rT ΣsgΣ is given by (3.47). We note that this formula exactly agrees with
the formula for the usual tractor connection, as defined by (2.19) (but has pij as defined here).
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This connection in turn defines a Thomas-D operator D : Er1s Ñ T Σ via the usual BGG splitting
operator characterisation (see e.g. [26]), namely that, for any σ P ΓpEr1sq, DiDIσ must be 0 in the
top slot and be trace-free in the middle slot. Thus, in a scale gΣ P cΣ, this takes the form

1

m
DKσ

gΣ�
�� σ

Dkσ
� 1

m

�
giℓDiDℓ � ȷ

�
σ

�, (3.59)

(cf. (2.12)). It follows at once that (as in higher dimensions m) any parallel standard tractor I is
necessarily in the image of 1

mD. Moreover we have that, for any σ P ΓpEr1sq, and on the set where
σ is non-vanishing, the scale tractor

I :� 1

m
Dσ

satisfies that

hKLIKIL � � 2

m
ȷ σ2 � � 2

m
ȷgΣ

where ȷgΣ � ȷσ2 is the (weight zero true) J-curvature for the scale gΣ, and this is thus constant if I
is parallel. (E.g., for surfaces the scale tractor parallel being implies the corresponding metric has
constant Gauß curvature.) So this fits with the situation in higher dimensions.

Finally observe that the Thomas-D formula (3.59) evidently provides a conformally invariant
isomorphism

J2EΣr1s{S2
0T

�Σr1s �ÝÑ T Σ,

cf. (2.13). Thus our description of the tractor bundle from the introduction still applies in dimen-
sions m � 1 and m � 2, where we identify T Σ with NK.

Remark 3.19. In dimension m � 1 parallel transport using (3.47) is equivalent in an obvious way
to a third order linear ODE along the curve. In dimension m � 2 parallel tractors, with the top
slot σ P ΓpEr1sq non-vanishing, correspond to solutions of

DpiDjq0σ � ppijq0σ � 0 (3.60)

that also satisfy that the conformal invariant cij
j � Diȷ � Djpij is zero (if (3.60) alone holds

then following the usual prolongation argument one can easily show that IK � 1
2D

Kσ satisfies
DjI

K � σpDipij�DjȷqXK , cf. [41, Section 3.4]); it follows from the above discussion that nontrivial
parallel tractors only exist when the Möbius structure is locally flat, in which case they define a
metric of constant Gaussian curvature on the open dense set where σ � 0.

3.6 Normal forms

Since dimN�Σ � d, ΛdN�Σ is a line bundle. Moreover, Σ is oriented and it thus follows that there
is a unique section Na1a2���ad of ΛdN�Σrds which is compatible with the orientations of Σ and M ,
and such that

Na1a2���adNa1a2���ad � d! ;

here by compatible with the orientations we mean that

ϵΣa1a2���am ^Nam�1���an � ϵa1a2���an ,
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where ϵΣ and ϵ are the weighted volume forms for Σ and M respectively. We call Na1a2���ad the
Riemannian normal form for the submanifold Σ. It is not hard to show that this contains the
same data as the normal projector Na

b . Indeed, one can obtain the latter from the former via
Na

b � 1
pd�1q!N

aa2���adNba2���ad , cf. Proposition 3.20.

This object also has a tractor analogue. Recall that the normal tractor bundle N � is isomorphic
to N�Σr1s. Thus it follows that, for any k such that 1 ¤ k ¤ codimΣ, one has ΛkN � � ΛkN�Σrks.
Explicitly, for νa1a2���ak P ΛkN�Σrks, the isomorphism is given by

νa1a2���ak ÞÑ νa1a2���akZ
a1a2���ak
A1A2���Ak

� k � νba2���akHbX a2���ak
A1A2���Ak

, (3.61)

by taking the k-th exterior power of (3.15). (Note that in the case k � 1 this map is simply
the map N�Γr1s Ñ N � of (3.15).) Invariance of this map may independently be checked via the
transformation formulae for the tractor form projectors and the mean curvature:

pνa1a2���akpZa1a2���ak
A1A2���Ak

� k � pνba2���ak pHbpX a2���ak
A1A2���Ak

� νa1a2���ak

�
Za1a2���ak
A1A2���Ak

� k �Υa1X a2���ak
A1A2���Ak

	
� k � νba2���ak

�
Hb �Nb

a1Υ
a1
	
X a2���ak
A1A2���Ad

� νa1a2���akZ
a1a2���ak
A1A2���Ak

� k �
�
νba2���akH

b � νa1a2���akΥ
a1 � νba2���akN

b
a1Υ

a1
	
X a2���ak
A1A2���Ak

� νa1a2���akZ
a1a2���ak
A1A2���Ak

� k � νba2���akHbX a2���ak
A1A2���Ak

.

In particular, it follows that there is a distinguished section of the line bundle ΛdN �, where
d � codimΣ, given by the image of the Riemannian normal form under this isomorphism. We write
NA1A2���Ad

for this section and call it the tractor normal form for the submanifold Σ. From the
above isomorphism, one has

NA1A2���Ad
� Na1a2���adZ

a1a2���ad
A1A2���Ad

� d �Nba2���adH
bX a2���ad

A1A2���Ad
, (3.62)

and hence

NA1A2���Ad
NA1A2���Ad � Na1a2���adN

b1b2���bdZa1a2���ad
A1A2���Ad

ZA1A2���Ad
b1b2���bd

� Na1a2���adN
a1a2���ad

� d!,

since all other contractions of the X and Z projectors are zero, and where the indices of NA1A2���Ad

have been raised with the tractor metric.
Given a local orthonormal basis tN1

A, . . . , N
d
Au for the normal tractor bundle, which may be

constructed from a local orthonormal basis of N�Σr1s, one sees that

d! �N1
rA1

� � �Nd
Ads

� N1
A1
^ � � � ^Nd

Ad
(3.63)

is clearly a section of ΛdN � and satisfies the above normalisation condition. If the chosen basis
is compatible with the orientation, then (3.63) recovers the tractor normal form NA1A2���Ad

. By
construction one then has that

ϵΣA1A2���Am�2
^NAm�3���An�2 � ϵA1A2���An�2 ,
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where ϵΣ and ϵ are the tractor volume forms of Σ and M respectively.
Our task is now to relate the tractor normal form and its derivative to the other tractor ob-

jects introduced, namely, the tractor normal projector and the tractor second fundamental form.
These relationships will lay the foundation for the notion of distinguished submanifold that we will
introduce in the following chapter.

First, we express the tractor normal projector in terms of the normal tractor form. Note that
the normal tractor can be thought of as a “volume form” for the normal bundle. Recall that for
the volume form ϵ on M we have the following identity

ϵa1���akbk�1���bnϵb1���bkbk�1���bn � k!pn� kq!δra1b1
� � � δaksbk

, (3.64)

which can be thought of as an index notation version of the standard identity �� � p�1qkpn�kq

on k-forms (since it is equivalent to 1
pn�kq!ϵ

b1���bn�k
c1���ck

1
k!ϵ

a1���ak
b1���bn�k

� p�1qkpn�kqδ
ra1
c1 � � � δaksck ).

Since the tractor metric is positive definite when restricted to N , the same algebraic identity applies
to the tractor normal form, giving

NA1���AkBk�1���BdNB1���BkBk�1���Bn � k!pd� kq!NrA1

B1
� � �NAks

Bk
, (3.65)

for k P t1, . . . , du. In particular, we have:

Proposition 3.20. The tractor projector NA
B is equal to

NA
B � 1

pd� 1q!N
AB2���BdNBB2���Bd

. (3.66)

Differentiating the formula obtained in the above display leads to a relationship between the
tractor second fundamental form and the derivative of the tractor normal form. An alternative
route to this is via the following lemma, which we record for completeness.

Lemma 3.21. The derivative of the tractor normal form expressed in the tractor projector notation
is

∇iNA1A2���Ad�1Ad
�
�
∇iNa1a2���ad�1ad � d �Nba2���ad�1adH

bgia1

�
Za1a2���ad
A1A2���Ad

� d �
�
∇i

�
Nba2���ad�1adH

b
	
�Na1a2���ad�1adPi

a1
�
X a2���ad
A1A2���Ad

.
(3.67)

Proof. Recall
NA1A2���Ad

� Na1a2���adZ
a1a2���ad
A1A2���Ad

� d �Nba2���adH
bX a2���ad

A1A2���Ad
.

Differentiating this,

∇iNA1A2���Ad�1Ad
� p∇iNa1a2���adqZa1a2���ad

A1A2���Ad

�Na1a2���ad

�
�d � Pi

a1X a2���ad
A1A2���Ad

� d � δia1Y a2���ad
A1A2���Ad

	
� d �∇i

�
Nba2���adH

b
	
X a2���ad
A1A2���Ad

� d �Nba2���adH
b
�
gia1Z

a1a2���ad
A1A2���Ad

� pd� 1q � δia2W A3���Ad
a1a2a3���ad

	
�
�
∇iNa1a2���ad�1ad � d �Nba2���ad�1adH

bgia1

�
Za1a2���ad
A1A2���Ad

� d �
�
∇i

�
Nba2���ad�1adH

b
	
�Na1a2���ad�1adPi

a1
�
X a2���ad
A1A2���Ad

,

where we use the fact that any terms where the i index is contracted into the normal form will
vanish, since i is a tangential index.
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3.7 The proof of Theorem 1.1

Here we give a proof of the equivalence of conditions 1–4 in Theorem 1.1. This is fairly straight-
forward (in the end all four conditions are equivalent to normal bundle N being parallel). In
establishing the result, however, we will make some calculations which are of independent interest.
Henceforth we will only use indices to distinguish L and L which (as sections of different bundles)
represent the same object, i.e. we will write LiA

B � ΠJ
ALiJ

B instead of (3.27).
Toward Theorem 1.1, first observe that Proposition 3.10 and Lemma 3.12 together give equiv-

alence of 1 and 2 in that theorem. The following theorem shows that 1 implies 3.

Theorem 3.22. The derivative of the tractor normal form is given in terms of the tractor second
fundamental form by

∇iNA1A2���Ad�1Ad
� �d � LirAd

CNA1A2���Ad�1sC . (3.68)

Proof. Recall that by (3.66) we have

∇iN
C
B � �LiB

C � Li
C
B. (3.69)

In order to utilize the above formula we recall also that

1

d!
NA1���AdNB1���Bd

� N
rA1

B1
� � �NAds

Bd
. (3.70)

Differentiating both sides of the above display we obtain that

1

d!
p∇iN

A1���AdqNB1���Bd
� 1

d!
NA1���Ad∇iNB1���Bd

� �LiB1
rA1NA2

B2
� � �NAds

Bd
�NB1

rA1LiB2
A2 � � �NAds

Bd
� � � � �NB1

rA1NA2
B2
� � �LiBd

Ads

� Li
rA1

B1N
A2
B2
� � �NAds

Bd
�NB1

rA1Li
A2

B2 � � �NAds
Bd

� � � � �NB1
rA1NA2

B2
� � �Li

Ads
Bd

.

Note that, since LiB
C is tangential in the second index and normal in the third, in the right

hand side of the above display the top line is proportional to NA1���Ad and has zero contraction
with NB1���Bd , whereas the bottom line is proportional to NB1���Bd

and has zero contraction with
NA1���Ad

. Note also that NA1���AdNA1���Ad
� d! implies that NA1���Ad∇iNA1���Ad

� 0. Contracting
the above display with NA1���Ad

therefore gives

∇iNB1���Bd
� �LiB1

A1NA1B2���Bd
� LiB2

A2NB1A2���Bd
� � � � � LiBd

AdNB1B2���Ad

� �d � LirBd

AdNB1B2���Bd�1sAd
,

and the result follows by relabeling indices.

We now invert the relationship between ∇N and L to see that 3 implies 1 in Theorem 1.1.

Theorem 3.23. The tractor second fundamental form is given in terms of the derivative of the
tractor normal form by

NCA2���Ad∇iNBA2���Ad
� �pd� 1q! � LiB

C . (3.71)

Remark 3.24. The formula (3.71) can be obtained from Theorem 3.22 by contracting both sides of
(3.68) with the tractor normal form on d� 1 indices and using (3.66), but it is also easy to obtain
directly and so we do this below. One can also obtain (3.68) from (3.71) by taking the appropriate
product with a normal form and using (3.65) for k � 1.
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Proof. Recall from (3.66) that NC
B � 1

pd�1q!N
CA2���AdNBA2���Ad

. Differentiating both sides of this

identity and using (3.29) on the left hand side we obtain that

�LiB
C � Li

C
B � 1

pd� 1q!
�p∇iN

CA2���AdqNBA2���Ad
�NCA2���Ad∇iNBA2���Ad

�
. (3.72)

Note that if we project to the normal tractor bundle in the index C in the above displayed equation,
then the left hand side becomes �LiB

C (the Li
C
B term projects to zero since L is tangential in the

second index). We’d like to see that one of the two terms on the right hand side also drops out when
we do this. To this end, note that since NA1���Ad∇iNA1���Ad

� 0 it follows that if NA
1 , . . . , NA

d are
normal tractor fields then NA

1 � � �NA
d ∇iNA1���Ad

� 0. In particular, if NA is a normal tractor field
then NCNBA2���Ad∇iNCA2���Ad

� 0. In other words, p∇iN
CA2���AdqNBA2���Ad

is tangential in the C
index. Thus projecting (3.72) to the normal tractor bundle in the index C gives the result.

Theorem 1.1 follows easily from the above observations:

Proof of Theorem 1.1. As remarked above, the equivalence of 1 and 2 follows from Proposition 3.10
and Lemma 3.12. The equivalence of 1 and 3 follows from Theorems 3.22 and 3.23 above. The
equivalence of 3 and 4 is a trivial consequence of the definition of the Hodge-� (see (2.27)), the fact
that the volume tractor (see (2.26)) is parallel, and that �� is � the identity.

Remark 3.25. Many of the results concerning submanifold tractors that were derived in the above
sections used nothing more than a local orthonormal basis for the normal bundle and the Gauß
formula. Since the normal tractor bundle is isomorphic to the usual normal bundle, and we have a
Gauß formula in both cases, such proofs of these results may be repeated mutatis mutandis for the
Riemannian objects to yield analogous statements and formulae; the one caveat being that one should
keep in mind that the connection ∇̌ on T Σ induced from the ambient tractor connection differs in
general from the submanifold tractor connection D by (3.33) when going from the Riemannian to
the conformal setting.

3.8 Submanifold invariants

We have seen above that trace-free second fundamental form arises from using the (ambient) tractor
connection acting on NA

B . More generally the tools we have developed can be used to proliferate
submanifold invariants in obvious ways. We sketch some routes.

