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Abstract
For conformal geometries of Riemannian signature, we provide a

comprehensive and explicit treatment of the core local theory for em-
bedded submanifolds of arbitrary dimension. This is based in the con-
formal tractor calculus and includes a conformally invariant Gauss for-
mula leading to conformal versions of the Gauss, Codazzi, and Ricci
equations. It provides the tools for proliferating submanifold conformal
invariants, as well for extending to conformally singular Riemannian
manifolds the notions of mean curvature and of minimal and CMC sub-
manifolds.

A notion of distinguished submanifold is defined by asking the trac-
tor second fundamental form to vanish. We show that for the case of
curves this exactly characterises conformal geodesics, also called con-
formal circles, while for hypersurfaces it is the totally umbilic condi-
tion. So, for other codimensions, this unifying notion interpolates be-
tween these extremes, and we prove that in all dimensions this coincides
with the submanifold being weakly conformally circular, meaning that
ambient conformal circles remain in the submanifold. We prove that
submanifolds are conformally circular, meaning submanifold conformal
circles coincide with ambient conformal circles, if and only also a second
conformal invariant also vanishes.

Next we provide a very general theory and construction of quan-
tities that are necessarily conserved along distinguished submanifolds.
This first integral theory thus vastly generalises the results available for
conformal circles in [56]. We prove that any normal solution to an equa-
tion from the class of first BGG equations can yield such a conserved
quantity, and we show that it is easy to provide explicit formulae for
these.

Finally we prove that the property of being distinguished is also
captured by a type of moving incidence relation. This second char-
acterisation is used to show that, for suitable solutions of conformal
Killing-Yano equations, a certain zero locus of the solution is necessar-
ily a distinguished submanifold.
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1 Introduction

Submanifolds are one of the most fundamental structures in differential geometry.
They have a crucial role in the geometric analysis associated with PDEs, complex
analysis, and functional analysis, as well as in many global questions. In the special
case of Riemannian geometry, submanifold theory is a classical area and the basic
local theory is well understood and captured in the celebrated equations of Gauss,
Codazzi, and Ricci, see, e.g., [78, 87].

Conformal manifolds pM, cq are structures where a smooth n manifold M is
equipped not with a metric, but rather with just an equivalence class of smooth
metrics c, where g, pg P c means that pg � e2ωg for some smooth function ω. There is
currently a growing interest in the study of conformal submanifolds, and conformally
distinguished curves, including the relationships between these objects [27, 32, 43,
64, 73, 75, 76, 83, 84]. Some of these developments have been inspired and driven
by the links to physics [42, 66], the discovery that there are higher dimensional
analogues of the classical Willmore energy and invariant [70, 58, 98, 63], and the
development of a holographic approach to submanifolds (see [57, 59, 61]) that is an
analogue of Fefferman and Graham’s holographic approach to intrinsic conformal
geometry as in [37, 38].

In the conformal setting there is no distinguished connection on the tangent
bundle, so even the local theory of submanifolds provides a challenge. Toward re-
solving this, a logical step is to use the conformal Cartan/tractor connection of
[24, 95, 5, 22], and for the special case of hypersurfaces, meaning embedded sub-
manifolds of codimension one, an effective approach was initiated in [5]. With a
view to various applications, this hypersurface theory was extended in the works
[9, 67, 93, 51, 98] and this approach has proved to be central in a number of fur-
ther extensions and applications [2, 8, 57, 58, 59, 62, 61, 75]. Rather separately
from the general consideration of submanifolds, the distinguished curves in confor-
mal manifolds known as conformal circles or conformal geodesics have been studied
classically (see, e.g., [39, 85, 86, 100, 101]) and from various modern perspectives
recently [44, 4, 5, 96, 90, 56, 35, 68, 72, 14].

In the first part of our work here we develop a comprehensive basic local the-
ory for conformal submanifolds of all proper codimensions. This is based in the
conformal tractor calculus, and by construction is conformally invariant. It builds
on the mentioned approach to hypersurfaces from [5, 9, 67, 98, 33] and its ex-
tension into higher codimension by the first and third named authors in [34] and
[91]. There are also links to the somewhat more abstract theory developed in the
preprint [11] (cf. Remark 3.16 below and also the discussion in [34]). The result is
a theory and collection of explicit calculational tools that treats curves and higher
dimensional submanifolds, embedded in conformal manifolds, by a single uniform
approach. These tools may be used in an obvious way to proliferate submanifold in-
variants (including for curves), in the spirit of Fefferman’s parabolic invariant theory

3



programme [36, 37, 6], and we touch on this in Section 3.8. We also use these tools
to effectively capture, via tractors, the mean curvature, and with it the notions of
minimal, constant mean curvature, and parallel mean curvature submanifolds. This
leads immediately to a generalisation of these notions that is applicable for the study
of conformally singular geometries (such as Poincaré-Einstein geometries, and more
generally conformally compact structures). See Section 4.

For submanifolds of any codimension we introduce the notion of a distinguished
submanifold. By definition this means that an object called the tractor second funda-
mental form vanishes, see Theorem 1.1. In the case of curves this coincides precisely
with the unparametrised conformal circle equation, see Theorem 1.2, whereas for
hypersurfaces it recovers the usual condition of total umbilicity [5]. Thus the notion
interpolates between these. Interestingly, in all codimensions greater than one the
condition is stronger than total umbilicity (outside of the conformally flat setting,
where these notions coincide). Part of our motivation in defining this notion is to
treat certain key applications that form the second main objective of this work.

It has long been known that Killing tensors and Killing-Yano tensors may be
used to provide first integrals for geodesics [25, 41, 88, 92, 99], and this is used for a
host of applications [1, 26, 28, 45, 46, 77, 74]. Conformal circles are governed by a
higher order equation than geodesics, so an analogous theory has been lacking aside
from certain specific examples [96]. However, in [56] this was solved and a very
general theory of first integrals was developed by understanding a characterisation
of conformal circles as a parallel condition on a fundamental tractor 3-form that one
can associate to any non-null curve. Using this, it was established that essentially
any normal solution of a class of equations known as first BGG equations (see
[21, 23], or Section 6.1, for the meaning of these terms) can provide, or contribute
to, such conserved quantities; in fact in many cases more general solutions produce
first integrals. See [68] for some applications of this perspective. The conformal
Killing equations on tensors and the conformal Killing-Yano equations are all first
BGG equations. But in fact the class of first BGG equations is vastly wider than
this suggests. In Section 3.7 we show that, just as for curves, higher dimensional
distinguished submanifolds can be characterised by a parallel condition on a tractor
form. Then, as an application, we obtain a theory of first integrals for distinguished
submanifolds of all codimensions in a form that includes the case of conformal circles
as special case. See Theorem 1.5 and Corollary 1.4.

In another direction, an important question for submanifolds of dimension 2
or greater is characterising the conformal analogue of the notion of being totally
geodesic; that is, to capture some sense of “total conformal circularity”. This was
touched on in [5] for hypersurfaces, and treated for submanifolds in general by
Belgun [7]. We show in Section 5 that our tools give efficient new proofs these
results, and show that Belgun’s results have an elegant interpretation in this tractor
picture. See Theorem 1.3 and Theorem 5.10 below.

Finally, in Section 7 we show that distinguished submanifolds can also be char-
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acterised by a very simple moving incidence relation, see Theorem 7.1, or its para-
phrasing in Theorem 1.5. As an application we prove that the zero locus of suitable
overdetermined PDE solutions are necessarily distinguished submanifolds; see Theo-
rem 7.2. This shows how distinguished submanifolds fit into the curved orbit theory
of [20, 21] and, along with Proposition 7.3, is a first step toward understanding
how to generalise the holography approach of [2, 8, 58, 59, 60, 62, 61] to higher
codimensions.

1.1 Main results and a technical overview

Now we give the approach and results with more technical detail. The first step in
developing a calculus for hypersurfaces in a Riemannian manifold is the observation
that any oriented hypersurface is equipped with a canonical unit conormal field na.
Similarly it was established in [5] that each hypersurface Σ in a Riemannian signa-
ture conformal manifold determines canonically a basic conformally invariant tractor
field NA that plays an analogous role at a tractor level. For example it’s failure to
be parallel along the hypersurface is captured by a tractor second fundamental form
L. In particular one obtains, in a simple explicit way, conformal analogues of the
Gauss-Codazzi-Ricci theory, see [33] and references therein. Moreover the normal
tractor has a remarkable link to other objects in, for example, Poincaré-Einstein
manifolds and related structures, that has led to some deep results (e.g., that link
the so-called conformal volume anomaly to higher Willmore invariants [63, 2, 59]).

Here we establish that one higher codimension analogue of the normal tractor is
a conformally invariant alternating tractor form NA1���Ad , where d is the codimen-
sion of the submanifold. An equivalent object to NA1���Ad is its tractor Hodge-star,
that we denote �NA1A2���Am�2 , see (2.27). For a submanifold Σ (of any non-trivial
codimension), the intrinsic tractor bundle T Σ can be identified with the annihilator
in TM of NA1A2���Ad , see Section 3.3. (This is still true when Σ has dimension 1 or
2, though in this case it is less obvious if one starts with the jet bundle construction
of T Σ; see the discussion in Section 3.5 which treats, from our point of view here,
the natural Möbius structures induced on low dimensional submanifolds, cf. [13]).
Thus one has an orthogonal decomposition of the ambient tractor bundle TM ,

TM |Σ � T Σ`N ,

which also defines the normal tractor bundle N . Denote by NA
B the projection

TM |Σ Ñ N (here we are using abstract index notation, cf. Section 2). There is
also a projector TM |Σ Ñ T Σ, and thus (provided dimM ¥ 3 so that the conformal
structure on M determines a canonical Cartan/tractor connection) one has a tractor
Gauß formula which defines a tractor second fundamental form, LiJC ; see (3.22) and
its refinement (3.40) (cf. [11, 34]).

Using these tools we develop and present explicitly the fundamental confor-
mal submanifold calculus in Section 3.4, and, in particular, the conformal Gauss-
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Codazzi-Ricci equations (3.42), (3.43), (3.44). Also, the normal forms, and their
equivalents, may be combined with standard conformal tractor calculus, and ideas
for using this to construct conformal manifold invariants (as in, e.g., [48]), to man-
ufacture submanifold invariants. This is the subject of Section 3.8.

Although the tractor approach is conformal, mean curvature (which is far from
being conformally invariant) can be nicely described by introducing an object called
the scale tractor, I, see Section 2.4. In particular minimal submanifolds are seen to
be exactly those submanifolds whose tractor normal form is orthogonal to the scale
tractor, see Corollary 4.2, and constant mean curvature notions are similarly cap-
tured, see Proposition 4.4. This means that these concepts generalise to Poincaré-
Einstein, and more generally conformally compact manifolds, with the submanifold
extending to the conformal infinity, as discussed in Section 4.

The definition here of a submanifold being distinguished is that LiJC � 0, i.e.
the vanishing of the tractor second fundamental form. A key result is that this may
be alternatively captured as in the following theorem.

Theorem 1.1. Let pM, cq be a conformal manifold and Σ ãÑ M a conformal sub-
manifold of codimension d. Then the following are equivalent:

1. LiJC � 0;

2. ∇iN
A1
A2

� 0;

3. ∇iNA1A2���Ad�1Ad � 0;

4. ∇i �NA1A2���Am�2 � 0,

where ∇i indicates the pullback to Σ of the ambient tractor connection.

A hypersurface has LiJC � 0 if and only if it is totally umbilic, meaning the
trace-free second fundamental form vanishes, but for higher codimension it means
a certain conditional invariant must also vanish. (When the trace-free second fun-
damental form vanishes this conditional invariant becomes Belgun’s µ invariant [7],
and the relationship between µ and L is discussed in Section 5.2). Thus for codimen-
sions greater than one, a distinguished submanifold is necessarily totally umbilic,
but the converse is not true in general. Moreover, in the case of 1-dimensional
submanifolds (where the totally umbilic condition becomes vacuous) the vanishing
of L precisely characterises conformal circles. That is, in our current terminology,
1-dimensional conformally distinguished submanifolds are exactly unparametrised
conformal circles:

Theorem 1.2. Let pM, cq be a conformal manifold and γ ãÑ M a curve. Then γ
is an unparametrised conformal circle if, and only if, LiJC � 0, or equivalently any
one of the conditions in Theorem 1.1 holds.
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Proof. Proposition 4.13 from [56] asserts that the unparametrised conformal circle
equation is equivalent to a certain 3-tractor being parallel along the curve, and
equation (5.13) of Section 5.1 below asserts that this 3-tractor is precisely �NA1A2A3 .
The theorem therefore follows from the equivalence of items 1 and 4 in Theorem 1.1.

For the convenience of the reader we discuss Proposition 4.13 from [56] in Section
5.1 on conformal circles below.

Next we observe that Theorem 1.2 generalises to give an interpretation of any
of the conditions of Theorem 1.1 for higher dimensional submanifolds:

Theorem 1.3. A submanifold Σ is distinguished (LiJC � 0) if, and only if, it is
weakly conformally circular.

Here, adapting terminology from [7], weakly conformally circular means that an
ambient conformal circle with tangential initial conditions remains in the subman-
ifold for some time, cf. [5] for the case of hypersurfaces. This is a repackaging into
tractors of Belgun’s [7, Theorem 5.4(2)]. The proof here is via tractors.

There is an alternative natural notion of conformal circularity for submanifolds,
namely that any submanifold conformal circle is also an ambient conformal circle.
This is stronger than the previous notion and we refer to such a submanifold as
conformally circular. It turns out that for this property, in addition to any of the
requirements of Theorem 1.1, one also requires that the trace-free part of the Fi-
alkow tensor vanishes; see Theorem 5.11. Taking into account parametrisations gives
rise to yet another notion of conformal circularity, which refer to as being strongly
conformally circular, and Theorem 5.11 should be contrasted with the analogous
result [7, Theorem 5.4(3)] (cf. Theorem 5.10 below) for projectively parametrised
conformal circles. A key point here is that the tractor point of view developed in this
paper gives a natural conceptual framework for characterising these three different
notions of conformal circularity, and this leads to simpler proofs.

Another important feature of Theorem 1.1 is that points 2.–4. characterise dis-
tinguished submanifolds in a way that immediately allows the proliferation of con-
served quantities. As mentioned above, Killing tensors, Killing-Yano tensors and
their conformal analogues are well-established as tools for providing first integrals
for geodesics. These are each examples of solutions to first BGG equations, a large
class of overdetermined natural equations [23, 12]. For such equations, there is a
class of solutions called normal solutions that are in one-to-one correspondence with
parallel sections of the corresponding tractor bundle [21]. In particular, on confor-
mally flat manifolds, all solutions to first BGG equations are normal. Let us state
our result rather informally as follows.

Corollary 1.4. Suppose a conformal manifold admits a BGG normal solution cor-
responding to a parallel tractor S, and Σ is a distinguished submanifold. Let

xb`S,bkNy
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denote a scalar quantity constructed from linear combinations of tensor powers of
S and linear combinations of tensor powers of the normal tractor form N and with
contractions using the conformal tractor metric and possibly the tractor volume form.
Then xb`S,bkNy is a first integral for the distinguished submanifold.

This result generalises the large family of conformal circle first integrals constructed
in [56] to the case of distinguished submanifolds of arbitrary dimension. We should
say that rather than using the tractor normal form in the Corollary 1.4 above one
may equally alternatively (or additionally use) �N , or NA

B . Precise statements can
be found in Section 6.2, where we also show that it is easy to compute explicit
examples.

Towards another key application, we show that there is yet another character-
isation of distinguished conformal submanifolds that takes the form of a moving
incidence relation. For this we need the first elements of conformal tractor calculus.
On any smooth manifold, one has the bundle of conformal 1-densities that we call
Er1s, which is a root of the squared canonical bundle, see Section 2. Its 2-jet bundle
J2Er1s admits the exact sequence at 2-jets,

0 Ñ S2T �M r1s Ñ J2Er1s Ñ J1Er1s Ñ 0, (1.1)

where Vrws :� V b Erws for any vector bundle V and any w P R.
The introduction of a conformal structure determines a canonical splitting of

S2T �M r1s as S2
0T

�M r1s ` g � Er�1s, where g P ΓpS2T �M r2sq is the conformal
metric. The standard conformal cotractor bundle T � (or T �M) is the quotient of
J2Er1s by the image of S2

0T
�M r1s and so has a filtration as given by the exact

sequence

0 Ñ Er�1s XÑ T � Ñ J1Er1s Ñ 0. (1.2)

(In the case that M is of dimension one then S2
0T

�M r1s is trivial and T � � J2Er1s.)
There is canonically a conformally invariant metric h on the bundle T �, and hence
T � is identified with its dual T , which we call the tractor bundle. The bundle
injection X which maps Er�1s Ñ T � is typically viewed as a section X P ΓpT �r1sq,
and called the canonical tractor. This invariantly encodes information about position
on the manifold and plays a very important role in our developments here.

A well known feature of T � is that, in the case where dimM ¥ 3, it is naturally
equipped with the canonical conformally invariant tractor connection [5], which is
equivalent (see [17]) to the normal Cartan connection as in [24]. This preserves the
tractor metric. Using this object and language we have the following result.

Theorem 1.5. In a conformal manifold pM, cq of dimension at least 3, let Σ ãÑM
be a connected submanifold of codimension d. Then Σ is distinguished if, and only
if, either (equivalently both) of the following holds

� there exists a nontrivial Ψ P ΓpΛdT �q such that X ⌟Ψ � 0 and ∇iΨ � 0 along
Σ, or
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� there exists a nontrivial �Ψ P ΓpΛn�2�dT �q such that X^�Ψ � 0 and ∇i�Ψ �
0 along Σ.

Again this generalises a result for non-null conformal circles from [56]. If either of
the above conditions hold, then Ψ is necessarily (up to constant factor) the tractor
normal form of the submanifold. This will be proved in Section 7. Note that in
the model case of the conformal sphere, viewed as the projectivised null cone of
a Minkowski space M of two higher dimensions, the distinguished submanifolds all
arise from cutting the null cone with a subspace (and projectivising); in this case the
tractor �Ψ corresponding to a distinguished submanifold Σ is constant and simple
(it is the wedge product of vectors that span the corresponding subspace of the
Minkowski space) and, identifying the canonical tractor X with the position vector
in M, the condition X ^ �Ψ � 0 is precisely the incidence relation saying that X is
a point in the subspace corresponding to �Ψ.

Theorem 1.5 is a useful result in that it allows us to immediately conclude that
certain zero loci of normal solutions of appropriate BGG equations are distinguished
submanifolds. Recall that on a Riemannian manifold, an alternating tensor ka1a2���ad

is a conformal Killing form if the trace-free part of ∇cka1a2���ad is completely alter-
nating. For a suitable conformal weight, this condition is conformally invariant, see
Section 6.3. We have the following consequence of Theorem 1.5, where the operator
L is explained in (6.8) (and Theorem 6.3).

Theorem 1.6. Suppose ka1���ad�1
is a normal solution of the conformal Killing form

equation on pM, c) such that the parallel tractor Lpka1���ad�1
q is simple. Then the

zero locus of

K :� pka1���ad�1
,∇ckca2���ad�1

q, for any g P c with Levi-Civita connection ∇,

is either empty, an isolated point, or a distinguished conformal submanifold of codi-
mension d.

In fact finer information is available, see Theorem 7.2. This is an analogue for
normal Killing solutions of the results for almost Einstein scales found in [49, 51,
33]. Those results for Einstein scales (and their generalisations to so-called ASC
scales in [51]) were key in the (earlier mentioned) development of a holographic
approach to hypersurfaces via a singular Yamabe problem in [2, 8, 58, 59, 61],
as well as a boundary calculus of asymptotically hyperbolic manifolds [57]. We
believe the results in Theorem 7.2 should provide one of the key insights for the
analogous treatment of submanifolds of higher codimension. Indeed, toward this
end we provide a simple direct proof of a similar zero locus result, for fields satisfying
weaker (than normal Killing-Yano) conditions, in Proposition 7.3.
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2 Conventions and conformal geometry

Often we will use the standard abstract index notation of Penrose. For example
we may write Ea for the tangent bundle TM of a manifold M and va for a vector
field on M . Similarly Ea denotes the cotangent bundle T �M , and ωa P ΓpEaq a
1-form field. Then we write vaωa for the canonical pairing between vector fields and
1-forms. We denote by the Kronecker delta δba the identity section of the bundle
EndpTMq of endomorphisms of TM . Indices enclosed by round (respectively by
square) brackets indicate symmetrisation (respectively skew-symmetrisation) over
the enclosed indices. For example, if Tab is a rank 2 tensor then

Tpabq �
1

2
pTab � Tbaq and Trabs �

1

2
pTab � Tbaq.

We also use this notation for bundles. For example, Era1a2���ads denotes the bundle
of d-forms. When tractor bundles are introduced these will also be adorned with
abstract indices when convenient, with the same convention for symmetrisation and
skew-symmetrisation.

For simplicity of exposition we assume throughout that the basic manifold M
studied is connected.

2.1 Conventions for Riemannian geometry

A Riemannian manifold is a pair pMn, gq, consisting of a manifold M and a positive
definite metric g. We assume that the dimension n (of M) is at least 2. All struc-
tures are assumed smooth, meaning C8. This is to simplify the discussion. For
all the theory a much lower level of regularity is required, but this varies through-
out and at any point is easily calculated by the reader. We will also typically
assume for convenience that M is oriented, with volume form εa1a2���an normalised
by εa1a2���anεa1a2���an � n!, where indices are raised using the inverse of the metric g.

Writing ∇ for the Levi-Civita connection, the Riemannian curvature tensor
Rab

c
d is defined by

Rab
c
dv
d � r∇a,∇bsvc. va P ΓpEaq, (2.1)

in the abstract index notation.
In dimensions n ¥ 3, this decomposes into trace-free and a trace part:

Rabcd �Wabcd � 2 gcraPbsd � 2 gdraPbsc ,

where Wab
c
d is the Weyl tensor and Pab is the Schouten tensor. Equivalently, the

Schouten tensor is characterised by

Rab � pn� 2qPab � Jgab, (2.2)
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where Rab :� Rca
c
b is the Ricci tensor, and J :� gabPab. The Weyl tensor is totally

trace free, and satisfies the algebraic Bianchi identities. In dimension 3 this implies
that the Weyl tensor is zero.

The Cotton tensor (also for n ¥ 3) is defined by

Cabc :� 2∇raPbsc. (2.3)

In dimension 2, it is easy to show that the Riemannian curvature is pure trace:

Rabcd � Kpgikgjl � gilgjkq,
where K is the Gaußian curvature. Hence the Ricci tensor is also pure trace, and
the Weyl curvature is zero.

