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Abstract. We develop a complete local theory for CR embedded
submanifolds of CR manifolds in a way which parallels the Ricci
calculus for Riemannian submanifold theory. We define a normal
tractor bundle in the ambient standard tractor bundle along the
submanifold and show that the orthogonal complement of this bun-
dle is not canonically isomorphic to the standard tractor bundle of
the submanifold. By determining the subtle relationship between
submanifold and ambient CR density bundles we are able to in-
variantly relate these two tractor bundles, and hence to invariantly
relate the normal Cartan connections of the submanifold and am-
bient manifold by a tractor analogue of the Gauss formula. This
leads also to CR analogues of the Gauss, Codazzi, and Ricci equa-
tions. The tractor Gauss formula includes two basic invariants of
a CR embedding which, along with the submanifold and ambient
curvatures, capture the jet data of the structure of a CR embed-
ding. These objects therefore form the basic building blocks for the
construction of local invariants of the embedding. From this basis
we develop a broad calculus for the construction of the invariants
and invariant differential operators of CR embedded submanifolds.

The CR invariant tractor calculus of CR embeddings is devel-
oped concretely in terms of the Tanaka-Webster calculus of an
arbitrary (suitably adapted) ambient contact form. This enables
straightforward and explicit calculation of the pseudohermitian in-
variants of the embedding which are also CR invariant. These are
extremely difficult to find and compute by more naïve methods.
We conclude by establishing a CR analogue of the classical Bonnet
theorem in Riemannian submanifold theory.

1. Introduction

Hypersurface type CR geometry is motivated by the biholomorphic
equivalence problem for complex domains, and is rooted in the result
of Poincaré that the analogue of the Riemann mapping theorem fails
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for domains of complex dimension greater than one [41]. On the side
of geometry key pioneering work was developed by Cartan, Tanaka,
and Chern-Moser in which it was seen that the structure is invariantly
captured by a prolonged system now known as a Cartan connection
[12, 13, 43]. The fundamental role of CR geometry in analysis was sig-
nificantly strengthened by the result of Fefferman that any biholomor-
phic map between smoothly bounded strictly pseudoconvex domains
in Cn+1 extends smoothly to the boundary, and so induces a CR dif-
feomorphism between the boundaries [22]; so Poincaré’s result may be
recovered by a simple counting of invariants argument (that was in
fact proposed in [41]). This brought to the fore the role of CR in-
variants as tools for distinguishing domains. Hypersurface type CR
geometry is an important example in a class of structures known as
parabolic geometries that also includes conformal geometry, projective
differential geometry, and many other structures. Seeking to determine
the asymptotic expansion of the Bergman kernel, Fefferman initiated a
programme for the explicit construction of CR, and more widely para-
bolic, invariants [23]. There has subsequently been much interest and
progress on this [3, 35, 30].

The study of CR embeddings and immersions (in CR manifolds) is
also closely connected with the study of holomorphic mappings between
domains. Although open questions remain about when proper holomor-
phic mappings between domains in Cm+1 and Cn+1 extend smoothly
[4, 50], if a holomorphic map between smoothly bounded domains does
extend in this way then it induces a CR map between the boundaries.
So again CR invariants of the boundaries play a fundamental role. The
Chern-Moser moving frames approach to the CR Cartan connection
has been effectively applied to the study of CR embeddings and im-
mersions in the important work of Webster [51] on CR rigidity for real
codimension two embeddings. This theme is significantly extended in
the article [20] of Ebenfelt, Huang and Zaitsev where rigidity is estab-
lished when the codimension is not too large. These works have strong
applications to the study of proper holomorphic maps between balls
and to the study of Milnor links of isolated singularities of analytic
varieties [50, 20]. The Chern-Moser approach has also been applied
in related work generalising the Schwarz reflection principle to several
complex variables, where invariant nondegeneracy conditions on CR
maps play a key role [21, 36].

Despite the strong specific results mentioned, and geometric stud-
ies by several authors [15, 16, 17, 39, 40, 47], a significant gap has
remained in the general theory for CR embeddings and immersions.
A basic general theory should enable the straightforward construction
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of local CR invariants, but in fact to this point very few invariants
are known. In particular using existing approaches there has been no
scope for a general theory of invariant construction, as the first step
in a Fefferman-type invariants programme cf. [23]. Closely related is
the need to construct CR invariant differential operators required for
geometric analysis. Again no general theory for their construction has
been previously advanced. The aim of this article is to close this gap.
We develop a general CR invariant treatment that on the one hand
is conceptual and on the other provides a practical and constructive
approach to treating the problems mentioned. The final package may
be viewed as, in some sense, an analogue of the usual Ricci calculus
approach to Riemannian submanifold theory, which is in part based
around the Gauss formula. Our hope is that this may be easily used
by analysts or geometers not already strongly familiar with CR geom-
etry; for this reason we have attempted to make the treatment largely
self contained. The theory and tools developed here may also be viewed
as providing a template for the general problem of treating parabolic
submanifolds in parabolic geometries. This is reasonably well under-
stood in the conformal setting [2, 6, 31, 34, 42, 48] but little is known in
the general case. The CR case treated here is considerably more subtle
than the conformal analogue as it involves dealing with a non-maximal
parabolic.

1.1. CR Embeddings. Abstractly, a nondegenerate hypersurface-type
CR manifold is a smooth manifold M2n+1 equipped with a contact dis-
tribution H on which there is a formally integrable complex structure
J : H → H. We refer to such manifolds simply as CR manifolds. A
CR mapping between two CR manifolds is a smooth mapping whose
tangent map restricts to a complex linear bundle map between the
respective contact distributions. A CR embedding is a CR mapping
which is also an embedding.

Typically in studying CR embeddings one works with an arbitrary
choice of contact form for the contact distribution in the ambient man-
ifold (ambient pseudohermitian structure). A CR embedding is said
to be transversal if at every point in the submanifold there is a sub-
manifold tangent vector which is transverse to the ambient contact
distribution (this is automatic if the ambient manifold is strictly pseu-
doconvex). Assuming transversality the ambient contact form then
pulls back to a pseudohermitian contact form on the submanifold. As-
sociated with these contact forms are their respective Tanaka-Webster
connections, and these can be used to construct pseudohermitian in-
variants of the embedding. The task of finding some, let alone all,
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pseudohermitian invariants which are in fact CR invariants (not de-
pending on the additional choice of ambient contact form) is very dif-
ficult, unless one can find a manifestly invariant approach. We give
such an approach. Our approach uses the natural invariant calculus
on CR manifolds, the CR tractor calculus. In the CR tractor calculus
the standard tractor bundle and normal tractor (or Cartan) connec-
tion play the role analogous to the (holomorphic) tangent bundle and
Tanaka-Webster connection in pseudohermitian geometry.

1.2. Invariant Calculus on CRManifolds. Due to the work of Car-
tan, Tanaka, and Chern-Moser we may view a CR manifold (M,H, J)
as a Cartan geometry of type (G,P ) with G a pseudo-special unitary
group and P a parabolic subgroup of G. The tractor bundles are the
associated vector bundles on M corresponding to representations of G,
the standard tractor bundle corresponding to the standard representa-
tion. The normal Cartan connection then induces a linear connection
on each tractor bundle [8]. In order to relate the CR tractor calculus
to the Tanaka-Webster calculus of a choice of pseudohermitian contact
form we work with the direct construction of the CR standard trac-
tor bundle and connection given in [32]. This avoids the need to first
construct the Cartan bundle.

To fully treat CR submanifolds one needs to work with CR density
line bundles, and their Tanaka-Webster calculus. From the Cartan
geometric point of view the CR density bundles E(w,w′) on M2n+1

are the complex line bundles associated to one dimensional complex
representations of P , and include the canonical bundle K as E(−n −
2, 0). The bundle E(1, 0) is the dual of an (n+ 2)th root of K and

E(w,w′) = E(1, 0)w ⊗ E(1, 0)
w′

where w − w′ ∈ Z (and w,w′ may be complex). Since the Tanaka-
Webster connection acts on the canonical bundle it acts on all the
density bundles.

1.3. Invariant Calculus on Submanifolds and Main Results.
We seek to extend the CR tractor calculus to the setting of transversally
CR embedded submanifolds of CR manifolds in order to deal with
the problem of invariants. Our approach parallels the usual approach
to Riemannian submanifold geometry; of central importance in the
Riemannian theory of submanifolds is the second fundamental form.

1.3.1. Normal tractors and the tractor second fundamental form. One
way to understand the Riemannian second fundamental form is in
terms of the turning of normal fields (i.e. as the shape operator).
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To define a tractor analogue of the shape operator one needs a tractor
analogue of the normal bundle for a CR embedding ι : Σ2m+1 →M2n+1.

In Section 5.1 we use a CR invariant differential splitting operator to
give a CR analogue of the normal tractor of [2] associated to a weighted
unit normal field in conformal submanifold geometry. It turns out that
this a priori differential splitting gives a canonical bundle isomorphism
between the Levi-orthogonal complement of T 1,0Σ in T 1,0M |Σ, tensored
with the appropriate ambient density bundle, and a subbundle N of
the ambient standard tractor bundle along Σ (Proposition 5.3). The
ambient standard tractor bundle carries a parallel Hermitian metric of
indefinite signature and the normal tractor bundle N is nondegenerate
since Σ and M are required to be nondegenerate. Thus the ambient
tractor connection induces connections ∇N and ∇N⊥ on N and N⊥
respectively. We therefore obtain (Section 8.2, see also Sections 5.1,
5.5, and 6.3):

Proposition 1.1. The ambient standard tractor bundle TM splits
along Σ as N⊥ ⊕N , and the ambient tractor connection ∇ splits as

ι∗∇ =

(
∇N⊥ −L†
L ∇N

)
on TM |Σ =

N⊥
⊕
N

where L†(X) is the Hermitian adjoint of L(X) for any X ∈ X(Σ).

The Hom(N ,N⊥) valued 1-form L† on Σ is the CR tractor ana-
logue of the shape operator, and we term L the CR tractor second
fundamental form. The ambient standard tractor bundle can be de-
composed with respect to a choice of contact form. Here it is sensible
to choose an ambient contact form whose Reeb vector field is tangent
to the submanifold (called admissible [20]). We give the components of
L with respect to an admissible ambient contact form in Proposition
6.6 (see also Proposition 5.15). The principal component of L is the CR
second fundamental form IIµν

γ of Σ in M , which appears, for example,
in [20].

1.3.2. Relating submanifold and ambient densities and tractors. An-
other way to understand the Riemannian second fundamental form is
in terms of the normal part of the ambient covariant derivative of a
submanifold vector field in tangential directions. This is achieved via
the Gauss formula. In the Riemannian Gauss formula a submanifold
vector field is regarded as an ambient vector field along the submanifold
using the pushforward of the embedding, which relies on the tangent
map. In order to give a CR tractor analogue of the Gauss formula one
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needs to be able to pushforward submanifold tractors to give ambient
tractors along the submanifold – one looks for a CR ‘standard tractor
map’. One might hope for a canonical isomorphism

T Σ→ N⊥

between the submanifold standard tractor bundle and the orthogonal
complement of the normal tractor bundle (these having the same rank).
In the conformal case there is such a canonical isomorphism [5, 31, 34],
however in the CR case it turns out that there is no natural ‘standard
tractor map’ T Σ→ TM in general.

The problem has to do with the necessity of relating corresponding
submanifold and ambient CR density bundles. It turns out that these
are not isomorphic along the submanifold, but are related by the top
exterior power of the normal tractor bundle N . Rather than seeking to
identify these bundles we therefore define the ratio bundles of densities

R(w,w′) = E(w,w′)|Σ ⊗ EΣ(w,w′)∗

where E(w,w′)|Σ is a bundle of ambient CR densities along Σ and
EΣ(w,w′)∗ is dual to the corresponding submanifold intrinsic density
bundle. We obtain (in Section 6.2, see also Section 4.11):

Proposition 1.2. Given a transversal CR embedding ι : Σ2m+1 →
M2n+1 we have a canonical isomorphism of complex line bundles

R(m+ 2, 0) ∼= ΛdN

where d = n−m. The complex line bundles R(w,w′) therefore carry a
canonical CR invariant connection ∇R induced by ∇N .

The diagonal bundlesR(w,w) are canonically trivial and the connec-
tion ∇R on these is flat. All the ratio bundles R(w,w′) are therefore
normed, and ∇R is a U(1)-connection. Using the pseudohermitian
Gauss and Ricci equations (Sections 4.7.1 and 4.7.3) we calculate the
curvature of ∇R (Section 6.2, see also Section 4.11.1, and in particular
Lemma 4.42) and see that this connection is not flat in general when
w 6= w′. Thus rather than identifying corresponding density bundles
we should keep the ratio bundles R(w,w′) in the picture.

We are then able to show (from Theorem 5.6 combined with Defini-
tions 5.8, 5.11, 5.13 and Section 6.3):

Theorem 1.3. Let ι : Σ2m+1 →M2n+1 be a transversal CR embedding.
Then there is a canonical, metric and filtration preserving, bundle map

T Rι : T Σ→ TM |Σ ⊗R(1, 0)
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over ι, which gives an isomorphism of T Σ with N⊥ ⊗R(1, 0). More-
over, the submanifold and ambient tractor connections are related by
the tractor Gauss formula

∇Xι∗u = ι∗(DXu+ S(X)u) + L(X)ι∗u

for all u ∈ Γ(T Σ) and X ∈ X(Σ), where S is an End(T Σ) valued 1-
form on Σ, D is the submanifold tractor connection, ∇ is the (pulled
back) ambient tractor connection coupled with ∇R, and the pushforward
map ι∗ is defined using using T Rι.

By Proposition 1.1 the tractor Gauss formula implies

∇N⊥X ι∗u = ι∗(DXu+ S(X)u)

for all u ∈ Γ(T Σ) and X ∈ X(Σ), where ∇N⊥ is coupled with ∇R.
The difference tractor S measures the failure of the ambient tractor (or
normal Cartan) connection to induce the submanifold one. The com-
ponents of S with respect to an admissible ambient contact form are
given in (5.19), (5.20), and (5.21) (in Section 6.3 it is noted that these
formulae hold in arbitrary codimension and signature). The princi-
pal component of S is the difference between ambient and submanifold
pseudohermitian Schouten tensors Pµν̄ − pµν̄ for a pair of compatible
contact forms (Definition 4.2); using the pseudohermitian Gauss equa-
tion (Section 4.7.1) one can give a manifestly invariant expression for
this tensor involving the ambient Chern-Moser tensor and the CR sec-
ond fundamental form (see Lemma 4.42 for the case m = n− 1).