Let us fix some submanifold Σ, as usual of dimension 1 ¤ m ¤ n � 1 and codimension d, in
a conformal manifold pM, cq. Let us write D for the Thomas operator of the intrinsic conformal
structure pΣ, cq. This is given by the formula (2.21) except that we couple the tractor connection
∇T Σ to the intrinsic Levi-Civita connection Di and replace n with m. Also in dimensions m � 1, 2
we replace J with ȷ as described in Section 3.5. In fact it is straightforward to verify this formula
(2.21) provides a conformally invariant operator if we couple the Levi-Civita connection to any
invariant connection on any vector bundle. (The key point is that verifying its conformal invariance
does not involve commuting any derivatives.) To exploit this observation, we will write D also for
the conformally invariant operator given by the same formula, but where the intrinsic Levi-Civita
connection is coupled to any invariant connection. In practice here, the latter will be the ambient
tractor connection as well as also the intrinsic tractor connection on T Σ.
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For example, along Σ, DBN
C
D is well defined and conformally invariant, as is DADBN

C
D . Sim-

ilarly we may instead use the normal form NF1���Fd
. And this comes to the main point. The

collection
NF1���Fd

, DENF1���Fd
, DCDENF1���Fd

, DBDCDENF1���Fd
, � � �

embeds the jets of the submanifold into sections of tractor bundles in a conformally invariant way,
up to any desired order. These objects can then be contracted or partially contracted to produce
non-linear invariants. For example

pDCDE
NA

B qpDCDEN
B
A q

is a non-trivial scalar conformal invariant of submanifolds for most dimensions m. Similarly (for
m ¥ 4) we may form

W
CDEF pDDDFN

A
B qpDCDEN

B
A q,

where W is the W -tractor, as defined in [60], but for the intrinsic geometry of the submanifold
Σ. In the parlance of invariant theory such obvious complete contractions are called scalar Weyl
invariants [8]. A slightly more subtle construction uses the idea of quasi-Weyl invariants, as in
[60], but this will still proceed using the tools developed here. Indeed the results from [60] (for
conformal invariants) suggest it is likely that these techniques would, in a suitable sense, produce
almost all scalar invariants.

The construction of tensor-valued invariants is slightly more complicated, and involves ideas as
here plus the use of differential splitting operators that map (in a conformally invariant way) be-
tween tensor and tractor bundles (see, e.g., Theorem 6.1 and (6.9) in Section 6). Some applications
of these for the construction of hypersurface invariants are given in [13].

4 Characterising and generalising mean curvature, and

applications

Our aim in this section is to show that the tractor formalism leads to natural generalizations of
the notions of mean curvature and various conditions on the mean curvature from the Riemannian
to the almost-Riemannian setting. The basic idea is that the mean curvature captures (and is
captured by) the relation of the scale tractor I of the Riemannian metric to the submanifold
tractor bundle, which gives a way of talking about mean curvature that generalizes immediately to
the almost-Riemannian setting. In particular, one gets a notion of “mean curvature tractor” that
is well-defined and smooth up to the conformal infinity.

To motivate this definition we begin with the Riemannian case. Note that for a given subman-
ifold Σ, in a Riemannian manifold pM, gq, its mean curvature vector Ha � 1

mgijIIaij P ΓpNΣr�2sq
can equivalently be captured by the mean curvature tractor

HA :� σNA
a Ha P ΓpN q

via the isomorphism of Lemma 3.3, where σ P ΓpEr1sq is the scale giving g, meaning g � σ�2g.
With this terminology and notation, we can state the following result.

Proposition 4.1. Let Σ be a submanifold in a Riemannian manifold pM, gq. Then

HA � NA
B IB. (4.1)
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Proof. In the scale of the metric g � σ�2g the scale tractor takes to form IA � σY A � ρXA, for
some weight density ρ, or weight �1. So from formula (3.30) in Lemma 3.13, we see that NA

BXB � 0
and

NA
B IB � σHaZA

a � σpHbHbqXA. (4.2)

But, from (3.15), this is exactly HA.

Thus minimal submanifolds, meaning those with Ha � 0, are nicely captured by orthogonality
of the scale tractor to the normal tractors, as follows (as was known in the case of hypersurfaces
[64]).

Corollary 4.2. In a Riemannian manifold pM, gq, let I denote the scale tractor of g. A submanifold
Σ, of dimension m, is minimal if and only if, one of the following equivalent conditions holds

1. IANB
A � 0 ;

2. IA1NA1A2���Ad
� 0;

3. IrA0 �NA1A2���Am�2s � 0;

4. I P ΓpNKq;
5. HAIA � 0.

Remark 4.3. (i) Corollary 4.2 here generalizes Theorem 2 from [67], as a minimal 1-dimensional
submanifold in a Riemannian manifold is exactly a geodesic. (ii) Note also that the corollary shows
that for a minimal submanifold Σ the ambient scale tractor IA can, along Σ, be identified with a
section of the intrinsic tractor bundle T Σ via (3.18) of Theorem 3.5.

It is natural to say that a Riemannian submanifold has constant mean curvature (CMC) if the
function

σ2HaHa P ΓpEr0s|Σq
is constant on Σ, where σ is the scale of the metric g used to calculate the mean curvature (the
reader is cautioned that this is only standard terminology for the case of hypersurfaces; in higher
codimension there are other possibilities for the definition of CMC). We will say that a Σ has
parallel mean curvature if

∇K
i H

b � 0,

or equivalently ∇K
i pσHbq � 0; clearly this is stronger than the CMC condition. These notions are

also usefully captured by tractors.

Proposition 4.4. In a Riemannian manifold pM, gq, let I denote the scale tractor of g. A sub-
manifold Σ:

� is CMC if and only if

NABI
AIB, or equivalently, HAIA

is constant along Σ;
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� has parallel mean curvature if and only if

∇N
i HB � 0, or equivalently, NA

B∇iH
B � 0.

Proof. Continuing in notation and choices of the Proof of Proposition 4.1, the first statement follows
by contracting IA � σY A � ρXA into (4.2). The second is immediate from Lemma 3.4.

Remark 4.5. Note that if a submanifold Σ in pM, gq has parallel mean curvature, then it is CMC
as, in the scale of the metric g � σ�2g,

∇ipσ2HaHaq � 2σ2Ha∇K
i Ha.

The converse does not hold. For example in Euclidean 3-space a round 2-circle (say in the x � y-
plane) has is parallel mean curvature (and so is also CMC). But a regular spiral is CMC (by dint
of its invariance under the obvious group action) but does not have parallel mean curvature.

Note that the stronger notion of parallel mean curvature

∇ipσHaq � 0

implies CMC also. Thus |σH| � ?
σ2HaHa is constant and σHa � |σH|pna for some a unit normal

along Σ that must be parallel. Such a parallel unit normal means that the acceleration of any curve
in Σ is orthogonal to pn, so the second fundamental form and Ha are orthogonal to pn. But the latter
obviously means Ha � 0.

Part of the importance of Proposition 4.1, Corollary 4.2, and Proposition 4.4, is that in means
that these quantities and notions at once extend to the setting of almost-Riemannian manifolds (as
defined in Section 2.4). For emphasis we make this a definition.

Definition 4.6. Let pM, c, Iq be an almost-Riemannian manifold with degeneracy locus Zpσq. We
say that an embedded submanifold Σ of M is an almost-Riemannian submanifold of pM, c, Iq if
ΣzZpσq is dense in Σ. We say that such a submanifold Σ is, respectively, CMC or has parallel
mean curvature (in the almost-Riemannian sense) if one of the conditions displayed in Proposition
4.4 holds. Similarly we say that it is minimal (in the almost-Riemannian sense) if any one of the
equivalent conditions of Corollary 4.2 holds.

For an almost-Riemannian manifold pM, c, Iq, the zero locus Zpσq, of σ :� XAIA, is (closed and)
nowhere dense. Thus, by continuity, the notions in the definition extend those on MzZpσq, as in
the following proposition.

Proposition 4.7. Let pM, c, Iq be an almost-Riemannian manifold and σ :� XAIA. Then an
almost-Riemannian submanifold Σ is minimal, CMC, or mean curvature parallel in the sense of
Definition 4.6 if and only if satisfies the corresponding condition (in the non-generalised sense) on
MzZpσq for the metric g :� σ�2g.

This perspective enables an easy recovery of the following result, which is well-known from
other perspectives.

Proposition 4.8. On a conformally compact manifold, any minimal submanifold that extends
smoothly to the boundary meets the boundary orthogonally.
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Proof. On a conformally compact manifold BM � Zpσq,

IA|BM � p∇aσqZA
a � 1

n
∆σXA, (4.3)

and ∇aσ is nowhere-zero along the boundary. See Section 2.4. Thus if Σ meets BM then we have

IAN
A
B � Na

B∇aσ along Σ,

(using (3.30)) and so Σ minimal, meaning IAN
A
B � 0, implies Na

B∇aσ � 0 and hence

Na
b ∇aσ � 0.

That is ∇aσ (the conormal to the boundary BM) is orthogonal to the normal projector of Σ.

Suppose now that pM, c, Iq is an almost-Einstein manifold. If Σ is minimal then, as observed
above, IA may be identified with a submanifold tractor. Since IA is parallel for the standard tractor
connection, and IA is a submanifold tractor, IA is also parallel for the connection ∇̌:

∇̌iIJ � ΠA
J∇i

�
ΠK

A IK
� � ΠA

J∇iIA � 0,

as defined in (3.21). Therefore, from the decomposition (3.33), one sees that IJ is parallel for the
submanifold tractor connection if, and only if, SJi KIK � 0.

Choosing a background scale to split the tractor bundles, we have that

Si
J
KIK � Fij

�
ZJjXK � Zj

KXJ

	�
σY K �∇kσZ

Kk � 1

n
p∆� JσqXK



� Fij

�
σZJj �∇jσXJ

�
.

Recall that on almost-Einstein manifolds the 1-jet j1σ can only vanishes at isolated points (see the
discussion of Section 2.4, and references therein, for details). Therefore away from these points we
must have Fij � 0, and then also at those points by continuity. Thus we have the following result.

Proposition 4.9. Let Σ ãÑM be a minimal almost-Riemannian submanifold of an almost-Einstein
manifold pM, c, Iq. Then σ � XAIA defines an almost-Einstein scale on Σ if, and only if, Fij � 0.

By (3.14) distinguished submanifolds are necessarily totally umbilic. Thus, in a Riemannian
manifold, if Σ is distinguished and minimal then it is totally geodesic. This has a converse if the
Riemannian manifold is Einstein; a totally geodesic submanifold in an Einstein manifold is both
minimal and distinguished. Moreover, if we say that an almost-Riemannian submanifold in an
almost-Riemannian manifold is totally geodesic (in the almost-Riemannian sense) if it is minimal
(in the sense that NB

A IA � 0) and totally umbilic, then the proof generalises without change to the
almost-Einstein setting:

Proposition 4.10. Let pM, c, Iq be an almost-Einstein manifold, and Σ an almost-Riemannian
submanifold. If Σ is totally geodesic (in the almost-Riemannian sense), then Σ is a distinguished
submanifold.
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Proof. We must show any of the equivalent conditions of Theorem 1.1. That Σ is minimal implies
that HB � 0 on Σ. Since also Σ is totally umbilic it follows that on ΣzZpσq we have that it is totally
geodesic, and hence ∇iNa1a2���ad � 0. The almost-Einstein condition implies that Nba2���adPi

b � 0
on MzZpσq, where we calculate in the scale of the metric g � σ�2g, with σ :� XAIA. Combining
these observations and using formula (3.68) we have that ∇iNA1A2���Ad

� 0 on MzZpσq. But then
by continuity ∇iNA1A2���Ad

� 0 on Σ, as Zpσq is nowhere dense.

Thus if our ambient space is almost-Einstein, for submanifolds that totally geodesic (in the
generalised/almost-Riemannian sense) first integrals may be proliferated using Corollary 1.4 (and
the theory to be developed in Section 6). These conserved quantities will extend to/across singu-
larity sets of these geometries where they exist.

5 Distinguished submanifolds and conformal circular-

ity

We fix some notational conventions for this chapter. We will denote by γ a smooth curve in a
conformal manifold pM, cq. By this we will here mean a smooth, regular curve γ : I ÑM (for some
interval I). We will often identify γ with its image and we typically assume that this an embedded
submanifold.

The symbols ub and ab will denote, respectively, the velocity and acceleration the curve γ,
so ab � ua∇au

b. Note that the acceleration ab depends on a choice of metric g P c and is not
conformally invariant; it is easy to check that if pg � Ω2g then pab � ab � uau

aΥb � 2uaΥau
b, where

Υa � Ω�1∇aΩ. We also define u :�
a
gabuaub P ΓpEr1s|γq. For some connection ∇, we will also use

the notation d∇

dt , or
d
dt when the meaning is clear by context, to mean ua∇a. The connection ∇ may

be a Levi-Civita connection or the standard tractor connection; this should be unambiguous from
context. Sometimes we will prefer to work with weighted versions of the velocity and acceleration
vectors. These will be denoted by ub :� u�1ub P ΓpEbr�1s|γq and ab :� uc∇cu

b P ΓpEbr�2s|γq
respectively.

5.1 Background on conformal circles

A smooth curve γ is said to be a (projectively parametrised) conformal circle if, with respect to
some (equivalently any) choice of g P c, its velocity and acceleration satisfy [6]

uc∇ca
b � u2ucPc

b � 3u�2 pucacq ab � 3

2
u�2 pacacqub � 2ucudPcdu

b, (5.1)

where u2 � u�u � uau
a here should be understood to be unweighted. Equation (5.1) is a third order,

conformally invariant analog of the geodesic equation in Riemannian geometry and solutions of (5.1)
are sometimes referred to as conformal geodesics [56]. As with the geodesic equation uc∇cu

b � 0,
equation (5.1) can be broken up into its tangential and normal components along the curve and any
curve in M can be parametrized so that the tangential part of (5.1) holds; such a parametrisation
is determined up to the action of PSLp2,Rq and a curve with such a parametrisation is said to be
projectively parametrised [6]. (The existence of such a parametrisation, and likely the notion of
conformal circles also, goes back to Élie Cartan; see [29]. For early treatments of conformal circles,
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see [50, 56, 98, 99, 103, 114, 115]. In the literature conformal circles are sometimes taken to be
parametrised by arclength with respect to chosen metric g rather than projectively parametrised,
and in this case they satisfy a slightly different equation; see, e.g. [115, Chapter VII, §2].) Asking
only that the normal (to the curve) part of (5.1) holds gives a notion of conformal circles that does
not depend on the parametrisation, and any such curve can be reparametrised so that (5.1) holds.

Note that a geodesic for a metric g P c need not be a conformal circle; indeed, this could not
be the case since any curve γ in M is locally an affinely parametrised geodesic for some choice
of metric g P c (see Remark 3.2). Following this line of thought, however, one sees as a direct
consequence of (5.1) that a curve γ is a projectively parametrized conformal circle if and only if
there is a metric g P c with respect to which γ is an affinely parametrised geodesic and ucPc

b � 0
[6]. Note also that in the special case where one has an Einstein metric g in the conformal class it
follows from (5.1) that geodesics for g are conformal circles, though the unit speed parametrization
is not a projective parametrization except in the Ricci flat case.