Later, we will need to consider 1-dimensional submanifolds Σ equipped with a
Riemannian metric. On a 1-dimensional manifold Σ, a Riemannian metric gΣ takes
the form ubu, where u is a non-vanishing 1-form, and requiring u to be the volume
form corresponding to gΣ and the orientation fixes the sign of u. Thus there is a
unique connection preserving this metric, namely the connection D that preserves
u. We will term this the Levi-Civita connection for pΣ, gΣq. The curvature of any
such connection is clearly zero.

2.2 Conformal geometry

Two metrics g, pg are said to be conformally related if

pg � Ω2g, (2.4)

where Ω P C8pMq is a positive function. Then c denotes an equivalence class of
conformally related metrics, i.e. if g, pg P c, then they are related according to (2.4)
for some smooth Ω, and we may write c � rgs. A conformal manifold is then a pair
pM, cq.

Recall that on a manifold M , for any α P R, one has the bundle of α-densities.
This is the associated bundle to the linear frame bundle of M via the 1-dimensional
GLpnq-representationA ÞÑ |detpAq|�α. Sections of this bundle are called α-densities.
There is a correspondence between 1-densities and sections of ΛnT �M when M is
oriented, or in general between the square of these bundles, which we outline here.
Let va1a2���an P ΓpEra1a2���ansq be an n-form. Choosing a frame, v is represented by
its components va1a2���an , where here the change of font indicates that the indices aj
should be understood as concrete indices. By contraction and summation with two
copies of the Levi-Civita symbol, the given choice of frame then induces a map from
S2ΛnT �M Ñ R, and changing frame by some A P GLpnq rescales the result of this
map by a factor of pdetpAqq2. Thus each v P ΓpΛnT �Mq determines (via b2v and
then taking a square root) a map f from the frame bundle to R which is equivariant
with respect to the GLpnq-action, explicitly

fpA � uq � |detpAq| fpuq.
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Thus by the usual correspondence between sections of associated bundles and equiv-
ariant functions, we have constructed from v a 1-density.

Separately, we have the bundle of conformal densities of weight w, which we
denote by Erws, and which are defined by

Erws :� Q�ρw R, (2.5)

where Q is the ray bundle of conformally related metrics and ρw is the 1-dimensional
R�-representation ρwpsqptq :� s�

w
2 t. The bundles Erws are evidently oriented and

we write E�rws for the ray suundle of positive elements. As detailed in, e.g., [18],
the conformal densities of weight w are in bijective correspondence with densities of
weight

��w
n

�
. In particular, this means that 1-densities also correspond to conformal

densities of weight �n, and so together with the discussion of the previous paragraph
we have an isomorphism pΛnT �Mq2 �Ñ Er�2ns, and dually pΛnTMq2 �Ñ Er2ns. If
B is a vector bundle on M we will write Brws as a shorthand for B b rws.

IfM is oriented, as we henceforth assume, we write ε � εa1a2���an P ΓpEra1a2���ansrnsq
for the canonical map ΛnTM Ñ Erns, given by contraction, and call εa1a2���an the
conformal volume form or weighted volume form. Since Erws is an associated bun-
dle, its sections may be thought of as equivariant functions f : Q Ñ R such that
fps2gxq � swfpgxq. So we may think of a section of Erws as an equivalence class of
pairs pg, fq, where pg, fq � pΩ2g,Ωwfq. The conformal volume form can therefore
similarly be thought of as the equivalence class of pg, εq for any g P c, where ε is the
Riemannian volume form of g and pg, εq � pΩ2g,Ωnεq.

Corresponding to g P c there is evidently a corresponding section σg P ΓpEr1sq,
represented by the pair pg, 1q. It follows that the conformal structure c determines
a tautological section g P ΓpS2T �M b E�r2sq that is given by

g � pσgq2g, (2.6)

for any metric g P c (but which is independent of this choice); equivalently, the
tautological section g P ΓpS2T �M b E�r2sq may be thought of as the equivalence
class of pg, gq for any metric g P c, where pg, gq � pΩ2g,Ω2gq. This is called the
conformal metric. We will henceforth typically use the conformal metric to raise and
lower indices, even when a choice of g P c has been made (thus raising and lowering
indices typically introduces a density bundle weight). For example the Riemann
curvature with indices all down Rabcd will now be considered to have weight 2 as it
is

Rabcd � gecRabed ,
the Weyl-Schouten decomposition of the Riemann curvature becomes

Rabcd �Wabcd � 2 gcraPbsd � 2 gdraPbsc ,

for dimensions n ¥ 3, and J will mean gabPab From (2.6) we see that if we use
σg to trivialise density bundles, then the conformal metric g becomes g. However,
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usually we will avoid trivialising density bundles. This becomes significant when we
write down conformal rescaling laws, since then there are two different metrics that
could be used to trivialize the density bundles (and correspondingly two different
flat connections on sections of density bundles) and many formulae are simplified
when we work with weighted objects.

Each metric g P c determines a corresponding Levi-Civita connection ∇. This
naturally acts on sections of density bundles and, tautologically from the construc-
tion above, preserves σg. Thus as well as preserving g, the Levi-Civita connection
∇ preserves g and ε (cf. [33]). Under a change to pg � Ω2g P c we have

p∇au
b � ∇au

b �Υau
b �Υbua �Υcu

cδba, on ub P ΓpEbq, (2.7)

p∇aωb � ∇aωb �Υaωb �Υbωa �Υcωcgab, on ωb P ΓpEbq, (2.8)

and p∇aτ � ∇aτ � wΥaτ on τ P ΓpErwsq, (2.9)

where Υa :� Ω�1∇aΩ.
The Weyl curvature Wab

c
d is conformally invariant, while the Schouten tensor

transforms according to,

pPab � Pab �∇aΥb �ΥaΥb � 1

2
ΥcΥ

cgab. (2.10)

Equations (2.7) and (2.8) still hold when M has dimension 1, although the final two
terms of both equations cancel. Equation (2.10) only holds when dimM ¥ 3, since
in lower dimensions the Schouten tensor is not defined.

2.3 The tractor connection and calculus

Recall from the introduction, the tractor bundle is recovered from jets of the confor-
mal density bundle Er1s. The inverse of the conformal metric maps S2T �M r1s Ñ
Er�1s, with kernel S2

0T
�M r1s and hence we have a decomposition

S2T �M r1s � S2
0T

�M r1s ` g � Er�1s.

Then the bundle T � (that we also denote EA in the abstract index notation) is
J2Er1s modulo the image of S2

0T
�M r1s under the map S2T �M r1s Ñ J2Er1s of the

jet exact sequence at 2-jets (1.1). Thus we obtain (1.2). From the jet exact sequence
at 1-jets

0 Ñ T �M r1s Ñ J1Er1s Ñ Er1s Ñ 0, (2.11)

we then see that T � has the composition series

T � � Er1s ��� T �M r1s ��� Er�1s.

13



Here the semidirect sum notation ��� simply encodes the information of the exact
sequences (cf. [5]). Note that this construction still applies when M has dimension
1 or 2, but in dimension 1, S2

0T
�M r1s is trivial and hence T � is simply J2Er1s.

Recall that we denote by XA P ΓpEAr1sq the canonical tractor which provides the
embedding Er�1s Ñ EA. Let us also note that by the definition of the tractor
bundle, there is an invariant differential operator D : ΓpEr1sq Ñ ΓpT �q, where 1

nD
is the differential operator corresponding to the linear map J2Er1s Ñ T �.

Let us now fix n ¥ 3. Given a choice of metric g P c, the formula

σ ÞÑ 1

n
rDAσsg :�

�� σ
∇aσ

� 1
n p∆� Jqσ

�, (2.12)

where ∆ � ∇a∇a, gives a second-order differential operator on Er1s which is a
linear map J2Er1s Ñ Er1s ` Ear1s ` Er�1s that clearly factors through T � and so
determines an isomorphism

T � �ÝÑ rT �sg � Er1s ` Ear1s ` Er�1s, (2.13)

and hence the sequences (1.2) and (2.11) split, as discussed in, e.g., [16, 33]. When
using a choice of metric g to split the tractor bundle we will typically indicate this
by writing

g� rather than applying the bracket notation r � sg to the object we are
breaking up into slots.

In the subsequent discussions, we will use (2.13) to split the tractor bundles with-
out further comment. Thus, given g P c, an element VA of EA may be represented
by a triple pσ, µa, ρq, or equivalently by

VA � σYA � µaZ
a
A � ρXA. (2.14)

The last display defines the algebraic splitting operators Y : Er1s Ñ T � and Z :
T �M r1s Ñ T � (determined by the choice g P c) which may be viewed as sections
YA P ΓpEAr�1sq and ZaA P ΓpEaAr�1sq. We call these sections XA, YA and ZaA tractor
projectors. Note that with this convention, (2.12) is, tautologically, an explicit
formula for the invariant operator D, in terms of the splitting given by the choice of
metric g.

While XA is conformally invariant, a change of tractor splitting given by (2.4)
determines the transformations

pZaA � ZaA �ΥaXA, pYA � YA �ΥaZ
a
A �

1

2
ΥaΥaXA (2.15)

where, as usual, Υa � Ω�1∇aΩ. These transformations mean that the tractor triples
transform by �� pσpµapρ

��
�� 1 0 0

Υb δba 0
�1

2ΥcΥc �Υa 1

��� σ
µb
ρ

�. (2.16)
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One then observes that the symmetric tractor field given by

hAB :� 2XpAY Bq � gabZAa ZBb (2.17)

is invariant under (2.15), and so determines a conformally invariant metric on T �.
We will hence use this and its inverse hAB (called the tractor metric) to identify T �

and its dual, the standard tractor bundle, which we denote by simply T . Using this
we obtain

XAYA � 1, ZaAZ
A
b � δab , (2.18)

and all other (tractor-index) pairings of the splitting operators give a zero section.
For example XAXA � 0.

The canonical conformally invariant (normal) tractor connection on T will also
be denoted ∇a, or sometimes ∇T

a for emphasis. It can be coupled to the Levi-Civita
connection of any metric g P c, and its action on the tractor projectors is then given
by

∇aX
A � ZAa , ∇aZ

A
b � �PabXA � gabY A , ∇aY

A � Pa
bZAb . (2.19)

In fact, these formulae determine the tractor connection as the general action on a
section of a tractor bundle follows from the Leibniz rule. It is easily verified that the
tractor connection is conformally invariant and preserves the tractor metric. The
latter means that the tractor connection agrees with its dual. It extends in the
obvious way to tensor powers of the tractor bundle and these extensions are all re-
ferred to as the tractor connection. The coupled tractor-Levi Civita connection will
always be denoted simply ∇ and will be used, usually without comment, according
to context.

As with any linear connection, ∇ � ∇T has a curvature. The tractor curvature
Ωab

C
D of the tractor connection is defined by Ωab

C
DΦD :� 2∇ra∇bsΦ

C , for any

ΦA P ΓpT q. In the splitting determined by a choice of metric g P c it is given
explicitly by the formula

ΩabCD �WabcdZC
cZD

d � 2CabcXrCZDs
c. (2.20)

A conformal structure is said to be (locally) flat if this tractor curvature vanishes
as this happens if and only if, locally, there is a metric in the conformal class that
is flat.

The tractor objects developed above form the initial objects of a conformal
tractor calculus that can be used, for example, to construct conformal invariants
[47, 48]. We will not discuss this in detail, but one particularly important object
is the Thomas operator D that extends (2.12) to a conformally invariant operator
between weighted tractor bundles,

DA : ΓpEΦrwsq Ñ ΓpEA b EΦrw � 1sq,
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where EΦ indicates any tensor power of EA, or SOphq-invariant part thereof. It is
given, with respect to g P c, by the formula

ΓpEΦrwsq P V ÞÑ DAV
g�
�� pn� 2w � 2qwV

pn� 2w � 2q∇aV
�p∆V � wJV q

�. (2.21)

where (as usual) ∇ is the coupled tractor-Levi-Civita connection and ∆ the corre-
sponding Laplacian.

All of the above has a clear geometric interpretation in the case of the model,
the conformal n-sphere. This should be thought of as the ray projectivisation of
C�, where C� is the future directed part of the null quadric C :� tX P Rn�2 |
hpX,Xq � 0u in Rn�2 equipped with a fixed symmetric non-degenerate bilinear form
h of signature pn � 1, 1q and a time-orientation. The resulting resulting manifold
M :� P�pC�q � Sn is acted on transitively by G :� SO0phq � SO0pn� 1, 1q, where
the 0 here denotes taking the connected component of the identity, and the stabiliser
of a point is a parabolic subgroup that we denote P (so M � G{P ). Moreover, it is
straightforward to verify that h induces a Riemannian metric on each section of the
map C� ÑM , and different sections result in conformally related metrics. Thus M
is equipped canonically with a conformal structure, and clearly the group G acts on
M by conformal isometries, see, e.g., [33, 51] for a more detailed discussion of this
model.

From this point of view the standard tractor bundle for the model is TRn�2|C�{ �,
where the equivalence relation is Up � Vq if one is mapped to the other by standard
Rn�2 parallel transport (i.e., from the affine structure of Rn�2) along a null ray.
The tractor metric is then induced in an obvious way from the ambient Minkowski
signature metric h, and parallel tractor fields are equivalent to vector fields in
ΓpTRn�2|C�q that are constant along C�. Moreover the parallel tensor fields on
connected regions of C� may all be viewed as arising from the restriction of tensor
fields parallel on Rn�1,1, and these give the parallel sections of the corresponding
tensor powers of the tractor bundle. Finally, in this picture, the canonical tractor
XA is identified with the Euler vector field of Rn�2 along C�.

Although we will not make use of this below, for completeness we note that
the Thomas operator DA also has a concrete geometric interpretation in the model.
Sections of the weight w conformal density bundle on the model can be identified
with functions on C� that are homogeneous of degree w with respect to the R�-
action. Weighted tractors on the model can therefore be identified with tensor fields
along C� of the appropriate homogeneity. The Thomas operator DA on such sections
is then given (up to an overall factor) by formally extending such tensor fields off C�
to be “harmonic” with respect to the ambient Minkowski metric h and then taking
the directional derivative (at points along C�) in the flat ambient space Rn�2; see,
[18].
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2.4 The scale tractor

Recall that, from Section 2.2, a metric g P c is equivalent to a section σg P ΓpE�r1sq
by the relation

g � σ�2
g g.

Given any section σ P ΓpEr1sq we can form

IA :� 1

n
DAσ,

and we will term this a scale tractor if IA is nowhere zero. In this case σ is clearly non-
vanishing on an open dense subset of M , on which it determines a metric g :� σ�2g
from the conformal class. So for a scale tractor IA we will term σ � XAIA a
generalised scale – or sometimes simply a scale. Following [51], a conformal manifold
pM, cq equipped with a scale tractor will said to be an almost-Riemannian manifold
(since it has a metric almost everywhere). Given a Riemannian metric g � σ�2

g g,

we term IA :� 1
nDAσg the scale tractor of g.

It follows easily from (2.19) that if a tractor IA � 0 is parallel then it is a scale
tractor and g :� σ�2g is Einstein; see [53, 51]. In this case we say pM, c, Iq is almost
Einstein.

An important example of almost-Riemannian manifolds arise in connection with
conformally compact manifolds. A complete Riemannian manifold pM, gq is confor-
mally compact if M is the interior of a manifold with boundary M , and on M there
is a metric g (so a metric that is smooth up to the boundary) such that on M

gab � r�2gab

for some smooth defining function r for the boundary BM (meaning that r ¡ 0
on M , BM is the zero locus of r, and dr is nowhere zero on BM). A conformally
compact manifold is said to asymptotically hyperbolic if |dr|g � 1 along BM (which
is equivalent to requiring that the sectional curvatures of g all tend to �1 as one
approaches BM) and Poincaré-Einstein if g is Einstein. It is easily verified that in
the latter case the scalar curvature is negative. If the Poincaré-Einstein metric is
normalised so that

Scg � �npn� 1q
(as is usually assumed) then the manifold is necessarily asymptotically hyperbolic.
These structures have been the subject of sustained interest; see, e.g., [29, 30, 31,
65, 69, 79, 97] and the many references therein.

It is easily verified that a conformal compactification of a manifold pM, gq is the
same as a conformal manifold with boundary pM, cq, with interior M , and equipped
with a scale tractor IA with the following properties: the zero locus Zpσq � σ�1p0q
of σ :� XAIA is BM , and along BM the 1-jet j1σ (of σ), is nowhere zero (we
say that σ is a defining density for BM). Thus the conformal compactification is
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almost-Riemannian; in the following we will therefore think of a conformally compact
manifold as an almost-Riemannian manifold for which σ is a defining density for BM .
Such a manifold is asymptotically hyperbolic if IAIA � 1 along BM , and Poincaré-
Einstein if IA is parallel. If IAIA � 1 on M then Scg � �npn�1q. See, e.g., [51, 61]
for more details.

There are many structures such as certain notions of asymptotically flat mani-
folds that can be similarly be understood in terms of almost-Riemannian structures.
So this notion provides a uniform framework for approaching a range of singular ge-
ometries [33].

2.5 Form tractors

We will use the term form tractor to describe sections of the exterior powers of the
tractor bundle [10, 54]. It is useful to introduce some notation for form tractors.
From the composition series for the standard tractor bundle, one sees that for the
k-th exterior power of the standard tractor bundle, one has the composition series

ErA1A2���Ak�1Aks � Era2���aksrks �
�� Era1a2���ak�1aksrks

`
Era3���aksrk � 2s

��� Era2���aksrk � 2s. (2.22)

The tractor projectors for the standard tractor bundle induce tractor projectors
on the bundles of tractor forms. Since these will be very important for us, we
introduce dedicated notation for these:

Y a2���ak�1ak
A1A2���Ak�1Ak

:� YrA1
Za2
A2
� � �Zak�1

Ak�1
ZakAks P E a2���ak�1ak

rA1A2���Ak�1Aks
r�ks

Za1a2���ak�1ak
A1A2���Ak�1Ak

:� Za1

rA1
Za2
A2
� � �Zak�1

Ak�1
ZakAks P Ea1a2���ak�1ak

rA1A2���Ak�1Aks
r�ks

W a3���ak�1ak
A1A2A3���Ak�1Ak

:� XrA1
YA2Z

a3
A3
� � �Zak�1

Ak�1
ZakAks P E a3���ak�1ak

rA1A2���Ak�1Aks
r�k � 2s

X a2���ak�1ak
A1A2���Ak�1Ak

:� XrA1
Za2
A2
� � �Zak�1

Ak�1
ZakAks P E a2���ak�1ak

rA1A2���Ak�1Aks
r�k � 2s

(2.23)

For example, Y a2���ak�1ak
A1A2���Ak�1Ak

gives the injection

Y a2���ak�1ak
A1A2���Ak�1Ak

: Era2���aksrks Ñ ErA1A2���Ak�1Aks,

determined by a choice of metric g P c. Similarly X a2���ak�1ak
A1A2���Ak�1Ak

X a2���ak�1ak
A1A2���Ak�1Ak

: Era2���aksrk � 2s Ñ ErA1A2���Ak�1Aks, (2.24)

but in this case the map is not dependent on any choice of metric in c. For 1 ¤ k ¤
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n� 2 and a choice of scale, one has

∇bY a2a3���ak
A1A2A3���Ak

� Pba1Z
a1a2a3���ak
A1A2A3���Ak

� pk � 1qPba2W a3���ak
A1A2A3���Ak

∇bZa1a2���ak
A1A2���Ak

� �k � Pba1X a2���ak
A1A2���Ak

� k � δba1Y a2���ak
A1A2���Ak

∇bW a3���ak
A1A2A3���Ak

� �gba2Y
a2���ak

A1A2���Ak
� Pba2X

a2���ak
A1A2���Ak

∇bX a2a3���ak
A1A2A3���Ak

� gba1Z
a1a2a3���ak
A1A2A3���Ak

� pk � 1qδba2W a3���ak
A1A2A3���Ak

,

(2.25)

where sequentially labeled indices are alternating, and any term involving the al-
ternation of n � 1 or more tensor (i.e. lower case) indices should be interpreted as
zero.

In particular, we observe that W a3���an�2

A1A2A3���An�2
is parallel in any scale, and hence

there is a distinguished parallel section of the top exterior power of the standard
tractor bundle, which we term the tractor volume form

εA1A2A3���An�2
:� pn� 2qpn� 1qεa3���an�2W

a3���an�2

A1A2A3���An�2
, (2.26)

where εa3���an�2 P Era3���an�2srns is the weighted volume form of Section 2.2 (note that

our normalisation is such that εA1A2A3���An�2εA1A2A3���An�2 � �pn � 2q!). That this
is parallel now follows from the fact that εa3���an�2 is parallel for any Levi-Civita
connection in the conformal class. Of course, the existence of the tractor volume
form also reflects the fact that the conformal tractor connection is equivalent to an
SOpn� 1, 1q-Cartan connection.

Finally in this section we need the tractor Hodge-star. For a tractor k-form
ΨA1���Ak this is

�ΨB1���Bn�2�k
� 1

k!
εA1���Ak

B1���Bn�2�k
ΨA1���Ak . (2.27)

This satisfies �� � �p�1qkpn�kq, since the tractor metric has Lorentzian signature.
Note also that this tractor Hodge-star operation commutes with the tractor covariant
derivative:

∇a �ΨB1���Bn�2�k
:� 1

k!
εA1���Ak

B1���Bn�2�k
∇aΨA1���Ak .
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3 Submanifold geometry and submanifold trac-

tors

Given a smooth n-manifold M , a submanifold will mean a smooth embedding ι :
Σ Ñ M of a smooth m-dimensional manifold Σ, where 1 ¤ m ¤ n � 1, and the
image has codimension d :� n �m. Typically we will suppress explicit mention of
the embedding map and identify Σ with its image ιpΣq �M . We refer to M as the
ambient manifold.

Regarding abstract indices, we adopt the convention that Latin letters from the
start of the alphabet (a, b, c, . . .) will denote ambient tensor indices, while indices
from later in the alphabet (i, j, k, . . .) will denote submanifold tensor indices. So,
for example, Ea is the usual tangent bundle TM , E i is the tangent bundle of the
submanifold TΣ, and Eia denotes the bundle T �Σb TM |Σ. Note that indices alone
will not distinguish sections of TM and TM |Σ, so va could be a section of either Ea
or a section of Ea|Σ, where Ea|Σ Ñ Σ is the pullback bundle ι�TM .

Given a submanifold ι : Σ ÑM , its derivative Tι : TΣ Ñ TM will be written Πa
i

and viewed as a section of T �ΣbTM |Σ. We frequently identify TΣ with its image in
TM |Σ under this map. Note that Πa

i also gives the canonical map Πa
i : Ea|Σ Ñ Ei,

which is dual to Tι. We will temporarily use the notation TM{Σ for the normal
bundle TM |Σ{TιpTΣq, and pTM{Σq� � T �M |Σ for the conormal bundle.