1.3.3. Constructing invariants. In Section 7 we develop both the the-
oretical and practical aspects of constructing invariants of CR embed-
dings. We deal with the geometric part of the invariant theory problem,
using the results stated above. In particular, in Section 7.1 we demon-
strate that the tractor second fundamental form L, the difference trac-
tor S, and the submanifold and ambient tractor (or Cartan) curvatures
are the basic invariants of the CR embedding, in that they determine
the higher jets of the structure (Proposition 7.2). By applying natural
differential operators to these objects and making suitable contrac-
tions, one can start to proliferate local invariants of a CR embedding.
In practice a more refined construction is useful. The algebraic prob-
lem of showing that one can make all invariants of a CR embedding,
suitably polynomial in the jets of the structure, is beyond the scope
of this article; despite much progress on the analogous problems for
CR or conformal manifolds, these are still far from being completely
solved (see, e.g., [3, 35]). We therefore turn in Section 7.5 to consider-
ing practical constructions of invariants. In Sections 7.5.1 and 7.5.2 we



CR EMBEDDED SUBMANIFOLDS OF CR MANIFOLDS 8

develop a richer calculus of invariants than that presented for theoreti-
cal purposes in Sections 7.1 and 7.2. In Section 7.5.3 we illustrate this
calculus with an example of an invariant section I of EΣ(−2,−2) given
by a manifestly invariant tractor expression (7.11) involving L⊗L; we
show how to calculate I in terms of the pseudohermitian calculus of a
pair of compatible contact forms, yielding the expression (7.17).

1.3.4. A CR Bonnet theorem. With the setup of Proposition 1.1 and
Theorem 1.3 established it is straightforward to give CR tractor ana-
logues of the Gauss, Codazzi and Ricci equations from Riemannian
submanifold theory. These are given in Section 8.2. Just as in the Rie-
mannian theory, if we specialise to the ambient flat case the (tractor)
Gauss, Codazzi and Ricci equations give the integrability conditions for
a Bonnet theorem or fundamental theorem of embeddings. We have
(Theorem 8.5):

Theorem 1.4. Let (Σ2m+1, H, J) be a signature (p, q) CR manifold and
suppose we have a complex rank d vector bundle N on Σ equipped with
a signature (p′, q′) Hermitian bundle metric hN and metric connection
∇N . Fix an (m+2)th root R of ΛdN , and let ∇R denote the connection
induced by ∇N . Suppose we have a N⊗T ∗Σ⊗R valued 1-form L which
annihilates the canonical tractor of Σ and an A0Σ valued 1-form S on
Σ such that the connection

∇ :=

(
D ⊗∇R + S −L†

L ∇N
)

on
T Σ⊗R∗
⊕
N

is flat (where D is the submanifold tractor connection), then (locally)
there exists a transversal CR embedding of Σ into the model (p+p′, q+
q′) hyperquadric H, unique up to automorphisms of the target, realising
the specified extrinsic data as the induced data.

The bundle A0Σ here is the bundle of skew-Hermitian endomor-
phisms of T Σ which also preserve the natural filtration of T Σ, see
Section 3.5.

1.4. Geometric Intuition. In the case where M is the standard CR
sphere S2n+1 we can give a clear geometric interpretation of the nor-
mal tractor bundle N of a CR embedded submanifold, or rather of its
orthogonal complement N⊥. In the conformal case a similar charac-
terisation of the normal tractor bundle may be given via the notion of
a central sphere congruence (see [5]).
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One may explicitly realise the standard tractor bundle of S2n+1 by
considering the sphere as the space of isotropic lines in the projectivi-
sation of Cn+1,1; if ` is a complex isotropic line then a standard tractor
at the point ` ∈ S2n+1 is a constant vector field along ` in the ambient
space Cn+1,1. The tractor parallel transport on S2n+1 then comes from
the affine structure of Cn+1,1 and the standard tractor bundle is flat.
Given a point x in our CR embedded submanifold Σ2m+1 ⊂ S2n+1 there

PC ∼= S2n+1

Σ

`

CPn+1

S` C

N⊥`

`

Cn+1,1

P

Figure 1.1. The orthogonal complement N⊥ of the
normal tractor bundle when M = S2n+1. The subspace
N⊥` intersects the cone C of isotropic lines in Cn+1,1 in a
subcone corresponding to the subsphere S` tangent to Σ
at `.

is a unique totally chain CR subsphere Sx of dimension 2m + 1 which
osculates Σ to first order at x. If we view S2n+1 as the unit sphere in
Cn+1 then Sx is the intersection of S2n+1 with the (m+ 1)-dimensional
complex affine subspace of Cn+1 generated by the tangent space to Σ
at x. Viewing S2n+1 instead as a projective hyperquadric the sphere S`
with x = ` is the image under the projectivisation map of the inter-
section of the cone C of isotropic lines in Cn+1,1 with a nondegenerate
complex (m+ 2)-dimensional subspace N⊥` .

In this case the rank d = n − m normal tractor bundle N may be
viewed as giving a Gr(d,Cn+1,1) valued CR analogue of the Gauss map
of an embedded Riemannian submanifold in Euclidean space.

1.5. Structure of the Article. We aim to produce a calculus of in-
variants for CR embeddings which is both simple and practical, and
yields a machinery for constructing local CR invariants with formulae
in terms the psuedohermitian (Tanaka-Webster) calculus. We thus em-
phasise heavily the connection between the CR tractor calculus and the
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pseudohermitian calculus of a fixed contact form. Although our final
results have a simple interpretation in terms of tractor calculus, they
are often established though explicit calculation using pseudohermitian
calculus. For this reason we have devoted the first part of the article to
giving a detailed exposition of the Tanaka-Webster calculus associated
to a choice of pseudohermitian contact form (Section 2) and an explicit
description of the CR tractor calculus in terms of this pseudohermitian
calculus (Section 3). Although the results of Section 2 may largely be
found elsewhere in the literature, proofs are often merely indicated;
collecting these results, and establishing them by proof, provides the
essential reference for verifying the CR invariance of our later con-
structions. These results are immediately applied in Section 3 where
we present the CR tractor calculus, using the explicit description of the
standard tractor bundle and normal connection given in [32]. For the
purpose of invariant theory we introduce some CR analogues of parts
of the conformal tractor calculus not yet developed in the CR case.

In Section 4 we discuss the pseudohermitian geometry of CR em-
beddings, working in particular with pairs of compatible ambient and
submanifold contact forms (see Definition 4.2). We also discuss in this
section the relationship between the submanifold and ambient CR den-
sity bundles. For simplicity we initially treat the minimal codimension
strictly pseudoconvex case, generalising to nondegenerate transversal
CR embeddings of arbitrary codimension between CR manifolds of any
signature in Section 6.

In Section 5 we develop a manifestly CR invariant approach to study-
ing CR submanifolds using tractor calculus. Again we restrict initially
to the minimal codimension strictly pseudoconvex case, generalising in
Section 6. In Section 7 we apply this calculus to the basic geometric
problems of invariant theory for CR embeddings, addressing practical
constructions of invariants in Section 7.5. In Section 8 we prove a CR
analogue of the Bonnet theorem (Theorem 8.5).

2. Weighted Tanaka-Webster Calculus

2.1. CR Geometry. A CR manifold of hypersurface type is a triple
(M2n+1, H, J) where M is a real (2n+ 1)-dimensional manifold, H is a
corank one distribution in TM , and J is an almost complex structure
on H satisfying the integrability condition

[JX, Y ] + [X, JY ] ∈ Γ(H)

[X, Y ]− [JX, JY ] + J ([JX, Y ] + [X, JY ]) = 0
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for any two vector fields X, Y ∈ Γ(H). The almost complex structure
J extends by complex linearity to act on H ⊗ C, and since J2 = −id
the eigenvalues of J must be ±i. It is easy to see that J acts by i on
the bundle

T 1,0M := {X − iJX : X ∈ H} ⊆ H ⊗ C

and by −i on the bundle T 0,1M = T 1,0M . Moreover one has that
T 1,0M ∩ T 0,1M = {0} and

H ⊗ C = T 1,0M ⊕ T 0,1M.

From the integrability condition imposed on J it follows that T 1,0M is
formally integrable, that is

[T 1,0M,T 1,0M ] ⊆ T 1,0M

where here we have used the same notation for the bundle T 1,0M and
its space of sections.

To simplify our discussion we assume that M is orientable. Since
H carries an almost complex structure it must be an orientable vector
bundle, thus the annihilator line bundle H⊥ ⊂ T ∗M must also be
orientable (so there exists a global section of H⊥ which is nowhere
zero). We say that the CR manifold of hypersurface type (M2n+1, H, J)
is nondegenerate if H is a contact distribution for M , that is, for any
global section θ of H⊥ which is nowhere zero the (2n+1)-form θ∧dθn is
nowhere zero (this is equivalent to the antisymmetric bilinear form dθ
being nondegenerate at each point when restricted to elements of H).
If H is a contact distribution then a global section θ of H⊥ which is
nowhere zero is called a contact form. We assume that the line bundle
H⊥ has a fixed orientation so that we can talk about positive and
negative elements and sections. We also assume that (M2n+1, H, J) is
nondegenerate.

By the integrability condition on J the bilinear form dθ(·, J ·) on H
is symmetric. The signature (p, q) of this nondegenerate bilinear form
on H does not depend on the choice of positive contact form and is
called the signature of (M,H, J).

Given a choice of contact form θ for (M,H, J) we refer to the quadru-
ple (M,H, J, θ) as a (nondegenerate) pseudohermitian structure. Clearly
for any two positive contact forms θ and θ̂ there is a smooth function
Υ ∈ C∞(M) such that θ̂ = eΥθ. One can therefore think of the CR
manifold (M,H, J) as an equivalence class of pseudohermitian struc-
tures much as we may think of a conformal manifold as an equivalence
class of Riemannian structures. In order to make calculations in CR



CR EMBEDDED SUBMANIFOLDS OF CR MANIFOLDS 12

geometry it is often convenient to fix a choice of contact form θ, calcu-
late, and then observe how things change if we rescale θ. We will take
this approach in the following, working primarily in terms of the pseu-
dohermitian calculus associated with the Tanaka-Webster connection
of the chosen contact form θ. In order to make real progress however
we will need to make use of the CR invariant tractor calculus [32] as
a tool to produce CR invariants and invariant operators which can be
expressed in terms of the Tanaka-Webster calculus.

2.2. CR Densities. On a CR manifold (M2n+1, H, J) we denote the
annihilator subbundle of T 1,0M by Λ0,1M ⊆ CT ∗M (where by CT ∗M
we mean the complexified cotangent bundle). Similarly we denote the
annihilator subbundle of T 0,1M by Λ1,0M ⊆ CT ∗M . The bundle Λ1,0M
has complex rank n+ 1 and hence K = Λn+1(Λ1,0M) is a complex line
bundle on M . The line bundle K is simply the bundle of (n + 1, 0)-
forms on M , that is

K = Λn+1,0M :=
{
ω ∈ Λn+1M : V yω = 0 for all V ∈ T 1,0M

}
,

and is known as the canonical bundle. We assume that K admits an
(n+ 2)th root E(−1, 0) and we define E(1, 0) to be E(−1, 0)∗. We then
define the CR density bundles E(w,w′) to be E(1, 0)w⊗E(1, 0)

w′

where
w,w′ ∈ C with w − w′ ∈ Z.

Remark 2.1. The assumption that K admits an (n+2)th root is equiv-
alent to saying that the Chern class c1(K ) is divisible by n + 2 in
H2(M,Z). Note that if M is a real hypersurface in Cn+1 then K is
trivial and therefore admits such a root.

Note that the bundles E(w,w′) and E(w,w′) are complex conjugates
of one another. In particular, each diagonal density bundle E(w,w) is
fixed under conjugation. We denote by E(w,w)R the real line subbundle
of E(w,w) consisting of elements fixed by conjugation.

2.3. Abstract Index Notation. We freely use abstract index nota-
tion for the holomorphic tangent bundle T 1,0M , denoting it by Eα,
allowing the use of lower case Greek abstract indices from the start of
the alphabet: α, β, γ, δ, ε, α′, β′, and so on. Similarly we use the ab-
stract index notation E ᾱ for T 0,1M . We denote the dual bundle of Eα
by Eα and the dual bundle of E ᾱ by Eᾱ. Tensor powers of these bundles
are denoted by attaching appropriate indices to the E , so, for example,
we denote Eα⊗Eβ by Eαβ and Eα⊗Eβ̄⊗Eγ by Eαβ̄γ. We attach abstract
indices to the elements or sections of our bundles to show which bundle
they belong to, so a section V of T 1,0M will be written as V α and a
section $ of (T 1,0M)∗ ⊗ T 0,1M will be denoted by $α

β̄. The tensor
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product of V α and $γ
β̄ is written as V α$γ

β̄, and repeated indices de-
note contraction, so $(V ) is written as V α$α

β̄. Skew-symmetrisation
over a collection of indices is indicated by enclosing them in square
brackets. Correspondingly we denote the kth exterior power of Eα by
E[α1···αk]. We indicate a tensor product of some (unweighted) complex
vector bundle V → M with the density bundle E(w,w′) by appending
(w,w′), i.e. V(w,w′) = V ⊗ E(w,w′).

We may conjugate elements (or sections) of Eα to get elements (or
sections) of E ᾱ: we write

V ᾱ := V α

to say that V ᾱ is the conjugate of V α. This extends in the obvious way
to (weighted) tensor product bundles; note that the complex conjugate
bundle of Eαβ̄(w,w′) is Eᾱβ(w′, w).

We will occasionally use abstract index notation for the tangent bun-
dle, denoting it by Ea and allowing lower case Latin abstract indices
from the start of the alphabet.

2.4. The Reeb Vector Field. Given a choice of contact form θ for
(M,H, J) there is a unique vector field T ∈ X(M) determined by the
conditions that θ(T ) = 1 and Tydθ = 0; this T is called the Reeb vector
field of θ. The Reeb vector field gives us a direct sum decomposition
of the tangent bundle

TM = H ⊕ RT
and of the complexified tangent bundle

(2.1) CTM = T 1,0M ⊕ T 0,1M ⊕ CT,
where RT (resp. CT ) denotes the real (resp. complex) line bundle
spanned by T . Dually, given θ we have

(2.2) CT ∗M ∼= (T 1,0M)∗ ⊕ (T 0,1M)∗ ⊕ Cθ.

2.5. Densities and Scales.

Definition 2.2 ([37]). Given a contact form θ for H we say that a
section ζ of K is volume normalised if it satisfies

(2.3) θ ∧ (dθ)n = in
2

n!(−1)qθ ∧ (Tyζ) ∧ (Tyζ̄).

Given ζ volume normalised for θ clearly ζ ′ = eiϕζ is also volume
normalised for θ for any real valued smooth function ϕ on M , so that
such a ζ is determined only up to phase at each point. Note however
that ζ ⊗ ζ̄ does not depend on the choice of volume normalised ζ. Let
us fix a real (n + 2)th root ς of ζ ⊗ ζ̄ in E(−1,−1). If θ̂ = fθ and ζ̂

is volume normalised for θ̂ then fς is an (n + 2)th root of ζ̂ ⊗ ¯̂
ζ. The
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map taking θ to ς and fθ to fς determines an isomorphism from H⊥

to E(−1,−1)R. Fixing this isomorphism simply corresponds to fixing
an orientation of E(−1,−1)R, and we henceforth assume this is fixed.
The isomorphism
(2.4) H⊥ ∼= E(−1,−1)R

defines a tautological E(1, 1)R valued 1-form:

Definition 2.3. The CR contact form is the E(1, 1)R-valued 1-form θ
which is given by ς−1θ where θ is any pseudohermitian contact form
and ς is the corresponding positive section of E(−1,−1)R.