The notion of conformal circles arises naturally from the Cartan geometric description of con-
formal structures in dimensions n ¥ 3 (and Möbius conformal structures in two dimensions) and
as such it is natural that they can be simply described using tractor calculus (the corresponding
calculus of associated bundles). With this in mind we now introduce some important tractor fields
associated to the curve γ. Recall that the canonical tractor XB can be viewed as a section of EBr1s.
Hence u�1XB is an unweighted tractor along the curve and so the tractor covariant derivative of
u�1XB along the curve is well defined (conformally invariant). Following [7], we define

UB :� ua∇a

�
u�1XB

�
(5.2)

and
AB :� ua∇aU

B, (5.3)

which we call the velocity and acceleration tractors respectively. Explicitly, one has

UB g�
�� 0

u�1ub

�u�3 pucacq

� (5.4)

and

AB g�
�� �u

u�1ab � 2u�3pucacqub
�u�3

�
uc

dac

dt

�� u�3aca
c � 3u�5pucacq2 � u�1Pcdu

cud

�. (5.5)

It is easily checked that
UBUB � 1, UBAB � 0 (5.6)

and that
ABAB � 3u�2aba

b � 2u�2ubu
c∇ca

b � 6u�4pucacq2 � 2Pabu
aub. (5.7)

Consequently, a curve γ : I Ñ M is projectively parametrised if, and only if, ABAB � 0. It was
then shown in [7] that a projectively parametrised curve γ : I ÑM is a conformal geodesic if, and
only if,

d∇AB

dt
� 0. (5.8)

More recently, it was shown by the second and third named authors and Taghavi-Chabert [68]
that a curve γ is an unparametrised conformal circle if, and only if, d∇AB{dt is zero modulo UB
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and XB; given the definitions of the velocity and acceleration tractors this is equivalent to saying
that γ is an unparametrised conformal circle if, and only if, the 3-tractor

ΦABC :� 6u�1XrAUBACs (5.9)

is covariantly constant along γ. To see this we note the following: Firstly,

ΦABC � 6ucXrAY BZCs
c � 6ubacXrAZB

b ZCs
c , (5.10)

where uc � u�1uc (so that gabu
aub � 1) and ac � ub∇bu

c � u�2ac � u�4pubabquc. It is then easy
to show that

ud∇cΦ
ABC � 6

�
ud∇da

c � udPd
c
	
ubXrAZB

b ZCs
c . (5.11)

On the other hand, the requirement that the normal (to the curve) part of (5.1) holds can be
written in terms of the weighted velocity and acceleration as [68, Lemma 4.9]�

ud∇da
rb
	
ucs � udPd

rbucs, (5.12)

from which the claim follows.
Note that from (5.10) one can easily check that ΦABCΦABC � 6, and that ΦABCN

A � 0 for
any section NA of the normal tractor bundle to γ (the easiest way to see the latter is to compute
in a minimal scale g for γ, equivalently, a scale for which ac � 0). It follows that

ΦABC � �NγãÑM
ABC , (5.13)

the Hodge star of the tractor normal form of γ as a submanifold of M .
This observation combined with the result from [68] described in the preceding paragraph shows

that Theorem 1.2 follows from Theorem 1.1.

5.2 Weak conformal circularity of submanifolds

With this background established we begin our discussion of conformal circularity.

Definition 5.1. A submanifold Σ is weakly conformally circular if any M -conformal circle, whose
2-jet at a point lies in Σ, remains in Σ. That is, if γ is an M -conformal circle whose 2-jet at some
point p lies in Σ (with γp0q � p), then γptq P Σ for all t.

In the model case of the conformal sphere (see Section 2.3) both conformal circles and to-
tally umbilic submanifolds arise (by ray projectivisation) from the intersections of suitable linear
subspaces with the forward null cone. Thus the conformal circles are all given by (transverse)
intersections of totally umbilic submanifolds, and a submanifold of the conformal sphere is weakly
conformally circular if and only if it is totally umbilic. It is natural to ask to what extent these
facts generalize to the curved setting. In this case one quickly sees that the condition of being
totally umbilic must be replaced with the stronger condition of being a distinguished submanifold
(in the conformally flat case for submanifolds of dimension greater than one the vanishing of I̊I is
equivalent to the vanishing of the tractor second fundamental form L, but this is no longer true in
general conformal manifolds; see the examples in Section 5.4). If two distinguished submanifolds
intersect transversally in a 1-dimensional submanifold γ then, since the wedge product of the two
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corresponding normal tractors must be parallel along γ, γ must be a conformal circle (but, due to
the sparsity of distinguished submanifolds in the curved setting, conformal circles no longer arise
this way in general). An extension of this idea shows that a submanifold is weakly conformally
circular if, and only if, it is distinguished. That is the content of the following theorem.

Theorem 5.2. A submanifold Σ ãÑM is weakly conformally circular if, and only if, LiJ
C � 0.

Proof. A one dimensional submanifold Σ is weakly conformally circular if, and only if, it is a
conformal circle. Thus in the one dimensional case the result follows immediately from Theorem
1.2, which states that a curve is a conformal circle if, and only if, when viewed as a submanifold
its tractor second fundamental form L vanishes.

Suppose now that Σ has dimension at least 2, and is weakly conformally circular. Let γ be an
M -conformal circle whose 2-jet at p P Σ lies in Σ. Then by assumption γ remains in Σ. We need
to introduce some notation. Let

� NΣãÑM
A1A2���Ad

be the normal form of Σ ãÑM ,

� NγãÑM
A1A2���An�1

be the normal form of γ ãÑM , and

� NγãÑΣ
A1A2���Am�1

be the normal form of γ ãÑ Σ, where we are identifying the tractor bundle of Σ

with NK, and hence this form is a section of Λm�1T M |Σ.
First we note some important relations between these various normal forms. First, since the curve
γ lies in the submanifold Σ, we have

N
A1B2���Bm�1

γãÑΣ NΣãÑM
A1A2���Ad

� 0. (5.14)

Second, by using the discussion surrounding equation (3.63), one can easily show that

NγãÑΣ
A1A2���Am�1

^NΣãÑM
Am���An�1

� NγãÑM
A1A2���An�1

. (5.15)

Finally, since γ is an M -conformal circle, it follows from Theorem 1.2 that

ui∇iN
γãÑM
A1A2���An�1

� 0.

Therefore, using the above,�
ui∇iN

γãÑΣ
rA1A2���Am�1

	
NΣãÑM

Am���An�1s
�NγãÑΣ

rA1A2���Am�1

�
ui∇iN

ΣãÑM
Am���An�1s

	
� 0,

and hence�
ui∇iN

γãÑΣ
rA1A2���Am�1

	
NΣãÑM

Am���An�1s
�NγãÑΣ

rA1A2���Am�1

�
�d � uiLiAn�1

A0NΣãÑM
Am���An�2sA0

	
� 0

by Theorem 3.22, where L is the tractor second fundamental form of γ. Since the downstairs
tractor index on LiAn�1

A0 is “tangential to Σ” it is easy to see that the two terms on the left
hand side of the above displayed equation lie in complementary subspaces of the bundle of tractor
pn � 1q-forms (the first term is in the ideal generated by NΣãÑM and the second term is in the
orthogonal complement to this ideal) and hence both terms must vanish. Thus, in particular,

NγãÑΣ
rA1A2���Am�1

uiLiAn�1
A0NΣãÑM

Am���An�2sA0
� 0.
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Contracting the above display with N
Am���An�2B
ΣãÑM (cf. the proof of Theorem 3.23) then gives

NγãÑΣ
rA1A2���Am�1

uiLiAn�1s
B � 0,

which is equivalent to
uiLiA

BΠγãÑΣA
C � 0, (5.16)

where ΠγãÑΣ is the projector onto the rank 3 tractor bundle of the 1-manifold γ, viewed as a
subbundle of the ambient tractor bundle along γ. Therefore it follows that

uiLiA
BUA � 0,

where UA is the velocity tractor of the curve (note that UA may be viewed as a section of the
intrinsic standard tractor bundle of γ; one can easily check this by working in a minimal scale for
γ, where uba

b � 0). Using Theorem 3.14 we now see that, in particular, I̊Iij
cuiuj � 0. But the

above must hold for any M -conformal circle γ, and hence I̊Iij
cuiuj � 0 for all ui P ΣpE iq, whence

Σ is totally umbilic by polarization.
Since we have already seen that I̊Iij

c � 0, it suffices to show that Nc
b

�
Pi

b �∇iH
b
� � 0.

Returning to (5.16), if we contract this with Y A (or ΠA
I Y

I , cf. (3.20)) this gives

uiNc
b

�
Pi

b �∇iH
b
	
ZB
c � uiHb

�
Pi

b �∇iH
b
	
XB � 0,

by Theorem 3.14, since the other slots of L have already been shown to be zero. Since, again, this
must hold for all ui P ΓpE iq we obtain the result.

For the converse, let us consider a curve γ in Σ that satisfies

ui∇̌iN
γãÑΣ
A1A2���Am�1

� 0 and ABAB � 0 (5.17)

where we have used the connection ∇̌. Then,�
ui∇iN

γãÑΣ
rA1A2���Am�1

	
NΣãÑM

Am���An�1s
� 0.

Suppose now that LiJ
C � 0. Then,�

ui∇iN
γãÑΣ
rA1A2���Am�1

	
NΣãÑM

Am���An�1s
�NγãÑΣ

rA1A2���Am�1

�
�d � uiLiAn�1

A0NΣãÑM
Am���An�2sA0

	
� 0,

and so
ui∇iN

γãÑM
A1A2���An�1

� 0.

That is, if γ in Σ satisfies (5.17) and LiJ
C � 0 then γ is a conformal circle for pM, cq. Now, it is

straightforward to check that a curve satisfying (5.17) that is further projectively parametrised with
respect to the conformal structure on M (meaning its M -acceleration tractor satisfies ABAB � 0)
is determined by its 2-jet in Σ at any point on its path. This follows because, by construction,
a projectively parametrised curve satisfying (5.17) is characterised by a third order ordinary dif-
ferential equation in any local coordinate chart (analogous to how the pΣ, cΣq-conformal circle
equation is equivalent to the requirement that the curve be Σ-projectively parametrised and satisfy
uiDiN

γãÑΣ
A1A2���Am�1

� 0, and the pM, cq-conformal circle equation is equivalent to the requirement

that the curve be M -projectively parametrised and satisfy ua∇aN
γãÑM
A1A2���An�1

� 0; cf. Remark
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5.3 below). Now, suppose LiJ
C � 0. Then, given any 2-jet of a curve in Σ, the corresponding

M -projectively parametrised solution of (5.17) is also an M conformal circle. Moreover, since a
conformal circle in pM, cq is determined by its 2-jet at any point on its path, all conformal circles
corresponding to two jet initial data lying in Σ arise this way; in particular, all such curves lie in
Σ. That is, Σ is weakly conformally circular.

Remark 5.3. Here we give a version of the proof that LiJ
C � 0 implies weak conformal circularity

that avoids the use of tractor calculus. (This is along the lines of a proof of a similar result in [9],
to an extent the tractor picture provides a conceptual basis for the idea.) For convenience, we work
in a minimal scale g. Rather than considering curves γ in Σ solving (5.17) we will consider the
curves γ in Σ solving the “adapted conformal circle equation”

dDaj

dt
� u2 � uiPi

j � 3u�2
�
uka

k
	
aj � 3

2
u�2

�
aka

k
	
uj � 2ukulPklu

j , (5.18)

where as usual Pi
j and Pkl denote the restriction of the ambient Schouten tensor to the intrinsic

tangent and cotangent bundles, and dD

dt denotes uiDi where D is the intrinsic Levi-Civita connection
for the pullback gΣ of the ambient scale g. We say that γ is an “adapted conformal circle” if it
satisfies this equation. (That equation (5.18) is equivalent to (5.17) should be clear from what
follows, but we do not need this for the argument given in this remark.) Note that equation (5.18)
is a third order ODE on Σ, and therefore the initial value problem with given 2-jet initial data has
a unique solution on Σ for some interval centered at 0. This solution may also be viewed as a curve
in M , and one may ask whether it solves a related ODE there. Since the 2-jet of γ is initially
tangential and LiJ

C � 0 implies in particular that I̊Iij
c � 0, it follows that in our minimal scale

Πb
ju

j � ub, Πb
ja

j � ab and Πb
j
dDaj

dt � d∇ab

dt (the last two identities being consequences of the Gauss

formula with II � 0). Thus uka
k � uca

c, aka
k � aca

c and ukulPkl � ucudPcd. Moreover, LiJ
C � 0

also implies (again for the minimal scale) that Nc
bPi

b � 0, and thus one easily sees that, as a curve
in M , γ satisfies

d∇ab

dt
� u2

�
Πb

ju
iPi

j
	
� 3u�2 pucacq ab � 3

2
u�2 pacacqub � 2ucudPcdu

b

� u2 � ucPc
b � 3u�2 pucacq ab � 3

2
u�2 pacacqub � 2ucudPcdu

b,

which is exactly the (projectively parametrized) M -conformal circle equation. So if LiJ
C � 0, and γ

is an adapted conformal circle, then it is an M -conformal circle, and by the uniqueness of solution
to an initial value problem, the curve γ, which lies in Σ, is the unique M -conformal circle with the
given initial conditions. Hence any M -conformal circle whose 2-jet at a point p P Σ is tangential
will remain in Σ, i.e. Σ is weakly conformally circular.

For his approach to submanifold circularity, Belgun [9] introduced a conformal invariant µ P
ΓpT �ΣbNΣr�2sq given by

µi
c :� Nc

b

�
Pi

b �∇iH
b � 1

m� 1
Dj I̊Iij

b



, (5.19)

when m � 1 and where the intrinsic Levi-Civita connection D is coupled to the normal connection
∇K (Belgun terms this the mixed Schouten-Weyl tensor since the main term is the tangential-
normal part of the ambient Schouten tensor, which he calls the Schouten-Weyl tensor). In the
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m � 1 case (i.e. when Σ is a curve) Belgun defines µ to be the conformal curvature of the curve Σ,

µi
c :� Nc

b

�
Pi

b �∇iH
b
	

when m � 1. (5.20)

When dimΣ � 1, I̊Iij
c � 0, so that Nc

b

�
Pi

b �∇iH
b
�
can be obtained from L by an invariant

projection and therefore must be conformally invariant. The conformal invariance of µ in the m � 1
case can be shown by direct calculation, or by substituting the Weyl-Schouten decomposition of
the ambient curvature tensor into the Codazzi equation to obtain [105]

µi
c � 1

m� 1
Wij

djNc
d. (5.21)

From the above displayed formula it is also clear that µ � 0 when Σ is a hypersurface (since
Wij

djNc
d � �Wia

d
bN

abNc
d and the normal bundle has rank 1). In [9] Belgun characterises weakly

conformal circular submanifolds (termed weakly conformal geodesic in [9]) as those for which I̊I � 0
and µ � 0. Inspecting (3.31), in Theorem 3.8, one sees immediately that this is equivalent to the
vanishing of L.

Proposition 5.4. Let Σ ãÑ M be a submanifold in a conformal manifold with LiJ
C its tractor

second fundamental form. Then LiJ
C � 0 if, and only if, I̊Iij

c � 0 and µi
c � 0.