3.1 Basic Riemannian submanifold theory

We now move to the setting of a submanifold Σ in a Riemannian manifold pM, gq
(cf. discussions in, e.g., [78, 87]). In the Riemannian setting, we only require that
dimM ¥ 2, and Σ satisfies 1 ¤ m � dim Σ ¤ n � 1. The exact sequence defining
the normal bundle TM{Σ then splits

0 E i Ea|Σ TM{Σ 0,
Πai

Πia

(3.1)

where Πi
a is the orthogonal projection map TM |Σ Ñ TΣ. We may then identify

TM{Σ with the kernel NΣ of Πi
a, via the splitting, and we denote the orthogonal

projection onto this by Nb
a : Ea|Σ Ñ NΣb. The complementary projection is Πa

b �
δab �Na

b � Πa
iΠ

i
b which is the orthogonal projection onto TΣ viewed as submanifold

of TM |Σ.
The Riemannian metric g on M induces a Riemannian metric gΣ on Σ by re-

striction, which we call the induced metric. We usually omit the explicit reference
to Σ when abstract indices are used. So the induced metric will be denoted by gij .
Note that

gij � Πa
iΠ

b
jgab. (3.2)
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Next we observe that (3.1) can be used to decompose the ambient Levi-Civita
connection. First and most simply, we have the normal connection ∇K which is a
connection on the bundle NΣ Ñ Σ defined by

∇K
i ν

a :� Na
b∇iν

b, (3.3)

where ∇i denotes the pullback connection of the ambient Levi-Civita connection
(meaning, in this context, its restriction to differentiating along vectors tangent to
Σ). Complementary to this, we also have induced a connection Di on TΣ Ñ Σ
defined by

DiV
j :� Πj

b∇i

�
Πb
kV

k
	
. (3.4)

It is elementary to verify that both (3.3) and (3.4) define connections. Indeed,
it is also straightforward to verify that D is torsion-free and preserves the induced
metric, and so is in fact the Levi-Civita connection of pΣ, gΣq. The fundamental
ingredient of submanifold calculus, in this setting, is the Gauß formula which, for
a section V P ΓpTΣ|Σq, provides the decomposition of ∇iV

c � ∇ipΠc
jV

jq into its
tangential and normal parts:

∇iV
c � Πc

jDiV
j � IIij

cV j , (3.5)

and this defines IIij
c P ΓpS2T �Σ b NΣq, which is the second fundamental form of

Σ in pM, gq. We also define the mean curvature

Hc :� 1

m
gijIIij

c (3.6)

and set I̊Iij
c :� IIpijq0

c, the trace-free part of the second fundamental form. Thus
one has

IIij
c � I̊Iij

c � gijH
c. (3.7)

Using (3.5), one can derive

Rijkl � RΣ
ijkl � 2gcdIIlri

cIIjsk
d, (3.8)

Rij
c
kN

d
c � 2DriIIjsk

d, (3.9)

and
Rij

a
bN

c
aN

b
d � RK

ij
c
d � 2gklIIlri

cIIjskd, (3.10)

where Rijkl :� Πa
iΠ

b
jΠ

c
kΠ

d
lRabcd is the curvature of the ambient Levi-Civita con-

nection restricted to Σ, RΣ
ijkl is the intrinsic Riemann curvature tensor (i.e. the

curvature of the connection D), D is the intrinsic Levi-Civita connection coupled
to the normal connection and RK

ij
c
d is the curvature of the normal connection ∇K

i .
All these formulae are derived by substituting the Gauß formula (3.5) into equa-
tion (2.1) which defines the curvature of the pullback connection ∇i, as follows.
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Using the decomposition TM |Σ � TΣ `NΣ, we may write a section V c P ΓpEc|Σq
as a tuple pΠc

dV
d,Nc

dV
dq. Since Πc

dV
d is a tangent vector to Σ, we abuse notation

slightly and typically write the tuple as pV k,Nc
dV

dq where V k � Πk
dV

d. Computing
the action of the Riemann curvature Rij

c
d on such a tuple, we see that

p∇i∇j �∇j∇iq
�

V k

Nc
dV

d



�
�
RΣ

ij
k
lV

l � 2Dri

�
IIjs

k
dV

d
�� 2gefII

k
ri
fIIjsl

eV l � 2IIri
k
|e|∇K

js

�
Ne
dV

d
�

2IIkri
c
�
DjsV

k
�� 2gklIIkri
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,

and the equations (3.8), (3.9) and (3.10) all follow from this by simply projecting
the appropriate entry of the matrix.

Note that in dimension m � 1, the trace-free part of the second fundamental
form is zero. Also, in dimension m � 1 equations (3.8)-(3.10) are valid, but trivial
in that in each case both sides are identically zero.

3.2 Conformal Submanifolds

Consider now a submanifold Σ satisfying 1 ¤ dim Σ ¤ n�1 in a conformal manifold
pM, cq. Observe that the conformal structure is sufficient to determine an orthog-
onal complement of TΣ � TM and so the splitting of (3.1) is in fact conformally
invariant. We carry over to this setting the same notation for the normal projection
Na
b and the orthogonal projection Πi

a. Since each g P c induces a Riemannian metric
on Σ by restriction, it follows immediately that c induces a conformal structure on
Σ that we denote cΣ. We therefore have intrinsic to pΣ, cΣq density bundles EΣrws.
In fact, for any w P R,

EΣrws � Erws|Σ,
which can be seen immediately from the interpretation of densities as equivalence
classes of a metric and a function, see the discussion of Section 2.2. From these
observations, it follows immediately that the conformal metric gΣ is simply the
restriction to b2TΣ of the ambient conformal metric g. Using these, it is straight-
forward to see that the orthogonal projection may be thought of as a composition
g�1

Σ �Π � g, meaning
Πi
a � gijΠb

jgab, (3.11)

where we are raising and lowering indices using the conformal metric (and we omit
the subscript Σ when the indices imply that we are using gΣ or its inverse). Since
this involves g and g�1, the resulting section still has conformal weight zero. When
a metric g P c is chosen we have as usual the Gauß, Codazzi and Ricci equations
((3.8), (3.9) and (3.10)), but it will be convenient to work with weighted versions
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of these, with the ambient or intrinsic conformal metrics replacing any instances of
their scale-dependent counterparts. For example the weighted version of the Gauß
equation is

Rijkl � RΣ
ijkl � 2gcdIIlri

cIIjsk
d,

where now Rijkl and RΣ
ijkl have weight 2 (and the second fundamental form naturally

has conformal weight 0).
Coupling the normal connection (3.3) to the Levi-Civita connection on the bun-

dle EΣr�1s yields a connection on NΣr�1s, which we shall also denote ∇K. It is
easily verified using (2.7) and (2.9) that this is conformally invariant. In fact, more
generally, on sections of NΣrws the transformation law is

p∇K
i ν

a � ∇K
i ν

a � pw � 1qΥiν
a (3.12)

when pg � Ω2g and Υi � Ω�1∇iΩ. The conformal metric g induces a bundle metric
on NΣr�1s, and this is preserved by ∇K.

Since the Levi-Civita connection changes under a conformal rescaling, the Gauß
formula is not conformally invariant. Using (2.7), we conclude that under a confor-
mal transformation, pIIijc � IIij

c � gijNc
dΥ

d. (3.13)

Since this transformation is by pure trace, it follows immediately that I̊Iij
c is

conformally invariant: x̊
IIij

c � I̊Iij
c.

Thus the transformation (3.13) is entirely due to the transformed mean curvature,
whence pHc � Hc �Nc

dΥ
d. (3.14)

Note that the mean curvature is now defined using the conformal metric: Hc :�
1
mg

ijIIij
c. As a consequence of (3.14) we have the following very useful proposition

[9, 51, 34]:

Proposition 3.1. Let Σ be a submanifold of a conformal manifold pM, cq. Then
any metric gΣ in the induced conformal class of metrics on Σ can be extended to a
metric g P c such that the mean curvature of Σ with respect to g vanishes.

Proof. Let gΣ be as in the proposition, and let g P c be any extension of gΣ. We look
for a rescaled metric pg satisfying the requirements of the proposition. Set pg � e2ωg
with ω to be determined. Since we require pg|Σ � gΣ we set ω � 0 along Σ. Now,
by (3.14), pHc � 0 if, and only if, Hc � N c

d∇dω along Σ. Since the latter merely
amounts to specifying the normal derivatives of ω along Σ, such an ω clearly exists
(unique modulo functions that vanish and have vanishing differential along Σ). This
proves the proposition.
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We refer to a metric g P c such that Hc � 0 as a minimal scale for Σ. The
freedom to work in a minimal scale when computing conformally invariant quantities
helps to simplify many calculations.

Remark 3.2. In the case of a 1-dimensional submanifold a minimal scale g is
easily seen to be one for which the curve is an unparametrised geodesic, since in
this case, after parametrising the curve by arc length, the mean curvature vector
can be identified with the acceleration of the curve. Moreover, in the case where the
curve γ in pM, cq is already parametrised one can take gΣ to be the “metric” on γ
corresponding to the parametrisation and extend gΣ to g P c as in Proposition 3.2 to
obtain a metric g for which γ, with its original parametrisation, is a parametrised
geodesic.

3.3 Submanifold tractors

As a conformal manifold in its own right, pΣ, cΣq possesses its own standard tractor
bundle, which we will call the intrinsic tractor bundle, and denote by T Σ, or EI in
abstract indices, carrying over our convention that later Latin letters will be used
for sections of submanifold bundles, with upper case indices for tractor bundles. We
now wish to relate this to the corresponding ambient tractor bundle, TM , which
will continue to denote by T .

As we have already seen in Section 3.1, the Gauß formula plays a central role in
the setting of Riemannian submanifold geometry. Crucially, the Gauß formula uses
that TΣ may be identified with a subbundle of TM . In fact, there is an analogous
notion for the intrinsic and ambient tractor bundles, and this explains our abstract
index notation for submanifolds being similar to that for ambient tractors.

First, there is a mapping NΣr�1s Ñ T defined by

na ÞÑ NA � NA
a n

a g�
�� 0

na

ncH
c

�. (3.15)

This is easily seen to be conformally invariant using the transformation laws for the
tractor projectors (2.15) and the mean curvature (3.14):pNA � pna pZAa � pna pHa pXA

� napZAa �ΥaX
Aq � napHa �ΥbNa

b qXA

� naZAa � naΥaX
A � naH

aXA � nbΥ
bXA

� naZAa � naH
aXA

� NA.

Thus the image of the injective map (3.15) defines, along Σ, a subbundle of T which
is canonically isomorphic to NΣr�1s. We call this the normal tractor bundle and
denote this N , or NA with indices. We summarise, as follows.
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Lemma 3.3. The map (3.15) defines a conformally invariant isomorphism

NA
a : NΣr�1s �ÝÑ N � T |Σ. (3.16)

The bundle N admits an orthogonal complement in T , NK, and so T |Σ decom-
poses as

T |Σ � NK `N .

Write ΠA
B : EB Ñ NKA and NA

B : EB Ñ NA for the orthogonal projections onto
the respective factors of this decomposition. So δAB � ΠA

B � NA
B. Note that for

any NB P ΓpNBq, one has hACN
CΠA

B � 0 since ΠA
B is valued in NKA. Thus,

hACNA
BΠC

D � 0. Substituting ΠC
D � δCD �NC

D, it follows that

NBC � NA
BNC

DhAC .

So NAB and ΠAB are symmetric, where in each case an index has been lowered
with the tractor metric, and ΠA

B and NA
B give the orthogonal decomposition of the

cotractor bundle EA.
Note that

NA
a N

a
B � NA

B and Na
BN

B
b � Na

b , (3.17)

where Na
A is the inverse to (3.16). From the symmetry of NAB, and corresponding

observation of symmetry for Nab, it follows that Na
A is obtained from NB

b by raising
and lowering indices using the tractor and conformal metrics.

A straightforward direct calculation shows that the isomorphism (3.16) inter-
twines the tractor and normal Levi-Civita connections in the sense of the following
lemma.

Lemma 3.4. For any section na P ΓpNΣr�1sq we have

NC
b ∇K

i n
b � NC

B∇ipNB
b n

bq.
Proof. This follows immediately from the definitions if we work in a minimal scale.

We note here that N is a rank d � n�m vector bundle, and hence NK has rank
pn�2q�d � m�2, which coincides with the rank of T Σ. This is not a coincidence,
and it turns out that there is an isomorphism of vector bundles T Σ Ñ NK. Let us
initially understand this in submanifold dimensions m ¥ 3.

Theorem 3.5. Let Σ be a submanifold of dimension m ¥ 3 in a conformal manifold
pM, cq. The intrinsic tractor bundle T Σ is canonically isomorphic to the orthogo-
nal complement NK of the normal tractor bundle via a bundle isomorphism which
preserves both the metric and the filtration. We denote this isomorphism ΠA

I . Ex-
plicitly, in a general ambient scale g P c, it is given by

T Σ Q V I gΣ�
��σ
µi

ρ

� ΠAIÞÝÑ
�� σ

µa �Haσ
ρ� 1

2H
aHaσ

� g� V A P NK, (3.18)
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where µa � Πa
i µ

i.
The map Π : T Σ Ñ NK is a filtration and metric preserving isomorphism.

Proof. Fix a scale gΣ P cΣ, and let g P c be a scale that satisfies ι�g � gΣ. The map
is clearly injective, and the image is also clearly annihilated by any section of N . We
need to show that the map (3.18) is unchanged if we replace g by some conformally
related pg � Ω2g, and gΣ by xgΣ � Ω2gΣ. (In the latter Ω is restricted to Σ – this is
clear by context and so we do introduce additional notation.) Equivalently, we need
to show that the following diagram commutes

rEIsgΣ
rEAsg|Σ

rEJ s
xgΣ

rEBs
pg|Σ

ΠAI

ΠBJ

(3.19)

where the vertical maps are conformal change of tractor splitting, as given in (2.16),
and the horizontal maps are (3.18) in the appropriate scale.

Write Υa � Ω�1∇aΩ, and Υi � Ω�1DiΩ. Note that Υi � Πa
iΥa. Applying ΠA

I

and then rescaling is given by�� 1 0 0
Υb δba 0

�1
2ΥcΥc �Υa 1

��� 1 0 0
�Ha Πa

i 0
�1

2H
cHc 0 1

��
�� 1 0 0

Υb �Hb Πb
i 0

�1
2ΥcΥc �HaΥa � 1

2H
cHc �Υi 1

�,
while first rescaling and then applying ΠB

J corresponds to the matrix�� 1 0 0

� pHb Πb
j 0

�1
2
pHc pHc 0 1

��� 1 0 0

Υj δji 0
�1

2ΥkΥk �Υi 1

��
�� 1 0 0

� pHb �Πb
jΥ

j Πb
i 0

�1
2
pHc pHc � 1

2ΥkΥk �Υi 1

�.
Using equation (3.14), we see that

� pHb �Πb
jΥ

j � �Hb �Nb
cΥ

c �Πb
jΥ

j � �Hb �Υb

and

�1

2
pHc pHc � 1

2
ΥkΥk � �1

2
HcHc �HeΥe � 1

2

�
ΥkΥk �NcdΥcΥd

	
� �1

2
HcHc �HeΥe � 1

2
ΥcΥc,

whence the above two matrix products are equal. Hence the map is conformally
invariant.
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It is easily verified that the map ΠA
I is metric preserving and sends XI to XA,

and so is filtration preserving. An easy calculation shows that it is metric preserving,
cf. Remark 3.6 below.

Remark 3.6. Note that the calculations in the above proof and hence the existence
of the canonical metric and filtration preserving map Π : T Σ Ñ NK are greatly
simplified if we choose to work only with minimal scales (g P c with Hc � 0, cf.
Proposition 3.2); in a minimal scale, the map ΠA

I simply maps pσ, µi, ρq ÞÑ pσ, µa, ρq
and it is clear that this map preserves the metric and the filtration.

Motivated by the result in Theorem 3.5 above, for the cases of dimensions m �
1, 2 we (for now) define T Σ to be NK. (Then Theorem 3.5 again applies, and is
effectively just changing the splitting to give triples that transform in the usual
way.) In Section 3.5 below we will then show that in dimension m � 1 and m � 2 it
is still that case that T Σ is canonically J2Er1s{S2

0T
�Σr1s (where in the m � 1 case

S2
0T

�Σr1s is the “zero vector bundle”), consistent with the discussion given in the
introduction.

For convenience, we will say that sections of NK are tractors tangent to the
submanifold, and similarly, sections of N are tractors normal to the submanifold.

It will also be convenient to record the relationship between the submanifold
and ambient splitting tractors corresponding to the isomorphism in Theorem 3.5,
namely:

XI � ΠI
AX

A, ZIi � ΠI
AΠa

iZ
A
a , and Y I � ΠI

ApY A �HaZAa � 1

2
HaHaX

Aq
(3.20)

along Σ, where ΠI
A can be interpreted as the inverse of the map ΠA

I given by The-
orem 3.5 or, better, as the orthogonal projection from T to NK followed by the
isomorphism NK Ñ T Σ (this is completely analogous to our use of the notation Πi

a

applied to tangent vectors, see (3.1)).
We have already mentioned that there is a tractor Gauß formula, namely a

decomposition of the ambient tractor connection which is compatible with the de-
composition T � NK `N . Define the “checked” connection ∇̌ on T Σ by

∇̌iV
J :� ΠJ

B∇i

�
ΠB
KV

K
�
, (3.21)

where ∇i on the right-hand side is the (pullback of the) ambient tractor connection.
This is essentially the tangential part of the ambient connection. We may then
define the tractor second fundamental form LiJC analogously to the Riemannian
case, namely as the 1-form with values in maps T Σ Ñ N which characterises the
normal part of the ambient connection:

∇iV
B � ΠB

J ∇̌iV
J � LiJBV J , (3.22)
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where V B � ΠB
J V

J is a section of the ambient tractor bundle which is tangent to
the submanifold. The linear operator LiJB is well defined by this since both ι�∇
and ∇̌ satisfy the Leibniz rule. We call (3.22) the tractor Gauß formula.

The ambient tractor connection also induces a connection on the normal tractor
bundle in the obvious way:

∇N
i N

A :� NA
B∇iN

B, (3.23)

where NA is a section of N . Such NA are of the form NA g� p0, na, ncHcq, where
na P ΓpNΣar�1sq. As a tractor with zero in the top slot, it follows from (2.15)
that the middle slot of ∇N

i N
A is necessarily conformally invariant. But this exactly

recovers the invariant connection on NΣr�1s discussed in Section 3.2 (cf. Lemma
3.4). In summary, we have the following.

Proposition 3.7. The canonical isomorphism NΣr�1s �Ñ N preserves the invari-
ant parallel transports defined on each bundle.

Essential to our direction in this article is that the tractor fundamental form
may be captured in several equivalent ways, the first of which we give here.

Proposition 3.8. The tractor second fundamental form is given by

LiKB � ΠC
KNB

A∇iΠ
A
C , (3.24)

or equivalently,
LiKB � �ΠC

KNB
A∇iN

A
C . (3.25)

Proof. Let NA be a section of the normal tractor bundle N . Note that ΠA
CNA � 0,

and hence

0 � ∇ipΠA
CNAq � p∇iΠ

A
CqNA �ΠA

B∇iNA,

whence
ΠA
C∇iNA � �NA∇iΠ

A
C . (3.26)

As a consequence of the tractor Gauß formula (3.22),

NBLiKBV K � NB∇iV
B � �V B∇iNB � �V KΠB

K∇iNB

for all V K P ΓpEKq, and therefore

NBLiKB � �ΠB
K∇iNB � �ΠC

KΠA
C∇iNA.

Combining this with (3.26), we have that

NBLiKB � �ΠC
K

��NA∇iΠ
A
C

� � NBΠC
KNB

A∇iΠ
A
C ,

and this must hold for any section NB of the normal tractor bundle, whence the
result follows. Substituting ΠA

C � δAC �NA
C into (3.24) and using that δAC is parallel

for the tractor connection then gives the second equality of the proposition.
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It will be convenient to have a second (equivalent) object that we also term the
tractor second fundamental form, which we denote by L and which is the section of
T �ΣbNK� bN defined by

LiAB � ΠJ
ALiJB. (3.27)

Since ΠJ
A is an isomorphism T �Σ Ñ NK�, this is clearly equivalent to the original

tractor second fundamental form (and eventually when there is no possibility of
confusion we will simply denote both objects by L). The gain of using L is that
both its tractor indices are ambient tractor indices, as we shall see shortly.

It is useful to observe that L arises naturally in several different ways.

Lemma 3.9. The B index of NC
A∇iN

A
B is tangential, i.e., for any NB P ΓpNBq,

one has
NBNC

A∇iN
A
B � 0.

Proof. Let NB P ΓpNBq. We calculate ∇ipNA
BN

Bq in two different ways. On the
one hand, one has

∇ipNA
BN

Bq � ∇iN
A,

while on the other
∇ipNA

BN
Bq � NA

B∇iN
B �NB∇iN

A
B.

Hence
NB∇iN

A
B � ∇iN

A �NA
B∇iN

B.

Thus

NBNC
A∇iN

A
B � NC

Ap∇iN
A �NA

B∇iN
Bq � NC

A∇iN
A �NC

B∇iN
B � 0.

Thus we see that the ΠC
K of equation (3.25) is merely identifying the already

tangential C index with a submanifold tractor index. Thus we see the following.

Proposition 3.10.
LiBC � �NC

A∇iN
A
B. (3.28)

Proof. By equation (3.25) we have

LiBC � �ΠK
BΠD

KNC
A∇iN

A
D � �pδDB �ND

B qNC
A∇iN

A
D,

and so the result follows from the previous lemma.

Remark 3.11. Note that (3.28) is equivalent to LiJC � �ΠB
J NC

A∇iN
A
B. A similar

argument shows that
IIij

c � �Πb
jN

c
a∇iN

a
b .
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Lemma 3.12. Let NC
B be the normal tractor projector. Then

∇iN
C
B � �LiCB � LiBC , (3.29)

where
LiCB � hCDhABLiDA.

Proof. Noting that NC
B � NC

ANA
B, we have

∇iN
C
B � NA

B∇iN
C
A �NC

A∇iN
A
B.

The second term is exactly the negative of equation (3.28). Using that the normal
projector is symmetric, the first term is clearly a transpose of this (so for example
on this term, the C index is tangential).

We now use this result to compute an explicit formula for the tractor second
fundamental form. We first prove a lemma about the tractor normal projector.