2.6. The Levi Form. The Levi form of a pseudohermitian contact
form θ is the Hermitian form h : T 1,0M ⊗ T 0,1M → C defined by

(U, V ) 7→ −2idθ(U, V ) = 2iθ([U, V ])

for U, V ∈ Γ(T 1,0M). The Levi form of θ may be thought of as a section
of Eαβ̄, which we write as hαβ̄; there is also an inverse of the Levi form
hαβ̄ determined by the condition that hαβ̄hγβ̄ = δαγ (where δαγ is the
identity endomorphism of Eα). Note that if θ is replaced by θ̂ = eΥθ

then ĥαβ̄ = eΥhαβ̄ and consequently ĥαβ̄ = e−Υhαβ̄, moreover it is clear
that ς̂ = eΥς (where θ = ςθ and θ̂ = ς̂θ). This allows us to define a
canonical weighted Levi form:

Definition 2.4. The CR Levi form is the E(1, 1)-valued Hermitian
form hαβ̄ ∈ Γ

(
Eαβ̄(1, 1)

)
given by ς−1hαβ̄ for any pseudohermitian

contact form θ = ςθ.

In the following we use the CR Levi form hαβ̄ and its inverse hαβ̄ to
raise and lower indices. Note that lowering indices with hαβ̄ identifies
Eα with Eβ̄(1, 1) so that weights generally change when indices are
raised and lowered.

The CR Levi form could also have been defined by the map
(U, V ) 7→ 2iθ([U, V ]).

By complexifying and dualising the isomorphism (2.4) we obtain an
isomorphism of E(1, 1) with (CH⊥)∗ = CTM/CH. This allows us to
identify h, up to a constant factor, with the usual CTM/CH-valued
Levi form in CR geometry.

Remark 2.5. Given a contact form θ one may also define a pseudo-
Riemannian metric gθ on the tangent bundle of M by taking the direct
sum of the bilinear form dθ(·, J ·) on H (which is precisely the real part
of the Levi form h of θ) with θ ⊗ θ on RT . This metric is called the
Webster metric.
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2.7. Decomposing Tensors. Using the direct sum decomposition of
CTM given by a choice of contact form θ a real tangent vector X may
be represented by the triple

(Xα, X ᾱ, X0)

where Xα is the holomorphic part of X, X ᾱ is the antiholomorphic
part, and X0 = θ(X). Note that X0 is a (1, 1) density and X ᾱ = Xα.
(We follow [32] in using θ rather than θ in defining X0, this simplifies
later conformal transformation laws.) Similarly we may represent a
real covector ω by the triple

(ωα, ωᾱ, ω0)

where ωα is the restriction of ω to holomorphic directions, ωᾱ = ωα
is the restriction of ω to antiholomorphic directions, and the (−1,−1)
density ω0 is the θ-component of ω (i.e. ςω(T ) where θ = ςθ). It is
easy to see that the above decompositions extend to arbitrary tensors
or tensor fields. For instance we can represent a real covariant 2-tensor
T by the 9-tuple

(Tαβ, Tαβ̄, Tᾱβ, Tᾱβ̄, Tα0, Tᾱ0, T0β, T0β̄, T00);

moreover, by reality it is enough to specify the 5-tuple

(Tαβ, Tαβ̄, Tα0, T0β, T00)

since Tᾱβ = Tαβ̄, Tᾱ0 = Tα0, and T0β̄ = T0β.

2.8. The Tanaka-Webster Connection. Since a choice of contact
form θ for (M,H, J) gives rise to a pseudo-Riemannian metric gθ on
M (Remark 2.5) one also obtains the Levi-Civita connection ∇gθ of
gθ. Calculating with this connection is highly inconvenient however,
since it does not preserve the direct sum decomposition (2.1) of CTM
induced by θ. We instead look for a connection ∇ on M which still
satisfies

∇gθ = 0,

but whose parallel transport also preserves H and (as a connection on
H) preserves J ; such a connection cannot be torsion free, since by the
contact condition there exist X, Y ∈ Γ(H) with [X, Y ] /∈ Γ(H) and
hence

T∇(X, Y ) = ∇XY −∇YX − [X, Y ]

cannot be zero since ∇XY − ∇YX ∈ Γ(H). It turns out that these
conditions do not determine a connection on M uniquely, but we can
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determine ∇ uniquely by imposing the following additional conditions
on the torsion of ∇,

T∇αβ̄
γ = 0, T∇αβ̄

γ̄ = 0, T∇αβ̄
0 = ihαβ̄,

T∇αβ
γ = 0, T∇αβ

γ̄ = 0, T∇αβ
0 = 0,

T∇α0
γ = 0, T∇α0

γ̄ = −Aγ̄α, and T∇α0
0 = 0

for some Aγ̄α ∈ Γ(E γ̄α(−1,−1)) with Aαβ symmetric (see [45], Propo-
sition 3.1). The connection ∇ determined uniquely by these conditions
is called the Tanaka-Webster connection of θ (it was discovered inde-
pendently by Tanaka and Webster in [43, 49]), and Aαβ is known as
the pseudohermitian torsion tensor.

Since the Tanaka-Webster connection preserves H and gθ it also pre-
serves the gθ-orthogonal complement of H, which is spanned by the
Reeb vector field T . Since gθ(T, T ) = 1 this implies that ∇T = 0.
Thus also

∇θ = 0,

since θ( · ) = gθ( · , T ). By definition the Tanaka-Webster connection
∇ preserves the direct sum decomposition (2.1) of CTM induced by θ.
So, by definition ∇ induces a linear connection on H and on T 1,0M . It
therefore makes sense to take the Tanaka-Webster covariant derivative
of the Levi form h of θ, and it is easily seen that ∇h = 0.

2.8.1. Interpreting the torsion conditions. The conditions on the tor-
sion tensor may be alternatively phrased by saying that for any function
f ∈ C∞(M) we have

(2.5) ∇α∇β̄f −∇β̄∇αf = −ihαβ̄∇0f,

(2.6) ∇α∇βf −∇β∇αf = 0,

and

(2.7) ∇α∇0f −∇0∇αf = Aγ̄α∇γ̄f

where Aαβ is the symmetric pseudohermitian torsion tensor. We note
that since the Tanaka-Webster connection preserves the direct sum
decomposition (2.2) of CT ∗M induced by θ there is no ambiguity in the
notation used in the above displays; for instance one can equivalently
think of ∇α∇βf as the ‘α-component’ of ∇ acting on ∇βf or as the
‘αβ-component’ of ∇∇f .



CR EMBEDDED SUBMANIFOLDS OF CR MANIFOLDS 17

2.9. The Tanaka-Webster Connection on Densities. The Tanaka-
Webster connection of a contact form acts on sections of any density
bundle since it acts on sections of E(−1, 0)n+2 = K . In equation (2.7)
above we are already implicitly using the action of the connection on
the density bundle E(−1,−1) in the expression ∇α∇0f . It does not
matter whether or not we think of ∇0f as density valued in such equa-
tions because of the following lemma.

Lemma 2.6. The Tanaka-Webster connection ∇ of θ on E(−1,−1) is
simply the flat connection corresponding to the trivialisation induced by
the contact form θ, i.e. by the section ς satisfying θ = ςθ. In particular
the isomorphism (2.4) is parallel for the Tanaka-Webster connection,
i.e. it intertwines the actions of ∇ on H⊥ and on E(−1,−1)R.

Proof. Suppose the section ζ of K is volume normalised for θ. Parallel
transporting ζ along any curve must preserve ζ up to phase (since the
result of parallel transport will still be volume normalised, θ, dθ, and
T being parallel). This implies that ζ ⊗ ζ̄ is parallel, but by definition
ςn+2 = ζ ⊗ ζ̄ so that ςn+2 and hence ς is parallel. �

The lemma also tells us that for the Tanaka-Webster connection ∇
of any contact form θ we have

(2.8) ∇θ = 0 and ∇h = 0.

The advantage of raising and lowering indices with the CR Levi form
hαβ̄ is that these operations commute with any Tanaka-Webster co-
variant derivative.

2.10. Pseudohermitian Curvature. By equation (2.5) the operator

∇α∇β̄ −∇β̄∇α + ihαβ̄∇0

annihilates smooth functions on M ; moreover, this operator preserves
E γ̄. By the Leibniz rule the above displayed operator commutes with
multiplication by smooth functions when acting on sections of E γ̄. Thus
there is a tensor Rαβ̄

γ̄
δ̄ such that

(2.9) ∇α∇β̄V
γ̄ −∇β̄∇αV

γ̄ + ihαβ̄∇0V
γ̄ = −Rαβ̄

γ̄
δ̄V

δ̄

for all sections V γ̄ of E γ̄. Equivalently Rαβ̄
γ̄
δ̄ is characterised by

(2.10) ∇α∇β̄Vδ̄ −∇β̄∇αVδ̄ + ihαβ̄∇0Vδ̄ = Rαβ̄
γ̄
δ̄Vγ̄

for all sections Vδ̄ of Eδ̄. Our conventions agree with those of [32, 49].
We refer to this tensor, or to Rαβ̄γδ̄ = hγε̄Rαβ̄

ε̄
δ̄, as the pseudohermitian

curvature tensor, and it has the following properties

(2.11) Rαβ̄γδ̄ = Rγβ̄αδ̄ = Rβᾱδγ̄ = Rαδ̄γβ̄ = Rγδ̄αβ̄
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which we derive in section 2.11 below. The trace

(2.12) Rαβ̄ = Rαβ̄
γ̄
γ̄

of the pseudohermitian curvature tensor is referred to as the pseudo-
hermitian Ricci tensor of θ and its trace

(2.13) R = hαβ̄Rαβ̄

is called the pseudohermitian scalar curvature of θ. The pseudohermi-
tian curvature tensor can be decomposed as

(2.14) Rαβ̄γδ̄ = Sαβ̄γδ̄ + Pαβ̄hγδ̄ + Pγδ̄hαβ̄ + Pαδ̄hγβ̄ + Pγβ̄hαδ̄

where Sαβ̄γδ̄ satisfies

(2.15) Sαβ̄γδ̄ = Sγβ̄αδ̄ = Sβᾱδγ̄ = Sαδ̄γβ̄ = Sγδ̄αβ̄, Sαβ̄
γ̄
γ̄ = 0

and

(2.16) Pαβ̄ =
1

n+ 2

(
Rαβ̄ −

1

2(n+ 1)
Rhαβ̄

)
.

The tensor Sαβ̄γδ̄ is known as the Chern-Moser tensor and is a CR
invariant, by which we mean that if θ̂ is another contact form for H
then Ŝαβ̄γδ̄ = Sαβ̄γδ̄ (note that we are thinking of Sαβ̄γδ̄ as a weighted
tensor field).

2.11. The Full Tanaka-Webster Curvature. The full curvature
tensor of the Tanaka-Webster connection ∇ of a contact form θ is de-
fined by

(2.17) ∇a∇bY
c −∇b∇aY

c + T∇ab
e∇eY

c = −Rab
c
dY

d

for any tangent vector field Y c, where T∇ is the torsion of ∇ given in
section 2.8. The pseudohermitian curvature tensor Rαβ̄

γ̄
δ̄ is just one

component of the full curvature tensor, taken with respect to the direct
sum decomposition

(2.18) CTM = T 1,0M ⊕ T 0,1M ⊕ CT

and its dual.

Lemma 2.7. The full curvature tensor Rab
c
d of the Tanaka-Webster

connection is completely determined by the components Rαβ̄
γ̄
δ̄, Rαβ

γ̄
δ̄,

and Rα0
γ̄
δ̄.

Proof. Note that the tensor Rab
c
d is real, so that the component Rᾱβ

γ
δ

is simply the complex conjugate of Rαβ̄
γ̄
δ̄ and so on. Also, the symme-

try Rab
c
d = −Rba

c
d translates into Rαβ

γ̄
δ̄ = −Rβα

γ̄
δ̄, Rᾱ0

γ
δ = −R0ᾱ

γ
δ,
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etcetera. Now since the Tanaka-Webster connection preserves the split-
ting of sections of CTM according to (2.18) we must have

Rab
γ
δ̄ = 0, Rab

γ
0 = 0, and Rab

0
δ = 0.

Since T is parallel we also have that

Rab
0

0 = 0.

From this we see that, up to conjugation and swapping the first two
indices, the only nonzero components of Rab

c
d are

Rαβ̄
γ
δ , Rαβ

γ
δ , Rα0

γ
δ , Rαβ̄

γ̄
δ̄ , Rαβ

γ̄
δ̄ and Rα0

γ̄
δ̄.

Our conclusion follows by observing that if we lower indices using the
CR Levi form then we have that

Rabγδ̄ = −Rabδ̄γ,

since hγδ̄ is parallel. �

Remark 2.8. From the last display of the above proof we have that
Rαβ̄γδ̄ = −Rαβ̄δ̄γ. It immediately follows that Rαβ̄γδ̄ = Rβ̄αδ̄γ = Rβᾱδγ̄,
establishing one of the claims from Section 2.10.

Using (2.17) the curvature component Rαβ
γ̄
δ̄ may also be charac-

terised by a Ricci-type identity

(2.19) ∇α∇βV
γ̄ −∇β∇αV

γ̄ = −Rαβ
γ̄
δ̄V

δ̄

for any section V γ̄ of E γ̄. Similarly for Rα0
γ̄
δ̄ we have

(2.20) ∇α∇0V
γ̄ −∇0∇αV

γ̄ − Aεα∇εV
γ̄ = −Rα0

γ̄
δ̄V

δ̄.

On a section Vδ̄ of Eδ̄ we have

(2.21) ∇α∇βVδ̄ −∇β∇αVδ̄ = Rαβ
γ̄
δ̄Vγ̄

by duality, and likewise for Rα0
γ̄
δ̄.

2.11.1. The Bianchi symmetry. Recall that for a connection ∇ without
torsion the Bianchi symmetry comes from observing that by torsion
freeness one has

(∇a∇b −∇b∇a)∇df + (∇b∇d −∇d∇b)∇af + (∇d∇a −∇a∇d)∇bf = 0

for any f ∈ C∞(M), since the curvature tensor must then satisfy

(Rab
c
d +Rbd

c
a +Rda

c
b)∇cf = 0.

This approach also works for a connection with torsion and we use it
below to express the consequences of the Bianchi symmetry for the
curvature of the Tanaka-Webster connection in terms of the compo-
nents Rαβ̄

γ̄
δ̄, Rαβ

γ̄
δ̄, Rα0

γ̄
δ̄, and the pseudohermitian torsion. Because
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so many components of Rab
c
d already vanish one obtains expressions

for Rαβ
γ̄
δ̄ and Rα0

γ̄
δ̄ in terms of the pseudohermitian torsion.

Proposition 2.9. The Bianchi symmetry for the Tanaka-Webster cur-
vature tensor Rab

c
d is equivalent to the following identities

(2.22) Rαβ̄
γ̄
δ̄ = Rαδ̄

γ̄
β̄

(2.23) Rαβ
γ̄
δ̄ = ihαδ̄A

γ̄
β − ihβδ̄A

γ̄
α

(2.24) Rα0
γ̄
δ̄ = ∇δ̄A

γ̄
α

(2.25) ∇αA
γ̄
δ = ∇δA

γ̄
α.