In fact the invariant µ arises naturally from L. The projecting part of L is necessarily invariant
and this is I̊I. An obvious question is whether conversely L is then image of a natural linear
differential operator acting I̊I, in which case they would be equivalent. (For example as the tractor
curvature is the image of the Weyl curvature in dimensions at least 4.) This leads us to the following
lemma, which exhibits a conformally invariant differential operator between the relevant bundles:

Lemma 5.5. There is an invariant map M : S2
0T

�ΣbNΣÑ T �ΣbT �ΣbN . Written in tractor
projectors, this takes the form

ωij
c ÞÑMpωqijC :�ωij

cZj
JZ

C
c � 1

m� 1
Djωij

cXJZ
C
c

�Hcωij
cZj

JX
C � 1

m� 1
HcD

jωij
cXJX

C ,

(5.22)

where again the intrinsic Levi-Civita connection D is coupled to the normal Levi-Civita connection
∇K when acting on ω.

Proof. Given ωij
c P ΓpS2

0T
�ΣbNΣq, using (2.8) and (3.12), one computes that

pDjωij
c � Djωij

c � pm� 1qΥjωij
c �Υiωkl

cgkl � Djωij
c � pm� 1qΥjωij

c (5.23)

since ωij
c is trace-free over the pair of indices pi, jq.

Therefore, using the above together with equations (3.14) and (2.15), and that the X tractor
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is conformally invariant,

ωij
c pZj

J
pZC
c � 1

m� 1
pDjωij

c pXJ
pZC
c � pHcωij

c pZj
J
pXC � 1

m� 1
pHc
pDjωij

c pXJ
pXC

� ωij
c
�
Zj
J �ΥjXJ

	 �
ZC
c �ΥcX

C
�

� 1

m� 1

�
Djωij

c � pm� 1qΥjωij
c
�
XJ

�
ZC
c �ΥcX

C
�

�
�
Hc �Nd

cΥd

	
ωij

c
�
Zj
J �ΥjXJ

	
XC

� 1

m� 1

�
Hc �Nd

cΥd

	 �
Djωij

c � pm� 1qΥjωij
c
�
XJX

C

� ωij
cZj

JZ
C
c � 1

m� 1
Djωij

cXJZ
C
c � pHcωij

c � ωij
cΥc � ωij

cΥcqZj
JX

C

�
�
� 1

m� 1
HcD

jωij
c �Hcωij

cΥj � 1

m� 1
ΥcD

jωij
c � ωij

cΥjΥc � ωij
cΥjΥc

� 1

m� 1
ΥcD

jωij
c �Hcωij

cΥj � ωij
cΥjΥc � ωij

cΥjΥc



XJX

C

� ωij
cZj

JZ
C
c � 1

m� 1
Djωij

cXJZ
C
c �Hcωij

cZj
JX

C � 1

m� 1
HcD

jωij
cXJX

C ,

which verifies the claimed conformal invariance of the operator McJ
jC .

Asking whether L is the image of I̊I under M then immediately leads to the µ invariant:

Theorem 5.6. The tensor µi
c is equal to the projecting part of the tractor

LiJ
C �MpI̊IqiJC . (5.24)

In particular, µi
c is a conformal invariant of the embedding.

Proof. By inspection, one sees that (5.24) has zero in the Zj
JZ

C
c slot (since ZK

j Zc
DLiK

D � I̊Iij
c)

and hence projecting out the XJZ
C
c slot must yield a conformally invariant object. Such projection

is accomplished by contraction with Y JZc
C , and from equations (3.31) and (5.22) one sees that this

projection is equal to

Y JZc
C

�
LiJ

C �MpI̊IqiJC
	
� Nc

b

�
Pi

b �∇iH
b
	
� 1

m� 1
Dj I̊Iij

c, (5.25)

which is exactly µi
c as defined in (5.19) (since the c index of Dj I̊Iij

c is already normal).

In fact, the data pI̊Iijc, µi
cq is equivalent to the tractor second fundamental form. We have

seen how to obtain I̊Iij
c and µi

c from LiJ
C . For the reverse direction, note that LiJ

C may be
constructed from pI̊Iijc, µi

cq according to

pI̊Iijc, µi
cq ÞÑ I̊Iij

cZj
JZ

C
c �

�
µi

c � 1

m� 1
Dj I̊Iij

c



XJZ

C
c

�HcI̊Iij
cZj

JX
C �Hc

�
µi

c � 1

m� 1
Dj I̊Iij

c



XJX

C .

(5.26)
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5.3 Strong conformal circularity

Unlike the situation for geodesics in Riemannian geometry, in conformal geometry if a submanifold
is weakly conformally circular the submanifold conformal circles need not be ambient conformal
circles. This leads to the following two stronger notions of conformal circularity.

Definition 5.7. Let Σ be a submanifold in a conformal manifoldM . Then Σ is strongly conformally
circular if any projectively-parametrised Σ-conformal circle is also a projectively-parametrised M -
conformal circle. For the cases of submanifolds of dimensions 1 and 2, recall that the intrinsic
conformal structure does not determine a conformal circle equation, however, the induced Möbius
structures defined in Section 3.5 do determine a conformal circle equation (the usual conformal
circle equation (5.1) with the Schouten tensor being as defined in Section 3.5), and that is the
notion we are using here.

Definition 5.8. Let Σ be a submanifold in a conformal manifold M . Then Σ is conformally
circular if any unparametrised Σ-conformal circle is also an unparametrised M -conformal circle.

Definition 5.7 appears in [9], where the term strongly conformally geodesic is used. In the
following two theorems we characterise these two notions of conformal circularity in terms of the
basic tractor invariants L and S of the conformal submanifold Σ. The first theorem below is
easily seen to be equivalent to [9, Theorem 5.4(3)], but we include proofs of both theorems for
completeness.

Theorem 5.9. Let Σ be a submanifold in a conformal manifold M . Then Σ is strongly conformally
circular if, and only if LiJ

C � 0 and SiJK � 0 (i.e. Fij � 0).

Theorem 5.10. Let Σ be a submanifold in a conformal manifold M . Then Σ is conformally
circular if, and only if LiJ

C � 0 and SiJK 9 gijZ
j
rJXKs (i.e. Fij 9 gij).

Note that following our conventions for the Fialkow tensor in Section 3.5, these results still hold
when Σ is a submanifold of dimension 2. The Σ-conformal circle equation is then the usual con-
formal circle equation (either the projectively parametrized equation (5.1) or the parametrization-
independent weighted equation (5.12)) with the Schouten tensor defined in Section 3.5 playing the
role of the usual Schouten tensor. For a 1-dimensional submanifold, weakly conformally circular
and strongly conformally circular are equivalent (and the Fialkow tensor is defined to be zero), so
in this case Theorems 5.9 and 5.10 reduce to the fact that a conformal circle is characterized by
L � 0.

Proof of Theorem 5.9. First suppose that Σ is strongly conformally circular. Since Σ is then also
weakly conformally circular, we must have LiJ

C � 0 by Theorem 5.2. In particular, Σ is totally
umbilic (I̊Iij

c � 0). Now, suppose that γ is a projectively parametrised Σ-conformal circle with
initial data a given 2-jet at p P Σ. Then by assumption γ is also an M -conformal circle with the
same initial data, now viewed as the 2-jet of a curve in M . Let g P c be a minimal scale for Σ. The
curve γ must satisfy the intrinsic and ambient versions of the conformal circle equation, namely

dDaj

dt
� u2 � uipij � 3u�2

�
uka

k
	
aj � 3

2
u�2

�
aka

k
	
uj � 2ukulpklu

j (5.27)

and
d∇ab

dt
� u2 � ucPc

b � 3u�2 pucacq ab � 3

2
u�2 pacacqub � 2ucudPcdu

b (5.28)
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respectively. From the Gauß formula (3.5) and the fact that Σ is totally geodesic with respect to
g, we have that

ab � ui∇iu
b � Πb

ju
iDiu

j � IIij
buiuj � Πb

ja
j

and
d∇ab

dt
� Πb

j

dDaj

dt
,

where aj � dDuj

dt , i.e. the acceleration of the curve calculated intrinsically. Therefore, applying Πj
b

to (5.28) and subtracting (5.27) from the result, we see that

u2 � ukPk
j � 2ukulPklu

j � u2 � ukpkj � 2ukulpklu
j ,

where we have used that Πj
bu

b � uj , Πj
ba

b � aj , uca
c � uka

k (which follows from the Gauß
formula without the need for g to be a minimal scale since uc is tangent to the submanifold Σ),
and acac � akak (since Σ is totally geodesic with respect to g). Contracting the above display with
uj yields

u2 � ujukPk
j � 2ukulPkl � u2 � u2 � ujukpkj � 2ukulpkl � u2,

and hence
pPij � pijquiuj � 0. (5.29)

Since IIij
c � 0, the term in parentheses in the above display is exactly the Fialkow tensor Fij

from (3.36). Now, at any point p P Σ, any u P TpΣ can arise as the velocity of a conformal circle,
and hence (5.29) must hold for all ui P E i. Hence Fij � 0. Together with our earlier observation
that strong conformal circularity implies weak conformal circularity, this establishes that LiJ

C � 0
and SiJK � 0.

Conversely, suppose that LiJ
C � 0 and SiJK � 0. Let γ be a projectively parametrized Σ-

conformal circle. Then the intrinsic acceleration tractor AJ of γ satisfies dDAJ

dt � 0. We must also
show that γ satisfies the ambient (projectively parametrized) conformal circle equation.

For any parametrized curve in Σ, writing UJ for its velocity tractor, we see from explicit form of
the velocity tractor (5.4) and the formula (3.18) for the isomorphism ΠB

J that UB � ΠB
J U

J , where
again we use the tangentiality of uc together with the Gauß formula to conclude that uca

c � uka
k.

Then applying the tractor Gauß formula (3.42) shows that the ambient acceleration tractor is given
by

AB � d∇UB

dt
� ΠB

J puiDiU
J � Si

J
KUKq � uiLiJ

BUJ � ΠB
J

dDUJ

dt
� ΠB

J A
J ,

since L � 0 and S � 0. Similarly, it follows that

d∇AB

dt
� ΠB

J

dDAJ

dt
.

So if moreover γ satisfies dDAJ{dt � 0, then also d∇AB{dt � 0. Finally, recall that the isomorphism
ΠB

J is also metric-preserving, and so

ABAB � AJAJ � 0,

since AB � ΠB
J A

J and we assumed γ is Σ-projectively parametrised. Thus, by the characteri-
sation from [7], γ is a projectively-parametrised M -conformal circle, and therefore Σ is strongly
conformally circular.
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We next prove the parametrization-independent version of Theorem 5.9, namely Theorem 5.10.
As this theorem is a statement about unparametrised conformal circles, we use the 3-tractor Φ
(which equals the Hodge-star of the normal tractor form) discussed in Section 5.1.

Proof of Theorem 5.10. First, suppose that Σ is conformally circular, that is, every unparametrised
Σ-conformal circle is an unparametrised M -conformal circle. Let γ be a Σ-conformal circle. In the
previous proof, we observed that strong conformal circularity implies weak conformal circularity.
Parametrisation was not used at all in this part of the proof and hence we may employ the same
argument here. Thus LiJ

C � 0 by Theorem 5.2.
As described in Section 5.1, γ determines an intrinsic 3-tractor ϕIJK P E rIJKs which satisfies

XrIϕJKLs � 0 and uiDiϕ
IJK � 0, where XI is the intrinsic canonical tractor and Di is the intrinsic

tractor connection. Explicitly,
ϕIJK � 6u�1XrIUJAKs,

with UJ and AK defined as in equations (5.2) and (5.3) respectively, using the intrinsic position
tractor and tractor connection.

On the other hand, viewing γ as an ambient curve also defines a 3-tractor,

ΦABC � 6u�1XrAUBACs,

where XA is the ambient position tractor and UB and AC are the velocity and acceleration tractors
of γ as a curve in pM, cq (note that while UB � ΠB

J U
J , we are abusing notation slightly in that

the ambient acceleration tractor AC need not equal ΠC
KAK , as can be seen from the tractor Gauß

formula). Since Σ is conformally circular, γ is an M -conformal circle and so Φ must be parallel
along the curve, i.e. ua∇aΦ

ABC � 0.
Fix a reference metric g P c. By (5.11) the derivatives of the intrinsic and ambient 3-tractors

are
uiDiϕ

IJK � 6
�
uiDia

k � ulpl
k
	
ujXrIZJ

j Z
Ks
k ,

and
ui∇iΦ

ABC � 6
�
ui∇ia

c � udPd
c
	
ubXrAZB

b ZCs
c ,

respectively. Both of the above displays are zero and hence

0 � ΠI
AΠ

J
BΠ

K
C

�
ui∇iΦ

ABC
�� uiDiϕ

IJK

� 6
��

uiDia
k � ulPl

k
	
�
�
uiDia

k � ulpl
k
	�

ujXrIZJ
j Z

Ks
k

� �6ul
�
Pl

k � pl
k
	
ujXrIZJ

j Z
Ks
k ,

where we have used (3.32) and the Gauß formula in going from the first to second lines. It follows
that the antisymmetric part of ul

�
Pl

k � pl
k
�
uj equals zero. Thus

ul
�
Pl

k � pl
k
	
9uk.

Since we have already seen that I̊Iij
c � 0, this means that

ulFl
k � ul

�
Pl

k � pl
k �HcI̊I l

kc � 1

2
HcH

cδkl



9uk.
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Now, since the (weighted) velocity of a Σ-conformal circle passing through a point p P Σ can be
any unit vector of TpΣr�1s, it follows that Fl

k must equal fδkj for some smooth weight �2 density
on Σ, and hence Fij � fgij .

Conversely, suppose that LiJ
C � 0 and Fij � fgij for some �2 density on Σ, and let γ be a Σ-

conformal circle. The Σ-conformal circle γ determines an intrinsic 3-tractor ϕIJK � 6u�1XrIUJAKs

which is parallel along γ for the intrinsic tractor connection. To show that γ is an M -conformal
circle, we need to show that the ambient 3-tractor ΦABC � 6u�1XrAUBACs satisfies these same
properties. We show this by using the conditions on the tractor second fundamental form and the
difference tractor to relate the ambient X,U and A tractors to their intrinsic counterparts.

From the isomorphism of Theorem 3.5 (cf. the proof of Theorem 5.9), it follows that XA �
ΠA

I X
I and UB � ΠB

J U
J , where XI and UJ are the intrinsic submanifold canonical tractor and

velocity tractor of γ respectively. From the tractor Gauß formula (3.42) we therefore have

AB � ui∇iU
B � ui∇ipΠB

J U
Jq

� ΠB
J

�
uiDiU

J � uifgij

�
ZJjXK � Zj

KXJ
	
UK

�
� ΠB

J

�
AJ � ufXJ

�
� ΠB

J A
J � ufXB,

and

ui∇iA
C � ui∇ipΠC

J A
Jq � ui∇ipufXCq

� ΠC
J puiDiA

J � fuipZJ
i XK � ZiKXJqAKq

� ui∇ipufqXC � ufucZC
c

� ΠC
J puiDiA

Jq � 2ufucZC
c � ρXC , (5.30)

where we have collected all the terms in the bottom slot into ρ (the exact form of ρ will not be
important). Now, recall that UB � ui∇ipu�1XBq and AB � ui∇iU

B. Hence, using the skew-
symmetry,

ui∇iΦ
ABC � ui∇i

�
6u�1XrAUBACs

	
� 6u�1XrAUBpui∇iA

Csq.
Substituting (5.30) for the derivative of the acceleration into the above it is easy to see that the
�2ufucZC

c �ρXC terms drop out due to the skewing with XA and with UB (which is proportional
to ubZB

b modulo the canonical tractor) and thus we obtain,

ui∇iΦ
ABC � uiΠA

I Π
B
J Π

C
KDiϕ

IJK . (5.31)

Finally, the right-hand side of (5.31) is zero, since γ is a Σ-conformal circle. Thus γ is an M -
conformal circle.