Lemma 3.13. For a choice of scale, the tractor normal projector is given by

NA
B � Na

bZ
A
a Z

b
B �HaZAa XB �HbX

AZbB � pHdHdqXAXB (3.30)

where the Hc is the mean curvature vector in the chosen scale.

Proof. The right-hand side of (3.30) defines a conformally invariant bundle map
EA Ñ NB which moreover acts as the identity on sections of NA as defined in
following (3.15). The latter is easily verified by working in a minimal scale.

Alternatively, (3.30) follows immediately from (3.17), as in any scale

Na
B � Na

b Z
b
B �HaXB,

and NA
B � NA

a N
a
B.

Theorem 3.14. The tractor second fundamental form is given by

LiJC � I̊Iij
cZjJZ

C
c �Nc

a pPia �∇iH
aqXJZ

C
c

�HcI̊Iij
cZjJX

C �Ha pPia �∇iH
aqXJX

C .
(3.31)

Proof. We compute NC
A∇iN

A
B using the formula from Lemma 3.13. We then apply

ΠB
J , the formula for which is given in Theorem 3.5 to complete the proof.
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First, differentiating (3.30) gives

∇iN
A
B � p∇iN

a
b qZAa ZbB �Na

b

��PiaXA � giaY A
�
ZbB �Na

bZ
A
a

�
�P bi XB �Πb

iYB

	
� p∇iH

aqZAa XB �Ha
��PiaXA � giaY A

�
XB �HaZAa ZBi

� p∇iHbqXAZbB �HbZ
A
i Z

b
B �HbX

A
�
�PibXB �Πb

iYB

	
� 2pHd∇iHdqXAXB �HdHdZ

A
i XB �HdHdX

AZBi

� p∇iN
a
b �Hagib �HbΠ

a
i qZAa ZbB

�
�
�Na

bPia �∇iHb �HdH
dgib

	
XAZbB

�
�
�Na

bPi
b �∇iH

a �HdH
dΠa

i

	
ZAa XB

�
�
�HaPia �HbPi

b � 2Hd∇iHd

	
XAXB,

where, recall, gia means Πb
igba. From (3.30), it follows that

NC
AZ

A
a � Nc

aZ
C
c �HaX

C and NC
AX

A � 0.

Hence

NC
A∇iN

A
B � p∇iN

a
b �Hagib �HbΠ

a
i q
�
Nc
aZ

C
c �HaX

C
�
ZbB

�
�
�Na

bPi
b �∇iH

a �HdH
dΠa

i

	 �
Nc
aZ

C
c �HaX

C
�
XB

� pNc
a∇iN

a
b �HcgibqZbBZCc �Nc

a p∇iH
a � Pi

aqXBZ
C
c

�Ha p∇iN
a
b �HagibqZbBXC �Ha p∇iH

a � Pi
aqXBX

C .

All that remains is to apply the tangential tractor projector ΠB
J . According to (3.18),

ΠB
J Z

b
B � Πb

jZ
j
J and ΠB

JXB � XJ . (3.32)

Therefore

ΠB
J NC

A∇iN
A
B � Πb

j pNc
a∇iN

a
b �HcgibqZjJZCc �Nc

a p∇iH
a � Pi

aqXJZ
C
c

�HaΠ
b
j p∇iN

a
b �HagibqZjJXC �Ha p∇iH

a � Pi
aqXJX

C

� p�IIijc �HcgijqZjJZCc �Nc
a p∇iH

a � Pi
aqXJZ

C
c

�Hc p�IIijc �HcgibqZjJXC �Ha p∇iH
a � Pi

aqXJX
C

� �I̊IijcZjJZCc �Nc
a p∇iH

a � Pi
aqXJZ

C
c

�HcI̊Iij
cZjJX

C �Ha p∇iH
a � Pi

aqXJX
C .

where we note that Ha∇iN
a
b � HcN

c
a∇iN

a
b , and we have used the observation from

Remark 3.11 to replace Πb
jN

c
a∇iN

a
b with �IIijc.

Finally, applying ΠB
J to equation (3.29) shows that LiJC is equal to negative of

the above, from which the claim in the theorem follows.
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3.4 Conformal submanifolds of dimension m ¥ 3

For submanifold dimensions m ¥ 3 the conformal structure of Σ determines a tractor
connection D and compatible tractor metric hΣ on T Σ. We refer to these as the
intrinsic tractor connection and metric for T Σ. We continue to use abstract indices
from the later part of the alphabet to distinguish submanifold objects from their
ambient analogues, so, e.g., we write hΣ as hIJ P ΓpEpIJqq.

Unlike the Riemannian case, the checked connection is not exactly the intrinsic
tractor connection.

Proposition 3.15. Along a submanifold Σ of dimension m ¥ 3 the checked and
intrinsic tractor connections are related by

∇̌iV
J � DiV

J � Si
J
KV

K , (3.33)

with Di the intrinsic submanifold tractor connection and

SiJK :� 2

�
Pij � pij �HcI̊Iij

c � 1

2
HcH

cgij



ZjrJXKs, (3.34)

where Πij :� Πa
iΠ

b
jPab is the restriction of the ambient Schouten tensor to the

submanifold and pij is the intrinsic Schouten tensor.

Proof. Fix metrics g P c and gΣ P cΣ such that ι�g � gΣ to facilitate calculation.
The inverse isomorphism of (3.18) is the map NK Ñ T Σ given by the matrix�� 1 0 0

�Ha Πa
i 0

�1
2H

cHc 0 1

�. (3.35)
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Using this we have

∇̌iV
J �

�� 1 0 0

0 Πj
b 0

�1
2H

cHc �Hb 1

�∇i

���� 1 0 0
�Hb Πb

k 0
�1

2H
cHc 0 1

��� σ
µk

ρ

���
�
�� 1 0 0

0 Πj
b 0

�1
2H

cHc �Hb 1

�∇i

�� σ
µb �Hbσ

ρ� 1
2H

cHcσ

�
�
�� 1 0 0

0 Πj
b 0

�1
2H

cHc �Hb 1

��� ∇iσ � µi
∇i

�
µb �Hbσ

�� Pi
bσ �Πb

i

�
ρ� 1

2H
cHcσ

�
∇i

�
ρ� 1

2H
cHcσ

�� Pic pµc �Hcσq

�
�
�� 1 0 0

0 Πj
b 0

�1
2H

cHc �Hb 1

��� ∇iσ � µi
∇iµ

b � p∇iH
bqσ �Hb∇iσ � Pi

bσ �Πb
iρ� 1

2Πb
iH

cHcσ
∇iρ� pHc∇iHcqσ � 1

2H
cHc∇iσ � Picµ

c � PicH
cσ

�

�

����
∇iσ � µi

Πj
b

�
∇iµ

b � p∇iH
bqσ �Hb∇iσ � Pi

bσ �Πb
iρ� 1

2Πb
iH

cHcσ
�

�1
2H

cHcp∇iσ � µiq �Hb

�
∇iµ

b � p∇iH
bqσ �Hb∇iσ � Pi

bσ �Πb
iρ� 1

2Πb
iH

cHcσ
�

�∇iρ� pHc∇iHcqσ � 1
2H

cHc∇iσ � Picµ
c � PicH

cσ

���
Using the agreement of the intrinsic Levi-Civita connection with the pullback of

the ambient Levi-Civita connection then gives

∇̌iV
J �

�� Diσ � µi
Diµ

j � Pi
jσ � δji ρ� pΠj

b∇iH
bqσ � 1

2δ
j
iH

cHcσ
Diρ� Picµ

c � 1
2H

cHcµi �Hb∇iµ
b

�
�
�� Diσ � µi
Diµ

j � pi
jσ � δji ρ� p�I̊Iijb � δjiHbqHbσ � 1

2δ
j
iH

cHcσ � pPij � pi
jqσ

Diρ� picµ
c � 1

2H
cHcµi �HbpI̊Iijb � gijHbqµj � pPij � pi

jqµj

�

�
�� Diσ � µi
Diµ

j � pi
jσ � δji ρ

Diρ� picµ
c

��
����

0�
Pi
j � pi

j �HbI̊Ii
jb � 1

2H
cHcδ

j
i

	
σ

�
�
Pij � pij �HbI̊Iij

b � 1
2HbH

bgij

	
µj

���
� DT Σ

i

�� σ
µj

ρ

��
�� 0 0 0
Fij 0 0
0 �Fij 0

��� σ
µj

ρ

�.
where

Fij :� Pij � pij �HbI̊Iij
b � 1

2
HbH

bgij . (3.36)
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We call the tensor Fij given in (3.36) the Fialkow tensor (since this quantity
seems to have appeared first in the work of Fialkow [40], cf. [75, 98]). Since the
checked connection, the intrinsic tractor connection and ZjrJXKs are all conformally

invariant, it follows that the Fialkow tensor is also conformally invariant. Proposi-
tion 3.15 tells us that the Fialkow tensor measures the failure of the induced tractor
connection ∇̌ to be normal (in the sense of corresponding to a normal Cartan con-
nection [17]).

There is an alternative formula for the Fialkow tensor which is manifestly confor-
mally invariant. To derive it, one substitutes the Weyl-Schouten decomposition of
the ambient and intrinsic Riemann tensors into the Gauß formula, and then applies
the map

Tijkl ÞÑ 1

m� 2

�
Tikj

k � Tkl
kl

2pm� 1qgij



to both sides (to take the “submanifold Schouten” part). After writing the second
fundamental form as I̊Iij

c�gijHc and rearranging, one finds that the Fialkow tensor
(3.36) is equal to

Fij � 1

m� 2

�
WicjdN

cd � WabcdN
acNbd

2pm� 1q gij � I̊Ii
kcI̊Ijkc � I̊IklcI̊I

klc

2pm� 1qgij
�
. (3.37)

All objects on the right-hand side are conformally invariant. Since the Fialkow
tensor has already been observed to be conformally invariant, it it sufficient to
establish the formula (3.37) in a minimal scale. Let g P c be a minimal scale and
gΣ � ι�g. Thus II � I̊I. Applying the submanifold and ambient Weyl-Schouten
decompositions in the Gauss equation we obtain

Wijkl � Pikgjl � Pjkgil � Pilgjk � Pjlgik � wijkl � pikgjl � pjkgil � pilgjk � pjlgik

� gcdIIlicIIjkd � gcdIIljcIIikd

where Wijkl denotes the full projection Πa
iΠ

b
jΠ

c
kΠ

d
lWabcd of the ambient Weyl cur-

vature, Pij � Πa
iΠ

b
jPab, and wijkl denotes the submanifold intrinsic Weyl tensor.

Applying the map Tijkl ÞÑ 1
m�2

�
Tikj

k � Tkl
kl

2pm�1qgij

	
on both sides of the above dis-

play we get

� 1
m�2

�
WicjdN

cd � WacbdNabNcd

2pm�1q gij

	
� Pij � pij � 1

m�2

�
I̊Ii

kcI̊Ijkc � I̊Iklc I̊Iklc
2pm�1q gij

	
,

noting that gklWikjl � gklΠc
kΠ

d
lWicjd � �N cdWicjd since Wabcd is trace free, and

similarly Wkl
kl �WacbdN

abNcd. The result then follows from (3.36).
Recall that along Σ we may decompose the ambient standard tractor bundle

T � TM as T |Σ � T Σ ` N . If V P ΓpT |Σq is given by pV J, V Kq with respect to
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this decomposition, then by (3.22), (3.23), (3.33) and the fact that ∇ preserves the
ambient tractor metric we have

∇XV �
�
DX � SpXq �LpXqT

LpXq ∇N
X


�
V J

V K



(3.38)

for any X P XpΣq, where LpXqT is the transpose of LpXq with respect to the ambient
tractor metric (cf. Proposition 3.8). We therefore write

ι�∇ �
�
D � S �LT
L ∇N



(3.39)

on T |Σ � T Σ ` N . We will most often make use of the above display in the case
where V is a section of T Σ (V K � 0). In this case we obtain the following form of
the tractor Gauß formula:

∇iV
B � ΠB

J

�
DiV

J � Si
J
KV

K
�� LiKBV K , (3.40)

for any section V of T Σ.
By writing the curvature ι�Ω of ι�∇, somewhat informally, as

ι�Ω �
�
D � S �LT
L ∇N



^
�
D � S �LT
L ∇N



(3.41)

one may easily obtain conformal tractor analogues of the Riemannian Gauss, Co-
dazzi, and Ricci equations (cf. the derivation of the Riemannian Gauß-Codazzi-Ricci
equations in Section 3.1):

ΩijKL � ΩΣ
ijKL � 2DriSjsKL � 2Sri|KMS|jsML � 2Lri|KCL|jsLC (3.42)

ΩijKDND
E � �2DriLjsKE � 2Sri|KLL|jsLE (3.43)

Ωij
A
BNC

ANB
D � ΩN

ij
C
D � 2LriKCLjsKD, (3.44)

where indices between bars are exempt from antisymmetrisation, ΩijKL � ΩijCDΠC
KΠD

L

for ΩijCD the curvature of the pullback connection, and ΩN is the curvature of the
normal tractor connection, characterised by

ΩN
ij
C
DN

D � �∇N
i ∇N

j �∇N
j ∇N

i

�
NC , (3.45)

for any section N of the normal tractor bundle N .

Remark 3.16. In [11] Burstall and Calderbank define a ‘Möbius reduction’ to be
a rank pm � 2q subbundle V of T |Σ containing the rank m � 1 subbundle spanned
by the canonical tractor XA and its covariant derivatives in submanifold tangential
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directions (with respect to the ambient tractor connection coupled with the Levi-
Civita connection of some, equivalently any, metric g P c). One then decomposes
the ambient tractor connection along Σ as (using notation similar to the above)

ι�∇ �
�

∇V �pLVqT
LV ∇VK



on T |Σ � V ` VK. The definition of ‘Möbius reduction’ implies that LV

iJ
CXJ � 0

and LV
iJ
CXC � 0, so that there is a well-defined projection IIV ij

c :� LV
iJ
CZJj Z

C
c

of LV
iJ
C . Burstall and Calderbank then define the unique ‘canonical Möbius reduc-

tion’ VΣ by imposing an algebraic normalisation condition on�
0 �pLVqT
LV 0



similar to the algebraic normalisation condition imposed on the curvature of the
normal Cartan/tractor connection [22, 17], see Section 9.3 of [11]. This algebraic
normalisation condition amounts to the requirement that gijIIV ij

c � 0. Since by
Theorem 3.14 the tractor second fundamental form has invariant projection I̊Iij

c �
LiJCZJj ZCc the ‘canonical Möbius reduction’ VΣ is the same as the orthogonal com-

plement NK of the normal tractor bundle and hence gives an abstract characteri-
zation of this bundle (equivalently of the normal tractor bundle N ). Our approach
differs in that we explicitly construct N , and then further explicitly identify NK with
the intrinsic tractor bundle T Σ.

3.5 Low-dimensional conformal submanifolds

In this section we treat submanifolds Σ such that dimpΣq is m � 1 or m � 2. Note
that Section 3.3 has no restriction on the submanifold dimension m. However in
Section 3.4, just above, we make the restriction to m ¥ 3 to discuss the intrinsic
tractor connection then available. When m � 1, 2 the conformal structure on Σ is
not sufficient to determine a canonical connection on T Σ. The purpose of this section
is to observe that in these dimensions the conformal embedding does determine
distinguished tractor connections on T Σ, and then using this we get analogues of
the results from Section 3.4.

First recall that Equation (3.21) defines a connection ∇̌ on the bundle T Σ also
when dim Σ is 1 or 2.

Riemannian manifolds of dimension 1 or 2 are not naturally equipped with an (in-
trinsically determined) Schouten tensor. However conformal submanifolds of these
dimensions inherit a natural replacement, as follows. First recall that for subman-
ifolds of dimension at least 3, the difference tractor of is equivalent to the Fialkow
tensor of the submanifold according to expressions (3.34) and (3.36). In dimensions
1 and 2, we will, in essence, turn this around and use the formula (3.36) to deter-
mine a submanifold Schouten tensor. In these dimensions all terms in (3.36) are
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well defined, as usual, except the submanifold Schouten pij and the Fialkow tensor
Fij . Note that fixing one of these two determines the other via (3.36). Moreover,
from the conformal transformation formulae of the terms in (3.36), it follows that
any natural conformally invariant choice of Fij determines a submanifold tensor
pij P S2T �Σ that transforms conformally according to (2.10). Such a Schouten ten-
sor pij then yields a conformally invariant tractor connection D on T Σ (in a choice
of scale) according to the usual formula, namely

Di

�� σ
µj
ρ

��
�� Diσ � µi
Diµj � pijσ � gijρ

Diρ� pijµ
j

�, (3.46)

where D on the right-hand side is the intrinsic Levi-Civita connection. Equivalently
the tractor connection is determined by formula (3.33) with

SiJK :� 2FijZjrJXKs.

Thus it remains to specify an invariant Fij , or equivalently a pij that transforms
according to (2.10). Recall that in all dimensions we have the conformally invariant
tractor connection ∇̌ on T Σ. It is given by

∇̌iV
J �

�� Diσ � µi
Diµ

j � Pi
jσ � δji ρ� pΠj

b∇iH
bqσ � 1

2δ
j
iH

cHcσ
Diρ� Picµ

c � 1
2H

cHcµi �Hb∇iµ
b

�
where we have computed using a choice of ambient scale g P c, and V J gΣ� pσ, µj , ρq.
But by the conformal invariance of ∇̌, the right hand side depends only on gΣ, as
this is sufficient to determine the tractor bundle splitting. Now, arguing similarly
to the previous section we have

∇̌iV
J �

�� Diσ � µi
Diµ

j � Pi
jσ � δji ρ� p�I̊Iijb � δjiHbqHbσ � 1

2δ
j
iH

cHcσ

Diρ� Pijµ
j � 1

2H
cHcµi �HbpI̊Iijb � gijHbqµj

�

�

����
Diσ � µi

Diµ
j �

�
Pi
j �HbI̊Ii

jb � 1
2H

cHcδ
j
i

	
σ � δji ρ

Diρ�
�
Pij �HbI̊Iij

b � 1
2HbH

bgij

	
µj

���.
In particular

∇̌iY
J �

�
Pi
j �HbI̊Ii

jb � 1

2
HcHcδ

j
i



ZJj ,

cf. (2.19). From this and the conformal invariance of ∇̌ it follows that Pi
j�HbI̊Ii

jb�
1
2H

cHcδ
j
i transforms in the same way as a Schouten tensor and depends only on
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gΣ P cΣ (rather that g P c) and the conformal embedding of Σ in pM, cq. That is, if
we define

pij :�
�
Pij �HbI̊Iij

b � 1

2
HbH

bgij



� Fij ,

for any (decreed to be) conformally invariant Fij P ΓpEpijqq, then pij depends only on
gΣ (and the conformal embedding of Σ in pM, cq) and has conformal transformation

ppij � pij �DiΥj �ΥiΥj � 1

2
gijΥ

kΥk.

This formula is also easily checked directly. When such a choice of submanifold
Schouten tensor has been made we will denote its trace by

 :� gijpij . (3.47)

Then under conformal change

p �  �DiΥ
i � p1� m

2
qΥiΥi. (3.48)

In dimension 1 we will simply set Fij :� 0. Thus given any submanifold scale
gΣ and any extension g P c one has

pij :� Pij � 1

2
HbH

bgij ,

since, for a curve, the trace-free second fundamental form is trivially zero. In this
case, of course, pij � gij where  :� gijpij . Note that the extension g P c can be
chosen such that Hb � 0 and then one simply has pij :� Pij .

In dimension 2 we shall set Fpijq0 � 0. By (3.36) (which determines the relation
between pij and Fij) this is equivalent to taking the trace-free part of pij in any
scale to be

ppijq0 :� Ppijq0 �HbI̊Iij
b,

for any metric g P c extending the given submanifold scale gΣ (of course, g can be
taken to be a minimal scale in which case we simply have ppijq0 :� Ppijq0). From
the point of view of Cartan geometry, or of the tractor connection D (which is to
be determined from (3.33) by the choice of pij), it is then natural to determine the
trace part of pij in any scale gΣ by setting

 � gijpij :� 1

2
gij RicgΣ

ij ,

so that  agrees with the Gauss curvature of gΣ (which we are viewing as section of
Er�2s|Σ). This transforms conformally by the formula (3.48), and so the trace part
of the right-hand side of (3.36) is then conformally invariant with this definition.
We have thus given a conformally invariant definition of Fij as a pure trace tensor
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(indeed, one can show that this gives Fij � 1
2 |I̊I|2gij [91]). Besides this, our choice

of  � gijpij is significant in that it is the unique choice that enables us to write

RgΣ

ijkl � 2gkripjsl � 2glripjsk.

Requiring the above display to hold is a normalisation condition on the tractor
connection D determined by pij as in (3.46), equivalent to requiring that the “middle
slot” (the ZkKZ

l
L component) of the tractor curvature vanishes. Indeed, with the

conventions we have just established, the curvature of the tractor connection D is
given by

ΩΣ
ijKL � �2cijkXrKZLs

k,

where cijk :� 2Dripjsk. This should be compared with (2.20) in the three dimensional
case where the Weyl tensor term vanishes. Note that, while in three and higher
dimensions the Cotton tensor is trace free, since we are in two dimensions the tensor
cijk can be written as

cijk � 1

2
εijck

where ck � εijcijk and hence cijk is determined by its trace

cijkg
jk � 1

2
εijc

j � Di �Djpij .

In the 2-dimensional case, the choice of pij for each scale (with the trace part
normalized by setting gijpij to be the Gauß curvature) is equivalent to a choice
of Möbius structure on Σ in the sense of [13]. The invariant cijk, which we refer
to as the Cotton tensor in this setting, is precisely the curvature of this Möbius
structure and vanishes if and only if Σ (with the Möbius structure just defined) is
locally equivalent to the conformal Möbius sphere (i.e. comes from a system of local
coordinates on Σ related by Möbius transformations); see [13] for more details. Note
that the Möbius structure we have just defined on 2-dimensional submanifolds Σ
agrees with the notion of induced conformal Möbius structure in [11], cf. [34].