Proof. By elementary considerations the cyclic sum of Rab
c
d with re-

spect to the lower three indices is determined by the cyclic sums of
Rαβ

c
δ, Rαβ

c
δ̄, Rα0

c
δ, and Rα0

c
δ̄ with respect to their lower three in-

dices. In the case of Rαβ
c
δ we may instead cyclically permute the lower

indices of Rαβ
γ
δ since for each permutation the only nonzero part of the

tensor is obtained by replacing c with γ. By (2.6) ∇α∇β is symmetric
on smooth functions so that
(∇α∇β−∇β∇α)∇δf+(∇β∇δ−∇δ∇β)∇αf+(∇δ∇α−∇α∇δ)∇βf = 0

for all f ∈ C∞(M), and hence
(2.26) Rαβ

γ
δ +Rδα

γ
β +Rβδ

γ
α = 0.

This expression is not listed above because it is a consequence of (2.23),
the latter being equivalent to
(2.27) Rαβ

γ
δ = −iδγαAβδ + iδγβAαδ

since Rαβγδ̄ = −Rαβδ̄γ.
Now let f be a smooth function on M . We similarly compute(

Rαβ
c
δ̄ +Rδ̄α

c
β +Rβδ̄

c
α

)
∇cf.

Noting that Rαβ
c
δ̄∇cf = Rαβ

γ̄
δ̄∇γ̄f , and so on, we get

Rαβ
γ̄
δ̄∇γ̄f +Rδ̄α

γ
β∇γf +Rβδ̄

γ
α∇γf

= (∇α∇β −∇β∇α)∇δ̄f + (∇δ̄∇α −∇α∇δ̄ − ihαδ̄∇0)∇βf

+ (∇β∇δ̄ −∇δ̄∇β + ihβδ̄∇0)∇αf

= ∇α(∇β∇δ̄f −∇δ̄∇βf) +∇β(∇δ̄∇αf −∇α∇δ̄f)

+∇δ̄(∇α∇βf −∇β∇αf)− ihαδ̄∇0∇βf + ihβδ̄∇0∇αf

= ∇α(−ihβδ̄∇0f) +∇β(ihαδ̄∇0f)

− ihαδ̄∇0∇βf + ihβδ̄∇0∇αf

= ihαδ̄(∇β∇0f −∇0∇βf) + ihβδ̄(∇0∇αf −∇α∇0f)
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= ihαδ̄A
ε̄
β∇ε̄f − ihβδ̄Aε̄α∇ε̄f

Since f was arbitrary the above display holds at any point for all func-
tions f with ∇γf = 0 (or with ∇γ̄f = 0) at that point, and thus we
conclude that

Rαβ
γ̄
δ̄ = ihαδ̄A

γ̄
β − ihβδ̄A

γ̄
α

and
Rδ̄α

γ
β +Rβδ̄

γ
α = 0.

By conjugation the last display is equivalent to (2.22), noting that
Rβδ̄

γ
α = −Rδ̄β

γ
α.

Similarly computing

Rα0
c
δ̄∇cf +R0δ̄

c
α∇cf +Rδ̄α

c
0∇cf

we get (noting Rδ̄α
c
0 = 0)

Rα0
γ̄
δ̄∇γ̄f +R0δ̄

γ
α∇γf = −(∇αA

γ

δ̄
)∇γf + (∇δ̄A

γ̄
α)∇γ̄f

so that
Rα0

γ̄
δ̄ = ∇δ̄A

γ̄
α.

Finally, computing the cyclic sum for Rα0
c
δ∇cf we obtain

Rα0
γ
δ∇γf +R0δ

γ
α∇γf = −(∇αA

γ̄
δ )∇γ̄f + (∇δA

γ̄
α)∇γ̄f

so that
∇αA

γ̄
δ = ∇δA

γ̄
α

and

(2.28) Rα0
γ
δ = Rδ0

γ
α.

The identity (2.28) follows already from (2.24) since by lowering indices
we have Rα0γδ̄ = ∇δ̄Aαγ and using that Rα0δ̄γ = −Rα0γδ̄ we get that

(2.29) Rα0
γ
δ = −∇γAαδ.

�

The expressions (2.24) and (2.27) agree with those given in section
1.4.2 of [17], after adjusting (2.27) by factor of two to account for their
slightly different conventions (see (1.84) in [17]).

Note that (2.22) implies that the pseudohermitian curvature tensor
satisfies

Rαβ̄γδ̄ = Rγβ̄αδ̄

(as was previously claimed) from which we also deduce that

Rαβ̄γδ̄ = Rαδ̄γβ̄ = Rγδ̄αβ̄.
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2.12. Curvature of the Density Bundles. Although the Tanaka-
Webster connection ∇ of a contact form θ is flat on the diagonal den-
sity bundles E(w,w) it is not flat on density bundles in general. The
curvature of the density bundles was calculated in [32, Prop. 2.2]. We
give this proposition with an alternate proof:

Proposition 2.10. Let θ be a pseudohermitian contact form and ∇
its Tanaka-Webster connection. On a section f of E(w,w′) we have

∇α∇βf −∇β∇αf = 0,(2.30)

∇α∇β̄f −∇β̄∇αf + ihαβ̄∇0f =
w − w′

n+ 2
Rαβ̄f,(2.31)

∇α∇0f −∇0∇αf − Aαγ∇γf =
w − w′

n+ 2
(∇γAγα)f.(2.32)

Proof. We first consider sections f = ζ of E(−n−2, 0) = K . The map

ζ 7→ (Tyζ)|T 1,0M

induces an isomorphism between the complex line bundles K and
Λn (T 1,0M)

∗. This isomorphism between K and E[α1···αn] intertwines
the action of the Tanaka-Webster connection ∇ since the Reeb vector
field T is parallel and ∇ preserves T 1,0M , so the two line bundles have
the same curvature. The curvature of the top exterior power E[α1···αn]

of Eα is simply obtained by tracing the curvature of Eα.
Now let f be a section of E(−n−2, 0) = K . By tracing the conjugate

of (2.23) and using the appropriate Ricci-type identity for Rᾱβ̄
γ
δ we

therefore obtain
∇ᾱ∇β̄f −∇β̄∇ᾱf = 0

since Rᾱβ̄
γ
γ = 0. Similarly, using that Rαβγδ̄ = −Rαβδ̄γ, we obtain from

(2.23) that Rαβ
γ
γ = 0 and hence

∇α∇βf −∇β∇αf = 0.

Using that Rαβ̄
γ
γ = Rαβ̄γ̄

γ̄ = −Rαβ̄
γ̄
γ̄ = −Rαβ̄ and the appropriate

Ricci-type identity for Rαβ̄
γ
δ we get

∇α∇β̄f −∇β̄∇αf + ihαβ̄∇0f = −Rαβ̄f.

Finally, by tracing the conjugate of (2.24) we obtain

∇ᾱ∇0f −∇0∇ᾱf − Aγᾱ∇γf = (∇γA
γ
ᾱ)f

and using Rα0γδ̄ = −Rα0δ̄γ we obtain from (2.24) that Rα0
γ
δ = −∇γAαδ

so that
∇α∇0f −∇0∇αf − Aγ̄α∇γ̄f = −(∇γAαγ)f.

This establishes the proposition for (w,w′) equal to (−n − 2, 0), and
for (w,w′) equal to (0,−n− 2) by conjugating.
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Considering the action of the curvature operator(s) on (n+2)th pow-
ers of sections of E(−1, 0) and E(0,−1) we obtain the result for (w,w′)
equal to (−1, 0) or (0,−1). Taking powers and tensor products then
gives the full proposition. �

2.13. Changing Contact Form. Here we establish how the various
pseudohermitian objects we have introduced transform under confor-
mal rescaling of the contact form. The first thing to consider is the
Reeb vector field:

Lemma 2.11. Under the transformation θ̂ = eΥθ of pseudohermitian
contact forms, Υ ∈ C∞(M), the Reeb vector field transforms according
to

(2.33) T̂ = e−Υ
[
T + ((dΥ)|H ◦ J)]

]
where ] denotes the usual isomorphism H∗ → H induced by the bundle
metric dθ(·, J ·)|H on the contact distribution.

Proof. Defining T̂ by (2.33) one has θ̂(T̂ ) = 1 and

T̂ydθ̂ = T̂yd(eΥθ) = dΥ(T̂ )θ̂ − dΥ + eΥT̂ydθ.

We observe that

dθ̂(T̂ , JY ) = −dΥ(JY ) + dθ(eΥT̂ , JY ) = 0

for any Y ∈ Γ(H), using that θ̂(JY ) = 0 and

dθ(eΥT̂ , JY ) = dθ(((dΥ)|H ◦ J)] , JY ) = dΥ(JY ).

Now since dθ̂(T̂ , T̂ ) = 0 we have T̂ydθ̂ = 0. �

If η is a 1-form whose restrictions to Eα and E ᾱ are ηα and ηᾱ re-
spectively then (η|H)] is a contact vector field whose antiholomorphic
component is hβᾱηβ and whose holomorphic component is hαβ̄ηβ̄. It is
easy to see that the restriction of (dΥ)|H ◦ J to Eα is i∇αΥ and the
restriction to E ᾱ is −i∇ᾱΥ. These observations imply:

Lemma 2.12. If a 1-form ω has components (ωα, ωᾱ, ω0) with respect
to some contact form θ, then the components of ω with respect to eΥθ
are

(ωα, ωᾱ, ω0 + iΥᾱωᾱ − iΥαωα)

where Υᾱ = hβᾱ∇βΥ and Υα = hαβ̄∇β̄Υ.
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2.13.1. The Tanaka-Webster transformation laws. We need to see how
the Tanaka-Webster connection transforms under rescaling of the con-
tact form.

Proposition 2.13. Under the transformation θ̂ = eΥθ of pseudoher-
mitian contact forms, Υ ∈ C∞(M), the Tanaka-Webster connection on
sections τβ of Eβ transforms according to

∇̂ατβ = ∇ατβ −Υβτα −Υατβ(2.34)

∇̂ᾱτβ = ∇ᾱτβ + hβᾱΥγτγ(2.35)

∇̂0τβ = ∇0τβ + iΥγ̄∇γ̄τβ − iΥγ∇γτβ − i(Υγ
β −ΥγΥβ)τγ(2.36)

where Υα = ∇αΥ, Υᾱ = ∇ᾱΥ, Υαβ̄ = ∇β̄∇αΥ, and indices are raised
using hαβ̄.

Remark. Note that on the left hand side of the last equation in the
above display the ‘0-component’ is taken with respect to the splitting
of the cotangent bundle induced by θ̂, whereas on the right hand side it
is taken with respect to the splitting of the cotangent bundle induced by
θ (recall Sections 2.5 and 2.7). In other words the operator ∇̂0 is taken
to be ς̂∇̂T̂ where θ̂ = ς̂θ, whereas ∇0 = ς∇T where θ = ςθ. Note that
θ(ςT ) = θ(T ) = 1 and similarly θ(ς̂ T̂ ) = 1, so ςT and ς̂ T̂ are natural
weighted versions of the Reeb vector fields of θ and θ̂ respectively.

Proof of Proposition 2.13. We define the connection ∇̂ on Eβ by the
formulae above, and extend ∇̂ to a connection on TM in the obvious
way. Precisely, we define ∇̂ to act on Eβ̄ by the conjugates of the above
formulae, so that, e.g., ∇̂ατβ̄ is the conjugate of ∇̂ᾱτβ with τβ = τβ̄.
This gives a connection on CH∗ which preserves the real subbundle H∗

and preserves J . Thus by requiring θ̂ to be parallel for ∇̂ we obtain
a connection on T ∗M and hence on TM . To show that this is the
Tanaka-Webster connection of θ̂ it remains only to show that ∇̂gθ̂ = 0
and to verify the torsion conditions.

To show that ∇̂gθ̂ = 0 it is sufficient to show that ∇̂ preserves the
Levi form ĥ is of θ̂. This is a computation using the formulae in the
proposition: By the Leibniz rule we have

∇̂α(τβζγ̄) = ∇α(τβζγ̄)−Υα(τβζγ̄)−Υβ(ταζγ̄) + hαγ̄Υ
δ̄(τβζδ̄)

for a simple section of Eβγ̄. By C-linearity we obtain

∇̂αĥβγ̄ = ∇αĥβγ̄ −Υαĥβγ̄ −Υβĥαγ̄ + hαγ̄Υ
δ̄ĥβδ̄;

the terms on the right hand side of the above display cancel in pairs
since ĥβγ̄ = eΥhβγ̄. By conjugate symmetry we also get ∇̂ᾱĥβγ̄ = 0.
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Similarly one computes that

∇̂0ĥαβ̄ = ∇0ĥαβ̄ + iΥγ̄∇γ̄ĥαβ̄ − iΥγ∇γĥαβ̄

− i (Υγ
α −ΥγΥα) ĥγβ̄ + i

(
Υγ̄

β̄ −Υγ̄Υβ̄

)
ĥαγ̄.

The terms on the right hand side of the above display all cancel since
∇0ĥαβ̄ = Υ0ĥαβ̄ and Υαβ̄ − Υβ̄α = ihαβ̄Υ0, where Υ0 = ∇0Υ and
Υβ̄α = ∇α∇β̄Υ.

Substituting ∇̂βf (= ∇βf) for τβ in equation (2.34) we see that

∇̂α∇̂βf − ∇̂β∇̂αf = 0,

since −Υβτα −Υατβ is symmetric. Similarly from (2.35) we obtain

∇̂α∇̂β̄f − ∇̂β̄∇̂αf = −ihαβ̄ (∇0f + iΥγ̄∇γ̄f − iΥγ∇γf) ,

and from Lemma 2.12 we have that

(2.37) ∇̂0f = ∇0f + iΥγ̄∇γ̄f − iΥγ∇γf.

From (2.36) and (2.37) one has that

∇̂α∇̂0f − ∇̂0∇̂αf = ∇̂α (∇0f − iΥγ∇γf + iΥγ̄∇γ̄f)

− (∇0∇αf + iΥγ̄∇γ̄∇αf − iΥγ∇γ∇αf(2.38)
−i(Υγ

α −ΥγΥα)∇γf) .

One can easily compute directly that

∇̂α (∇0f − iΥγ∇γf + iΥγ̄∇γ̄f) = ∇α (∇0f − iΥγ∇γf + iΥγ̄∇γ̄f)

+ Υα (∇0f − iΥγ∇γf + iΥγ̄∇γ̄f)

(cf. the proof of Proposition 2.14). Substituting this into (2.38), ex-
panding using the Leibniz rule and simplifying one obtains

∇̂α∇̂0f − ∇̂0∇̂αf = (Aαγ + iΥαγ − iΥαΥγ) ∇̂γf

where Υαγ = ∇α∇γΥ is symmetric. �

Note that in the course of the proof we have established the trans-
formation law

(2.39) Âαβ = Aαβ + iΥαβ − iΥαΥβ

for the pseudohermitian torsion.
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2.13.2. The transformation law for the pseudohermitian curvature ten-
sor. From the transformation laws for the Tanaka-Webster connection
one can directly compute that

(2.40) R̂αβ̄γδ̄ = Rαβ̄γδ̄ + Λαβ̄hγδ̄ + Λγδ̄hαβ̄ + Λαδ̄hγβ̄ + Λγβ̄hαδ̄

where

(2.41) Λαβ̄ = −1

2
(Υαβ̄ + Υβ̄α)− 1

2
ΥγΥγhαβ̄.

In particular this tells us that Ŝαβ̄γδ̄ = Sαβ̄γδ̄ and

(2.42) P̂αβ̄ = Pαβ̄ + Λαβ̄.