5.4 Examples

We collect here some elementary examples of distinguished submanifolds in conformal manifolds.

Example 5.11. (The Model Case.) Let pSn, cq be the standard conformal sphere (additionally
endowed with its standard Möbius conformal structure if n � 2, which is induced by the standard
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embedding S2 � R3). When m � dimΣ ¡ 1 the invariant µ is given by (5.21), and hence is trivial
due to the vanishing of the ambient Weyl curvature (when m � dimΣ � 1 this formula does not
apply and the vanishing of µ characterizes conformal circles). Also, from the vanishing of the ambi-
ent Weyl curvature together with (3.38) and (3.58) it follows that Fij � 0 for umbilic submanifolds.
Therefore, in the model case, the notions of strongly conformally circular, conformally circular, and
weakly conformally circular (i.e. distinguished) submanifolds are all equivalent; the distinguished
submanifolds of Sn are precisely the umbilic ones when m ¡ 1 and conformal circles when m � 1.

Remark 5.12. The equivalence of all these conditions to L � 0 in the model case leads to a very
simple proof of the classical characterisation of umbilic submanifolds in the sphere: The condition
L � 0 on Σ � Sn implies that the tractor bundle of Σ is parallel in the (flat) ambient tractor bundle
and hence corresponds to a fixed subspace V of Rn�1,1; viewing Sn as the ray projectivisation of the
forward null cone C� in Rn�1,1 it follows that Σ must be a piece of the subsphere P�pV XC�q � Sn,
which corresponds to the intersection of Sn � Rn�1 with an affine subspace of dimension dimΣ�1.
The simplicity of this, and related arguments, is one of the reasons we believe the distinguished
submanifold condition should be seen as fundamental in conformal geometry.

Consideration of the model case leads us to ask whether the various notions of conformal
circularity defined above are independent in general. Note that when m � 1 umbilicity is a trivial
condition (satisfied by any curve) and the notions of strong, weak, and conformal circularity are
all equivalent to being a conformal circle. When m � 2 the notions of weak conformal circularity
and conformal circularity are equivalent (as we have required Fpijq0 to be zero when defining the
induced Möbius structure on Σ). Also, note that when Σ is a hypersurface (and n ¥ 3) then the
invariant µ is trivial, and hence being weakly conformally circular (distinguished) is equivalent to
being umbilic. Outside of these cases, however, these notions are distinct, as shown by the following
examples:

Example 5.13. (Extending pΣ, cΣq with prescribed I̊I, µ, and F .) Let pΣ, cΣq be an m-
dimensional conformal manifold and M � Σ� Rd with d ¥ 1 (or, more generally, let M be a rank
d vector bundle over Σ). By considering the freedom in the 2-jet along Σ of an arbitrary extension
g of gΣ P cΣ to M one can show that the geometric quantities I̊I, µ, and F can be freely prescribed
along Σ by an appropriate choice of extension, where the trace free tensor I̊I is trivially zero if
m � 1, µ must be zero if d � 1 (unless m also equals 1 and M is taken to have a conformal Möbius
tructure) and F must be pure trace if m � 2 and zero if m � 1; see, [9, Theorem 4.22]. (Note
that when m ¡ 2 our F is equivalent to the relative Schouten-Weyl tensor ρ in [9], but we when
m � 2 or 1 we do not assume that Σ has its own Möbius/Laplace structure, and hence we define
F differently from ρ in [9].)

It follows that when m ¡ 2 and d ¡ 1 being strongly conformally circular (I̊I � 0, µ � 0 and
F � 0) is a stronger notion than being conformally circular (I̊I � 0, µ � 0 and F̊ � 0), which
is itself a stronger notion than being weakly conformally circular (I̊I � 0 and µ � 0, equivalently,
L � 0), and this in turn is a stronger notion than being umbilic.

We can also easily see these inequivalences by considering simple examples.

Example 5.14. (A factor in a product of Einstein metrics.) If pM1, g1q and pM2, g2q are
Einstein manifolds and Σ �M1�tp2u then Σ is totally geodesic in the Riemannian product pM, gq
of M1 and M1, hence I̊I � 0. Moreover, since the Ricci curvature of the product metric is the sum
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of the Ricci curvatures of the factors it is readily seen that N c
bPi

b � Πa
iN

c
bPa

b � 0 (when computing
with respect to g), hence µ � 0. Similarly, it follows that the Fialkow tensor must be pure trace
since (if m ¡ 2) Fij � Pij � pij in the scale g and both Pij and pij must be proportional to gij (the
metric on Σ). However, since the formula for Pij involves both the ambient scalar curvature and the
ambient dimension, it will typically differ from pij . For example, if Σ � Sm � tpu in Sm � Sk with
m ¡ 2 and k ¡ 1 then it is readily checked that F � cm,kgΣ with cm,k � 0. If m � 2 we find the
same result using the formula (3.58) for F instead, since the Weyl curvature is readily computed in
terms of Kulkarni-Nomizu products of g1 and g2 from which one can easily check that tr2 ι�W � 0.
Thus, in these cases Σ � Sm � tpu is conformally circular, but not strongly conformally circular.

It is possible to characterize the Einstein products for which the submanifolds of the form
M1 � tp2u and tp1u � M2 are strongly conformally circular. A special Einstein product is the
Riemannian product pM, gq of a pair of Einstein manifolds pM1, g1q and pM2, g2q with the property
that Ricg1 � pn1�1qλg1 and Ricg2 � �pn2�1qλg2 for some constant λ, where ni � dimMi, see e.g.
[64]. (The simplest example of such a product is Sm�Hd with the standard product metric.) Given
a general product of pM1, g1q and pM2, g2q with Ricg1 � pn1 � 1qλg1, a straightforward calculation
shows that a submanifold of the form M1 � tp2u has F � 0 if and only if Ricg2 � �pn2 � 1qλg2.
Thus we have:

Theorem 5.15. Let pM, gq be a product of Einstein manifolds pM1, g1q and pM2, g2q. The subman-
ifolds of the form M1�tp2u (or, equivalently, those of the form tp1u�M2) are strongly conformally
circular if and only if pM, gq is a special Einstein product.

On the other hand, a factor in a generic product will typically only be weakly conformally
circular:

Example 5.16. (A factor in a generic product.) Let pM, gq � pM1, g1q � pM2, g2q and
Σ �M1� p2, where m � dimΣ ¡ 2 and pM1, g1q is not Einstein. Then, Σ is again totally geodesic
and by the product formula for the Ricci curvature one still has that N c

bPi
b � Πa

iN
c
bPa

b � 0,

when computing with respect to g. Hence we have the conformally invariant conditions I̊I � 0 and
µ � 0. On the other hand, with respect to g we have Fij � Pij � pij and this will not typically
be proportional to the metric gij on Σ. For a concrete example that is easy to compute, take,
say, M1 � S2 � S1 with the product metric and M2 � Rd, d ¥ 1, with the Euclidean metric.
Let h denote the pullback of the round metric on S2 to M1 � S2 � S1 and let dθ2 denote the
pullback of the metric on S1. The Ricci curvature of g1 � h � dθ2 on M1 is then h and the Ricci
curvature of M2 is zero. It follows that p � 3

4h� 1
4dθ

2, but ι�P � 2d�3
2pd�1qpd�2qh� 1

2pd�1qpd�2qdθ
2 and

hence F � ι�P � p is never proportional to gΣ � h� dθ2. Thus, Σ is weakly conformally circular
(distinguished) but not conformally circular.

Similar examples can be found by considering factors in warped product metrics, or doubly
warped products, since these are conformal to Riemannian products. On the other hand, twisted
products are not typically conformal to a Riemannian product and give a new class of examples.
In what follows we will abuse notation by writing gi for the pullback π�i gi of a metric on Mi via
the projection to the ith factor πi : M1 �M2 Ñ Mi. Let pM1, g1q and pM2, g2q be Riemannian
manifolds. A doubly warped product metric on M �M1�M2 is a metric of the form g � f2g1�f1g2,
where fi : Mi Ñ R� is a smooth function for i � 1, 2; such a doubly warped product g is conformal
to the product metric g̃ � g̃1 � g̃2, where g̃1 � f�1

1 g1 and g̃2 � f�1
2 g2. Hence the two natural
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foliations of a doubly warped product manifold are foliations by distinguished submanifolds (we
will call such foliations distinguished). If pM, gq is a warped product (f2 � 1) then the fact that
these foliations are distinguished can also easily be seen by computing in the scale g, since the
submanifolds of the form M1 � tp2u are totally geodesic, the submanifolds of the form tp1u �M2

are umbilic with parallel mean curvature, and the mixed part of the Ricci tensor vanishes. For a
general doubly warped product, however, then fact that these foliations are distinguished is less
obvious from a Riemannian point of view since computing µ or L in the scale g becomes nontrivial:

Example 5.17. (A doubly warped product.) Let M � R4 � R2�R2 with the doubly warped
product metric

g � e2x3pdx21 � dx22q � e2x1pdx23 � dx24q.
We know that the two natural foliations of M are distinguished, but we wish to show this from
the point of view of the metric g. Consider, say, Σ � R2 � tp0, 0qu. Clearly Σ is umbilic. Indeed,
in the standard coordinates px1, x2, x3, x4q the second fundamental form of Σ is given in terms
of the Christoffel symbols by IIij

c � Γc
ij for i, j P t1, 2u and c P t3, 4u, where Γ4

ij � 0 and
Γ3

ij � �e2x3�2x1δij � �e�2x1gij for i, j P t1, 2u. Thus, Σ has mean curvature vectorH � �e�2x1B3.
Using that Γ1

13 � Γ3
13 � 1 and Γ2

13 � Γ4
13 � 0 it follows that∇B1H � 4e�2x3B3�2e�2x3pB1�B3q �

2e�2x3B3 � 2e�2x3B1. A straightforward calculation also shows that Ric13 � 2. Thus, from the
formula for µ and the definition of the Schouten tensor, we compute that µ1

3 � P1
3 � ∇1H

3 �
1
2Ric1

3 �∇1H
3 � e�2x1 � e�2x1 � 0. The other “mixed” components of the Schouten tensor and

the other components of ∇KH are all zero. Hence, µ � 0 and Σ is a distinguished submanifold.

As noted above, we can get away from examples that are conformal to products by considering
generic twisted products. Again let pM1, g1q and pM2, g2q be Riemannian manifolds. A doubly
twisted product metric on M � M1 � M2 is a metric of the form g � h1g1 � h2g2, where hi :
M1 �M2 Ñ R� is a smooth function for i � 1, 2; such a doubly twisted product metric is clearly
conformal to the twisted product metric g1� fg2, where f : M1�M2 Ñ R� is given by h2{h1, but
such a metric is not typically conformally equivalent to a product metric onM1�M2. The conformal
structures arising from twisted products give rise to umbilic but not distinguished foliations:

Example 5.18. (A twisted product.) Let M � R4 � R2 �R2 with the twisted product metric

g � dx21 � dx22 � e2x1x3pdx23 � dx24q
and let Σ � R2 � tpa, bqu. Then Σ is totally geodesic for g, and hence umbilic. Thus µ is given by
the mixed part of the Schouten tensor. By the diagonal form of the metric, this is precisely half of
the mixed part of the Ricci tensor. But by a straightforward calculation we find that R13 � �1 � 0
and hence µ1

3 � 0. Therefore Σ is umbilic, but not distinguished.

In fact, the distinguished submanifold condition characterises precisely when a doubly twisted
product metric is conformal to a product metric. Since doubly twisted product are conformal to
twisted products, we need only consider the latter. One of the two natural foliations of a twisted
product manifold is distinguished if and only if both are, and this is equivalent to the twisted
product metric being a warped product and hence conformal to a product:

Theorem 5.19. Let pM1, g1q and pM2, g2q be Riemannian manifolds of dimension at least two,
f : M1�M2 Ñ R� a smooth function and g � g1�fg2 a twisted product metric on M �M1�M2.
Then the following are equivalent:
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piq The umbilic submanifolds M1 � tp2u are distinguished for every p2 PM2;

piiq The umbilic submanifolds tp1u �M2 are distinguished for every p1 PM1;

piiiq The function f : M1�M2 Ñ R� can be written as a product f � f1f2 of functions fi : Mi Ñ
R�, i � 1, 2.

pivq g is a warped product metric g1 � f1g̃2 for some metric g̃2 conformal to g2.

pvq g is conformal to a product metric g̃1 � g̃2 on M1 �M2.

Proof. We first note that the equivalence of (iii) and (iv) is obvious, and that these clearly imply
(v). To see that (v) implies (iv) we note that if g1 � fg2 � λpg̃1 � g̃2q for some smooth function
λ : M1 �M2 Ñ R�, then (from g1 � λg̃1) it follows that λ must be independent of the M2 factor
and hence g � g1 � f1g̃2 where f1 � λ. From the discussion above we also know that (v) implies
(i) and (ii). To establish the result it is therefore enough to show that (i) implies (iii) and that (ii)
implies (iii).

Suppose (i) holds. Let n � dimM and ni � dimMi. For i � 1, 2, let Xi be a vector field on
M �M1 �M2 tangent to the ith factor. Then the mixed-part of the Ricci tensor is given by (see,
e.g., [49])

RicpX1, X2q � p1� n2qX1X2 logpfq.
But the submanifolds of the form M1 � tp2u are totally geodesic in pM, gq and hence for these
submanifolds µ is given by the mixed-part of the Schouten tensor, which (due to the diagonal form
of the metric with respect to the product decomposition M �M1�M2) is

1
n�2 times the mixed-part

of the Ricci tensor. Thus, since (i) holds we must have X1X2 logpfq � 0 for any pair of vector fields
X1, X2, with X1 tangent to the first factor and X2 tangent to the second factor. It follows easily
that logpfq is the sum of a function on M1 and a function on M2, and hence (iii) holds.

Since the distinguished submanifold condition is conformally invariant, the fact that (ii) also
implies (iii) follows from the same argument we just used but now applied to the conformally related
metric f�1g1 � g2 (with the roles of M1 and M2 interchanged). This proves the result.

The classical de Rham-Wu theorem states that a Riemannian manifold pM, gq possessing a pair
of complementary orthogonal totally geodesic foliations is locally a product Riemannian manifold,
and this holds globally if pM, gq is complete and simply connected. An analogue of this result for
twisted products is given in [102]: A Riemannian manifold pM, gq possessing a totally geodesic
foliation and a complementary orthogonal totally umbilic foliation is locally a twisted product
manifold. This result easily implies the following conformally invariant result: A Riemannian
manifold pM, gq possessing a pair of complementary orthogonal totally umbilic foliations is locally
a doubly twisted product manifold. To see this one merely rescales g to make one of the umbilic
foliations totally geodesic (which can always be done locally), and then applies the result of [102] to
conclude that the rescaled metric is a twisted product. Combining these observations with Theorem
5.19 we readily obtain the following conformal extension of the (local version) of the de Rham-Wu
theorem:

Theorem 5.20. A conformal manifold pM, cq is locally the conformal structure of a product man-
ifold if and only if pM, cq possesses a pair of complementary orthogonal foliations by distinguished
submanifolds.
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Remark 5.21. In fact, as can easily be seen from Theorem 5.19, it suffices to know that one of
the foliations is distinguished and the other is umbilic (as it is then forced to be also distinguished).