In both dimensions 1 and 2 we then have that, in any scale g P c, and with
gΣ � g|TΣ, the tractor connection on rT ΣsgΣ is given by (3.46). We note that this
formula exactly agrees with the formula for the usual tractor connection, as defined
by (2.19) (but has pij as defined here). This connection in turn defines a Thomas-D
operator D : Er1s Ñ T Σ via the usual BGG splitting operator characterisation (see
e.g. [21]), namely that, for any σ P ΓpEr1sq, DiDIσ must be 0 in the top slot and be
trace-free in the middle slot. Thus, in a scale gΣ P cΣ, this takes the form

1

m
DKσ

gΣ�
�� σ

Dkσ
� 1
m

�
gi`DiD` � 

�
σ

�, (3.49)
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(cf. (2.12)). It follows at once that (as in higher dimensions m) any parallel standard
tractor I is necessarily in the image of 1

mD. Moreover we have that, for any σ P
ΓpEr1sq, and on the set where σ is non-vanishing, the scale tractor

I :� 1

m
Dσ

satisfies that

hKLIKIL � � 2

m
 σ2 � � 2

m
gΣ

where gΣ � σ2 is the (weight zero true) J-curvature for the scale gΣ, and this
is thus constant if I is parallel. (E.g., for surfaces the scale tractor parallel being
implies the corresponding metric has constant Gauß curvature.) So this fits with
the situation in higher dimensions.

Finally observe that the Thomas-D formula (3.49) evidently provides a confor-
mally invariant isomorphism

J2EΣr1s{S2
0T

�Σr1s �ÝÑ T Σ,

cf. (2.13). Thus our description of the tractor bundle from the introduction still
applies in dimensions m � 1 and m � 2, where we identify T Σ with NK.

Remark 3.17. We emphasise that our choice of Fij, in dimensions m � 1 and
m � 2, was indeed a choice. Any natural choice of Fij will lead to a corresponding
tractor/Cartan connection that is canonical by dint of the naturality of Fij. (For
the meaning of naturality in this context see [61].)

For example WicjdN
cd is natural, symmetric, conformally invariant, and of weight

zero – so this could be used. Similarly I̊Ii
kcI̊Ijkc for surfaces. Both vanish for curves,

while observe that the symmetries and properties of the Weyl curvature imply that
for surfaces

WicjdN
cd � �WabcdN

acNbd

2
gij ,

while, the Cayley-Hamilton theorem implies

I̊Ii
kcI̊Ijkc � I̊I

klc
I̊Iklc
2

gij .

So it seems likely that naturality will force our choice for curves, and at least that
Fpijq0 � 0 for surfaces.

In dimension m � 1 parallel transport using (3.46) is equivalent in an obvious
way to a third order linear ODE along the curve. In dimension m � 2 parallel
tractors, with the top slot σ P ΓpEr1sq non-vanishing, correspond to solutions of

DpiDjq0σ � ppijq0σ � 0 (3.50)
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that also satisfy that the conformal invariant cij
j � Di � Djpij is zero (if (3.50)

alone holds then following the usual prolongation argument one can easily show
that IK � 1

2D
Kσ satisfies DjI

K � σpDipij � DjqXK , cf. [33, Section 3.4]); it
follows from the above discussion that nontrivial parallel tractors only exist when
the Möbius structure is locally flat, in which case they define a metric of constant
Gaussian curvature on the open dense set where σ � 0.

3.6 Normal forms

Since dimN�Σ � d, ΛdN�Σ is a line bundle. Moreover, Σ is oriented and it thus
follows that there is a unique section Na1a2���ad of ΛdN�Σrds which is compatible
with the orientations of Σ and M , and such that

Na1a2���adNa1a2���ad � d! ;

here by compatible with the orientations we mean that

εΣ
a1a2���am ^Nam�1���an � εa1a2���an ,

where εΣ and ε are the weighted volume forms for Σ and M respectively. We call
Na1a2���ad the Riemannian normal form for the submanifold Σ. It is not hard to
show that this contains the same data as the normal projector Na

b . Indeed, one can
obtain the latter from the former via Na

b � 1
pd�1q!N

aa2���adNba2���ad , cf. Proposition
3.18.

This object also has a tractor analogue. Recall that the normal tractor bundle
N � is isomorphic to N�Σr1s. Thus it follows that, for any k such that 1 ¤ k ¤
codimΣ, one has ΛkN � � ΛkN�Σrks. Explicitly, for νa1a2���ak P ΛkN�Σrks, the
isomorphism is given by

νa1a2���ak ÞÑ νa1a2���akZ
a1a2���ak
A1A2���Ak

� k � νba2���akH
bX a2���ak

A1A2���Ak
, (3.51)

by taking the k-th exterior power of (3.15). (Note that in the case k � 1 this map is
simply the map N�Γr1s Ñ N � of (3.15).) Invariance of this map may independently
be checked via the transformation formulae for the tractor form projectors and the
mean curvature:

pνa1a2���ak
pZa1a2���ak
A1A2���Ak

� k � pνba2���ak
pHbpX a2���ak

A1A2���Ak

� νa1a2���ak

�
Za1a2���ak
A1A2���Ak

� k �Υa1X a2���ak
A1A2���Ak

	
� k � νba2���ak

�
Hb �Nb

a1
Υa1

	
X a2���ak
A1A2���Ad

� νa1a2���akZ
a1a2���ak
A1A2���Ak

� k �
�
νba2���akH

b � νa1a2���akΥa1 � νba2���akNb
a1

Υa1

	
X a2���ak
A1A2���Ak

� νa1a2���akZ
a1a2���ak
A1A2���Ak

� k � νba2���akH
bX a2���ak

A1A2���Ak
.
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In particular, it follows that there is a distinguished section of the line bundle
ΛdN �, where d � codimΣ, given by the image of the Riemannian normal form under
this isomorphism. We write NA1A2���Ad for this section and call it the tractor normal
form for the submanifold Σ. From the above isomorphism, one has

NA1A2���Ad � Na1a2���adZ
a1a2���ad
A1A2���Ad

� d �Nba2���adH
bX a2���ad

A1A2���Ad
, (3.52)

and hence

NA1A2���AdN
A1A2���Ad � Na1a2���adN

b1b2���bdZa1a2���ad
A1A2���Ad

ZA1A2���Ad
b1b2���bd

� Na1a2���adN
a1a2���ad

� d!,

since all other contractions of the X and Z projectors are zero, and where the indices
of NA1A2���Ad have been raised with the tractor metric.

Given a local orthonormal basis tN1
A, . . . , N

d
Au for the normal tractor bundle,

which may be constructed from a local orthonormal basis of N�Σr1s, one sees that

d! �N1
rA1

� � �Nd
Ads

� N1
A1
^ � � � ^Nd

Ad
(3.53)

is clearly a section of ΛdN � and satisfies the above normalisation condition. If the
chosen basis is compatible with the orientation, then (3.53) recovers the tractor
normal form NA1A2���Ad . By construction one then has that

εΣA1A2���Am�2
^NAm�3���An�2 � εA1A2���An�2 ,

where εΣ and ε are the tractor volume forms of Σ and M respectively.
Our task is now to relate the tractor normal form to the other tractor objects

introduced, namely, the tractor normal projector and the tractor second fundamen-
tal form. These relationships will lay the foundation for the notion of distinguished
submanifold that we will introduce in the following chapter.

First, the tractor normal projector.

Proposition 3.18. The tractor projector NA
B is equal to

NA1
A2

� 1

pd� 1q!N
A1B2���BdNA2B2���Bd . (3.54)

Proof. Let tNA
1 , N

A
2 , . . . , N

A
d u be an orientation-compatible orthonormal basis for

the normal tractor bundle. Then

NA1B2���Bd � d! �N rA1

1 NB2
2 � � �NBds

d .

The contraction NA1B2���BdNA2B2���Bd is a sum of terms of the form

sgnpσq sgnpτqNA1

σp1qN
B2

σp2q � � �NBd
σpdqN

τp1q
A2

N
τp2q
B2

� � �N τpdq
Bd

,

42



where σ, τ P Sd. Now, we claim that such a term will be non-zero if, and only if
σ � τ . Clearly, if σ � τ , then

sgnpσq sgnpτqNA1

σp1qN
B2

σp2q � � �NBd
σpdqN

τp1q
A2

N
τp2q
B2

� � �N τpdq
Bd

� NA1

σp1qN
σp1q
A2

.

Conversely, if σ � τ , then there is some i P t1, 2, . . . , du such that σpiq � τpiq.
Then the contraction will contain

NBi
σpiqN

τpiq
Bi

� δ
τpiq
σpiq,

by orthogonality, which is zero since we are assuming that σpiq � τpiq. Hence the
only non-zero terms in the contraction are those where the same permutation is
applied to both sets of indices.

Finally, we need only count how many such terms there are. We have just
established that there are d! non-zero terms. Fixing σp1q, one sees that there are

pd � 1q! remaining possibilities for σ, all of which will lead to NA
σp1qN

τp1q
B . Thus as

σp1q ranges over t1, 2, . . . , du, we have that

NA1B2���BdNA2B2���Bd �
¸
σPSd

NA1

σp1qN
σp1q
A2

� pd� 1q! �
�
NA1

1 N1
A2
�NA1

2 N2
A2
� � � � �NA1

d Nd
A2

	
� pd� 1q! �NA1

A2
.

Differentiating the formula obtained in the above display leads to a relationship
between the tractor second fundamental form and the derivative of the tractor nor-
mal form. An alternative route to this is via the following lemma, which we record
for completeness.

Lemma 3.19. The derivative of the tractor normal form expressed in the tractor
projector notation is

∇iNA1A2���Ad�1Ad �
�
∇iNa1a2���ad�1ad � d �Nba2���ad�1adH

bgia1

�
Za1a2���ad
A1A2���Ad

� d �
�
∇i

�
Nba2���ad�1adH

b
	
�Na1a2���ad�1adPi

a1

�
X a2���ad
A1A2���Ad

.

(3.55)

Proof. Recall

NA1A2���Ad � Na1a2���adZ
a1a2���ad
A1A2���Ad

� d �Nba2���adH
bX a2���ad

A1A2���Ad
.
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Differentiating this,

∇iNA1A2���Ad�1Ad � p∇iNa1a2���adqZa1a2���ad
A1A2���Ad

�Na1a2���ad

�
�d � Pia1X a2���ad

A1A2���Ad
� d � δia1Y a2���ad

A1A2���Ad

	
� d �∇i

�
Nba2���adH

b
	
X a2���ad
A1A2���Ad

� d �Nba2���adH
b
�
gia1Z

a1a2���ad
A1A2���Ad

� pd� 1q � δia2W A3���Ad
a1a2a3���ad

	
�
�
∇iNa1a2���ad�1ad � d �Nba2���ad�1adH

bgia1

�
Za1a2���ad
A1A2���Ad

� d �
�
∇i

�
Nba2���ad�1adH

b
	
�Na1a2���ad�1adPi

a1

�
X a2���ad
A1A2���Ad

,

where we use the fact that any terms where the i index is contracted into the normal
form will vanish, since i is a tangential index.

3.7 The proof of Theorem 1.1

Henceforth we will only use indices to distinguish L and L which (as sections of
different bundles) represent the same object, i.e. we will write LiAB � ΠJ

ALiJB
instead of (3.27).

Toward Theorem 1.1, first observe that Proposition 3.10 and Lemma 3.12 to-
gether give equivalence of 1 and 2 in that theorem. The following Theorem shows
that 1 implies 3.

Theorem 3.20. The derivative of the tractor normal form is given in terms of the
tractor second fundamental form by

∇iNA1A2���Ad�1Ad � �d � LirAdA0NA1A2���Ad�1sA0
. (3.56)

Proof. Fix an orthonormal basis of normal tractors tN1
A, . . . , N

d
Au. Recall equa-

tion (3.28) (here we are identifying L with L):

�LiAdA0 � NA0
B ∇iN

B
Ad
.

We have already made use of this to compute the explicit expression (3.31) for
the tractor second fundamental form. Now we make use of it again to compute
NA0
B ∇iN

B
Ad

in a different way.
Working with the orthonormal basis of normal tractors,

NA0
B ∇iN

B
Ad

�
�
NA0

1 N1
B � � � � �NA0

d Nd
B

	
∇i

�
NB

1 N
1
Ad

� � � � �NB
d N

d
Ad

	
�
�
NA0

1 N1
B � � � � �NA0

d Nd
B

	 �
N1
Ad

∇iN
B
1 �NB

1 ∇iN
1
Ad

� � � �

� � � �Nd
Ad

∇iN
B
d �NB

d ∇iN
d
Ad

	
Expanding the final line of the above will yield two types of terms:
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� terms of the form NA0
k Nk

BN
`
Ad

∇iN
B
` , which are zero if k � `; and

� terms of the form NA0
k Nk

BN
B
` ∇iN

`
Ad

, which are zero unless k � `, in which

case it simplifies to NA0
k ∇iN

k
Ad

.

Thus

� LiAd
A0 �

ḑ

k�1

NA0
k ∇iN

k
Ad

�
¸
k�`

NA0
k N `

Ad

�
NB
k ∇iN

`
B

	
. (3.57)

We now use this formula to compute the right-hand side of the equation (3.56).

�LirAdA0NA1A2���Ad�1sA0
�
�

ḑ

k�1

NA0
k ∇iN

k
rAd

�
NA1A2���Ad�1sA0

�
¸
k�`

�
NB
k ∇iN

`
B

	
NA0
k N `

rAd
NA1A2���Ad�1sA0

.

(3.58)

Observe that that each term in the second sum vanishes because if k � ` then
clearly

NA0
k N `

rAd
NA1A2���Ad�1sA0

� 0.

Next we compute an expression for NA0
k NA1A2���Ad�1A0 . It is convenient to inter-

change Ak and A0, so that the two copies of Nk have the same tractor index before
expanding the antisymmetrisation. This will incur a factor of �1 unless d � k; in
this case those indices are already the same. This is the reason for the Kronecker
delta term δk,d in the following.

NA0
k NA1A2���Ad�1A0 � d! �NA0

k N1
rA1
N2
A2
� � �Nk�1

Ak�1
Nk
Ak
Nk�1
Ak�1

� � �Nd�1
Ad�1

Nd
A0s

� p�1q1�δk,d � pd� 1q! �N1
rA1
N2
A2
� � �Nk�1

Ak�1
Nk�1
Ak�1

� � �Nd�1
Ad�1

Nd
Aks

.

(3.59)

For a general term in the first sum of (3.58):�
NA0
k ∇iN

k
rAd

	
NA1A2���Ad�1sA0

� p�1q1�δk,d � pd� 1q! �
�
∇iN

k
rAd

	
N1
A1
N2
A2
� � �Nk�1

Ak�1
Nd
Ak
Nk�1
Ak�1

� � �Nd�1
Ad�1s

� p�1q1�δk,d � p�1q1�δk,d � pd� 1q! �
�
∇iN

k
rAk

	
N1
A1
N2
A2
� � �Nk�1

Ak�1
Nd
Ad
Nk�1
Ak�1

� � �Nd�1
Ad�1s

� pd� 1q! �
�
∇iN

k
rAk

	
N1
A1
N2
A2
� � �Nk�1

Ak�1
Nd
Ad
Nk�1
Ak�1

� � �Nd�1
Ad�1s

� pd� 1q! �N1
rA1
N2
A2
� � �Nk�1

Ak�1

�
∇iN

k
Ak

	
Nk�1
Ak�1

� � �Nd�1
Ad�1

Nd
Ads
.
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Note from the second to third lines we interchange Ad and Ak, which multiplies
the result by �1 unless k � d, so we collect another of the Kronecker delta factors
– and ultimately the two cancel. Finally, it remains to sum the above terms over k:

�
ḑ

k�1

NA0
k ∇iN

k
rAd

�
NA1A2���Ad�1sA0

� pd� 1q! �
ḑ

k�1

N1
rA1
N2
A2
� � �Nk�1

Ak�1

�
∇iN

k
Ak

	
Nk�1
Ak�1

� � �Nd�1
Ad�1

Nd
Ads

� pd� 1q! �∇i

�
N1
rA1
N2
A2
� � �Nd�1

Ad�1
Nd
Ads

	
� 1

d
�∇iNA1A2���Ad�1Ad .

Thus from equation (3.58), we have

�LirAdA0NA1A2���Ad�1sA0
�
�

ḑ

k�1

NA0
k ∇iN

k
rAd

�
NA1A2���Ad�1sA0

� 1

d
�∇iNA1A2���Ad�1Ad ,

whence

∇iNA1A2���Ad�1Ad � �d � LirAdA0NA1A2���Ad�1sA0
.

We now invert the relationship between ∇N and L to get 3 implies 1 in Theorem
1.1.

Theorem 3.21. The tractor second fundamental form is given in terms of the
derivative of the tractor normal form by

NAd�1A2���Ad∇iNA1A2���Ad � �pd� 1q! � LiA1
Ad�1 . (3.60)

Proof. Theorem 3.20 gives that

∇iNA1A2���Ad�1Ad � �d � LirAdA0NA1A2���Ad�1sA0
.

We will contract both sides of this display with NAd�1A2���Ad . First, we see that
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NAd�1A2���AdLirAd
A0NA1A2���Ad�1sA0

� �NAd�1A2���AdLirA1

A0NAdA2���Ad�1sA0

� � 1

d!

¸
σPSd

sgnpσq � LiAσp1qA0NAσpdqAσp2q���Aσpd�1qA0N
Ad�1A2���Ad .

Now, the contraction of the tractor second fundamental form and the first tractor
normal form will be zero unless σp1q � 1, since otherwise the normal form will
be contracted into the (tangential) lower index of the tractor second fundamental
form. Any permutation σ with σp1q � 1 will result in the two normal forms being
contracted on all indices except one on each copy. Hence

� 1

d!

¸
σPSd

sgnpσq � LiAσp1qA0NAσpdqAσp2q���Aσpd�1qA0N
Ad�1A2���Ad

� 1

d!

¸
σPSd

sgnpσqLiAσp1qA0NA0Aσp2q���Aσpd�1qAσpdqN
Ad�1A2���Ad

� 1

d!

¸
σPSymt2,...,d�1,du

sgnpσq � LiA1
A0NA0Aσp2q���Aσpd�1qAσpdqN

Ad�1A2���Ad

� 1

d!

¸
σPSymt2,...,d�1,du

sgnpσq � sgnpσq � LiA1
A0NA0Aσp2q���Aσpd�1qAσpdqN

Ad�1Aσp2q���Aσpdq

� 1

d!

¸
σPSymt2,...,d�1,du

LiA1
A0 � pd� 1q! �NAd�1

A0

� ppd� 1q!q2
d!

LiA1
Ad�1

� pd� 1q!
d

� LiA1
Ad�1 .

Thus, equation (3.56) implies that

NAd�1A2���Ad�1Ad∇iNA1A2���Ad�1Ad � �d �NAd�1A2���Ad�1AdLrAd
A0NA1A2���Ad�1sA0

� �d � pd� 1q!
d

� LiA1
Ad�1

� �pd� 1q! � LiA1
Ad�1 .
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The results above may also be shown by contracting the normal form into (3.55)
and comparing with (3.31).

We now have all the required results to prove Theorem 1.1.

Proof of Theorem 1.1. As remarked above, the equivalence of 1 and 2 follows from
Proposition 3.10 and Lemma 3.12. The equivalence of 1 and 3 follows from Theorems
3.20 and 3.21 above. The equivalence of 3 and 4 is a trivial consequence of the
definition of the Hodge-� (see (2.27)), the fact that the volume tractor (see (2.26))
is parallel, and that �� is � the identity.

Remark 3.22. Many of the results concerning submanifold tractors that were de-
rived in the above sections used nothing more than a local orthonormal basis for the
normal bundle and the Gauß formula. Since the normal tractor bundle is isomorphic
to the usual normal bundle, and we have a Gauß formula in both cases, such proofs
of these results may be repeated mutatis mutandis for the Riemannian objects to
yield analogous statements and formulae; the one caveat being that one should keep
in mind that the connection ∇̌ on T Σ induced from the ambient tractor connection
differs in general from the submanifold tractor connection D by (3.33).

3.8 Submanifold invariants

We have seen above that trace-free second fundamental form arises from using the
(ambient) tractor connection acting on NA

B . More generally the tools we have devel-
oped can be used to proliferate submanifold invariants in obvious ways. We sketch
some routes.

Let us fix some submanifold Σ, as usual of dimension 1 ¤ m ¤ n � 1 and
codimension d, in a conformal manifold pM, cq. Let us write D for the Thomas
operator of the intrinsic conformal structure pΣ, cq. This is given by the formula
(2.21) except that we couple the tractor connection ∇T Σ to the intrinsic Levi-Civita
connection Di and replace n with m. Also in dimensions m � 1, 2 we replace J with
 as described in Section 3.5. In fact it is straightforward to verify this formula (2.21)
provides a conformally invariant operator if we couple the Levi-Civita connection
to any invariant connection on any vector bundle. (The key point is that verifying
its conformal invariance does not involve commuting any derivatives.) To exploit
this observation, we will write D also for the conformally invariant operator given
by the same formula, but where the intrinsic Levi-Civita connection is coupled to
any invariant connection. In practice here, the latter will be the ambient tractor
connection as well as also the intrinsic tractor connection on T Σ.

For example, along Σ, DBNC
D is well defined and conformally invariant, as is

DADBNC
D . Similarly we may instead use the normal form NF1���Fd . And this comes

to the main point. The collection

NF1���Fd , DENF1���Fd , DCDENF1���Fd , DBDCDENF1���Fd , � � �
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embeds the jets of the submanifold into sections of tractor bundles in a conformally
invariant way, up to any desired order. These objects can then be contracted or
partially contracted to produce non-linear invariants. For example

pDCDENA
B qpDCDENB

A q

is a non-trivial scalar conformal invariant of submanifolds for most dimensions m.
Similarly (for m ¥ 4) we may form

W
CDEF pDDDFNA

B qpDCDENB
A q,

where W is the W -tractor, as defined in [48], but for the intrinsic geometry of the
submanifold Σ. In the parlance of invariant theory such obvious complete contrac-
tions are called scalar Weyl invariants [6]. A slightly more subtle construction uses
the idea of quasi-Weyl invariants, as in [48], but this will still proceed using the
tools developed here. Indeed the results from [48] (for conformal invariants) suggest
it is likely that these techniques would, in a suitable sense, produce almost all scalar
invariants.

The construction of tensor-valued invariants is slightly more complicated, and
involves ideas as here plus the use of differential splitting operators that map (in a
conformally invariant way) between tensor and tractor bundles (see, e.g., Theorem
6.1 and (6.8) in Section 6). Some applications of these for the construction of
hypersurface invariants are given in [8].
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4 Characterising and generalising mean cur-

vature, and applications

Note that for a given submanifold Σ, in a Riemannian manifold pM, gq, its mean cur-
vature vector Ha P ΓpNΣr�1sq can equivalently be captured by the mean curvature
tractor

HA :� σNA
a H

a P ΓpN q
via the isomorphism of Lemma 3.3 and where σ P ΓpEr1sq is the scale giving g, that
is g � σ�2g. With this terminology and notation, we can state the following result.