2.13.3. The transformation laws for the Tanaka-Webster connection on
densities. We also need to know how the Tanaka-Webster connection
transforms when acting on densities. These transformation laws follow
from the above since it suffices to compare the action of ∇ and ∇̂ on
sections of the canonical bundle K .

Proposition 2.14. [32, Prop. 2.3] Under the transformation θ̂ = eΥθ
of pseudohermitian contact forms, Υ ∈ C∞(M), the Tanaka-Webster
connection acting on sections f of E(w,w′) transforms according to

∇̂αf = ∇αf + wΥαf

∇̂ᾱf = ∇ᾱf + w′Υᾱf

∇̂0f = ∇0f + iΥγ̄∇γ̄f − iΥγ∇γf

+ 1
n+2

[(w + w′)Υ0 + iwΥγ
γ − iw′Υγ̄

γ̄ + i(w′ − w)ΥγΥγ] f.

Proof. Since ∇ preserves T and Γ(T 1,0M) the map

Iθ : ζ 7→ (Tyζ)|T 1,0M

taking sections of K to sections of E[α1···αn] commutes with ∇X for all
X ∈ X(M). On the other hand Iθ̂ : ζ 7→ (T̂yζ)|T 1,0M intertwines the
action of the connection ∇̂. Now Iθ̂ = e−Υ ◦ Iθ since if Y = T̂ − e−ΥT
then (Y yζ)|T 1,0M = 0 for any (n+ 1, 0)-form ζ; to see this note that Y
is contact (by Lemma 2.11) and the antiholomorphic part of Y hooks
into ζ to give zero, but also ζ|T 1,0M = 0 since the rank of T 1,0M is n.
Thus we have

Iθ(∇̂Xζ) = eΥIθ̂(∇̂Xζ) = eΥ∇̂XIθ̂(ζ) = eΥ∇̂X [e−ΥIθ(ζ)]

= ∇̂XIθ(ζ)− dΥ(X)Iθ(ζ)

for any X ∈ X(M), ζ ∈ Γ(K ). So the action of ∇̂ on K is conjugate
under Iθ to the action of ∇̂−dΥ on E[α1···αn]. One now easily translates
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using Iθ the transformation laws for the Tanaka-Webster connection
on E[α1···αn] (obtained from Proposition 2.13 by taking traces) to the
transformation laws for the Tanaka-Webster connection on the canon-
ical bundle K . The transformation laws for E(w,w′) then follow from
those for K = E(−n− 2, 0) in the obvious way. �

3. CR Tractor Calculus

It is well known that nondegenerate (hypersurface type) CR geome-
tries admit an equivalent description as parabolic Cartan geometries.
The Cartan geometric description of CR manifolds was introduced by
Cartan [12] in the case of 3-dimensional CR manifolds, and by Tanaka
[43, 44, 46] and Chern and Moser [13] in the general case. To a sig-
nature (p, q) CR manifold (M,H, J) there is associated a canonical
Cartan geometry (G, ω) of type (SU(p + 1, q + 1), P ) where the sub-
group P of SU(p + 1, q + 1) is the stabiliser of a complex null line in
Cp+1,q+1. Moreover, any local CR diffeomorphism of (M,H, J) with
another CR manifold (M ′, H ′, J ′) lifts to a local equivalence of the
canonical Cartan geometries (G, ω) and (G ′, ω′). In the model case of
the CR sphere G is simply the group G = SU(n + 1, 1) as a principal
bundle over S2n+1 = G/P and ω is the left Maurer-Cartan form of G.
Strictly speaking, if we do not wish to impose any global assumptions
in the general case we need to quotient SU(p+ 1, q+ 1) and P by their
common finite cyclic center, but for the purpose of local calculus we
can ignore this.

Given any representation V of SU(p+ 1, q+ 1) there is associated to
the CR Cartan bundle G a vector bundle V = G ×P V over M . The
CR Cartan connection ω induces on V a linear connection ∇V . Such
bundles V are known as tractor bundles, and the connection ∇V is the
(canonical) tractor connection [8]. If T is the standard representation
Cp+1,q+1 of SU(p+ 1, q+ 1) then T = G ×P T is known as the standard
tractor bundle. Since T is a faithful representation of P the CR Cartan
bundle G may be recovered from T as an adapted frame bundle. The
Cartan connection ω is easily recovered from ∇T . Elementary repre-
sentation theory tells us that all other irreducible representations of
SU(p + 1, q + 1) are subbundles of tensor representations constructed
from T (and T∗) given by imposing certain tensor symmetries, so know-
ing the standard tractor bundle T and its tractor connection one can
easily explicitly obtain all tractor bundles and connections.

The tractor bundles and their tractor connections, along with cer-
tain invariant differential (splitting) operators from irreducible tensor
bundles on the CR manifold into tractor bundles, form the basis of a
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calculus of local invariants and invariant operators for CR manifolds
known as the CR tractor calculus.

3.1. The Standard Tractor Bundle. There are various ways to con-
struct the CR Cartan bundle and hence the standard tractor bundle.
However for our purposes it is much better to use the direct construc-
tion of the CR standard tractor bundle and connection found in [32].
This allows a very concrete description of the standard tractor bundle
and connection in terms of the weighted tensor bundles and Tanaka-
Webster calculus of Section 2.

Since the subgroup P of SU(p + 1, q + 1) stabilises a null complex
line in T it also stabilises the orthogonal complement of this null line
and so there is a filtration

(3.1) T 1 ⊂ T 0 ⊂ T −1 = T

of T by subbundles where T 1 has complex rank 1 and T 0 has com-
plex rank n + 1 (and corank 1). The starting point for the explicit
construction of T in [32] is the observation that

(3.2) T 1 = E(−1, 0), T 0/T 1 = Eα(−1, 0), and T −1/T 0 = E(0, 1).

Let us introduce abstract index notation EA for T , allowing the use
of capitalised Latin indices from the start of the alphabet. The dual
of T = EA is denoted by EA and the conjugate by E Ā. Following [32]
we present the standard cotractor bundle EA rather than EA (it makes
little difference since there will be a parallel Hermitian metric around).
The bundle EA comes with a naturally defined filtration, dual to (3.1).
Given a choice of contact form θ for (M,H, J) we identify the standard
cotractor bundle EA with

[EA]θ = E(1, 0)⊕ Eα(1, 0)⊕ E(0,−1);

we write vA
θ
= (σ, τα, ρ),

vA
θ
=

 σ
τα
ρ

 , or [vA]θ =

 σ
τα
ρ


if an element or section of EA is represented by (σ, τα, ρ) with respect
to this identification; the identifications given by two contact forms θ
and θ̂ = eΥθ are related by the transformation law
(3.3)

[EA]θ 3

 σ
τα
ρ

 ∼
 1 0 0

Υα δβα 0
−1

2
(ΥβΥβ + iΥ0) −Υβ 1

 σ
τβ
ρ

 ∈ [EA]θ̂
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where Υα = ∇αΥ and Υ0 = ∇0Υ. This transformation law comes from
the action of the nilpotent part P+ of P on T∗ (see [10] for the general
theory) so that ∼ is indeed an equivalence relation on the disjoint
union of the spaces [EA]θ. We can thus take the standard cotractor
bundle EA to be the quotient of the disjoint union of the [EA]θ over all
pseudohermitian contact forms θ by the equivalence relation (3.3).

3.2. Splitting Tractors. From (3.3) it is clear that there is an invari-
ant inclusion of E(0,−1) into EA given with respect to any contact form
θ by the map

ρ 7→

 0
0
ρ

 .

Correspondingly there is an invariant section ZA of EA(0, 1) such that
the above displayed map is given by ρ 7→ ρZA. The weight (0, 1)
canonical tractor ZA can be written as

ZA =

 0
0
1


with respect to any choice of contact form θ.

Given a fixed choice of θ, we also get the corresponding splitting
tractors

W β
A

θ
=

 0
δβα
0

 and YA
θ
=

 1
0
0


which both have weight (−1, 0). A standard cotractor vA

θ
= (σ, τα, ρ)

may instead be written as vA = σYA+W β
Aτβ+ρZA where we understand

that YA and W β
A are defined in terms of the splitting induced by θ. If

θ̂ = eΥθ then by (3.3) we have

Ŵ β
A = W β

A + ΥβZA,(3.4)

ŶA = YA −ΥβW
β
A −

1

2
(ΥβΥβ − iΥ0)ZA.(3.5)

3.3. The Tractor Metric. Since the group P preserves the inner
product on T = Cp+1,q+1 the standard tractor bundle T = G ×P T
carries a natural signature (p+ 1, q + 1) Hermitian bundle metric. We
denote this bundle metric by hAB̄, and its inverse by hAB̄. Explicitly
the tractor metric hAB̄ is given with respect to any contact form θ by

(3.6) hAB̄ = ZAYB̄ + hαβ̄W
α
AW

β̄

B̄
+ YAZB̄



CR EMBEDDED SUBMANIFOLDS OF CR MANIFOLDS 30

where ZB̄, W
β̄

B̄
, and YB̄ are the respective conjugates of ZB, W β

B, and
YB. One can easily check directly using (3.4) and (3.5) that the above
expression does not depend on the choice of θ. Dually, the inverse
tractor metric is given by

(3.7) hAB̄v′AvB = σρ′ + hαβ̄τατ ′β + ρσ′

for any two sections vA
θ
= (σ, τα, ρ) and v′A

θ
= (σ′, τ ′α, ρ

′) of EA.
We use the tractor metric to identify EA with EĀ, the latter of which

can be described explicitly as the disjoint union of the spaces

(3.8) [EĀ]θ = E(0, 1)⊕ Eᾱ(0, 1)⊕ E(−1, 0)

(over all pseudohermitian contact forms θ) modulo the equivalence rela-
tion obtained by conjugating (3.3). Identifying Eᾱ(0, 1) with Eα(−1, 0)

via the CR Levi form we write a standard tractor as vA θ
= (σ, τα, ρ) or

vA
θ
=


σ

τα

ρ

 ∈
E(0, 1)
⊕

Eα(−1, 0)
⊕

E(−1, 0)

.

We may also raise and lower indices on the splitting tractors in order
to write vA = σY A + τβWA

β + ρZA with respect to θ.

With these conventions the pairing between vA θ
= (σ, τα, ρ) and v′A

θ
=

(σ′, τ ′α, ρ
′) is given by

(3.9) vAv′A = σρ′ + τατ ′α + ρσ′.

The various contractions of the splitting tractors (for a given θ) are
described by the following table

(3.10)

YA WAβ̄ ZA
Y A 0 0 1
WA
α 0 hαβ̄ 0

ZA 1 0 0

which reflects the form of the tractor metric hAB̄.

3.4. The Tractor Connection. In order to define the canonical (nor-
mal) tractor connection we need two further curvature objects. These
are

(3.11) Tα =
1

n+ 2
(∇αPβ

β − i∇βAαβ)
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and

(3.12) S = − 1

n
(∇αTα +∇ᾱTᾱ + Pαβ̄P

αβ̄ − AαβAαβ).

These expressions appear in [32] and can be determined from the follow-
ing formulae for the tractor connection by the normalisation condition
on the tractor curvature (which amounts to certain traces of curva-
ture tensors vanishing, see [9]). Of course the S and Tα terms are also
needed to make sure that the formulae for the tractor connection given
below transform correctly so as to give a well defined connection on EA.

On any section vA
θ
= (σ, τα, ρ) of EA the standard tractor connection

∇T (or simply ∇) is defined by the following formulae

(3.13) ∇βvA
θ
=

 ∇βσ − τβ
∇βτα + iAαβσ

∇βρ− Pβατα + Tβσ

 ,

(3.14) ∇β̄vA
θ
=

 ∇β̄σ
∇β̄τα + hαβ̄ρ+ Pαβ̄σ
∇β̄ρ− iAβ̄ατα − Tβ̄σ

 ,

and

(3.15) ∇0vA
θ
=

 ∇0σ + i
n+2

Pσ − iρ
∇0τα + i

n+2
Pτα − iPαβτβ + 2iTασ

∇0ρ+ i
n+2

Pρ+ 2iTατα + iSσ


where P = Pβ

β̄. Using (2.39), (2.42), and Proposition 2.13 combined
with Proposition 2.14 one may check directly that the above formulae
transform appropriately under rescaling of the contact form θ (i.e. are
compatible with (3.3), and with Lemma 2.11 in the case of (3.15)) so
that they give a well defined connection on EA.

Coupling the tractor connection with the Tanaka-Webster connection
of some contact form θ, the tractor connection is given on the splitting
operators by (cf. [9], and also [20, Proposition 3.1])

∇βYA = iAαβW
α
A + TβZA(3.16)

∇βW
α
A = −δαβYA − PβαZA(3.17)

∇βZA = 0(3.18)
∇β̄YA = Pαβ̄W

α
A − Tβ̄ZA(3.19)

∇β̄W
α
A = iAαβ̄ZA(3.20)

∇β̄ZA = hαβ̄W
α
A ,(3.21)
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and

∇0YA = i
n+2

PYA + 2iTαW
α
A + iSZA(3.22)

∇0W
α
A = −iPβαW β

A + i
n+2

PWα
A + 2iTαZA(3.23)

∇0ZA = −iYA + i
n+2

PZA.(3.24)

Using either set of formulae for the tractor connection one can easily
show by direct calculation that ∇ preserves hAB̄.

3.4.1. Weyl connections on the tangent bundle. The expression (3.15)
for ∇0vA may be simplified if one absorbs the terms involving Pαβ and
its trace P into the definition of the connection on the tangent bundle
we are using. This amounts to working with, in the terminology of [10],
the Weyl connection determined by θ rather than the Tanaka-Webster
connection of θ. The Weyl connection ∇W determined by θ agrees
with the Tanaka-Webster connection when differentiating in contact
directions, but when differentiating in the Reeb direction one has

(3.25) ∇W
0 τα = ∇0τα − iPαβτβ

for a section τα of Eα (the action on Eᾱ is given by conjugating (3.25)
and ∇W

0 T = 0). Using the isomorphism Iθ of E(−n−2, 0) with E[α1···αn]

from the proof of Proposition 2.14 one obtains from (3.25) that

(3.26) ∇W
0 σ = ∇0σ +

i

n+ 2
Pσ

for a section σ of E(1, 0). Using the Weyl connection rather than the
Tanaka-Webster connection in the expression (3.15) for ∇0vA one has
the simpler expression

(3.27) ∇0vA
θ
=

 ∇W
0 σ − iρ

∇W
0 τα + 2iTασ

∇W
0 ρ+ 2iTατα + iSσ

 .

3.5. The Adjoint Tractor Bundle. Another important bundle on
CR manifolds is the adjoint tractor bundle A = G ×P g. Since g is the
space of trace free skew-Hermitian endomorphisms of Cp+1,q+1 with
respect to the signature (p+ 1, q+ 1) inner product we may identify A
with the bundle of trace free hAB̄-skew-Hermitian endomorphisms of
the standard tractor bundle. Thus we think of A as the subbundle of
EAB = EA ⊗ EB whose sections tAB satisfy

tA
A = 0 and tAB̄ = −tBĀ.