The above considerations suggest that the “generic” umbilic hypersurface will not be distin-
guished. On the other hand, there are many situations in which the geometry of the ambient
manifold pM, gq forces any umbilic submanifold to be distinguished, as we will see below. Towards
this end, it is helpful to introduce Nomizu and Yano’s notion of extrinsic spheres: A submanifold
Σ in a Riemannian manifold pM, gq is called an extrinsic sphere if it is umbilic and has parallel
mean curvature vector (for the connection on the normal bundle). We then have the following easy
observation:

Theorem 5.22. An extrinsic sphere in an Einstein manifold is conformally distinguished.

Remark 5.23. If Σ is an umbilic hypersurface in an Einstein manifold pM, gq then by contracting
the Codazzi equation one readily finds that Σ has parallel mean curvature vector (equivalently,
constant mean curvature) [39, 91] and hence is an extrinsic sphere. Of course, umbilic hypersurfaces
are all distinguished so the above theorem teaches us nothing new in this case. On the other hand,
the fact that umbilic hypersurfaces are all distinguished, together with the definition of µ, furnishes
an easy proof that an umbilic hypersurface in an Einstein manifold is an extrinsic sphere: in the
Einstein scale one finds that µi

c � ∇K
i H

c (and µ is zero).

Returning to Example 5.11, we note that since (real) Riemannian space forms are conformally
flat it follows that any umbilic submanifold of a real space form is a distinguished submanifold.
The same holds for complex space forms (the simply connected examples of which are complex
projective spaces, complex Euclidean spaces and complex hyperbolic spaces):

Example 5.24. (Umbilic submanifolds in complex space forms.) An inspection of the
classification of umbilic submanifolds in complex space forms in [40] shows that all are extrinsic
spheres (counting totally geodesic submanifolds as extrinsic spheres). Hence, since complex space
forms are Einstein, every umbilic submanifold in a complex space form is conformally distinguished.

To be more concrete, we discuss the example of complex projective space in more detail and
compute the Fialkow tensor of the umbilic submanifolds:

Example 5.25. (Conformal circularity of umbilic submanifolds in CPn.) Let pM, gq �
pCPn, gFSq, where gFS is the Fubini-Study metric. Let J denote the complex structure on M
and let Jab � gacJ

c
b. With our conventions, the curvature tensor of g is gacgbd � gadgbc � JacJbd �

JadJbc�2JabJcd. The (real) Ricci tensor is Ric � p2n�2qg and the Schouten tensor is P � n�1
2n�1g. It

follows that the Weyl curvature is given by Wabcd � �3
2n�1pgacgbd�gadgbcq�JacJbd�JadJbc�2JabJcd.

Following the classification in [40] the umbilic submanifolds are of three kinds. The first case is
when Σ is a totally geodesic CPm in CPn (m   n). In this case one readily computes that the
Fialkow tensor is given by F � p n�1

2n�1� m�1
2m�1qgΣ when m ¡ 1 and it turns out that the same formula

holds when m � 1 (since in the latter case the ambient Weyl curvature pulls back to Σ � CP1 as
Wijkl � p �3

2n�1 � 3qpgikgjl � gilgjkq so that tr2 ι�W � 12 n�1
2n�1 and F � �3 n�1

2n�1gΣ � p n�1
2n�1 � 2qgΣ).

So, a totally geodesic CPm in CPn is conformally circular, but not strongly conformally circular.
The second case is when Σ is a totally real and totally geodesic RPn in CPn or a totally geodesic
RPm inside of such an RPn. The third case is when Σ is an umbilic, but not totally geodesic, RPm
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in such a totally real and totally geodesic RPn (note that such an embedded RPm necessarily has
parallel mean curvature in RPn and in CPn); in this case the induced metric has constant sectional
curvature K ¡ 1 and the mean curvature squared is given by |H|2 � K � 1 (when K � 1 we are
back in the second case). Interestingly, in either the second or the third case we find that when
dimΣ ¡ 2 the Fialkow tensor is given by F � 3

4n�2gΣ (the dependence on the intrinsic sectional
curvature K of Σ drops out). When dimΣ � 2 in either the second or the third case the ambient
Weyl tensor pulls back to Σ as Wijkl � �3

2n�1pgikgjl � gilgjkq so that tr2 ι�W � �6
2n�1 and once

again finds that F � 3
4n�2gΣ. Hence for a totally real umbilic submanifold Σ � CPn (of dimension

at least two) the Fialkow tensor is universally given by F � 3
4n�2gΣ. It follows that the umbilic

submanifolds of CPn are all conformally circular, but none are strongly conformally circular.

Note that in the above example we have only described the conformally distinguished subman-
ifolds of CPn of dimension at least two. The 1-dimensional distinguished submanifolds in complex
projective spaces have been characterised in [1] (strictly speaking, the paper is concerned with
“Riemannian” circles in CPn, but since the Fubini-Study metric gFS is Einstein these are precisely
the conformal circles of pCPn, rgFSsq parametrized by arclength with respect to gFS); see also [45],
where the results of [1] are recovered for CP2 using the first integrals arising from the conformal
Killing-Yano tensors on CP2 (a construction which we generalise in Section 6 below). The notion
of

Having discussed the umbilic submanifolds in complex space forms (Kähler manifolds with
constant holomorphic sectional curvature) it is natural to next consider the quaternionic Kähler
analogues:

Example 5.26. (Umbilic submanifolds in quaternionic space forms.) Umbilic submanifolds
in quaternionic space forms are classified in [38], and all are extrinsic spheres (again, we are counting
totally geodesic submanifolds as extrinsic spheres). Since quaternionic space forms are Einstein, it
follows that every umbilic submanifold in a quaternionic space form is conformally distinguished.

Summarizing what we have learned from Examples 5.11, 5.24 and 5.26 we have the following
theorem:

Theorem 5.27. An umbilic submanifold in a real, complex or quarternionic space form is a con-
fomally distinguished submanifold.

The various kinds of space forms we discussed above were Einstein (and the umbilics were all
extrinsic spheres). Sasakian space forms, however, are typically only “η-Einstein” (meaning that
eigenvalues of the Ricci tensor in the horizontal and characteristic directions are two, possibly
different, constants). Nevertheless, in most cases the umbilic submanifolds are still forced to be
distinguished:

Example 5.28. (Umbilic submanifolds in Sasakian space forms.) Let pM, gq be a Sasakian
space form of dimension 2n�1 and ϕ-sectional curvature c. Let ξ denote the characteristic direction
of g and η the corresponding 1-form (the underlying contact form of the Sasakian structure). The
Ricci curvature of g is given by Ric � 1

2pnpc� 3q � c� 1qg � 1
2pn� 1qpc� 1qη b η [11]. Given any

submanifold Σ of M we may decompose the characteristic direction ξ along Σ as ξ � ξJ�ξK, where
ξJ is tangent and ξK is normal to Σ. Writing ηJ and ηK for the corresponding 1-forms, the mixed
part of the Schouten tensor is � n�1

2p2n�1qpc� 1qηJb ηK, or � n�1
2p2n�1qpc� 1qηJb ξK when viewed as a
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normal bundle valued 1-form on Σ. On the other hand, when Σ is umbilic it is shown (by contracting
the Codazzi equation) in [12] that ∇KH � �1

4pc� 1qηJ b ξK. Combining these observations gives

that, for an umbilic hypersurface in pM, gq, µ � � 3pc�1q
4p2n�1qη

J b ξK. In the classification of umbilic

submanifolds in Sasakian space forms in [12] there are four classes of examples. In classes (i)–(iii)
pc � 1qηJ b ξK � 0; indeed, (i) corresponds precisely to the case when ηJ � 0 (Σ is everywhere
tangent to ker η), (ii) to the case when ξK � 0 (ξ is tangent to Σ) and (iii) to the case when c � 1
(in which case pM, gq is a real space form). Thus, umbilic submanifolds in classes (i)–(iii) are all
distinguished. Class (iv), on the other hand, corresponds precisely to those umbilic submanifolds
for which µ � 0; it is shown in [12] that these occur when c   �3, equivalently, when g has strictly
negative sectional curvatures in the ordinary Riemannian sense.

In particular, we have:

Theorem 5.29. Let pM, gq be a Sasakian space form of ϕ-sectional curvature c ¥ �3, then ev-
ery umbilic submanifold of pM, gq is conformally distinguished. When c   �3 there are umbilic
subamnifolds in pM, gq that are not conformally distinguished.

We conclude with an example that motivated the definition and consideration of the invariants
L and F :

Example 5.30. (Conformal infinities of Poincaré-Einstein manifolds.) Let pM, gq be a
Poincaré-Einstein manifold with conformal infinity pΣ, cΣq. Then Σ is a strongly conformally
circular submanifold in M . This follows from [63, Theorem 4.5] where it is shown that the tractor
bundle T Σ is parallel as a subbundle of the standard tractor bundle of M (which is equivalent to
L � 0) and the ambient tractor connection induces the standard submanifold tractor connection
on T Σ (which is equivalent to F � 0). The key observation behind this result is that the scale
tractor IA corresponding to the Einstein metric g on M extends continuously to M to give the
normal tractor NA to Σ on Σ; the vanishing of L then immediately follows from the fact that IA

is parallel, and the fact that F � 0 can be seen from the fact that ∇ra∇bsI
C � 0 (since from this

one can deduce that the induced tractor connection ∇̌ on T Σ is normal and therefore must agree
with the submanifold one).

One of our motivations for the consideration of L and F in the hypersurface case (in which case
L is equivalent to I̊I) is that if pM, gq is a conformally compact manifold with conformal infinity
pΣ, cΣq then the trace-free second fundamental form I̊I of Σ represents the first order obstruction
to the existence of a (formal) Poincaré-Einstein metric on M in the conformal class of g, and F
represents the next order obstruction (recall that in the Poincaré-Einstein case one obtains that
I̊I � 0 from ∇aI

B|Σ � 0 and that F � 0 from ∇a∇bI
C |Σ � 0); see [13] for further development of

this idea in the hypersurface case.
While we have given many examples above of distinguished submanifolds and of conformally

circular manifolds above, we are just as much interested in situations where these conditions fail (as
measured by the nontriviality of F and L). For hypersurfaces, we can interpret this failure either in
terms of the difference between intrinisic and ambient conformal circles or in terms of the failure to
be (formally) the conformal infinity of a Poincaré-Einstein metric to a given order. The conformal
circles interpretation of course holds in all codimensions, and it seems natural to ask whether these
invariants are also related to the possibility of realising a general codimension submanifold Σ as a
zero locus associated to a (formally) parallel tractor field along Σ. We will return to this idea in
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Section 7, after considering the interaction between distinguished submanifolds and parallel tractors
in Section 6.

6 First integrals

Here we show that a class of solutions to a very large collection of linear differential equations
provide first integrals for distinguished submanifolds. This provides a uniform framework which
generalises to submanifolds (of any proper codimension) the advance for conformal circles in [68].
In [68] it is explained in detail how the ideas there extend the usual construction of first integrals
for geodesics, using for example solutions of the Killing equation, Killing tensors, and Killing-Yano
tensors. So we do not repeat that here.

6.1 Review of relevant BGG theory

The class of equations that we interested are the so-called (conformal) first BGG equations. This
is a very large class of conformally invariant linear overdetermined PDE. It includes the conformal
Killing equation, more generally the conformal Killing tensors equations of any rank, the conformal
Killing-Yano equations. To understand this infinite class of equations we recall here some elements
of the BGG theory. To put this into context we first recall the homogeneous model for conformal
geometry, discussed in Section 2.3. The model for oriented conformal geometries of Riemannian
signature is conformal n-sphere pSn, cq viewed as the ray projectivisation of the forward null cone
in pn � 2q-dimensional Minkowski space. The group G � SO0pn � 1, 1q acts on the forward null
cone and descends to an action by conformal isometries of Sn; the conformal n-sphere is therefore
naturally viewed as a homogeneous geometry on G{P � Sn, for P an appropriate (parabolic)
subgroup of G. Again, see, e.g., [41, 63] for a more detailed discussion.

Generalising from the model case, it is well known that a conformal manifold pM, cq (of di-
mension n ¥ 3) determines a canonical Cartan bundle and connection (the additional choice of a
Möbius structure is required for this in dimension n � 2). This consists of a P -principal bundle
G Ñ M equipped with a canonical Cartan connection ω which is a suitably equivariant g-valued
1-form that provides a total parallelisation of TG. Here g denotes the Lie algebra of G. In the case
of the model, G � G and ω is the Maurer-Cartan form.

For any representation U of P , one has a corresponding associated bundle G�P U. For example
it follows from the equivariance properties of ω that the tangent bundle TM can be identified with
G �P pg{pq where p is the Lie algebra of P , and the P action is induced from its adjoint action on
g.

The tractor bundles are the associated bundles W :� G�P W where W is a linear representation
space of G (and hence also of P by restriction). On each of these the Cartan connection induces
a linear connection ∇W and this the tractor connection for the given bundle. In particular the
standard tractor bundle T is W :� G �P Rn�2, with Rn�2 denoting the defining representation
of G. From the latter (for example) the Cartan bundle G can be recovered as an adapted frame
bundle and, on this, the Cartan connection ω can be recovered from the tractor connection, see
[22].

Now recall the bundle embedding (2.24) (with k � 2)

X : T �M Ñ Λ2T � EndpT q,
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where the tractor metric is used in the obvious way to identify elements of Λ2T with skew elements
of EndpT q. Sections of EndpT q act on tractor bundles in the obvious tensorial way and so, via
each respective X, we have a canonical action of T �M on any tractor bundle V and this induces a
sequence of invariant bundle maps

B� : ΛkT �M b V Ñ Λk�1T �M b V, k � 1, � � � , n� 1. (6.1)

This is the (bundle version of the) Kostant codifferential for conformal geometry and satisfies
B� � B� � 0; so it determines subquotient bundles HkpM,Vq :� kerpB�q{ impB�q of the V-valued
tractor bundles ΛkT �M b V.

Now, for each tractor bundle V � G �P V, with V irreducible for G, there is a canonical
differential BGG-sequence [28, 17],

H0
DV

0Ñ H1
DV

1Ñ � � � D
V
n�1Ñ Hn .

Here Hk � HkpM,Vq and each DV
i is a linear conformally invariant differential operator.

We are, in particular, interested in the operator DV � DV
0 , which defines an overdetermined

differential system. The parabolic subgroup P � G determines a filtration on V by P–invariant
subspaces. Denoting the largest proper filtration component by V0 � V, it is straightforward to
show that H0 is the quotient V{V0. Here, V0 is the corresponding associated bundle for V0, and
we write π : V Ñ H0 for the natural projection. We recall here the construction of the first BGG
operators DV , as summarised in [24], and also the definition of the special class of so called normal
solutions (cf. [93]) for these operators.