Proposition 4.1. Let Σ be a submanifold in a Riemannian manifold pM, gq. Then

HA � NA
B I

B. (4.1)

Proof. In the scale of the metric g � σ�2g the scale tractor takes to form IA �
σY A � ρXA, for some weight density ρ, or weight �1. So from formula (3.30) in
Lemma 3.13, we see that NA

BX
B � 0 and

NA
B I

B � σHaZAa � σpHbHbqXA. (4.2)

But, from (3.15), this is exactly HA.

Thus minimal submanifolds, meaning those with Ha � 0, are nicely captured by
orthogonality of the scale tractor to the normal tractors, as follows (as was known
in the case of hypersurfaces [52]).

Corollary 4.2. In a Riemannian manifold pM, gq, let I denote the scale tractor of
g. A submanifold Σ, of dimension m, is minimal if and only if, one of the following
equivalent conditions holds

1. IANB
A � 0 ;

2. IA1NA1A2���Ad � 0;

3. IrA0 �NA1A2���Am�2s � 0;

4. I P ΓpNKq;
5. HAIA � 0.

Remark 4.3. Corollary 4.2 here generalizes Theorem 2 from [55], as a minimal
1-dimensional submanifold in a Riemannian manifold is exactly a geodesic.

Note also that the corollary shows that for a minimal submanifold Σ the ambient
scale tractor IA can, along Σ, be identified with a section of the intrinsic tractor
bundle T Σ via (3.18) of Theorem 3.5.

50



It is natural to say that a Riemannian submanifold has constant mean curvature
(CMC) if the function

σ2HaHa P ΓpEr0s|Σq
is constant on Σ, where σ is the scale of the metric g used to calculate the mean
curvature (the reader is cautioned that this is only standard terminology for the
case of hypersurfaces; in higher codimension there are other possibilities for the
definition of CMC). We will say that a Σ has parallel mean curvature if

∇K
i H

b � 0,

or equivalently ∇K
i pσHbq � 0; clearly this is stronger than the CMC condition.

These notions are also usefully captured by tractors.

Proposition 4.4. In a Riemannian manifold pM, gq, let I denote the scale tractor
of g. A submanifold Σ:

� is CMC if and only if

NABI
AIB, or equivalently, HAIA

is constant along Σ;

� has parallel mean curvature if and only if

∇N
i H

B � 0, or equivalently, NA
B∇iH

B � 0.

Proof. Continuing in notation and choices of the Proof of Proposition 4.1, the first
statement follows by contracting IA � σY A � ρXA into (4.2). The second is imme-
diate from Lemma 3.4.

Remark 4.5. Note that if a submanifold Σ in pM, gq has parallel mean curvature,
then it is CMC as, in the scale of the metric g � σ�2g,

∇ipσ2HaHaq � 2σ2Ha∇K
i Ha.

The converse does not hold. For example in Euclidean 3-space a round 2-circle (say
in the x � y-plane) has is parallel mean curvature (and so is also CMC). But a
regular spiral is CMC (by dint of its invariance under the obvious group action) but
does not have parallel mean curvature.

Note that the stronger notion of parallel mean curvature

∇ipσHaq � 0

implies CMC also. Thus |σH| � ?
σ2HaHa is constant and σHa � |σH|pna for some

a unit normal along Σ that must be parallel. Such a parallel unit normal means that
the acceleration of any curve in Σ is orthogonal to pn, so the second fundamental
form and Ha are orthogonal to pn. But the latter obviously means Ha � 0.
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Part of the importance of Proposition 4.1, Corollary 4.2, and Proposition 4.4,
is that in means that these quantities and notions at once extend to the setting of
almost-Riemannian manifolds (as defined in Section 2.4). For emphasis we make
this a definition.

Definition 4.6. Let pM, c, Iq be an almost-Riemannian manifold. For any embed-
ded submanifold Σ we define HA � NA

B I
B to be its mean curvature. Then we say

it is, respectively, CMC or has parallel mean curvature if one of the conditions dis-
played in Proposition 4.4 holds. Similarly we say that it is minimal if any one of
the equivalent conditions of Corollary 4.2 holds.

For an almost-Riemannian manifold pM, c, Iq, the zero locus Zpσq, of σ :� XAIA,
is (closed and) nowhere dense. Thus, by continuity, the notions in the definition
extend those on MzZpσq, as in the following proposition.

Proposition 4.7. Let pM, c, Iq be an almost-Riemannian manifold and σ :� XAIA.
Then an embedded manifold Σ is minimal, CMC, or mean curvature parallel in the
sense of Definition 4.6 if and only if satisfies the corresponding condition (in the
non-generalised sense) on MzZpσq for the metric g :� σ�2g.

This perspective enables an easy recovery of the following result, which is well-
known from other perspectives.

Proposition 4.8. On a conformally compact manifold, any minimal submanifold
that extends smoothly to the boundary meets the boundary orthogonally.

Proof. On a conformally compact manifold BM � Zpσq,

IA|BM � p∇aσqZAa � 1

n
∆σXA, (4.3)

and ∇aσ is nowhere-zero along the boundary. See Section 2.4. Thus if Σ meets BM
then we have

IAN
A
B � Na

B∇aσ along Σ,

(using (3.30)) and so Σ minimal, meaning IAN
A
B � 0, implies

Na
B∇aσ � 0, whence, Na

b∇aσ � 0.

That is ∇aσ (the conormal to the boundary BM) is orthogonal to the normal pro-
jector of Σ.

Suppose now that pM, c, Iq is an almost-Einstein manifold. If Σ is minimal
then, as observed above, IA may be identified with a submanifold tractor. Since IA
is parallel for the standard tractor connection, and IA is a submanifold tractor, IA
is also parallel for the connection ∇̌:

∇̌iIJ � ΠA
J∇i

�
ΠK
A IK

� � ΠA
J∇iIA � 0,
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as defined in (3.21). Therefore, from the decomposition (3.33), one sees that IJ is
parallel for the submanifold tractor connection if, and only if, SJi KI

K � 0.
Choosing a background scale to split the tractor bundles, we have that

Si
J
KI

K � Fij
�
ZJjXK � ZjKXJ

	�
σY K �∇kσZ

Kk � 1

n
p∆� JσqXK



� Fij

�
σZJj �∇jσXJ

�
.

Recall that on almost-Einstein manifolds the 1-jet j1σ can only vanishes at isolated
points (see the discussion of Section 2.4, and references therein, for details). There-
fore away from these points we must have Fij � 0, and then also at those points by
continuity. Thus we have the following result.

Proposition 4.9. Let Σ ãÑ M be a minimal submanifold of an almost-Einstein
manifold pM, c, Iq. Then Σ is almost-Einstein if, and only if, Fij � 0.

In a conformal or Riemannian manifold a distinguished submanifold Σ is nec-
essarily totally umbilic. Thus if, in a Riemannian manifold, Σ is distinguished and
minimal then it is totally geodesic. This has a converse if the Riemannian manifold
is Einstein.

Proposition 4.10. Let pM, c, Iq be an almost-Einstein manifold. Suppose that Σ
is a submanifold of codimension d. If Σ is an umbilic, minimal submanifold, then
Σ is a distinguished submanifold.

Proof. We must show any of the equivalent conditions of Theorem 1.1.
That Σ is minimal implies that HB � 0 on M . Since also Σ is totally umbilic it

follows that on MzZpσq we have that it is totally geodesic, and hence ∇iNa1a2���ad �
0. The almost-Einstein condition implies that Nba2���adPi

b � 0 on MzZpσq, where we
calculate in the scale of the metric gσ � σ�2g, with σ :� XAIA. Combining these
observations and using formula (3.56) we have that ∇iNA1A2���Ad � 0 on MzZpσq.
But then by continuity ∇iNA1A2���Ad � 0 on M , as Zpσq is nowhere dense.

Thus if our ambient space is almost-Einstein, for submanifolds that are minimal
and umbilic (so totally geodesic, in the generalised sense) first integrals may be
proliferated using Corollary 1.4 (and the theory to be developed in Section 6). These
conserved quantities will extend to/across singularity sets of these geometries where
they exist.
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5 Distinguished submanifolds and conformal

circularity

We fix some notational conventions for this chapter. We will denote by γ a smooth
curve in a conformal manifold pM, cq. By this we will here mean a smooth, regular
curve γ : I Ñ M (for some interval I). We will often identify γ with its image and
we typically assume that this an embedded submanifold.

The symbols ub and ab will denote, respectively, the velocity and acceleration
the curve γ, so ab � ua∇au

b. Note that the acceleration ab depends on a choice of
metric g P c and is not conformally invariant; it is easy to check that if pg � Ω2g thenpab � ab�uauaΥb�2uaΥau

b, where Υa � Ω�1∇aΩ. We also define u :�
a
gabuaub P

ΓpEr1s|γq. For some connection ∇, we will also use the notation d∇

dt , or d
dt when the

meaning is clear by context, to mean ua∇a. The connection ∇ may be a Levi-Civita
connection or the standard tractor connection; this should be unambiguous from
context. Sometimes we will prefer to work with weighted versions of the velocity
and acceleration vectors. These will be denoted by ub :� u�1ub P ΓpEbr�1s|γq and
ab :� uc∇cu

b P ΓpEbr�2s|γq respectively.

5.1 Background on conformal circles

A smooth curve γ is said to be a (projectively parametrised) conformal circle if,
with respect to some (equivalently any) choice of g P c, its velocity and acceleration
satisfy [4]

uc∇ca
b � u2ucPc

b � 3u�2 pucacq ab � 3

2
u�2 pacacqub � 2ucudPcdu

b, (5.1)

where u2 � u �u � uau
a here should be understood to be unweighted. Equation (5.1)

is a third order, conformally invariant analog of the geodesic equation in Riemannian
geometry and solutions of (5.1) are sometimes referred to as conformal geodesics
[44] (we prefer conformal circles). As with the geodesic equation uc∇cu

b � 0,
equation (5.1) can be broken up into its tangential and normal components along
the curve and any curve in M can be parametrized so that the tangential part of
(5.1) holds; such a parametrisation is determined up to the action of PSLp2,Rq
and a curve with such a parametrisation is said to be projectively parametrised [4].
(The existence of such a parametrisation, and likely the notion of conformal circles
also, goes back to Élie Cartan; see [24]. For early treatments of conformal circles,
see [39, 44, 85, 86, 89, 100, 101]. In the literature conformal circles are sometimes
taken to be parametrised by arclength with respect to chosen metric g rather than
projectively parametrised, and in this case they satisfy a slightly different equation;
see, e.g. [101, Chapter VII, §2].) Asking only that the normal (to the curve)
part of (5.1) holds gives a notion of conformal circles that does not depend on the
parametrisation, and any such curve can be reparametrised so that (5.1) holds.
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Note that a geodesic for a metric g P c need not be a conformal circle; indeed,
this could not be the case since any curve γ in M is locally an affinely parametrised
geodesic for some choice of metric g P c (see Remark 3.2). Following this line of
thought, however, one sees as a direct consequence of (5.1) that a curve γ is a
projectively parametrized conformal circle if and only if there is a metric g P c with
respect to which γ is an affinely parametrised geodesic and ucPc

b � 0 [4]. Note also
that in the special case where one has an Einstein metric g in the conformal class it
follows from (5.1) that geodesics for g are conformal circles, though the unit speed
parametrization is not a projective parametrization except in the Ricci flat case.

The notion of conformal circles arises naturally from the Cartan geometric de-
scription of conformal structures in dimensions n ¥ 3 (and Möbius conformal struc-
tures in two dimensions) and as such it is natural that they can be simply described
using tractor calculus (the corresponding calculus of associated bundles). With this
in mind we now introduce some important tractor fields associated to the curve γ.
Recall that the canonical tractor XB can be viewed as a section of EBr1s. Hence
u�1XB is an unweighted tractor along the curve and so the tractor covariant deriva-
tive of u�1XB along the curve is well defined (conformally invariant). Following [5],
we define

UB :� ua∇a

�
u�1XB

�
(5.2)

and
AB :� ua∇aU

B, (5.3)

which we call the velocity and acceleration tractors respectively. Explicitly, one has

UB
g�
�� 0

u�1ub

�u�3 pucacq

� (5.4)

and

AB
g�
�� �u

u�1ab � 2u�3pucacqub
�u�3

�
uc

dac

dt

�� u�3aca
c � 3u�5pucacq2 � u�1Pcdu

cud

�. (5.5)

It is easily checked that

UBUB � 1, UBAB � 0 (5.6)

and that

ABAB � 3u�2aba
b � 2u�2ubu

c∇ca
b � 6u�4pucacq2 � 2Pabu

aub. (5.7)

Consequently, a curve γ : I Ñ M is projectively parametrised if, and only if,
ABAB � 0. It was then shown in [5] that a projectively parametrised curve γ : I Ñ
M is a conformal geodesic if, and only if,

d∇AB

dt
� 0. (5.8)
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More recently, it was shown by the second and third named authors and Taghavi-
Chabert [56] that a curve γ is an unparametrised conformal circle if, and only if,
d∇AB{dt is zero modulo UB and XB; given the definitions of the velocity and accel-
eration tractors this is equivalent to saying that γ is an unparametrised conformal
circle if, and only if, the 3-tractor

ΦABC :� 6u�1XrAUBACs (5.9)

is covariantly constant along γ. To see this we note the following: Firstly,

ΦABC � 6ucXrAY BZCsc � 6ubacXrAZBb Z
Cs
c , (5.10)

where uc � u�1uc (so that gabu
aub � 1) and ac � ub∇bu

c � u�2ac � u�4pubabquc.
It is then easy to show that

ud∇cΦ
ABC � 6

�
ud∇da

c � udPd
c
	

ubXrAZBb Z
Cs
c . (5.11)

On the other hand, the requirement that the normal (to the curve) part of (5.1) holds
can be written in terms of the weighted velocity and acceleration as [56, Lemma 4.9]�

ud∇da
rb
	

ucs � udPd
rbucs, (5.12)

from which the claim follows.
Note that from (5.10) one can easily check that ΦABCΦABC � 6, and that

ΦABCN
A � 0 for any section NA of the normal tractor bundle to γ (the easiest way

to see the latter is to compute in a minimal scale g for γ, equivalently, a scale for
which ac � 0). It follows that

ΦABC � �NγãÑM
ABC , (5.13)

the Hodge star of the tractor normal form of γ as a submanifold of M .
This observation combined with the result from [56] described in the preceding

paragraph shows that Theorem 1.2 follows from Theorem 1.1.
For a related approach to studying conformal circles using tractors, see [90].

5.2 Weak conformal circularity of submanifolds

With this background established we begin our discussion of conformal circularity.

Definition 5.1. A submanifold Σ is weakly conformally circular if any M -conformal
circle, whose 2-jet at a point lies in Σ, remains in Σ. That is, if γ is an M -conformal
circle whose 2-jet at some point p lies in Σ (with γp0q � p), then γptq P Σ for all t.
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In the model case of the conformal sphere (see Section 2.3) both conformal circles
and totally umbilic submanifolds arise (by ray projectivisation) from the intersec-
tions of suitable linear subspaces with the forward null cone. Thus the conformal
circles are all given by (transverse) intersections of totally umbilic submanifolds, and
a submanifold of the conformal sphere is weakly conformally circular if and only if
it is totally umbilic. It is natural to ask to what extent these facts generalize to
the curved setting. In this case one quickly sees that the condition of being totally
umbilic must be replaced with the stronger condition of being a distinguished sub-
manifold (in the conformally flat case for submanifolds of dimension greater than
one the vanishing of I̊I is equivalent to the vanishing of the tractor second fundamen-
tal form L, but this is no longer true in general conformal manifolds; see Remark
5.7). If two distinguished submanifolds intersect transversally in a 1-dimensional
submanifold γ then, since the wedge product of the two corresponding normal trac-
tors must be parallel along γ, γ must be a conformal circle (but, due to the sparsity
of distinguished submanifolds in the curved setting, conformal circles no longer arise
this way in general). An extension of this idea shows that a submanifold is weakly
conformally circular if, and only if, it is distinguished. That is the content of the
following theorem.

Theorem 5.2. A submanifold Σ ãÑ M is weakly conformally circular if, and only
if, LiJC � 0.

Proof. A one dimensional submanifold Σ is weakly conformally circular if, and only
if, it is a conformal circle. Thus in the one dimensional case the result follows
immediately from Theorem 1.2, which states that a curve is a conformal circle if,
and only if, when viewed as a submanifold its tractor second fundamental form L
vanishes.

Suppose now that Σ has dimension at least 2, and is weakly conformally circular.
Let γ be an M -conformal circle whose 2-jet at p P Σ lies in Σ. Then by assumption
γ remains in Σ. We need to introduce some notation. Let

� NΣãÑM
A1A2���Ad

be the normal form of Σ ãÑM ,

� NγãÑM
A1A2���An�1

be the normal form of γ ãÑM , and

� NγãÑΣ
A1A2���Am�1

be the normal form of γ ãÑ Σ, where we are identifying the

tractor bundle of Σ with NK, and hence this form is a section of Λm�1TM |Σ.

First we note some important relations between these various normal forms. First,
since the curve γ lies in the submanifold Σ, we have

N
A1B2���Bm�1

γãÑΣ NΣãÑM
A1A2���Ad

� 0. (5.14)

Second, by using the discussion surrounding equation (3.53), one can easily show
that

NγãÑΣ
A1A2���Am�1

^NΣãÑM
Am���An�1

� NγãÑM
A1A2���An�1

. (5.15)
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Finally, since γ is an M -conformal circle, it follows from Theorem 1.2 that

ui∇iN
γãÑM
A1A2���An�1

� 0.

Therefore, using the above,�
ui∇iN

γãÑΣ
rA1A2���Am�1

	
NΣãÑM
Am���An�1s

�NγãÑΣ
rA1A2���Am�1

�
ui∇iN

ΣãÑM
Am���An�1s

	
� 0,

and hence�
ui∇iN

γãÑΣ
rA1A2���Am�1

	
NΣãÑM
Am���An�1s

�NγãÑΣ
rA1A2���Am�1

�
�d � uiLiAn�1

A0NΣãÑM
Am���An�2sA0

	
� 0

by Theorem 3.20, where L is the tractor second fundamental form of γ. Since
the downstairs tractor index on LiAn�1

A0 is “tangential to Σ” it is easy to see
that the two terms on the left hand side of the above displayed equation lie in
complementary subspaces of the bundle of tractor pn� 1q-forms (the first term is in
the ideal generated by NΣãÑM and the second term is in the orthogonal complement
to this ideal) and hence both terms must vanish. Thus, in particular,

NγãÑΣ
rA1A2���Am�1

uiLiAn�1
A0NΣãÑM

Am���An�2sA0
� 0.

Contracting the above display with N
Am���An�2B
ΣãÑM (cf. the proof of Theorem 3.21)

then gives
NγãÑΣ
rA1A2���Am�1

uiLiAn�1s
B � 0,

which is equivalent to
uiLiABΠγãÑΣA

C � 0, (5.16)

where ΠγãÑΣ is the projector onto the rank 3 tractor bundle of the 1-manifold γ,
viewed as a subbundle of the ambient tractor bundle along γ. Therefore it follows
that

uiLiABUA � 0,

where UA is the velocity tractor of the curve (note that UA may be viewed as a
section of the intrinsic standard tractor bundle of γ; one can easily check this by
working in a minimal scale for γ, where uba

b � 0). Using Theorem 3.14 we now see
that, in particular, I̊Iij

cuiuj � 0. But the above must hold for any M -conformal
circle γ, and hence I̊Iij

cuiuj � 0 for all ui P ΣpE iq, whence Σ is totally umbilic by
polarization.

Since we have already seen that I̊Iij
c � 0, it suffices to show that Nc

b

�
Pi
b �∇iH

b
� �

0. Returning to (5.16), if we contract this with Y A (or ΠA
I Y

I , cf. (3.20)) this gives

uiNc
b

�
Pi
b �∇iH

b
	
ZBc � uiHb

�
Pi
b �∇iH

b
	
XB � 0,

by Theorem 3.14, since the other slots of L have already been shown to be zero.
Since, again, this must hold for all ui P ΣpE iq we obtain the result.
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For the converse, let us consider a curve γ in Σ that satisfies

ui∇̌iN
γãÑΣ
A1A2���Am�1

� 0 and ABAB � 0 (5.17)

where we have used the connection ∇̌. Then, equivalently,�
ui∇iN

γãÑΣ
rA1A2���Am�1

	
NΣãÑM
Am���An�1s

� 0.

Suppose now that LiJC � 0, then�
ui∇iN

γãÑΣ
rA1A2���Am�1

	
NΣãÑM
Am���An�1s

�NγãÑΣ
rA1A2���Am�1

�
�d � uiLiAn�1

A0NΣãÑM
Am���An�2sA0

	
� 0,

and so
ui∇iN

γãÑM
A1A2���An�1

� 0.

That is, if γ in Σ satisfies (5.17) and LiJC � 0 then γ is a conformal circle for pM, cq.
Now, it is straightforward to check that a curve satisfying (5.17) that is further pro-
jectively parametrised with respect to the conformal structure on M (meaning its
M -acceleration tractor satisfies ABAB � 0) is determined by its 2-jet in Σ at any
point on its path. This follows because, by construction, a projectively parametrised
curve satisfying (5.17) is characterised by a third order ordinary differential equation
in any local coordinate chart (analogous to how the pΣ, cΣq-conformal circle equa-
tion is equivalent to the requirement that the curve be Σ-projectively parametrised
and satisfy uiDiN

γãÑΣ
A1A2���Am�1

� 0, and the pM, cq-conformal circle equation is equiv-
alent to the requirement that the curve be M -projectively parametrised and satisfy
ua∇aN

γãÑM
A1A2���An�1

� 0; cf. Remark 5.3 below). Now, suppose LiJC � 0. Then, given
any 2-jet of a curve in Σ, the corresponding M -projectively parametrised solution of
(5.17) is also an M conformal circle. Moreover, since a conformal circle in pM, cq is
determined by its 2-jet at any point on its path, all conformal circles corresponding
to two jet initial data lying in Σ arise this way; in particular, all such curves lie in
Σ. That is, Σ is weakly conformally circular.