Since the standard tractor connection ∇T is Hermitian, it induces a
connection on A ⊂ End(T ) and this is the usual (normal) tractor
connection on A.
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The adjoint tractor bundle carries a natural filtration

(3.28) A2 ⊂ A1 ⊂ A0 ⊂ A−1 ⊂ A−2 = A

corresponding to a P -invariant filtration of su(p+ 1, q + 1). In partic-
ular, A0 = G ×P p where p = Lie(P ). Sections t of A−1 are those trace
free skew-Hermitian endomorphisms which satisfy tABZAZB = 0, and
sections A0 are those which additionally satisfy tABZAW β

B = 0. In any
parabolic geometry the subbundle A1 = G × p+, where p+ is the nilpo-
tent part of p (in this case p+ is a Heisenberg algebra), is canonically
isomorphic to T ∗M . Here the isomorphism is given explicitly by the
map

(3.29) (υα, υᾱ, υ0) 7→ υαW
α
AZB̄ − υβ̄ZAW

β̄

B̄
− iυ0ZAZB̄

with respect to any contact form θ. Dual to (3.29) there is a bundle
projection from A∗ ∼= A to TM . Explicitly, the resulting isomorphism
of A/A0 with TM is given with respect to θ by

(3.30) XαWA
α Y

B̄ −X β̄Y AW B̄
β̄ + iX0Y AY B̄ +A0 7→ (Xα, X ᾱ, X0).

3.6. The Tractor Curvature. The curvature of the standard tractor
connection agrees with the usual (g-valued) curvature of the canonical
Cartan connection when the latter is thought of as an adjoint tractor
(A = G ×P g) valued two form. To normalise our conventions with the
index notation we define the curvature of the tractor bundle by

(3.31) ∇a∇bvC −∇b∇avC + T∇ab
e∇evC = −κabCDvD

for all sections vC of EC , where ∇ denotes the tractor connection cou-
pled with any connection on the tangent bundle and T∇ is the torsion
of that connection on the tangent bundle. Since we allow for the use of
connections with torsion on the tangent bundle in the above, we may
compute κabCDvD explicitly in its decomposition with respect to any
contact form θ using the weighted Tanaka-Webster calculus developed
in Section 2. The resulting expressions were given in [32] (cf. [13]); we
have

καβCD = 0,(3.32)

καβ̄C
D θ

=

 0 0 0
iVαβ̄γ Sαβ̄γ

δ 0
Uαβ̄ −iVαβ̄δ 0

 ,(3.33)

κα0C
D θ

=

 0 0 0
Qαγ Vα

δ
γ 0

Yα −iUαδ 0

 ,(3.34)
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where

Vαβ̄γ = ∇β̄Aαγ + i∇γPαβ̄ − iTγhαβ̄ − 2iTαhγβ̄,(3.35)
Uαβ̄ = ∇αTβ̄ +∇β̄Tα + Pα

γPγβ̄ − AαγA
γ

β̄
+ Shαβ̄,(3.36)

Qαβ = i∇0Aαβ − 2i∇βTα + 2Pα
γAγβ,(3.37)

Yα = ∇0Tα − i∇αS + 2iP γ
αTγ − 3Aγ̄αTγ̄.(3.38)

Here the matrices appearing in (3.33) and (3.34) are arranged so that
the action of καβ̄CD and κα0C

D on vD is given (with respect to θ) by
the action of the respective matrices on the column vector representing
vD. The remaining components of the tractor/Cartan curvature κ are
determined by the obvious symmetries. We also have from [32] (again
cf. [13]) that

Vαβ̄γ = Vγβ̄α, Vα
α
γ = 0,

Uαβ̄ = Uβᾱ, Uα
α = 0,

and Qαβ = Qβα.

The tractor connection on the CR sphere S2n+1 is flat, and for a
general strictly pseudoconvex CR manifold the tractor curvature is
precisely the obstruction to being locally CR equivalent to the sphere
(see Theorem 8.1).

3.7. Invariant Tractor Operators. The tractor calculus can be used
to give a uniform construction of curved analogues for almost all CR in-
variant differential operators between irreducible bundles on the model
CR sphere. The key idea behind this is to apply Eastwood’s ‘curved
translation principle’ [19] to the tractor covariant exterior derivative
d∇ using certain invariant differential splitting operators constructed
via the ‘BGG machinery’ of [11, 7]. Important exceptional cases are
dealt with in [32] where the authors construct CR invariant powers of
the sublaplacian on curved CR manifolds using the tractor D-operator
(which extends one of the BGG splitting operators to a family of op-
erators parametrised by weight). Such invariant differential splitting
operators are also very useful in the problem of constructing invariants
of CR structures, since they allow the jets of the structure (or rather
of some invariant curvature tensor) to be packaged in a tractorial ob-
ject which can be further differentiated invariantly. In the following we
present the most basic and important of these (families of) invariant
operators.

3.7.1. The tractor D-operator(s). Let EΦ denote any tractor bundle
and let EΦ(w,w′) denote the tensor product of EΦ with E(w,w′).
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Definition 3.1. The tractor D-operator of [32]

DA : EΦ(w,w′)→ EA ⊗ EΦ(w − 1, w′)

is defined by

(3.39) DAf
Φ θ

=

 w(n+ w + w′)fΦ

(n+ w + w′)∇αf
Φ

−
(
∇β∇βf

Φ + iw∇0f
Φ + w(1 + w′−w

n+2
)PfΦ

)


where∇ denotes the tractor connection coupled to the Tanaka-Webster
connection of θ.

One may easily check directly that DA, as defined, does not depend
on the choice of θ. This operator is an analogue of the Thomas tractor
D-operator in conformal geometry [2]. Observe that DA is a splitting
operator (has a bundle map as left inverse) except at weights where
w(n+ w + w′) = 0.

Related to the tractor D-operator is the θ dependent operator D̃A

given by wfΦYA + (∇αf
Φ)Wα

A on a section fΦ of EΦ(w,w′). The oper-
ator DAB defined by

(3.40) DABf
Φ = 2Z[AD̃B]f

Φ

does not depend on the choice of θ. The operator DAB has a partner
DAB̄ defined by

(3.41) DAB̄f
Φ = ZB̄D̃Af

Φ − ZAD̃B̄f
Φ − ZAZB̄

[
i∇0f

Φ + w′−w
n+2

PfΦ
]

where D̃B̄f
Φ = D̃BfΦ. Note that if fΦ has weight (0, 0) then

(3.42) DAB̄f
Φ = ZB̄W

α
A∇αf

Φ − ZAW β̄

B̄
∇β̄f

Φ − iZAZB̄∇0f
Φ,

cf. (3.29), so that DAB̄ takes sections of EΦ to sections of A⊗EΦ. The
pair of invariant operators DAB and DAB̄ acting on sections of EΦ(w,w′)
are called double-D-operators [29].

Remark 3.2. The less obvious operator DAB̄ comes from coupling the
fundamental derivative of [8] on densities with the tractor connection
to give an operator on weighted tractors. The conformal double-D-
operator on the Fefferman space, which comes from similarly twisting
the fundamental derivative on conformal densities with the conformal
tractor connection, can be seen to induce the pair of operators DAB̄,
DAB (and the conjugate operator DĀB̄) on the underlying CR manifold
[9, Theorem 3.7].
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3.7.2. Middle operators. One can also create CR invariant differential
splitting operators which take weighted sections of tensor bundles of
Eα to weighted tractors. These are analogues of operators in conformal
geometry used by Eastwood for ‘curved translation’ (see, e.g., [18]).
We only construct the particular operators from this family that we
will need in the following.

Definition 3.3. The middle operator acting on sections of Eα(w,w′)
is the operator Mα

A : Eα(w,w′)→ EA(w− 1, w′) given with respect to a
choice of contact form θ by
(3.43) Mα

Aτα = (n+ w′)Wα
Aτα − ZA∇ατα.

To see that the operator defined by (3.43) is invariant one simply
observes (by combining Proposition 2.13 with Proposition 2.14) that if
θ̂ = eΥθ then
(3.44) ∇̂ατα = ∇ατα + (n+ w′)Υατα

for τα of weight (w,w′), and on the other hand from (3.4) we have
Ŵα
A = Wα

A + ΥαZA.

Remark 3.4. The operator Mα
A defined by (3.43) is a differential split-

ting operator, except when w′ = −n, in which case τα 7→ ∇̂ατα is an
invariant operator and Mα

A simply becomes (minus) the composition
of this operator with the bundle map ρ 7→ ρZA (for ρ of appropriate
weight).

In the same manner, by observing that when θ̂ = eΥθ we have

(3.45) ∇̂αταβ̄ = ∇αταβ̄ + (n+ w′ − 1)Υαταβ̄ −Υβ̄τα
α

for ταβ̄ of weight (w,w′), we see that there is an invariant operator on
trace free sections of Eαβ̄(w,w′) given by

(3.46) Mα
Aταβ̄ = (n+ w′ − 1)Wα

Aταβ̄ − ZA∇αταβ̄.

Conjugating one obtains an operator Mβ̄

B̄
on trace free sections of

Eαβ̄(w,w′) given by

(3.47) Mβ̄

B̄
ταβ̄ = (n+ w − 1)W β̄

B̄
ταβ̄ − ZB̄∇β̄ταβ̄.

3.8. The Curvature Tractor. The operators Mα
A defined above are

all first order, so in particular they are ‘strongly invariant’ meaning
that we may couple the Tanaka-Webster connection ∇ used in their
definitions with the tractor connection (on any tractor bundle EΦ) to
obtain invariant operators Mα

A on sections of EαΦ(w,w′) and on trace
free sections of Eαβ̄Φ(w,w′). We use these strongly invariant middle
operators to define a CR analogue of the conformal ‘W-tractor’ of [29].
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Definition 3.5. The curvature tractor of a CR manifold is the section
of EAB̄CD̄ given by

(3.48) κAB̄CD̄ = Mα
AM

β̄

B̄
καβ̄CD̄

where καβ̄CD̄ = καβ̄CEhED̄.

Remark 3.6. The expression for the curvature tractor κAB̄CD̄ does not
involve the (θ-dependent) component κα0CD̄ of the tractor curvature
κabCD̄. One way to include this component in a CR invariant tractor
is to define
(3.49)
κABB̄′CD̄ = Mα

A

(
καβCD̄W

β
BZB̄′ − καβ̄CD̄ZBW

β̄

B̄′
− iκα0CD̄ZBZB̄′

)
,

where we have used the map T ∗M ↪→ A, given explicitly by (3.29),
on the ‘b’ index of κabCD̄ to obtain κaBB̄′CD̄ and then applied Mα

A to
καBB̄′CD̄. Alternatively one can apply the tensorial map T ∗M ↪→ A to
both the ‘a’ and ‘b’ indices of κabCD̄ to obtain κAĀ′BB̄′CD̄ (as is done
in Section 7.2).

3.9. Projecting Parts. If a standard tractor v lies in subbundle T s
of T , s = 1, 0,−1 (see (3.1)), then the image of v under the projection

T s → T s/T s+1

(where the subbundle T 2 is the zero section) is called a projecting part
of v. A projecting part may be zero. Since the filtration of the standard
tractor bundle induces a filtration of all corresponding tensor bundles
(and hence all tractor bundles), we may define a notion of projecting
part(s) similarly for sections of any tractor bundle.

The notion can be easily formalised using the splitting tractors of
Section 3.2. The invariant ‘top slot’ vAZA of a standard tractor is
always a projecting part. If this top slot vanishes, then the ‘middle
slot’ vAWα

A is independent of the choice of θ by (3.4) and is a projecting
part. If both vAZA = 0 and vAWα

A = 0, then the ‘bottom slot’ vAYA is
independent of the choice of θ by (3.5) and is a projecting part of vA.

To see how this works for higher valence tractors consider a trac-
tor tAB in E [AB]. Skewness implies tABZAZB = 0, so tABZAW

β
B is

independent of the choice of θ by (3.4) and is a projecting part. If
tABZAW

β
B = 0 then both tABWα

AW
β
B and tABZAYB are independent

of the choice of θ, and are both called projecting parts (the relevant
composition factor of E [AB] splits as a direct sum).
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4. CR Embedded Submanifolds and Contact Forms

We turn now to the main subject of the article. We suppose that
ι : Σ ↪→ M is a CR embedding of a nondegenerate CR manifold
(Σ2m+1, HΣ, JΣ) into (M2n+1, H, J), that is ι is an embedding for which
Tι maps HΣ into H and

J ◦ Tι = Tι ◦ JΣ.

Equivalently (the complex linear extension of) Tι maps T 1,0Σ into
T 1,0M .

Suppose (M2n+1, H, J) has signature (p, q). Without loss of gener-
ality q ≤ p (q is often alternatively called the signature). If q < m
(in particular, if M is strictly pseudoconvex) then Txι(TxΣ) 6⊂ Hx for
all x ∈ Σ. In this case a choice of contact form θ for H induces a
choice of contact form for HΣ by pullback. If q ≥ m then we need
to impose the condition Txι(TxΣ) 6⊂ Hx for all x ∈ Σ as an additional
assumption; such a CR embedding is said to be transversal. (Note that
if Txι(TxΣ) ⊂ Hx then Txι(T 1,0

x Σ) ⊂ T 1,0
x M is a totally isotropic sub-

space, but the maximum dimension of such a subspace is the signature
q, so q ≥ m.) We consider transversal CR embeddings in the following.

We will work in terms of a pair of pseudohermitian structures (M,H,
J, θ) and (Σ, HΣ, JΣ, ι

∗θ) and aim for constructions which are invariant
under ambient rescalings θ → θ̂ = eΥθ. More precisely, our goal is to
construct operators and quantities which may be expressed in terms of
the Tanaka-Webster calculus of θ and of ι∗θ which are invariant under
the replacement of the pair (θ, ι∗θ) with (eΥθ, ι∗(eΥθ)).

For simplicity we will initially restrict our attention to the case where
m = n−1 (m ≥ 1) and where both manifolds are strictly pseudoconvex
(i.e. have positive definite Levi form for positively oriented contact
forms). The general codimension (and signature) case is treated in
Section 6, and much carries over directly.

4.1. Notation. We fix a bundle of (1, 0)-densities on Σ, that is the
dual of an (m + 2)th root of KΣ, and denote it by EΣ(1, 0). The cor-
responding (w,w′)-density bundles are denoted EΣ(w,w′). We use ab-
stract index notation Eµ for T 1,0Σ, and allow the use of Greek indices
from the later part of the alphabet: µ, ν, λ, ρ, µ′, and so on. Of course
then E µ̄ denotes T 0,1Σ, Eµ denotes (T 1,0Σ)∗, and so on. We denote the
CR Levi form of Σ by hµν̄ and its inverse by hµν̄ . We also occasion-
ally use abstract index notation for TΣ, denoting it by E i and allowing
indices i, j, k, l, etcetera.

We identify Σ with its image under ι and write Eα|Σ → Σ for the
restriction of Eα → M to fibers over Σ (so Eα|Σ = ι∗Eα). We define
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the section Πα
µ of Eα|Σ ⊗Eµ to be (the complex linear extension of) Tι

as a map from T 1,0Σ into T 1,0M , i.e. if X ∈ T 1,0Σ and Y = Tι(X)
then Y α = Πα

µX
µ. We define the section Πµ

α to be the map from
T 1,0M |Σ onto T 1,0Σ given by orthogonal projection with respect to the
CR Levi form. Clearly Πµ

αΠα
ν = δµν , and Πα

µΠµ
β is simply the orthogonal

projection map from T 1,0M |Σ onto Tι(T 1,0Σ) given by the Levi form.
It is also clear that

(4.1) hµν̄ = Πα
µΠβ̄

ν̄hαβ̄

along Σ.