Theorem 6.1 ([24]). Let V be an irreducible G-representation and let V :� G �P V. There is a
unique invariant differential operator L : H0 Ñ V such that π � L is the identity map on H0 and
∇ � L lies in kerpB�q � T �M b V. For σ P ΓpH0q, DVσ is given by projecting ∇pLpσqq to ΓpH1q,
i.e. DVσ � πp∇pLpσqqq.

Furthermore the bundle map π induces an injection from the space of parallel sections of V to
a subspace NpDVq of ΓpH0q which is contained in the kernel of the first BGG operator

DV : H0 Ñ H1 . (6.2)

The operator L restricts to an isomorphism from NpDVq to the space of parallel tractors in ΓpVq.
The differential operator L : H0 Ñ V, in the Theorem, is called a BGG splitting operator. We
sometimes denote this LV to emphasise the particular tractor bundle involved. Using the notation
and setting of the Theorem, we also use the following terminology:

Definition 6.2. Elements of the subspace NpDVq � ΓpH0q are called normal solutions to the BGG
equation DVσ � 0.

By definition normal solutions to (6.2) are in 1-1 correspondence with parallel sections of the
corresponding tractor bundle V. On geometries which are conformally flat all solutions are normal,
and clearly there is dimpVq-parameter family of such normal solutions locally.

For the standard tractor bundle the corresponding first BGG equation is the equation

∇pa∇bq0σ � Ppabq0σ � 0, (6.3)
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on sections σ P ΓpEr1sq, and all solutions are normal (on any conformal manifold admitting such
solutions). However, this is not typical. In general, for solutions σ P ΓpH0q of DVpσq � 0, ∇Lpσq
is given by curvature terms acting on Lpσq (see, e.g., [20, 62, 66, 83]). Normal solutions, for
which these curvature terms necessarily annihilate Lpσq, often correspond to interesting geometric
conditions on the underlying manifold.

6.2 The First Integral Theorem

We work on an arbitrary conformal manifold pMn, cq. Let Σ be an embedded submanifold of
codimension d. Recall that Σ determines its normal form NA1���Ad

P ΓpΛdN q. This is parallel if
(and only if) Σ is distinguished. Thus if the manifold pMn, cq is equipped with a parallel tractor
S that can be contracted non-trivially into say m0 copies of NA1���Ad

to yield a function, then this
scalar is necessarily constant if Σ is distinguished. Thus we obtain a first integral for such Σ. In
general the parallel tractor S would not necessarily itself come from a G-irreducible representation,
but rather a tensor product of such. Thus we have the following result.

As earlier, view Rn�2 as the defining representation for G :� SOphq � SOpp� 1, q � 1q. Define

Wpdq :� ΛdRn�2 d � 1, � � � , n� 1.

For each d, this is also a representation space for G. Then we have:

Theorem 6.3. Let V1, � � � ,Vk be irreducible representation spaces of G, Vi � G �P Vi, and DVi,
i P t1, � � � , ku the corresponding respective first BGG operators.

For each i P t1, � � � , ku, suppose that σi is a normal solution to the first BGG equation

DViσi � 0, (6.4)

and mi P Z¥0. Then for each copy of the trivial G-representation R in

pdm0Wpdqq b pdm1V1q b � � � b pdmkVkq (6.5)

there is a corresponding distinguished first integral for submanifolds of codimension d.

Proof. The proof is an easy consequence of the reasoning above. Otherwise the formal proof is a
trivial adaption of the proof of Theorem 6.1 in [68], which treats the case of curves.

The theorem has used the normal form NA1���Ad
as the basis for producing first integrals. One can

equivalently use its Hodge dual �NA1���Am�2 , or the normal projector NA
B , or any combination of

these, as by Theorem 1.1 any of these are parallel for distinguished submanifolds.
Note that to apply (6.5) of the Theorem for a given Σ we require normal solutions to k first

BGG equations. For case of curves, several examples are given in [68], as is also the explanation
of how this is linked to familiar first integrals for geodesics as obtained from Killing vectors and
Killing tensors (which are solutions of projective BGG equations). Given that resource we treat
just one example here.
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6.3 First integrals from a normal conformal Killing-Yano form

We give an example to show how this machinery yields conserved quantities for distinguished
submanifolds. It is easy to follow the ideas here to produce other examples, see [68] for the case of
m � 1.

The space Ea1ra2���adsrws � Ea1 b Era2���adsrws is completely reducible under the action of Opgq,
and has the decomposition

Ea1ra2���adsrws � Era1a2���adsrws ` Eta1ra2���adsu0rws ` Era3���adsrw � 2s, (6.6)

where Eta1ra2���adsu0rws consists of tensors sa1���ad P Ea1ra2���adsrws which are, metric trace-free, com-
pletely skew on the indices a2, . . . ad, and for which sra1a2���ads � 0. A pd � 1q-form ka2���ad P
ΓpEra2���adsrdsq is said to be a conformal Killing-Yano form or simply conformal Killing form if it
satisfies

∇a1ka2���ad � ϕa1���ad � ga1ra2νa3���ads, (6.7)

where ϕa1���ad P Era1���adsrds and νa3���ad P Era3���adsrd� 2s. Equivalently,
∇ta1ka2���adu0 � 0, (6.8)

where the braces and subscript zero denote projection onto the middle factor of (6.6). This equation
can be checked to be conformally invariant, and is moreover a first BGG equation (which in this
context implies conformal invariance). Thus solutions to this equation correspond bijectively to a
class of sections of a certain tractor bundle. To understand this, we proceed as follows. For this
equation, it is shown in [66] that the corresponding tractor bundle is ΛdT , and it follows from the
formulae there that the BGG splitting operator L : Era2���adsrds Ñ ErA1���Ads is:

Lpka2���adq � ka2���adY
a2���ad

A1���Ad
� 1

d
∇a1ka2���ad Z

a1���ad
A1���Ad

� d� 1

n� d� 2
∇ckca3���adW

a3���ad
A0A1A2���Ad

�
�

1

npd� 1q∇
b∇tbka2���adu0 �

1

n� d� 2
∇ra2|∇

bkb|a3���ads � Pra2|
bkb|a3���ads



X a2���ad
A1A2���Ad

.

(6.9)

The general theory immediately gives us the following.

Proposition 6.4. Let ka1���ad�1
P Era1���ad�1srds be a normal solution to the conformal Killing-Yano

equation and Σ a distinguished submanifold of codimension d, with corresponding tractor normal
form NA1���Ad

. Let KA1���Ad
:� Lpka1���ad�1

q P ErA1���Ads be the image of ka1���ad�1
under the BGG

splitting operator L of (6.9). Then the scalar function

KA1���Ad
NA1���Ad (6.10)

is constant along Σ.

Remark 6.5. (i) Here d ¥ 2, but the result still holds in the case where d � 1 of we understand
the hypothesis in this case to mean that σ � k P Er1s satisfies the almost-Einstein equation (6.3)
and take L to be the corresponding BGG splitting operator. (ii) Note that one can of course use �N
rather than N to construct conserved quantities, and in this case we obtain a conserved quantity
KA1���Am�2�NA1A2���Am�2 when ka1���am�1 is a normal solution to the conformal Killing-Yano equation
(this is the approach used to construct first integrals for conformal circles in [68, Theorem 6.8]).
However, since the Hodge-� operator takes conformal Killing forms to conformal Killing forms, we
obtain the same first integrals this way.
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Proof. Since ka1���ad�1
is a normal solution, we have that ∇iKA1���Ad

� 0. Moreover, since Σ is a dis-
tinguished submanifold, ∇iN

A1���Ad � 0 by Theorem 1.1. Hence the scalar quantity KA1���Ad
NA1���Ad

is constant.

We show the non-triviality of the first integral quantity (6.10) by calculating it directly. From
the explicit forms of KA1���Ad

and NA1���Ad
, we see that

KA1���Ad
NA1���Ad � d � ka1���ad�1

N cb1���bd�1Hc � Y a2���ad
A1A2���Ad

XA1A2���Ad
b1���bd�1

� 1

d
p∇a1ka2���adqN b1b2���bd � Za1a2���ad

A1A2���Ad
ZA1A2���Ad
b1b2���bd

� ka1���ad�1
N ca1���ad�1Hc � 1

d
p∇a1ka2���adqNa1a2���ad , (6.11)

which verifies non-triviality.

For the case of d � n � 1, meaning curves, it was seen in [68] that, for many examples,
normality of the BGG solution is actually not required in order to obtain a first integral. In the
general codimension case, however, when the BGG solution is not normal we may or may not obtain
a conserved quantity depending on the situation. The condition required for (6.10) to give rise to
a conserved quantity is weaker than the normality of K, and depends on the submanifold Σ, which
we see as follows: If Σ is distinguished then NA1���Ad is parallel for the tractor connection and we
have

∇i

�
KA1���Ad

NA1���Ad
� � p∇iKA1���Ad

qNA1���Ad ,

where KA1���Ad
� Lpkq for a general rank pd � 1q conformal Killing-Yano form k. Theorem 3.9

of [66] gives
p∇c �ΨcqKA1���Ad

� 0,

where ∇c is the standard tractor connection and Ψc : ErA1���Ads Ñ EcrA1���Ads is defined by

ΨcpKA1A2A3���Ad
q :� �1

2
Wa1a2c

ekea3���adZ
a1a2a3���ad
A1A2A3���Ad

� ϕca3���adW
a3���ad

A1A2A3���Ad

� ξa2���adX
a2���ad

A1A2���Ad
,

(6.12)

where only the explicit form of the Z slot will be important. Therefore one has

∇i

�
KA1A2���Ad

NA1A2���Ad
� � p∇iKA1A2���Ad

qNA1A2���Ad

� ΨipKA1A2���Ad
qNA1A2���Ad

� �1

2
Wa1a2i

ekea3���adN
b1b2b3���bd � Za1a2a3���ad

A1A2A3���Ad
ZA1A2A3���Ad
b1b2b3���bd

� �1

2
Wa1a2i

ekea3���adN
a1a2a3���ad , (6.13)

the vanishing of which is a weaker condition than normality.
To see that (6.13) may indeed be zero or not zero when k is not normal, we consider the following

simple examples:

Example 6.6. (Non-normal BGG solutions and conserved quantities.) Let M � S2�S2,
equipped with the standard product metric g and let gi, i � 1, 2, denote the pullback of the standard
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round metric on S2 by the projection on the ith factor (so g � g1�g2). Then the Weyl tensor of g is
given in terms of the Kulkarni-Nomizu products of g1 and g2 by W � 1

3pg1⃝̂ g1�g1⃝̂ g2�g2⃝̂ g2q.
When the codimension d is 2 (so d� 1 � 1) the BGG solutions k appearing in (6.13) are just the
conformal Killing fields of pM, rgsq, of which there are many (e.g., the trivial lift of a Killing field of
one of the round S2 factors). From the formula for the Weyl tensor it is easy to see that none of the
conformal Killing fields on pM, rgsq are normal (as the map ka ÞÑ kaWabcd is injective). In this case,
given a distinguished submanifold Σ, the quantity in (6.13) becomes simply �1

2Wabick
cNab. From

the formula for W it is easy to see that this always gives zero in the case where Σ is S2 � tpu or
tpu � S2 for some p P S2 (since then WabicN

ab � WabecΠ
e
iN

ab � 0). Thus, in these cases KABN
AB

is a conserved quantity (i.e. is constant) along Σ for any conformal Killing vector field k. On the
other hand, if Σ is the diagonal submanifold in M � S2�S2 then only for a subset of the conformal
killing fields do we obtain a conserved quantity in this way. To see this, let pp, pq P Σ, let X̃, Ỹ
normal vectors to Σ at pp, pq with projection on the first factor given by X,Y P TpS

2 respectively,
let Z̃ be a tangent vector to Σ at pp, pq with projection on the first factor given by Z P TpS

2, and
let k be a conformal Killing vector field on M with components in the direction of the first and
second factors at pp, pq given by k1, k2 P TpS

2, respectively. Then, noting that X̃, Ỹ and Z̃ are all
determined by their components in the direction of the first factor, a straightforward calculation
shows that at pp, pq, W pX̃, Ỹ , Z̃, kq � xX,ZypxY, k1y � xY, k2yq � xY, ZypxX, k1y � xX, k2yq, where
x , y denotes the round metric on S2. From this we see that KABN

AB is constant along Σ when k
is orthogonal to Σ (i.e. when k2 � �k1 at each point pp, pq P Σ) but not otherwise.

7 Distinguished submanifolds from curved orbits

In this section we show that distinguished submanifolds arise naturally as curved orbits, in the sense
of [26], in the presence of certain Cartan holonomy reductions of the conformal structure. We then
show (without using the curved orbit theory of [26]) that the same continues to hold under weaker
hypotheses. Before coming to the curved orbit theory result and its generalisation, however, we
prove Theorem 1.5, as this will be needed in the discussion that follows.

7.1 Distinguished submanifolds via a moving incidence relation

Recall that a conformally embedded submanifold, of codimension d, determines the fundamental
and equivalent objects NA

B , NA1���Ad
, and �NA1���Am�2 and then we have Theorem 1.1. For our

purposes, however, it is important to have a characterisation of distinguished submanifolds that
does not use an initial knowledge of these. Theorem 1.5 gives us such a characterisation, which we
state more explicitly here:

Theorem 7.1. Let Σ ãÑ M be a submanifold of codimension d in a conformal manifold pM, cq.
Then Σ is distinguished if, and only if, there exists a nowhere-zero ΨA1A2���Ad

P ΓpΛdT �|Σq such
that ΨA1A2���Ad

XA1 � 0 and ∇iΨA1A2���Ad
� 0 along Σ.

Remark 7.2. From the proof we will see that such a tractor field Ψ must be a (locally) constant
multiple of the tractor normal form along Σ, and is therefore simple. This observation will become
relevant when we connect certain BGG solutions with distinguished submanifolds in Section 7.2.
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Proof. If Σ is distinguished, then by Theorem 1.1, the tractor normal form is parallel in tangen-
tial directions. Moreover, it is clear from the definition of the tractor normal form (3.62) that
NA1A2���Ad

XA1 � 0. Thus we may take ΨA1���Ad
to be the tractor normal form.

Conversely, suppose that we have Ψ P ΓpΛdT �|Σq which satisfies ΨA1A2���Ad
XA1 � 0 and

∇iΨA1A2���Ad
� 0 along Σ. From (2.22), we know that, in a background scale, Ψ can be writ-

ten

ΨA1A2���Ad
� σa2���adY

a2���ad
A1A2���Ad

� νa1a2���adZ
a1a2���ad
A1A2���Ad

� ϕa3���adW
a3���ad

A1A2A3���Ad
� ρa2���adX

a2���ad
A1A2���Ad

.

But the condition ΨA1���Ad
XA1 � 0 together with (2.18) implies that σa2���ad � 0 and ϕa3���ad � 0.