Remark 5.3. Here we give a version of the proof that LiJC � 0 implies weak
conformal circularity that avoids the use of tractor calculus. (This is along the
lines of a proof of a similar result in [7], to an extent the tractor picture provides
a conceptual basis for the idea.) For convenience, we work in a minimal scale g.
Rather than considering curves γ in Σ solving (5.17) we will consider the curves γ
in Σ solving the adapted conformal circle equation

dDaj

dt
� u2 � uiPij � 3u�2

�
uka

k
	
aj � 3

2
u�2

�
aka

k
	
uj � 2ukulPklu

j , (5.18)

where as usual Pi
j and Pkl denote the restriction of the ambient Schouten tensor

to the intrinsic tangent and cotangent bundles, and dD

dt denotes uiDi where D is
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the intrinsic Levi-Civita connection for the pullback gΣ of the ambient scale g. We
say that γ is an adapted conformal circle if it satisfies this equation. (That equa-
tion (5.18) is equivalent to (5.17) should be clear from what follows, but we do not
need this for the argument given in this remark.) Note that equation (5.18) is a
third order ODE on Σ, and therefore the initial value problem with given 2-jet ini-
tial data has a unique solution on Σ for some interval centered at 0. This solution
may also be viewed as a curve in M , and one may ask whether it solves a related
ODE there. Since the 2-jet of γ is initially tangential and LiJC � 0 implies in
particular that I̊Iij

c � 0, it follows that in our minimal scale Πb
ju
j � ub, Πb

ja
j � ab

and Πb
j
dDaj

dt � d∇ab

dt (the last two identities being consequences of the Gauss formula

with II � 0). Thus uka
k � uca

c, aka
k � aca

c and ukulPkl � ucudPcd. Moreover,
LiJC � 0 also implies (again for the minimal scale) that Nc

bPi
b � 0, and thus one

easily sees that, as a curve in M , γ satisfies

d∇ab

dt
� u2

�
Πb
ju
iPi

j
	
� 3u�2 pucacq ab � 3

2
u�2 pacacqub � 2ucudPcdu

b

� u2 � ucPcb � 3u�2 pucacq ab � 3

2
u�2 pacacqub � 2ucudPcdu

b,

which is exactly the (projectively parametrized) M -conformal circle equation. So if
LiJC � 0, and γ is an adapted conformal circle, then it is an M -conformal circle,
and by the uniqueness of solution to an initial value problem, the curve γ, which lies
in Σ, is the unique M -conformal circle with the given initial conditions. Hence any
M -conformal circle whose 2-jet at a point p P Σ is tangential will remain in Σ, i.e.
Σ is weakly conformally circular.

For his approach to submanifold circularity, Belgun [7] introduced a conformal
invariant µ P ΓpT �ΣbNΣqr�2s given by

µi
c :� Nc

b

�
Pi
b �∇iH

b � 1

m� 1
Dj I̊Iij

b



, (5.19)

when m � 1 and where the intrinsic Levi-Civita connection D is coupled to the
normal connection ∇K (Belgun terms this the mixed Schouten-Weyl tensor since
the main term is the tangential-normal part of the ambient Schouten tensor, which
he calls the Schouten-Weyl tensor). In the m � 1 case (i.e. Σ is a curve) the same
formula except omitting the last term on right hand side of (5.19) defines µ. (Recall
that for a curve, one has I̊Iij

c � 0.) In fact it is straightforward to show (by
substituting the Weyl-Schouten decomposition of the ambient curvature tensor into
the Codazzi equation [91]) that in the cases m � 1,

µi
c � 1

m� 1
Wij

djNc
d, (5.20)

from which the conformal invariance is clear. In [7] Belgun characterises weakly
conformal circular submanifolds (termed weakly conformal geodesic in [7]) as those
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for which I̊I � 0 and µ � 0. Inspecting (3.31), in Theorem 3.8, one sees immediately
that this is equivalent to the vanishing of L.

Proposition 5.4. Let Σ ãÑM be a submanifold in a conformal manifold with LiJC
its tractor second fundamental form. Then LiJC � 0 if, and only if, I̊Iij

c � 0 and
µi
c � 0.

In fact the invariant µ arises naturally from L. The projecting part of L is
necessarily invariant and this is I̊I. An obvious question is whether conversely L
is then image of a natural linear differential operator acting I̊I, in which case they
would be equivalent. (For example as the tractor curvature is the image of the Weyl
curvature in dimensions at least 4.) This leads us to the following lemma, which
exhibits a conformally invariant differential operator between the relevant bundles:

Lemma 5.5. There is an invariant map M : S2
0T

�Σ b NΣ Ñ T �Σ b T �Σ b N .
Written in tractor projectors, this takes the form

ωij
c ÞÑMpωqijC :�ωijcZjJZCc � 1

m� 1
Djωij

cXJZ
C
c

�Hcωij
cZjJX

C � 1

m� 1
HcD

jωij
cXJX

C ,

(5.21)

where again the intrinsic Levi-Civita connection D is coupled to the normal Levi-
Civita connection ∇K when acting on ω.

Proof. Given ωij
c P ΓpS2

0T
�ΣbNΣq, using (2.8) and (3.12), one computes that

pDjωij
c � Djωij

c � pm� 1qΥjωij
c �Υiωkl

cgkl � Djωij
c � pm� 1qΥjωij

c (5.22)

since ωij
c is trace-free over the pair of indices pi, jq.

Therefore, using the above together with equations (3.14) and (2.15), and that
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the X tractor is conformally invariant,

ωij
c pZjJ pZCc � 1

m� 1
pDjωij

c pXJ
pZCc � pHcωij

c pZjJ pXC � 1

m� 1
pHc
pDjωij

c pXJ
pXC

� ωij
c
�
ZjJ �ΥjXJ

	 �
ZCc �ΥcX

C
�

� 1

m� 1

�
Djωij

c � pm� 1qΥjωij
c
�
XJ

�
ZCc �ΥcX

C
�

�
�
Hc �Nd

cΥd

	
ωij

c
�
ZjJ �ΥjXJ

	
XC

� 1

m� 1

�
Hc �Nd

cΥd

	 �
Djωij

c � pm� 1qΥjωij
c
�
XJX

C

� ωij
cZjJZ

C
c � 1

m� 1
Djωij

cXJZ
C
c � pHcωij

c � ωij
cΥc � ωij

cΥcqZjJXC

�
�
� 1

m� 1
HcD

jωij
c �Hcωij

cΥj � 1

m� 1
ΥcD

jωij
c � ωij

cΥjΥc � ωij
cΥjΥc

� 1

m� 1
ΥcD

jωij
c �Hcωij

cΥj � ωij
cΥjΥc � ωij

cΥjΥc



XJX

C

� ωij
cZjJZ

C
c � 1

m� 1
Djωij

cXJZ
C
c �Hcωij

cZjJX
C � 1

m� 1
HcD

jωij
cXJX

C ,

which verifies the claimed conformal invariance of the operator McJ
jC .

Asking whether L is the image of I̊I under M then immediately leads to the µ
invariant:

Theorem 5.6. The tensor µi
c is equal to the projecting part of the tractor

LiJC �MpI̊IqiJC . (5.23)

In particular, µi
c is a conformal invariant of the embedding.

Proof. By inspection, one sees that (5.23) has zero in the ZjJZ
C
c slot (since ZKj Z

c
DLiKD �

I̊Iij
c) and hence projecting out the XJZ

C
c slot must yield a conformally invariant

object. Such projection is accomplished by contraction with Y JZcC , and from equa-
tions (3.31) and (5.21) one sees that this projection is equal to

Y JZcC

�
LiJC �MpI̊IqiJC

	
� Nc

b

�
Pi
b �∇iH

b
	
� 1

m� 1
Dj I̊Iij

c, (5.24)

which is exactly µi
c as defined in (5.19) (since the c index of Dj I̊Iij

c is already
normal).

In fact, the data pI̊Iijc, µicq is equivalent to the tractor second fundamental form.
We have seen how to obtain I̊Iij

c and µi
c from LiJC . For the reverse direction, note
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that LiJC may be constructed from pI̊Iijc, µicq according to

pI̊Iijc, µicq ÞÑ I̊Iij
cZjJZ

C
c �

�
µi
c � 1

m� 1
Dj I̊Iij

c



XJZ

C
c

�HcI̊Iij
cZjJX

C �Hc

�
µi
c � 1

m� 1
Dj I̊Iij

c



XJX

C .

(5.25)

Remark 5.7. Note that the conformal invariant µ (in codimension d ¡ 1 where it
is not forced to vanish) is independent from the trace free second fundamental form
I̊I, and these two invariants are also independent from the Fialkow tensor F (see
[7, Theorem 4.22], which further shows that the conformally invariant curvature of
the weighted normal bundle NΣr�1s can also be independently specified). Indeed, it
is not difficult to see that these three invariants capture different parts of the second
order jet of the metric about the submanifold Σ and hence all three can be prescribed
arbitrarily when extending a metric on Σ to a metric in a neighborhood of Σ in
Σ� Rd.

Note further that the preceding observation establishes the abundance of con-
formal manifolds admitting distinguished submanifolds of any given dimension and
codimension. But in a given conformal manifold pM, cq, outside of the dimension
1 case of conformal circles which are abundant, distinguished submanifolds (which
must in particular be totally umbilic) are typically rare, the existence of the requi-
site parallel tractor constrains the possible compatible tractor curvature along the
submanifold.

5.3 Strong conformal circularity

Unlike the situation for geodesics in Riemannian geometry, in conformal geometry if
a submanifold is weakly conformally circular the submanifold conformal circles need
not be ambient conformal circles. This leads to the following two stronger notions
of conformal circularity.

Definition 5.8. Let Σ be a submanifold in a conformal manifold M . Then Σ is
strongly conformally circular if any projectively-parametrised Σ-conformal circle is
also a projectively-parametrised M -conformal circle. For the cases of submanifolds
of dimensions 1 and 2, recall that the intrinsic conformal structure does not deter-
mine a conformal circle equation, however, the induced Möbius structures defined
in Section 3.5 do determine a conformal circle equation (the usual conformal circle
equation (5.1) with the Schouten tensor being as defined in Section 3.5), and that is
the notion we are using here.

Definition 5.9. Let Σ be a submanifold in a conformal manifold M . Then Σ
is conformally circular if any unparametrised Σ-conformal circle is also an un-
parametrised M -conformal circle.
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Definition 5.8 appears in [7], where the term strongly conformally geodesic is
used. In the following two theorems we characterise these two notions of conformal
circularity in terms of the basic tractor invariants L and S of the conformal sub-
manifold Σ. The first theorem below is easily seen to be equivalent to [7, Theorem
5.4(3)], but we include proofs of both theorems for completeness.

Theorem 5.10. Let Σ be a submanifold in a conformal manifold M . Then Σ is
strongly conformally circular if, and only if LiJC � 0 and SiJK � 0 (i.e. Fij � 0).

Theorem 5.11. Let Σ be a submanifold in a conformal manifold M . Then Σ is
conformally circular if, and only if LiJC � 0 and SiJK 9 gijZjrJXKs (i.e. Fij 9 gij).

Note that following our conventions for the Fialkow tensor in Section 3.5, these
results still hold when Σ is a submanifold of dimension 2. The Σ-conformal cir-
cle equation is then the usual conformal circle equation (either the projectively
parametrized equation (5.1) or the parametrization-independent weighted equa-
tion (5.12)) with the Schouten tensor defined in Section 3.5 playing the role of
the usual Schouten tensor. For a 1-dimensional submanifold, weakly conformally
circular and strongly conformally circular are equivalent (and the Fialkow tensor is
defined to be zero), so in this case Theorems 5.10 and 5.11 reduce to the fact that
a conformal circle is characterized by L � 0.

Proof of Theorem 5.10. First suppose that Σ is strongly conformally circular. Since
Σ is then also weakly conformally circular, we must have LiJC � 0 by Theorem 5.2.
In particular, Σ is totally umbilic (I̊Iij

c � 0). Now, suppose that γ is a projectively
parametrised Σ-conformal circle with initial data a given 2-jet at p P Σ. Then by
assumption γ is also an M -conformal circle with the same initial data, now viewed
as the 2-jet of a curve in M . Let g P c be a minimal scale for Σ. The curve γ must
satisfy the intrinsic and ambient versions of the conformal circle equation, namely

dDaj

dt
� u2 � uipij � 3u�2

�
uka

k
	
aj � 3

2
u�2

�
aka

k
	
uj � 2ukulpklu

j (5.26)

and

d∇ab

dt
� u2 � ucPcb � 3u�2 pucacq ab � 3

2
u�2 pacacqub � 2ucudPcdu

b (5.27)

respectively. From the Gauß formula (3.5) and the fact that Σ is totally geodesic
with respect to g, we have that

ab � ui∇iu
b � Πb

ju
iDiu

j � IIij
buiuj � Πb

ja
j

and
d∇ab

dt
� Πb

j

dDaj

dt
,

64



where aj � dDuj

dt , i.e. the acceleration of the curve calculated intrinsically. Therefore,

applying Πj
b to (5.27) and subtracting (5.26) from the result, we see that

u2 � ukPkj � 2ukulPklu
j � u2 � ukpkj � 2ukulpklu

j ,

where we have used that Πj
bu
b � uj , Πj

ba
b � aj , uca

c � uka
k (which follows from

the Gauß formula without the need for g to be a minimal scale since uc is tangent
to the submanifold Σ), and acac � akak (since Σ is totally geodesic with respect to
g). Contracting the above display with uj yields

u2 � ujukPkj � 2ukulPkl � u2 � u2 � ujukpkj � 2ukulpkl � u2,

and hence
pPij � pijquiuj � 0. (5.28)

Since IIij
c � 0, the term in parentheses in the above display is exactly the Fialkow

tensor Fij from (3.36). Now, at any point p P Σ, any u P TpΣ can arise as the
velocity of a conformal circle, and hence (5.28) must hold for all ui P E i. Hence
Fij � 0. Together with our earlier observation that strong conformal circularity
implies weak conformal circularity, this establishes that LiJC � 0 and SiJK � 0.

Conversely, suppose that LiJC � 0 and SiJK � 0. Let γ be a projectively
parametrized Σ-conformal circle. Then the intrinsic acceleration tractor AJ of γ
satisfies dDAJ

dt � 0. We must also show that γ satisfies the ambient (projectively
parametrized) conformal circle equation.

For any parametrized curve in Σ, writing UJ for its velocity tractor, we see from
explicit form of the velocity tractor (5.4) and the formula (3.18) for the isomorphism
ΠB
J that UB � ΠB

J U
J , where again we use the tangentiality of uc together with the

Gauß formula to conclude that uca
c � uka

k. Then applying the tractor Gauß
formula (3.40) shows that the ambient acceleration tractor is given by

AB � d∇UB

dt
� ΠB

J puiDiU
J � Si

J
KU

Kq � uiLiJBUJ � ΠB
J

dDUJ

dt
� ΠB

J A
J ,

since L � 0 and S � 0. Similarly, it follows that

d∇AB

dt
� ΠB

J

dDAJ

dt
.

So if moreover γ satisfies dDAJ{dt � 0, then also d∇AB{dt � 0. Finally, recall that
the isomorphism ΠB

J is also metric-preserving, and so

ABAB � AJAJ � 0,

since AB � ΠB
J A

J and we assumed γ is Σ-projectively parametrised. Thus, by the
characterisation from [5], γ is a projectively-parametrised M -conformal circle, and
therefore Σ is strongly conformally circular.
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We next prove the parametrization-independent version of Theorem 5.10, namely
Theorem 5.11. As this theorem is a statement about unparametrised conformal
circles, we use the 3-tractor Φ (which equals the Hodge-star of the normal tractor
form) discussed in Section 5.1.

Proof of Theorem 5.11. First, suppose that Σ is conformally circular, that is, every
unparametrised Σ-conformal circle is an unparametrised M -conformal circle. Let γ
be a Σ-conformal circle. In the previous proof, we observed that strong conformal
circularity implies weak conformal circularity. Parametrisation was not used at all
in this part of the proof and hence we may employ the same argument here. Thus
LiJC � 0 by Theorem 5.2.

As described in Section 5.1, γ determines an intrinsic 3-tractor φIJK P E rIJKs
which satisfies XrIφJKLs � 0 and uiDiφ

IJK � 0, where XI is the intrinsic canonical
tractor and Di is the intrinsic tractor connection. Explicitly,

φIJK � 6u�1XrIUJAKs,

with UJ and AK defined as in equations (5.2) and (5.3) respectively, using the
intrinsic position tractor and tractor connection.

On the other hand, viewing γ as an ambient curve also defines a 3-tractor,

ΦABC � 6u�1XrAUBACs,

where XA is the ambient position tractor and UB and AC are the velocity and
acceleration tractors of γ as a curve in pM, cq (note that while UB � ΠB

J U
J , we

are abusing notation slightly in that the ambient acceleration tractor AC need not
equal ΠC

KA
K , as can be seen from the tractor Gauß formula). Since Σ is conformally

circular, γ is an M -conformal circle and so Φ must be parallel along the curve, i.e.
ua∇aΦ

ABC � 0.
Fix a reference metric g P c. By (5.11) the derivatives of the intrinsic and

ambient 3-tractors are

uiDiφ
IJK � 6

�
uiDia

k � ulpl
k
	

ujXrIZJj Z
Ks
k ,

and
ui∇iΦ

ABC � 6
�
ui∇ia

c � udPd
c
	

ubXrAZBb Z
Cs
c ,

respectively. Both of the above displays are zero and hence

0 � ΠI
AΠJ

BΠK
C

�
ui∇iΦ

ABC
�� uiDiφ

IJK

� 6
��

uiDia
k � ulPl

k
	
�
�
uiDia

k � ulpl
k
	�

ujXrIZJj Z
Ks
k

� �6ul
�
Pl
k � pl

k
	

ujXrIZJj Z
Ks
k ,
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where we have used (3.32) and the Gauß formula in going from the first to second
lines. It follows that the antisymmetric part of ul

�
Pl
k � pl

k
�
uj equals zero. Thus

ul
�
Pl
k � pl

k
	
9uk.

Since we have already seen that I̊Iij
c � 0, this means that

ulFlk � ul
�
Pl
k � pl

k �HcI̊I l
kc � 1

2
HcH

cδkl



9uk.

Now, since the (weighted) velocity of a Σ-conformal circle passing through a point
p P Σ can be any unit vector of TpΣr�1s, it follows that Flk must equal fδkj for
some smooth weight �2 density on Σ, and hence Fij � fgij .

Conversely, suppose that LiJC � 0 and Fij � fgij for some �2 density on
Σ, and let γ be a Σ-conformal circle. The Σ-conformal circle γ determines an
intrinsic 3-tractor φIJK � 6u�1XrIUJAKs which is parallel along γ for the intrinsic
tractor connection. To show that γ is an M -conformal circle, we need to show
that the ambient 3-tractor ΦABC � 6u�1XrAUBACs satisfies these same properties.
We show this by using the conditions on the tractor second fundamental form and
the difference tractor to relate the ambient X,U and A tractors to their intrinsic
counterparts.

From the isomorphism of Theorem 3.5 (cf. the proof of Theorem 5.10), it follows
that XA � ΠA

I X
I and UB � ΠB

J U
J , where XI and UJ are the intrinsic submanifold

canonical tractor and velocity tractor of γ respectively. From the tractor Gauß
formula (3.40) we therefore have

AB � ui∇iU
B � ui∇ipΠB

J U
Jq

� ΠB
J

�
uiDiU

J � uifgij

�
ZJjXK � ZjKX

J
	
UK

�
� ΠB

J

�
AJ � ufXJ

�
� ΠB

J A
J � ufXB,

and

ui∇iA
C � ui∇ipΠC

J A
Jq � ui∇ipufXCq

� ΠC
J puiDiA

J � fuipZJi XK � ZiKX
JqAKq

� ui∇ipufqXC � ufucZCc

� ΠC
J puiDiA

Jq � 2ufucZCc � ρXC , (5.29)

where we have collected all the terms in the bottom slot into ρ (the exact form of
ρ will not be important). Now, recall that UB � ui∇ipu�1XBq and AB � ui∇iU

B.
Hence, using the skew-symmetry,

ui∇iΦ
ABC � ui∇i

�
6u�1XrAUBACs

	
� 6u�1XrAUBpui∇iA

Csq.
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Substituting (5.29) for the derivative of the acceleration into the above it is easy
to see that the �2ufucZCc � ρXC terms drop out due to the skewing with XA and
with UB (which is proportional to ubZBb modulo the canonical tractor) and thus we
obtain,

ui∇iΦ
ABC � uiΠA

I ΠB
J ΠC

KDiφ
IJK . (5.30)

Finally, the right-hand side of (5.30) is zero, since γ is a Σ-conformal circle. Thus
γ is an M -conformal circle.
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6 First integrals

Here we show that a class of solutions to a very large collection of linear differential
equations provide first integrals for distinguished submanifolds. This provides a
uniform framework which generalises to submanifolds (of any proper codimension)
the advance for conformal circles in [56]. In [56] it is explained in detail how the
ideas there extend the usual construction of first integrals for geodesics, using for
example solutions of the Killing equation, Killing tensors, and Killing-Yano tensors.
So we do not repeat that here.

6.1 Review of relevant BGG theory

The class of equations that we interested are the so-called (conformal) first BGG
equations. This is a very large class of conformally invariant linear overdetermined
PDE. It includes the conformal Killing equation, more generally the conformal
Killing tensors equations of any rank, the conformal Killing-Yano equations. To
understand this infinite class of equations we recall here some elements of the BGG
theory. To put this into context we first recall the homogeneous model for conformal
geometry, discussed in Section 2.3. The model for oriented conformal geometries of
Riemannian signature is conformal n-sphere pSn, cq viewed as the ray projectivisa-
tion of the forward null cone in pn � 2q-dimensional Minkowski space. The group
G � SO0pn� 1, 1q acts on the forward null cone and descends to an action by con-
formal isometries of Sn; the conformal n-sphere is therefore naturally viewed as a
homogeneous geometry on G{P � Sn, for P an appropriate (parabolic) subgroup
of G. Again, see, e.g., [33, 51] for a more detailed discussion.

Generalising from the model case, it is well known that a conformal manifold
pM, cq (of dimension n ¥ 3) determines a canonical Cartan bundle and connection
(the additional choice of a Möbius structure is required for this in dimension n � 2).
This consists of a P -principal bundle G Ñ M equipped with a canonical Cartan
connection ω which is a suitably equivariant g-valued 1-form that provides a total
parallelisation of TG. Here g denotes the Lie algebra of G. In the case of the model,
G � G and ω is the Maurer-Cartan form.

For any representation U of P , one has a corresponding associated bundle G�PU.
For example it follows from the equivariance properties of ω that the tangent bundle
TM can be identified with G �P pg{pq where p is the Lie algebra of P , and the P
action is induced from its adjoint action on g.

The tractor bundles are the associated bundles W :� G �P W where W is a
linear representation space of G (and hence also of P by restriction). On each of
these the Cartan connection induces a linear connection ∇W and this the tractor
connection for the given bundle. In particular the standard tractor bundle T is
W :� G �P Rn�2, with Rn�2 denoting the defining representation of G. From the
latter (for example) the Cartan bundle G can be recovered as an adapted frame
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bundle and, on this, the Cartan connection ω can be recovered from the tractor
connection, see [17].