4.2. Compatible Scales. In developing the pseudohermitian and CR
tractor calculus we have been making use of the fact that a choice
of contact form θ for M gives us a direct sum decomposition of the
complexified tangent bundle

CTM = T 1,0M ⊕ T 0,1M ⊕ CT,
T being the Reeb vector field of θ. Now the contact form θΣ = ι∗θ for
Σ also determines a direct sum decomposition

(4.2) CTΣ = T 1,0Σ⊕ T 0,1Σ⊕ CTΣ

where TΣ is the Reeb vector field of θΣ. It is easy to see that in general
these two Reeb vector fields will not agree along Σ. Clearly this will
become a problem for us when we try to relate components of ambient
tensor fields (decomposed w.r.t. θ) with components of submanifold
tensor fields (decomposed w.r.t. θΣ). To remedy this problem we will
make use of a basic lemma (cf. [20, Lemma 4.1]).

Lemma 4.1. Let ι : Σ ↪→M be a CR embedding between nondegenerate
CR manifolds. If θΣ is a contact form for Σ with Reeb vector field TΣ,
then there exists a contact form θ for M with ι∗θ = θΣ and whose Reeb
vector field agrees with TΣ along Σ. Moreover, the 1-jet of θ is uniquely
determined along Σ.

Proof. Fix a contact form θ′ forM with ι∗θ′ = θΣ. Let f be an arbitrary
smooth (real valued) function on M with f |Σ ≡ 0, and consider the
contact form θ = efθ′. First of all we have

(Tι · TΣ)ydθ = ef (Tι · TΣ)ydθ′ + efdf

along Σ since θ′(Tι·TΣ) = (ι∗θ′)(TΣ) = θΣ(TΣ) = 1. Now since ι∗θ = θΣ

we have
ι∗((Tι · TΣ)ydθ) = TΣydθΣ = 0.

This means that (Tι · TΣ)ydθ is zero when restricted to tangential di-
rections. Consequently, we only need to see if we can make (Tι ·TΣ)ydθ
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zero on the quotient space TM |Σ/TΣ. This requires choosing f such
that along Σ

df = −(Tι · TΣ)ydθ′

on TM |Σ/TΣ, which simply amounts to prescribing the normal deriva-
tives of f off Σ. Choosing such an f we have that (Tι ·TΣ)ydθ = 0 and
θ(Tι · TΣ) = θΣ(TΣ) = 1 as required. �

Definition 4.2. A pair of contact forms θ, θΣ forM and Σ respectively
will be called compatible if θΣ = ι∗θ and the Reeb vector field of θ
restricts to the Reeb vector field of θΣ along Σ. A contact form θ
which is compatible with ι∗θ, i.e. whose Reeb vector field is tangent to
Σ, will be said to be admissible [20].

We will work primarily in terms of compatible contact forms in the
following. When working in terms of compatible contact forms θ for
M and θΣ for Σ we identify the density bundles E(1, 1)|Σ with EΣ(1, 1)
using the trivialisations of these bundles induced by θ and θΣ respec-
tively (in fact this identification is canonical, i.e. it is independent of
the choice of compatible contact forms). We also identify the Reeb vec-
tor field TΣ of θΣ with T |Σ where T is the ambient Reeb vector field.
This means that the ‘0-component’ of X ∈ TΣ taken with respect to
either θΣ or θ (identifying X with Tι · X) is the same, and that our
ambient and intrinsic decompositions of tensors will always be nicely
compatible.

Remark 4.3. Note that Lemma 4.1 holds for general codimension CR
embeddings (with the same proof). We can therefore continue to work
with compatible contact forms in the general codimension case dis-
cussed in Section 6.

4.3. Normal Bundles. Clearly T 1,0Σ has complex corank one inside
T 1,0M |Σ. The CR Levi form determines then a canonical complex line
bundle N α ⊂ Eα|Σ whose sections are those V α for which Πµ

αV
α ≡ 0.

There is also the corresponding dual complex line bundle Nα ⊂ Eα|Σ
whose sections Vα satisfy VαΠα

µ ≡ 0.

Remark 4.4. Given any choice of ambient contact form θ the manifold
M gains a Riemannian structure from the Webster metric gθ. One can
therefore treat Σ as a Riemannian submanifold, in particular we have
a Riemannian normal bundle to Σ. This Riemannian normal bundle
will be the same for any admissible contact form θ, and we denote it
by NΣ. Complexifying we see that CNΣ = N α⊕N ᾱ where N α is the
i-eigenspace of J .
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4.3.1. Unit Normal Fields. Given a choice of ambient contact form θ,
one may ask that a section Nα be unit with respect to the Levi form of
θ. However, for CR geometry it is more natural to work with sections
of the bundle Nα(1, 0) = Nα ⊗ E(1, 0)|Σ, which is normed by the CR
Levi form. Thus we make the following definition:

Definition 4.5. By a (weighted) unit holomorphic conormal field we
mean a section Nα of Nα(1, 0) for which hαβ̄NαNβ̄ = 1 where Nβ̄ = Nβ.
The field Nα = hαβ̄Nβ̄ obtained from such an Nα will be referred to as
a (weighted) unit holomorphic normal field.

Remark 4.6. The bundles Nα(w + 1,−w) are also normed by the CR
Levi form, but the natural weight for conormals is indeed (1, 0). The
line bundle Nα(1, 0) plays an important role in the following since it
relates ambient and intrinsic density bundles (see (4.28) below). More-
over, Nα(1, 0) can be canonically identified with a non-null subbundle
of the ambient cotractor bundle EA|Σ, and hence carries a canonical
CR invariant connection (see Proposition 5.3).

If Nα is a unit holomorphic conormal then so is N ′α = eiϕNα for any
ϕ ∈ C∞(Σ), and N ′α = e−iϕNα. However, the combinations NαNβ

and NαNβ̄ are independent of the choice of holomorphic conormal, and
these satisfy

(4.3) δαβ = Πα
β +NαNβ and hαβ̄ = hµν̄Π

µ
αΠν̄

β̄ +NαNβ̄

along Σ, where Πα
β is the tangential orthogonal projection Πα

µΠµ
β and

hµν̄ is the CR Levi form of Σ.

4.4. Tangential Derivatives. Let θ be an admissible ambient contact
form with Tanaka-Webster connection∇. The pullback connection ι∗∇
allows us to differentiate sections of ambient tensor bundles along Σ in
directions tangential to Σ. Recall that we may think of the Tanaka-
Webster connection ∇ as a triple of ‘partial connections’ (∇α,∇ᾱ,∇0).
Now suppose that the Reeb vector field T of θ is tangent to Σ, then
θ and θΣ = ι∗θ are compatible. Then we can break up ι∗∇ into a
corresponding triple (∇µ,∇µ̄,∇0). Precisely, ∇µ is defined to act on
sections of Eα|Σ according to the formula

(4.4) ∇µτ
α = Πβ

µ∇β τ̃
α

where τ̃α is any extension of the section τα of Eα|Σ to a neighbourhd of
Σ, and ∇µ is defined similarly on sections of E ᾱ|Σ, Eα|Σ, and so on. We
define ∇µ̄ similarly, and define ∇0 on sections of Eα|Σ by the formula

(4.5) ∇0τ
α = ∇0τ̃

α
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along Σ, where τ̃α is any extension of τα, and similarly on sections
of E ᾱ|Σ, Eα|Σ, and so on (note the independence of the choice of the
extension relies on the fact that T is tangential to Σ).

Remark. We have identified E(1, 1)|Σ with EΣ(1, 1) and T |Σ and with
the Reeb vector field TΣ of θΣ, thus splitting ι∗∇ up into (∇µ,∇µ̄,∇0)
corresponds precisely to restricting ι∗∇ to the respective summands in
the direct sum decomposition (4.2) induced by θΣ.

4.4.1. The normal Tanaka-Webster connection. The ambient Tanaka-
Webster connection also induces a connection on the normal bundle.

Definition 4.7. Given an admissible ambient contact form θ, we define
the normal Tanaka-Webster connection ∇⊥ on Nα by differentiating
tangentially using the Tanaka-Webster connection ∇ of θ and then
projecting orthogonally onto Nα using the Levi form.

4.5. The Submanifold Tanaka-Webster Connection. Wemay de-
fine a connection D on T 1,0Σ = Eµ (which we identify with Tι(T 1,0Σ)
in T 1,0M |Σ) by differentiating in tangential directions using ι∗∇ and
projecting the result back onto T 1,0Σ = Eµ orthogonally with respect
to the Levi form. This means that if τµ is a section of Eµ then we have

(4.6) Dντ
µ = Πµ

α∇ντ
α

where τα = Πα
λτ

λ. One may define D to act also on T 0,1Σ = E µ̄ by the
analogous formula

(4.7) Dντ
µ̄ = Πµ̄

ᾱ∇ντ
ᾱ.

Thus D may be thought of as a connection on HΣ which preserves JΣ.
One may then extend D to a connection on TΣ by requiring that TΣ

be parallel.

Remark. Equivalently one may define D as a connection on TΣ from
the start by differentiating tangent vectors to Σ in tangential directions
using ι∗∇ and projecting the result back onto TΣ orthogonally with
respect to the Webster metric of θ.

Provided θ and θΣ are compatible, the connection D constructed
in this manner will be the Tanaka-Webster connection of θΣ (cf. [17,
Theorem 6.4]):

Proposition 4.8. If θ, θΣ are contact forms for M and Σ respectively
which are compatible, that is, θΣ = ι∗θ and the Reeb vector field of θ is
tangential to Σ, then the connection D on TΣ induced by the Tanaka-
Webster connection ∇ of θ (and projection with respect to the ambient
Webster metric) is the Tanaka-Webster connection of θΣ.
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Proof. We need to show that D preserves (HΣ, JΣ, θΣ) and satisfies
the torsion conditions of Section 2.8. It is clear that D preserves the
decomposition (4.2) and gives a linear connection on each of the three
direct summands. This implies that D preserves H and J in the appro-
priate senses. Since ∇ preserves the Reeb vector field T , ι∗∇ preserves
T |Σ = TΣ and hence DTΣ = 0. Since D preserves TΣ and H it must
also preserve θΣ.

Now let f ∈ C∞(Σ) and choose an extension f̃ of f to M such that
along Σ we have ∇αf̃ = Πµ

α∇µf , i.e. the derivative of f̃ vanishes in
gθ-normal directions along Σ (these directions don’t depend on θ so
long as we choose θ admissible). Then we have that ∇β̄ f̃ = Πλ̄

β̄
∇λ̄f

along Σ and hence also that

DµDν̄f −Dν̄Dµf = Dµ∇ν̄f −Dν̄∇µf

= Πβ̄
ν̄∇µ(Πλ̄

β̄∇λ̄f)− Πα
µ∇ν̄(Π

λ
α∇λf)

= Πβ̄
ν̄∇µ∇β̄ f̃ − Πα

µ∇ν̄∇αf̃

= Πα
µΠβ̄

ν̄ (∇α∇β̄ f̃ −∇β̄∇αf̃)

= Πα
µΠβ̄

ν̄ (−ihαβ∇0f̃)

= −ihµν̄D0f

where we have used that Dµf = ∇µf and Dν̄f = ∇ν̄f as well as that
D0f = ∇0f = ∇0f̃ along Σ . Similarly we may easily compute that

DµDνf −DνDµf = 0.

Finally we have

DµD0f −D0Dµf = ∇µ∇0f −∇0∇µf

= Πα
µ(∇α∇0f̃ −∇0∇αf̃)

= Πα
µA

γ̄
α∇γ̄ f̃

= Πα
µΠλ̄

γ̄A
γ̄
α∇λ̄f = Aλ̄µDλ̄f

where Aµν = Πα
µΠβ

νAαβ. Since f was arbitrary, we conclude that D is
the Tanaka-Webster connection of θΣ. �

Corollary 4.9. Given an admissible ambient contact form θ with pseu-
dohermitian torsion Aαβ, the pseudohermitian torsion of θΣ = ι∗θ is
Aµν = Πα

µΠβ
νAαβ.

Remark 4.10. Note that Proposition 4.8 and Corollary 4.9 hold in the
general codimension case by the same arguments.
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4.6. The Second Fundamental Form. We can now define a sec-
ond fundamental form using an analogue of the Gauss formula from
Riemannian submanifold geometry.

Definition 4.11. Given θ and θΣ compatible with respective Tanaka-
Webster connections ∇ and D we define the (pseudohermitian) second
fundamental form by
(4.8) ∇XY = DXY + II(X, Y ),

for all X, Y ∈ X(Σ), where we implicitly identify submanifold vector
fields with tangential ambient vector fields along Σ and use the pullback
connection ι∗∇ on the left hand side.

Clearly II(X, Y ) is tensorial in X and Y , and is normal bundle (NΣ)
valued. It is also clear from the definition that II( · , TΣ) = 0 and that
II( · , · )|HΣ

is complex linear (with respect to J and JΣ) in the second
argument, that is

II( · , JΣ· )|HΣ
= JII( · , · )|HΣ

.

In fact, these properties also hold for the first argument, II being sym-
metric.

Proposition 4.12. The only nonzero components of the (pseudohermi-
tian) second fundamental form II are IIµνγ and its conjugate. Moreover

(4.9) IIµν
γ = IIνµ

γ,

so that II is symmetric.

Proof. Since II( · , TΣ) = 0 and II( · , · )|HΣ
is complex linear in the

second argument, to prove the first claim it suffices to show that II0ν
γ =

0 and IIµ̄νγ = 0.
Let Nα be a section of Nα such that hαβ̄NαNβ̄ = 1. From the Gauss

formula (4.8) we have that

(4.10) ∇iV
γ = Πγ

λDiV
λ + IIiν

γV ν

for any section V λ of Eλ, where V γ = Πγ
λV

λ. Contracting the above
display with Nγ and replacing the ‘i’ index with ‘µ’, ‘µ̄’, and ‘0’ respec-
tively gives

NγIIµν
γ = −Πγ

ν∇µNγ, NγIIµ̄ν
γ = −Πγ

ν∇µ̄Nγ,

and NγII0ν
γ = −Πγ

ν∇0Nγ,

since NγV
γ = 0 for all V λ ∈ Γ(Eλ). By conjugating, one also has that

Nγ̄IIνµ̄
γ̄ = −Πγ̄

µ̄∇νNγ̄.
Now let f be a real valued function on M which vanishes on Σ and

for which (∇αf,∇ᾱf,∇0f) is equal to (Nα, Nᾱ, 0) along Σ. (Note that
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we must require ∇0f to be zero along Σ since T is tangent to Σ and we
ask that f |Σ ≡ 0. Such an f exists because we are simply prescribing
the normal derivatives of f off Σ. Any such f is, locally about Σ, a
defining function for a real hypersurface in M containing Σ which is
gθ-orthogonal to the real part and tangent to the imaginary part of
Nα.) From (2.5) and (2.6) we have that

∇α∇βf = ∇β∇αf and ∇α∇β̄f = ∇β̄∇αf

along Σ. Projecting tangentially along Σ we immediately have that

NγIIµν
γ = NγIIνµ

γ and Nγ̄IIµν̄
γ̄ = NγIIν̄µ

γ.