Moreover, if ui P ΓpE iq, the incidence relation ΨA1A2���Ad
XA1 � 0 together with the parallel

condition means that
0 � ui∇i

�
XA1ΨA1A2���Ad

� � uiZA1
i ΨA1A2���Ad

so uiZA1
i ΨA1A2���Ad

� 0 for all u P ΓpTΣq. Expanding this, again using (2.18) and the linear
independence of the X and Z projectors, one sees that νa1a2���adu

a1 � 0 and ρa2���adu
a2 � 0.

Since ui was an arbitrary submanifold tangent vector, we conclude that ν P pΛdN�Σqrds and
ρ P pΛd�1N�Σqrd�2s. Thus in particular νa1a2���ad � fNa1a2���ad , where Na1a2���ad is the Riemannian
normal form of Σ and f is a function on Σ.

Now note that, since Ψ is parallel, ΨA1A2���AdΨA1A2���Ad
is constant along Σ. On the other hand,

ΨA1A2���AdΨA1A2���Ad
� νa1a2���adνa1a2���ad � f2Na1a2���adNa1a2���ad � f2 � d!,

and therefore the function f is locally constant and nowhere-zero. Thus on each connected com-
ponent of Σ, νa1a2���ad is a constant multiple of the Riemannian normal form.

From equation (2.25), we calculate

0 � ∇iΨA1A2���Ad
� pf∇iNa1a2���ad � ρa2���adgia1qZa1a2���ad

A1A2���Ad

� p∇iρa2���ad � f � d �Na1a2���adPi
a1qX a2���ad

A1A2���Ad
.

(7.1)

Now, note that the same argument that yielded equation (3.68) may be repeated replacing normal
tractors with normal vectors (as per Remark 3.25) to give

∇iNa1a2���ad � �d � IIiradcNa1a2���ad�1sc. (7.2)

Substituting this into (7.1) gives that in particular

�f � d � IIiradcNa1a2���ad�1sc � gira1ρa2���ad�1ads � 0. (7.3)

Contracting the above with gia1 � Πi
bg

ba1 allows us to express ρa2���ad explicitly. Since the
expression IIiad

cNa1a2���ad�1c is already skew in the indices a1a2 � � � ad�1 we have:

gia1IIirad
cNa1a2���ad�1sc �

1

d
gia1

�
IIia1

cNca2���ad�1ad � IIia2
cNa1c���ad�1ad � � � � � IIiad

cNa1a2���ad�1c

�
� m

d
HcNca2���ad�1ad .
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Similarly, since gia1ρa1���ad�1
� 0,

gia1gira1ρa2���ads �
1

d
gia1

�
gia1ρa2���ad � gia2ρa1a3���ad � � � � � giadρa2���ad�1a1

�
� m

d
ρa2���ad .

Thus

ΨA1A2���Ad
� fNa1a2���adZ

a1a2���ad
A1A2���Ad

� f
�
d �HbNba2���ad

	
X a2���ad
A1A2���Ad

� fNA1A2���Ad
,

where NA1A2���Ad
is the tractor normal form.

Since the function f is locally constant and nowhere-zero, ∇iΨA1A2���Ad
� 0 implies that the

tractor normal form is parallel. Thus Σ satisfies ones of the equivalent conditions of Theorem 1.1,
and is therefore a distinguished submanifold.

Note that Theorem 1.5 follows as the tractor Hodge-� operation (2.27) commutes with the tractor
covariant derivative.

7.2 Curved orbits and generalisations

The following result shows one way in which distinguished submanifolds arise as curved orbits, in
the sense of [26]. It generalises [68, Proposition 7.1]. Before stating the theorem we introduce
some terminology: we shall say that a tractor (or vector) KA1���Ad

is timelike if KA1���Ad
KA1���Ad is

negative, spacelike if this is positive and null if it is zero.

Theorem 7.3. Suppose ka1���ad�1
is a normal solution of the conformal Killing form equation on

pM, c) such that the parallel tractor KA1���Ad
� Lpka1���ad�1

q is simple. Then the zero locus of
k is either empty, an isolated point, or a distinguished conformal submanifold of codimension d.
Moreover, writing Zpkq for this zero locus:

� if K is timelike, then Zpkq is necessarily empty;

� if K is null, Zpkq consists only of isolated points;

� if K is spacelike, then Zpkq is either empty or is a distinguished submanifold of codimension
d.

Remark 7.4. (i) In the proof we will observe that in all cases Zpkq � ZpX ⌟ Kq. In particular,
fixing any metric g P c, when d ¡ 1 we find that Zpkq � ZpKq where K :� pka1���ad�1

,∇ckca2���ad�1
q.

(ii) The result still holds in the d � 1 case if we take σ � k to be an almost-Einstein scale and
K � Lpkq to be the corresponding scale tractor (cf. [63, 41] and Example 5.30).

Proof. Suppose ka1���ad�1
P Era1���ad�1srds is a normal solution to (6.7) such that K � Lpkq is simple.

Fix any metric g P c. Note that from equation (6.9), at a point where k � 0 we have

KA1���Ad
KA1���Ad � 1

d2
||ϕ||2 � ||ν||2, (7.4)
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where ϕa1a2���ad � ∇ra1ka2���ads and νa3���ad � d�1
n�d�2∇

ckca3���ad . In particular, if K is timelike then k
clearly cannot have any zero and if K is null then at any zero of k we must have ∇k � 0 (moreover,
these results hold without needing the simplicity of K). Now, our goal is to apply the curved
orbit theory of [26], and to this end we note that from (6.9) one sees that k � 0 at the point
p P M if, and only if, X ⌟K � 0 mod X (note that a term of the form νa3���adX

A0W a3���ad
A0A1A2���Ad

�
� 1

d�1νa3���adX
a3���ad

A1A2���Ad
is zero mod X). In particular, the condition k � 0 determines a P -type, in

the language of [26] and so Theorem 2.6 of that article applies. It will be more convenient, however,
to consider the simpler condition X ⌟K, which also determines a P -type. From (6.9) one sees that
X ⌟ K � 0 at some point p P M if, and only if, pka1���ad ,∇ckca2���adq � 0 at the point p, i.e. k � 0
and ν � 0 at the point p. Let K :� X ⌟K. From the preceding discussion, if K is timelike or null
then clearly ZpKq � Zpkq (without the need for K to be simple). On the other hand, in the case
when when K is spacelike, it is easily checked that k � 0 implies K � 0 due to the simplicity of K
(this fails when K is not simple); to see this one merely writes K at a point as a wedge product of
orthogonal spacelike tractor 1-forms I1 ^ � � � ^ Id and examines the resulting expression K to see
that K � 0 mod X only if K � 0 (since X is null); in this case the zero locus of k turns out to
be Zpσ1, . . . , σdq where σi � X ⌟ Ii. Thus, in all cases Zpkq � ZpKq and we can consider the zero
locus of K :� X ⌟K instead of k. Apart from the distinguished submanifold property in the third
bullet point (which will follow afterward from Theorem 1.5/Theorem 7.1) by Theorem 2.6 of [26]
this reduces to an elementary consideration of the model case.

Recall that in the model case parallel tractors correspond to constant tensor fields on Rn�2

and the canonical tractor XA is identified with the position vector field of Rn�2 along C�. Hence,
in the model case, if KA1���Ad

is a parallel simple d-cotractor and X ⌟ K is zero at some point p,
then X ⌟ K is zero along a submanifold p, given as follows. The form K determines in Rn�2 a
unique pm � 2q-plane through p (as usual m � n � d and pm � 2q-plane means a linear subspace
of that dimension) consisting of the vectors XA in Rn�2 that are in the nullity of KA1���Ad

. The
submanifold is then the ray projectivisation of the intersection of this hyperplane with the null
quadric for the Minkowski signature inner product on Rn�2.

We now treat the three cases in the statement of the theorem by considering the distinct ways
that this hyperplane can intersect the null cone. First, if KA1���Ad

is simple and timelike, then
non-zero vectors in the nullity of KA1���Ad

are spacelike. No non-zero vector in their span is null or
timelike. Therefore in this case the pm� 2q-plane has no intersection with C�. Thus the zero locus
ZpKq is empty (of course, we had already seen this). For the second case, note that if KA1���Ad

is
null, then, using the Minkowski signature, it follows that the simple d-tractor K can be obtained
as the exterior product of covectors that are spacelike except for exactly one which is null. Dually,
this implies that there is a collection of vectors which span the nullity pm � 2q-hyperplane that
consists of a single null vector and m � 1 spacelike vectors. Thus the hyperplane is tangent to
the null cone, and after ray projectivisation the intersection descends to an isolated point. Finally,
suppose that KA1���Ad

is spacelike. Then the hyperplane defined by vectors in the nullity of KA1���Ad

can be spanned by one timelike vector and m� 1 spacelike vectors. Such an pm� 2q-plane meets
the null cone C� transversely, and hence, under ray projectivisation, will descend to a submanifold
ZpKq of Sn of codimension d. Now by Theorem 2.6 of [26] it then follows that on M the zero
locus of the simple d-tractor K will take the same form as on the model. Thus the three bullet
points follow from the analysis just done, of the corresponding cases on the model, save for the
very final statement that if ZpKq is nonempty and does not just consist of isolated points, then
the codimension d submanifold ZpKq is distinguished. But this follows from Theorem 1.5.
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We note that such simple parallel tractors K have arisen in the study of holonomy and gen-
eralisations of almost Einstein structures [5, 94, 95]. In particular, in the presence of multi-
ple (independent) almost-Einstein scales σ1, . . . , σd with scale tractors I1 � � � Id, such a simple
parallel tractor KA1���Ad

is given by d!I1rA1
� � � IdAds

and arises from the conformal Killing form

ka2���ad �
°

sPSn
signpsqσsp1q∇a2σsp2q � � �∇adσspdq. In this case, when K is spacelike one finds that

ZpKq � Zpσ1, . . . , σdq, which was our motivation for considering this zero locus.
In the case of the model, meaning Sn with its usual conformal structure, all solutions to first

BGG equations are normal (and all cases arise in all codimensions d, which is the idea behind the
proof). Moreover, it is easily seen that, in this setting, the space of solutions to the conformal
Killing-Yano equation (6.7), of a given rank, is spanned by solutions k with Lpkq satisfying the
conditions of the Theorem above. It is interesting and valuable to determine the extent to which
similar results hold in more general settings (see, e.g., [10, 43, 44, 53] for some related results in the
case of conformal Killing fields). The first and third bullet point of Theorem 7.3 generalise quite
easily, as we see in the following proposition.

Proposition 7.5. Let ka1���ad�1
P ΓpEra1���ad�1srdsq and KA1���Ad

� Lpka1���ad�1
q. Then

1. If K is timelike, then Zpkq is necessarily empty.

2. If K is spacelike and simple, and k satisfies (6.7) along Zpkq, then Zpkq is either empty or
is a submanifold of codimension d.

3. If K is spacelike, simple, and satisfies ∇K � 0 at all points of Zpkq, then Zpkq is either
empty or is a distinguished submanifold of codimension d.

Remark 7.6. As in Theorem 7.3 above, fixing any g P c, we find in all of the above cases that
Zpkq � ZpKq where K :� pka1���ad�1

,∇ckca2���ad�1
q.

Proof. From (2.22), (2.23), and (2.17) it follows that any tractor d-form K satisfying X ⌟K � 0 at
p PM has KA1���Ad

KA1���Ad ¥ 0 at p. This proves 1.
We now consider 2. For convenience, we fix g P c and use g to trivialise the density bundles.

Let I1, . . . , Id be a collection of orthogonal spacelike tractor 1-forms such that K � I1 ^ � � � ^ Id

and let σi � X ⌟ Ii (which we think of as functions). It follows that k takes the form

σ1ω1 � � � � � σdωd (7.5)

where the ωi, i � 1, � � � , d, are each simple pd � 1q-forms. Moreover, as argued in the proof of
Theorem 7.3 above, from the simplicity of K we have that k � 0 implies X ⌟ K � 0 (again this is
comes from examinining the for K in terms of the spacelike tractors I1, . . . , Id and using that X
is null to see that K � 0 mod X only if K � 0). It follows that Zpkq � ZpKq � Zpσ1, . . . , σdq,
where the last inequality follows from the expression for K in terms of I1, . . . , Id and their linear
independence. Since ν � 0 when k � 0 and K is spacelike, it follows that ϕ � 0 at any point where
k � 0. From this and the formulae for ϕ and ω1, . . . , ωd in terms of the components of I1, . . . , Id it
follows that the pd � 1q-forms ω1, . . . , ωd are linearly independent at any point where k � 0 (and
hence in a neighborhood of Zpkq). Moreover, from the equation (6.7) we have that, along Zpkq,

∇k � ϕ. (7.6)
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The above display puts conditions on the σi and their relation to the ωj . In particular one easily
concludes that, at each point in Zpkq, the equation (7.6) implies that tdσ1, � � � , dσdu is a linearly
independent set. Thus from the constant rank theorem it follows that ZpKq is either empty or is
a submanifold of codimension d. This establishes 2.

Item 3 then follows from 2 together with Theorem 1.5, since if ∇K � 0 at all points of ZpKq
then ka1���ad�1

satisfies (6.7) along ZpKq.
Proposition 7.5 shows that in fact no hypothesis on k is needed for the first bullet point of

Theorem 7.3 to hold, and that the third bullet point holds under much weaker hypotheses. In
particular, in the d � 2 case (where k is a conformal Killing vector field) Proposition 7.5 shows that
normality is not required for the third bullet point to hold, since at points where k � 0 the prolonged
conformal Killing equation ∇K � k ⌟ Ω reduces to ∇K � 0. For a simple example of non-normal
conformal Killing vector field that gives rise to a codimension 2 distinguished submanifold, consider
CPn equipped with the Fubini-Study metric: the 1-parameter family of maps rz0, z1 � � � , zns ÞÑ
rz0, eitz1 � � � , eitzns corresponds to a Killing vector field that vanishes on the totally geodesic CPn�1

given by tz0 � 0u. One can also show that when d � 2 the second bullet point of Theorem 7.3
continues to hold without the assumption of normality. To see this, note that, fixing any g P c,
the hypothesis that K is null implies that the components ϕ and ν of K � Lpkq are zero on Zpkq.
Hence, at such points k and ∇k vanish. But since K � 0 we must have ∇a∇bkb � 0 at such points
and it follows that any point of Zpkq is an essential point of k; see, e.g., [44, Theorem 3.4]. But such
essential points are isolated [10] and hence the result follows. Thus the assumption of normality is
not required in Theorem 7.3 when d � 1 or d � 2 (cf. Remark 7.4(ii) for the d � 1 case). We leave
it as an open question whether one can also drop the normality condition when d ¡ 2.

Although one of the themes of this article has been that of distinguished submanifolds, we are
interested in developing conformal submanifold theory in general. From this point of view a key
message of this section is that it is natural for codimension d submanifolds to arise as the zero locus
of a weighted pd� 1q-form k, and that we can make geometric conclusions about this submanifold
by considering the behavior of the corresponding form tractor K along the submanifold. The results
above are highly suggestive of a holographic approach to higher codimension submanifold theory
generalising the approach of [4, 13, 70, 71, 72, 74, 73] from the hypersurface case, where the role
of the scale σ and scale tractor I are played by a weighted form k and the corresponding tractor
form K, but we leave this to be taken up elsewhere.
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