Now recall the bundle embedding (2.24) (with k � 2)

X : T �M Ñ Λ2T � EndpT q,

where the tractor metric is used in the obvious way to identify elements of Λ2T with
skew elements of EndpT q. Sections of EndpT q act on tractor bundles in the obvious
tensorial way and so, via each respective X, we have a canonical action of T �M on
any tractor bundle V and this induces a sequence of invariant bundle maps

B� : ΛkT �M b V Ñ Λk�1T �M b V, k � 1, � � � , n� 1. (6.1)

This is the (bundle version of the) Kostant codifferential for conformal geome-
try and satisfies B� � B� � 0; so it determines subquotient bundles HkpM,Vq :�
kerpB�q{ impB�q of the V-valued tractor bundles ΛkT �M b V.

Now, for each tractor bundle V � G �P V, with V irreducible for G, there is a
canonical differential BGG-sequence [23, 12],

H0
DV

0Ñ H1
DV

1Ñ � � � D
V
n�1Ñ Hn .

Here Hk � HkpM,Vq and each DV
i is a linear conformally invariant differential

operator.
We are, in particular, interested in the operator DV � DV

0 , which defines an
overdetermined differential system. The parabolic subgroup P � G determines a
filtration on V by P–invariant subspaces. Denoting the largest proper filtration
component by V0 � V, it is straightforward to show that H0 is the quotient V{V0.
Here, V0 is the corresponding associated bundle for V0, and we write π : V Ñ H0 for
the natural projection. We recall here the construction of the first BGG operators
DV , as summarised in [19], and also the definition of the special class of so called
normal solutions (cf. [80]) for these operators.

Theorem 6.1 ([19]). Let V be an irreducible G-representation and let V :� G�P V.
There is a unique invariant differential operator L : H0 Ñ V such that π � L is the
identity map on H0 and ∇ � L lies in kerpB�q � T �M b V. For σ P ΓpH0q, DVσ is
given by projecting ∇pLpσqq to ΓpH1q, i.e. DVσ � πp∇pLpσqqq.

Furthermore the bundle map π induces an injection from the space of parallel
sections of V to a subspace NpDVq of ΓpH0q which is contained in the kernel of the
first BGG operator

DV : H0 Ñ H1 . (6.2)

The operator L restricts to an isomorphism from NpDVq to the space of parallel
tractors in ΓpVq.
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The differential operator L : H0 Ñ V, in the Theorem, is called a BGG splitting
operator. We sometimes denote this LV to emphasise the particular tractor bundle
involved. Using the notation and setting of the Theorem, we also use the following
terminology:

Definition 6.2. Elements of the subspace NpDVq � ΓpH0q are called normal solu-
tions to the BGG equation DVσ � 0.

By definition normal solutions to (6.2) are in 1-1 correspondence with parallel
sections of the corresponding tractor bundle V. On geometries which are conformally
flat all solutions are normal, and clearly there is dimpVq-parameter family of such
normal solutions locally.

For the standard tractor bundle the corresponding first BGG equation is the
equation

∇pa∇bq0σ � Ppabq0σ � 0,

on sections σ P ΓpEr1sq, and all solutions are normal (on any conformal manifold
admitting such solutions). However, this is not typical. In general, for solutions
σ P ΓpH0q of DVpσq � 0, ∇Lpσq is given by curvature terms acting on Lpσq (see,
e.g., [15, 50, 54, 71]). Normal solutions, for which these curvature terms neces-
sarily annihilate Lpσq, often correspond to interesting geometric conditions on the
underlying manifold.

6.2 The First Integral Theorem

We work on an arbitrary conformal manifold pMn, cq. Let Σ be an embedded
submanifold of codimension d. Recall that Σ determines its normal form NA1���Ad P
ΓpΛdN q. This is parallel if (and only if) Σ is distinguished. Thus if the manifold
pMn, cq is equipped with a parallel tractor S that can be contracted non-trivially into
say m0 copies of NA1���Ad to yield a function, then this scalar is necessarily constant if
Σ is distinguished. Thus we obtain a first integral for such Σ. In general the parallel
tractor S would not necessarily itself come from a G-irreducible representation, but
rather a tensor product of such. Thus we have the following result.

As earlier, view Rn�2 as the defining representation for G :� SOphq � SOpp �
1, q � 1q. Define

Wpdq :� ΛdRn�2 d � 1, � � � , n� 1.

For each d, this is also a representation space for G. Then we have:

Theorem 6.3. Let V1, � � � ,Vk be irreducible representation spaces of G, Vi � G�P
Vi, and DVi, i P t1, � � � , ku the corresponding respective first BGG operators.

For each i P t1, � � � , ku, suppose that σi is a normal solution to the first BGG
equation

DViσi � 0, (6.3)
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and mi P Z¥0. Then for each copy of the trivial G-representation R in

pdm0Wpdqq b pdm1V1q b � � � b pdmkVkq (6.4)

there is a corresponding distinguished first integral for submanifolds of codimension
d.

Proof. The proof is an easy consequence of the reasoning above. Otherwise the
formal proof is a trivial adaption of the proof of Theorem 6.1 in [56], which treats
the case of curves.

The theorem has used the normal form NA1���Ad as the basis for producing first inte-
grals. One can equivalently use its Hodge dual �NA1���Am�2 , or the normal projector
NA
B , or any combination of these, as by Theorem 1.1 any of these are parallel for

distinguished submanifolds.
Note that to apply (6.4) of the Theorem for a given Σ we require normal solutions

to k first BGG equations. For case of curves, several examples are given in [56], as
is also the explanation of how this is linked to familiar first integrals for geodesics as
obtained from Killing vectors and Killing tensors (which are solutions of projective
BGG equations). Given that resource we treat just one example here.

6.3 First integrals from a normal conformal Killing-
Yano form

We give an example to show how this machinery yields conserved quantities for
distinguished submanifolds. It is easy to follow the ideas here to produce other
examples, see [56] for the case of m � 1.

The space Ea1ra2���adsrws � Ea1 b Era2���adsrws is completely reducible, and has the
Opgq-decomposition

Ea1ra2���adsrws � Era1a2���adsrws ` Eta1ra2���adsu0
rws ` Era3���adsrw � 2s, (6.5)

where Eta1ra2���adsu0
rws consists of tensors sa1���ad P Ea1ra2���adsrws which are, metric

trace-free, completely skew on the indices a2, . . . ad, and for which sra1a2���ads � 0. A
pd� 1q-form ka2���ad P ΓpEra2���adsrdsq is said to be a conformal Killing-Yano form or
simply conformal Killing form if it satisfies

∇a1ka2���ad � µa1���ad � ga1ra2
νa3���ads, (6.6)

where µa1���ad P Era1���adsrds and νa3���ad P Era3���adsrd� 2s. Equivalently,

∇ta1
ka2���adu0

� 0, (6.7)

where the braces and subscript zero denote projection onto the middle factor of (6.5).
This equation can be checked to be conformally invariant, and is moreover a first
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BGG equation (which in this context implies conformal invariance). Thus solutions
to this equation correspond bijectively to a class of sections of a certain tractor
bundle. To understand this, we proceed as follows. For this equation, it is shown in
[54] that the corresponding tractor bundle is ΛdT , and it follows from the formulae
there that the BGG splitting operator L : Era1a2���adsrd� 1s Ñ ErA0A1���Ads is:

Lpka2���adq � ka2���adY
a2���ad

A1���Ad
� 1

d
∇a1ka2���ad Z

a1���ad
A1���Ad

� d� 1

n� d� 2
∇ckca3���adW

a3���ad
A0A1A2���Ad

� ρa2���adX
a2���ad

A1A2���Ad
,

(6.8)

where we do not need the details of the X slot. The general theory immediately
gives us the following.

Proposition 6.4. Let ka1���ad�1
P Era1���ad�1srd � 1s be a normal solution to the

conformal Killing-Yano equation and Σ a distinguished submanifold of codimension
d, with corresponding tractor normal form NA1���Ad. Let KA1���Ad :� Lpka1���ad�1

q P
ErA1���Ads be the image of ka1���ad�1

under the BGG splitting operator L of (6.8).
Then the scalar function

KA1���AdN
A1���Ad (6.9)

is constant along Σ.

Proof. Since ka1���ad�1
is a normal solution, we have that ∇iKA1���Ad � 0. Moreover,

since Σ is a distinguished submanifold, ∇iN
A1���Ad � 0 by Theorem 1.1. Hence the

scalar quantity KA1���AdN
A1���Ad is constant.

We show the non-triviality of the first integral quantity (6.9) by calculating it
directly. From the explicit forms of KA1���Ad and NA1���Ad , we see that

KA1���AdN
A1���Ad � d � ka1���ad�1

N cb1���bd�1Hc � Y a2���ad
A1A2���Ad

XA1A2���Ad
b1���bd�1

� 1

d
p∇a1ka2���adqN b1b2���bd � Za1a2���ad

A1A2���Ad
ZA1A2���Ad
b1b2���bd

� ka1���ad�1
N ca1���ad�1Hc � 1

d
p∇a1ka2���adqNa1a2���ad , (6.10)

which verifies non-triviality.

For the case of d � n � 1, meaning curves, it was seen in [56] that, for many
examples, normality of the BGG solution is actually not required in order to obtain
a first integral. However in general it is needed for this example, which we see as
follows. If Σ is distinguished then NA1���Ad is parallel for the tractor connection and
we have

∇i

�
KA1���AdN

A1���Ad
� � p∇iKA1���AdqNA1���Ad ,
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where KA1���Ad � Lpkq for a general rank pd � 1q conformal Killing-Yano form k.
Theorem 3.9 of [54] gives

p∇c �ΨcqKA1���Ad � 0,

where ∇c is the standard tractor connection and Ψc : ErA1���Ads Ñ EcrA1���Ads is
defined by

ΨcpKA1A2A3���Adq :� �1

2
Wa1a2c

pkpa3���adZ
a1a2a3���ad
A1A2A3���Ad

� φca3���adW
a3���ad

A1A2A3���Ad

� ξa2���adX
a2���ad

A1A2���Ad
,

(6.11)

where only the explicit form of the Z slot will be important.
Therefore one has

∇i

�
KA1A2���AdN

A1A2���Ad
� � p∇iKA1A2���AdqNA1A2���Ad

� ΨipKA1A2���AdqNA1A2���Ad

� �1

2
Wa1a2i

pkpa3���adN
b1b2b3���bd � Za1a2a3���ad

A1A2A3���Ad
ZA1A2A3���Ad
b1b2b3���bd

� �1

2
Wa1a2i

pkpa3���adN
a1a2a3���ad ,

which we do not, in general, expect to vanish.
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7 Distinguished submanifolds as curved orbits

A conformally embedded submanifold, of codimension d, determines the fundamen-
tal and equivalent objects NA

B , NA1���Ad , and �NA1���Am�2 and then we have Theorem
1.1. However, for an application that follows, it is important to show that there is a
characterisation of distinguished submanifolds that does not use an initial knowledge
of these. The result is Theorem 1.5, that we state more explicitly here.

Theorem 7.1. Let Σ ãÑ M be a submanifold of codimension d in a conformal
manifold pM, cq. Then Σ is distinguished if, and only if, there exists a nowhere-zero
ΨA1A2���Ad P ΓpΛdT �|Σq such that ΨA1A2���AdX

A1 � 0 and ∇iΨA1A2���Ad � 0 along
Σ.

Proof. If Σ is distinguished, then by Theorem 1.1, the tractor normal form is parallel
in tangential directions. Moreover, it is clear from the definition of the tractor
normal form (3.52) that NA1A2���AdX

A1 � 0. Thus we may take ΨA1���Ad to be the
tractor normal form.

Conversely, suppose that we have Ψ P ΓpΛdT �|Σq which satisfies ΨA1A2���AdX
A1 �

0 and ∇iΨA1A2���Ad � 0 along Σ. From (2.22), we know that, in a background scale,
Ψ can be written

ΨA1A2���Ad � σa2���adY
a2���ad

A1A2���Ad
� νa1a2���adZ

a1a2���ad
A1A2���Ad

� φa3���adW
a3���ad

A1A2A3���Ad
� ρa2���adX

a2���ad
A1A2���Ad

.

But the condition ΨA1���AdX
A1 � 0 together with (2.18) implies that σa2���ad � 0

and φa3���ad � 0.
Moreover, if ui P ΓpE iq, the incidence relation ΨA1A2���AdX

A1 � 0 together with
the parallel condition means that

0 � ui∇i

�
XA1ΨA1A2���Ad

� � uiZA1
i ΨA1A2���Ad

so uiZA1
i ΨA1A2���Ad � 0 for all u P ΓpTΣq. Expanding this, again using (2.18) and

the linear independence of the X and Z projectors, one sees that νa1a2���adu
a1 � 0

and ρa2���adu
a2 � 0. Since ui was an arbitrary submanifold tangent vector, we

conclude that ν P pΛdN�Σqrds and ρ P pΛd�1N�Σqrd � 2s. Thus in particular
νa1a2���ad � fNa1a2���ad , where Na1a2���ad is the Riemannian normal form of Σ and f
is a function on Σ.

Now note that, since Ψ is parallel, ΨA1A2���AdΨA1A2���Ad is constant along Σ. On
the other hand,

ΨA1A2���AdΨA1A2���Ad � νa1a2���adνa1a2���ad � f2Na1a2���adNa1a2���ad � f2 � d!,

and therefore the function f is locally constant and nowhere-zero. Thus on each
connected component of Σ, νa1a2���ad is a constant multiple of the Riemannian normal
form.
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From equation (2.25), we calculate

0 � ∇iΨA1A2���Ad � pf∇iNa1a2���ad � ρa2���adgia1qZa1a2���ad
A1A2���Ad

� p∇iρa2���ad � f � d �Na1a2���adPi
a1qX a2���ad

A1A2���Ad
.

(7.1)

Now, note that the same argument that yielded equation (3.56) may be repeated
replacing normal tractors with normal vectors (as per Remark 3.22) to give

∇iNa1a2���ad � �d � IIirada0Na1a2���ad�1sa0
. (7.2)

Substituting this into (7.1) gives that in particular

� f � d � IIirada0Na1a2���ad�1sa0
� gira1

ρa2���ad�1ads � 0. (7.3)

Contracting the above with gia1 � Πi
bg
a1b allows us to express ρa2���ad explicitly.

The contraction with the second fundamental form term is not completely obvious,
so we compute it first:

gia1IIirad
a0Na1a2���ad�1sa0

� �gia1 � IIira1

a0Nada2���ad�1sa0

� � 1

d!
� gia1

¸
σPSd

sgnσIIiaσp1q
a0Naσpdqaσp2q���aσpd�1qa0

� � 1

d!
� gia1

¸
σPSd,
σp1q�1

sgnσIIiaσp1q
a0Naσpdqaσp2q���aσpd�1qa0

� � 1

d!

¸
σPSd,
σp1q�1

gia1IIia1
a0Nada2���ad�1a0

� pd� 1q!
d!

�m �Ha0Na0a2���ad�1ad .

For the other term,

gia1gira1
ρa2���ads � gia1 � 1

d!

¸
σPSd

giaσp1qρaσp2q���aσpdq

� gia1 � 1

d!

¸
σPSd
σp1q�1

giaσp1qρaσp2q���aσpdq

� pd� 1q!
d!

gia1gia1ρa2���ad

� m

d
ρa2���ad .

Hence from (7.3) we obtain

ρa2���ad�1ad � f � d �Ha0Na0a2���ad�1ad .
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Thus

ΨA1A2���Ad � fNa1a2���adZ
a1a2���ad
A1A2���Ad

� f
�
d �HbNba2���ad

	
X a2���ad
A1A2���Ad

� fNA1A2���Ad ,

where NA1A2���Ad is the tractor normal form.
Since the function f is locally constant and nowhere-zero, ∇iΨA1A2���Ad � 0 im-

plies that the tractor normal form is parallel. Thus Σ satisfies ones of the equivalent
conditions of Theorem 1.1, and is therefore a distinguished submanifold.

Note that Theorem 1.5 follows as the tractor Hodge-� operation (2.27) commutes
with the tractor covariant derivative.

The following result shows one way in which distinguished submanifolds arise as
curved orbits, in the sense of [21]. It generalises [56, Proposition 7.1]. Some termi-
nology: we shall say that a tractor (or vector) KA1���Ad is timelike if KA1���AdKA1���Ad

is negative, spacelike if this is positive and null if it is zero.

Theorem 7.2. Suppose ka1���ad�1
is a normal solution of the conformal Killing form

equation on pM, c) such that the parallel tractor Lpka1���ad�1
q is simple. Then the

zero locus of

K :� pka1���ad�1
,∇ckca2���ad�1

q, for any g P c with Levi-Civita connection ∇,

is either empty, an isolated point, or a distinguished conformal submanifold of codi-
mension d. Moreover, writing ZpKq for this zero locus:

� if Lpka1���ad�1
q is timelike, then ZpKq is necessarily empty;

� if Lpka1���ad�1
q is null, ZpKq consists only of isolated points;

� if Lpka1���ad�1
q is spacelike, then ZpKq is either empty or is a distinguished

submanifold of codimension d.

Proof. Suppose ka1���ad�1
P Era1���ad�1srds is a normal solution to (6.6). Then KA1���Ad :�

Lpka1���ad�1
q is parallel for the tractor connection. So Lpka1���ad�1

q is parallel and, by
assumption, simple.

From equation (6.8), one sees that XA1KA1���Ad � 0, at some point p P M , is
exactly the condition pka1���ad ,∇ckca2���adq � 0 at the point p. On the other hand this
condition XyK � 0 determines a P -type, in the language of [21]. Thus by Theorem
2.6 of that article, it is sufficient to understand this condition on the model.

Recall that in the model case parallel tractors correspond to constant tensor
fields on Rn�2 and the canonical tractorXA is identified with the position vector field
of Rn�2 along C�. Hence, in the model case, if KA1���Ad is a parallel simple d-cotractor
and XyK is zero at some point p, then XyK is zero along a submanifold p, given as
follows. The form K determines in Rn�2 a unique pm�2q-plane through p (as usual
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m � n� d and pm� 2q-plane means a linear subspace of that dimension) consisting
of the vectors XA in Rn�2 that are in the nullity of KA1���Ad . The submanifold is
then the ray projectivisation of the intersection of this hyperplane with the null
quadric for the Minkowski signature inner product on Rn�2.

We now treat the three cases in the statement of the theorem by considering the
distinct ways that this hyperplane can intersect the null cone. First, if KA1���Ad is
simple and timelike, then non-zero vectors in the nullity of KA1���Ad are spacelike.
No non-zero vector in their span is null or timelike. Therefore in this case the
pm � 2q-plane has no intersection with C�. Thus the zero locus ZpKq is empty.
For the second case, suppose that KA1���Ad is spacelike, then the hyperplane defined
by vectors in the nullity of KA1���Ad can be spanned by one timelike vector and
m� 1 spacelike vectors. Such an pm� 2q-plane meets the null cone C� transversely,
and hence, under ray projectivisation, will descend to a submanifold ZpKq of Sn

of codimension d. Finally, if KA1���Ad is null, then, using the Minkowski signature,
it follows that the simple d-tractor K can be obtained as the exterior product of
covectors that are spacelike except for exactly one which is null. Dually, this implies
that there is a collection of vectors which span the nullity pm� 2q-hyperplane that
consists of a single null vector and m� 1 spacelike vectors. Thus the hyperplane is
tangent to the null cone, and after ray projectivisation the intersection descends to
an isolated point. Now by Theorem 2.6 of [21] it then follows that on M the zero
locus of the simple d-tractor K will take the same form as on the model. Thus the
three bullet points follow from the analysis just done, of the corresponding cases
on the model, save for the very final statement that if ZpKq is nonempty and does
not just consist of isolated points, then the codimension d submanifold ZpKq is
distinguished. But this follows from Theorem 1.5.

We note that such simple parallel tractors K have arisen in the study of holonomy
and generalisations of almost Einstein structures [3, 81, 82].

In the case of the model, meaning Sn with its usual conformal structure, all
solutions to first BGG equations are normal. Moreover, it is easily seen that, in
this setting, the space of solutions to the conformal Killing-Yano equation (6.6), of
a given rank, is spanned by solutions k with Lpkq satisfying the conditions of the
Theorem above. It is interesting and valuable to determine the extent to which
similar results hold in more general settings. In this case parts of Theorem 7.2
generalise quite easily, as we see in the following proposition.

Proposition 7.3. Let ka1���ad�1
P ΓpEra1���ad�1sr2d� 2sq, and

K :� pka1���ad�1
,∇ckca2���ad�1

q, for any g P c with Levi-Civita connection ∇.

Then

1. If Lpka1���ad�1
q is timelike, then ZpKq is necessarily empty.
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2. If ka1���ad�1
is such that Lpka1���ad�1

q is spacelike, simple, and satisfies (6.6)
along ZpKq, then ZpKq is either empty or is a submanifold of codimension d.

Proof. From (2.22), (2.23), and (2.17) it follows that any tractor d-form K satisfying
XyK � 0 at p PM has KA1���AdKA1���Ad ¥ 0 at p. This proves 1.

Next to consider 2 we work again in a scale g P c and use g also to trivialise the
density bundles. From the simplicity of Lpkq it follows that k takes the form

f1w1 � � � � � fdwd (7.4)

where the wi, i � 1, � � � , d, are each simple pd � 1q-forms and the fi are func-
tions. Moreover, along ZpKq (and thus also in a neighbourhood of ZpKq) the set
tw1, � � � , wdu is pointwise linearly independent, as follows easily from the fact that
the Z slot µ of Lpkq is spacelike and so is, in particular, nowhere zero along ZpKq.

Next we observe that ZpKq � Zpkq. This follows because, from the simplicity
Lpkq, it follows that its W slot vanishes whenever f1, � � � , fd vanish. But from the
definition of Lpkq this slot is a constant times the divergence of k. Now, from the
equation (6.6) we have that

∇k � c � µ, (7.5)

along ZpKq � Zpkq, for a non-zero constant c.
We put these observations together. From (7.4) it follows that Zpkq is the

common zero set of f1, � � � , fd. Imposing (7.5) puts conditions on the fi and their
relation to the wj . In particular one easily concludes that, at each point in Zpkq, the
equation (7.5) implies that tdf1, � � � , dfdu is a linearly independent set. Thus from
the constant rank theorem it follows that ZpKq is either empty or is a submanifold
of codimension d.
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[83] C. Lübbe and J. A. Valiente Kroon. A conformal approach for the analysis
of the non-linear stability of radiation cosmologies. Ann. Physics 328:1–25,
2013.

[84] M. Minucci and J. A. Valiente Kroon. A conformal approach to the stability
of Einstein spaces with spatial sections of negative scalar curvature. Classical
Quantum Gravity 38(14): Paper No. 145026, 40 pp., 2021.

85
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