The first of these implies that IIµνγ = IIνµ
γ. Since Nγ was arbitrary

the second implies that IIµν̄ γ̄ = 0 (replacing Nγ with iNγ gives a minus
sign).

Using the same function f , (2.7) states

∇α∇0f −∇0∇αf = Aγ̄α∇γ̄f.

Applying Πα
µ to both sides of the above display we get that

−Πα
µ∇0∇αf = Πα

µA
γ̄
α∇γ̄f

along Σ (since Πα
µ∇α∇0f is zero along Σ). We conclude that

NγII0µ
γ = Nγ̄Π

α
µA

γ̄
α.

Again, since Nγ was arbitrary we must have

(4.11) II0µ
γ = 0 and Nγ̄Π

α
µA

γ̄
α = 0.

�

The second of the expressions (4.11) should be seen as a constraint
on the pseudohermitian torsion of an admissible contact form. We state
this as a corollary:

Corollary 4.13. If θ is an admissible ambient contact form then the
pseudohermitian torsion of θ satisfies

(4.12) Πα
µAαβN

β = 0

for any holomorphic normal field Nβ.

Remark 4.14. Note that in the higher codimension case (of CR embed-
dings) if one defines the (pseudohermitian) second fundamental form of
a pair of compatible contact forms as in Definition 4.11 then Proposi-
tion 4.12 holds with the proof unchanged (and consequently Corollary
4.13 also holds).
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Remark 4.15. Our claim that II(T, · ) = 0, and the above corollary,
disagree with [15] and the book [17]. Our claim that II(T, · ) = 0 is
confirmed however by the later article [16].

4.6.1. The CR second fundamental form. We shall now see that the
component IIµνγ does not depend on the choice of compatible contact
forms θ and θΣ.

Lemma 4.16. Given compatible contact forms θ and θΣ one has

(4.13) IIµν
γ = −NγΠβ

ν∇µNβ

for any unit holomorphic conormal field Nα.

Proof. From the Gauss formula (cf. (4.10)) we have

∇µV
γ = Πγ

λDµV
λ + IIµν

γV ν

for any section V λ of Eλ, where V γ = Πγ
λV

λ. Contracting the above
display with Nγ and using that Nγ∇µV

γ = −V γ∇µNγ yields the result.
�

Corollary 4.17. The component IIµνγ of the pseudohermitian second
fundamental form does not depend on the pair of compatible contact
forms used to define it.

Proof. Combining the Tanaka-Webster transformation laws of Propo-
sition 2.13 and Proposition 2.14 we have that

∇̂µNβ = ∇µNβ − Πα
µΥβNα −ΥµNβ + ΥµNβ = ∇µNβ

since Nβ has weight (1, 0). The claim then follows from (4.13). �

We therefore term IIµν
γ the CR second fundamental form.

Remark 4.18. The pseudohermitian second fundamental form II (of
a pair of compatible contact forms) is not CR invariant, even though
IIµν

γ is, since the direct sum decompositions of CTM and CT ∗Σ change
under rescaling of the ambient and submanifold contact forms.

Recall that we write Πα
β for the tangential orthogonal projection

Πα
µΠµ

β on the ambient holomorphic tangent bundle along Σ. The fol-
lowing lemma will be useful in the derivations of Section 4.7:

Lemma 4.19. For any admissible ambient contact form we have

(4.14) ∇µΠγ
β = IIµν

γΠν
β, ∇µΠβ̄

γ̄ = IIµ
ν̄
γ̄Π

β̄
ν̄ ,

(4.15) ∇µ̄Πγ̄

β̄
= IIµ̄ν̄

γ̄Πν̄
β̄, ∇µ̄Πβ

γ = IIµ̄
ν
γΠ

β
ν ,

and

(4.16) ∇0Πγ
β = 0, ∇0Πβ̄

γ̄ = 0.
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Proof. These follow immediately by differentiating δγβ−NγNβ, however
we wish to give a proof that will also work in the higher codimension
case. Pick a section V ν and let V β = Πβ

νV
ν . Then

∇µV
γ = ∇µ(Πγ

βV
β) = (∇µΠγ

β)V β + Πγ
β∇µV

β.

Noting that Πγ
β∇µV

β = Πγ
νDµV

ν , from the Gauss formula we have

(4.17) Πβ
ν∇µΠγ

β = IIµν
γ

since V ν was arbitrary. Now on the other hand if Nα is any unit
holomorphic normal then

(4.18) Nβ∇µΠγ
β = −(∇µN

β)Πγ
β = 0

since IIµν̄ δ̄ = 0. The previous two displays imply the first equation
of (4.14), and the second then follows by raising and lowering indices.
Conjugating these gives (4.15). The expressions (4.16) are proved sim-
ilarly using that II0ν

γ = 0 and II0ν̄
γ̄ = 0. �

4.7. The Pseudohermitian Gauss, Codazzi, and Ricci Equa-
tions. Here we give pseudohermitian analogues of the Gauss, Codazzi,
and Ricci equations from Riemannian submanifold theory. Real forms
of these equations can be found in chapter 6 of [17], note that Q = 0
in the pseudohermitian Codazzi equation they give (cf. Remark 4.15).

When working with compatible contact forms we denote the ambient
and submanifold Tanaka-Webster connections by∇ andD respectively.
We write

(4.19) Nα
β = δαβ − Πα

β

for the orthogonal projection ontoN α ⊂ Eα|Σ. In this case Nα
β = NαNβ

for any unit holomorphic normal Nα. We adopt the convention of re-
placing uppercase root letters with lowercase root letters for subman-
ifold curvature tensors, so the pseudohermitian curvature tensor of θΣ

will be denoted by rµν̄λρ̄, the pseudohermitian Ricci curvature by rµν ,
and so on. For the ambient curvature tensors along Σ we will use sub-
manifold abstract indices to denote tangential projections, for example

Rµν̄λρ̄ = Πα
µΠβ̄

ν̄Πγ
λΠ

δ̄
ρ̄Rαβ̄γδ̄ and Rµν̄γδ̄ = Πα

µΠβ̄
ν̄Rαβ̄γδ̄.

4.7.1. The pseudohermitian Gauss equation.

Proposition 4.20. Given compatible contact forms, the submanifold
pseudohermitian curvature is related to the ambient curvature via

(4.20) Rµν̄λρ̄ = rµν̄λρ̄ + hγδ̄IIµλ
γIIν̄ρ̄

δ̄.
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Proof. Let V be a section of T 1,0Σ, let V γ̄ = Πγ̄

λ̄
V λ̄, and let Ṽ γ̄ be a

smooth extension of V γ̄ to a neighbourhood of Σ. Proposition 4.8 says
that Dν̄V

λ̄ = Πλ̄
γ̄Π

β̄
ν̄∇β̄Ṽ

γ̄ and thus

DµDν̄V
λ̄ = Πλ̄

δ̄Π
ε̄
ν̄∇µ

(
Πδ̄
γ̄Π

β̄
ε̄∇β̄Ṽ

γ̄
)

= Πλ̄
δ̄Π

ε̄
ν̄(∇µΠδ̄

γ̄)Π
β̄
ε̄∇β̄Ṽ

γ̄ + Πλ̄
δ̄Π

ε̄
ν̄Π

δ̄
γ̄(∇µΠβ̄

ε̄ )∇β̄Ṽ
γ̄

+ Πλ̄
δ̄Π

ε̄
ν̄Π

δ̄
γ̄Π

β̄
ε̄∇µ∇β̄Ṽ

γ̄

= IIµ
λ̄
γ̄∇ν̄V

γ̄ + Πλ̄
γ̄Π

α
µΠβ̄

ν̄∇α∇β̄Ṽ
γ̄,

where we have used (4.14) of Lemma 4.19 in the final step. Since
Nδ
γV

γ = 0 we have Nδ̄
γ̄∇ν̄V

γ̄ = −V γ̄∇ν̄N
δ̄
γ̄ = V ρ̄IIν̄ρ̄

δ̄ using (4.15) of
Lemma 4.19, and hence by writing IIµλ̄γ̄ as IIµλ̄δ̄Nδ̄

γ̄ we obtain

DµDν̄V
λ̄ = IIµ

λ̄
δ̄IIν̄ρ̄

δ̄V ρ̄ + Πλ̄
γ̄Π

α
µΠβ̄

ν̄∇α∇β̄Ṽ
γ̄.

By a similar calculation with the roles of µ and ν interchanged we
obtain

Dν̄DµV
λ̄ = Πλ̄

γ̄Π
α
µΠβ̄

ν̄∇β̄∇αṼ
γ̄;

no second fundamental form terms arise since IIµν̄ γ̄ = 0. Noting that
D0V

λ̄ = Πλ̄
γ̄∇0V

γ̄ we have the result. �

Remark 4.21. The above proposition holds with the same proof in the
general codimension setting. The equation (4.20) can also be found in
[20] where it (or its trace free part) is the key to proving rigidity for CR
embeddings into the sphere with sufficiently low codimension because
it allows one to show that the intrinsic pseudohermitian curvature de-
termines the second fundamental form IIµν

γ.

4.7.2. The pseudohermitian Codazzi equation.

Proposition 4.22. Given compatible contact forms,

(4.21) Rµν̄
γ̄
ρ̄N

δ̄
γ̄ = −DµIIν̄ρ̄

δ̄

where the submanifold Tanaka-Webster connection D is coupled with
the normal Tanaka-Webster connection ∇⊥.

Proof. Let Nγ be an unweighted unit normal field and let Ñγ be an
extension of Nγ to all of M such that, along Σ, Nα

β∇αÑ
γ = 0 and

Nᾱ
β̄
∇ᾱÑ

γ = 0. Then along Σ we have

∇β̄Ñ
γ = −IIβ̄γδN δ + Nγ

δ∇β̄Ñ
δ
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where IIβ̄γδ := Πν̄
β̄
Πγ
λIIν̄

λ
δ, using that IIν̄λδN δ = −Πλ

γ∇ν̄N
γ. Thus we

compute that

Πα
µΠβ̄

ν̄Πλ
γ∇α∇β̄Ñ

γ = Πβ̄
ν̄Πλ

γ

(
−∇µ(IIβ̄

γ
δN

δ) + (∇µNγ
δ )∇β̄N

δ
)

= −Dµ(IIν̄
λ
δN

δ)

along Σ, where in the first step we used that Πλ
γN

γ
δ = 0 and in the

second step we used (4.14) to show that Πλ
γ∇µNγ

δ = 0 and Proposition
4.8. Now on the other hand (since IIµν̄ γ̄ = 0) we have

∇αÑ
γ = Nγ

δ∇αÑ
δ

along Σ, and this time we compute that

Πα
µΠβ̄

ν̄Πλ
γ∇β̄∇αÑ

γ = −IIν̄λδ∇µN
δ = −IIν̄λδ∇⊥µN δ

since ∇ν̄N
γ
δ = −IIν̄ ρδΠγ

ρ by (4.15). Putting these together we get

Πα
µΠβ̄

ν̄Πλ
γ

(
∇α∇β̄ −∇β̄∇α

)
Ñγ = −(DµIIν̄

λ
δ̄)N

δ̄

along Σ. Since II0µ
γ = 0 we have Πλ

γ∇0N
γ = 0 and hence from (2.9)

we obtain

(4.22) Rµν̄
λ
δN

δ = (DµIIν̄
λ
δ̄)N

δ̄.

Noting that Rµν̄λ̄δ = −Rµν̄δλ̄ then gives the result. �

4.7.3. The pseudohermitian Ricci equation. Given a compatible pair of
contact forms we let RN ᾱ denote the curvature of the normal Tanaka-
Webster connection ∇⊥ on the antiholomorphic normal bundle N ᾱ.
With our conventions we have

(4.23)
(
∇⊥µ∇⊥ν̄ N γ̄ −∇⊥ν̄∇⊥µN γ̄ + ihµν̄∇⊥0 N γ̄

)
= −RN ᾱµν̄

γ̄
δ̄N

δ̄

for any section N ᾱ of N ᾱ, where we have coupled the normal Tanaka-
Webster connection ∇⊥ with the submanifold Tanaka-Webster connec-
tion D. The pseudohermitian Ricci equation relates the component
RN

ᾱ

µν̄
γ̄
δ̄ of RN

ᾱ to the component Rµν̄
γ̄′
δ̄′N

γ̄
γ̄′N

δ̄′

δ̄
of the ambient pseudo-

hermitian curvature tensor:

Proposition 4.23. Given compatible contact forms,

(4.24) RN
ᾱ

µν̄
γ̄
δ̄ = Rµν̄

γ̄′

δ̄′N
γ̄
γ̄′N

δ̄′

δ̄ + hλρ̄IIµλδ̄IIν̄ρ̄
γ̄.

Proof. To facilitate calculation we couple the connection ∇⊥ with the
submanifold Tanaka-Webster connection D; we also couple ∇ with D.
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If N γ̄ is a holomorphic normal field then

∇⊥µ∇⊥ν̄ N γ̄ = ∇⊥µ (Nγ̄

δ̄
∇ν̄N

δ̄)

= Nγ̄
ε̄∇µ(Nε̄

δ̄∇ν̄N
δ̄)

= Nγ̄
ε̄

(
−IIµλ̄δ̄Πε̄

λ̄∇ν̄N
δ̄ + Nε̄

δ̄∇µ∇ν̄N
δ̄
)

= Nγ̄

δ̄
∇µ∇ν̄N

δ̄

On the other hand, when we interchange the roles of µ and ν we obtain

∇⊥ν̄∇⊥µN γ̄ = Nγ̄
ε̄

(
−IIν̄λ̄ε̄Πλ̄

δ̄∇µN
δ̄ + Nε̄

δ̄∇ν̄∇µN
δ̄
)

= IIν̄λ̄
γ̄IIµ

λ̄
δ̄N

δ̄ + Nγ̄

δ̄
∇ν̄∇µN

δ̄

Now observe that if one extends N γ̄ off Σ such that Nα∇αÑ
γ̄ = 0 and

N ᾱ∇ᾱÑ
γ̄ = 0, then

Πα
µΠβ̄

ν̄∇α∇β̄Ñ
δ̄ = ∇µ∇ν̄N

δ̄ and Πα
µΠβ̄

ν̄∇β̄∇αÑ
δ̄ = ∇ν̄∇µN

δ̄.

Thus by (4.23) and (2.9) (noting that ∇⊥0 N γ̄ = ∇0N
γ̄) one has the

result. �

Remark 4.24. Since N ᾱ is a line bundle we may think of the curvature
RN

ᾱ instead as a two form. By convention we take RN ᾱµν̄ to be RN ᾱµν̄
γ̄
γ̄,

which means that RN ᾱ is minus the usual curvature two form of the
connection ∇⊥ on the line bundle N ᾱ. With this convention we may
write

(4.25) RN
ᾱ

µν̄ = Rµν̄NN̄ + hγδ̄h
λρ̄IIµλ

γIIν̄ρ̄
δ̄

where Rµν̄NN̄ = Rµν̄γδ̄N
γN δ̄ for any weight (1, 0) unit normal field Nα.

Also, since ∇⊥ is Hermitian with respect to the Levi form of θ (on N ᾱ),
one has that RN ᾱ = RNα as two forms. Moreover, by duality one has
that RNα = −RNα .

4.8. Relating Density Bundles. We have already been using com-
patible contact forms to identify the density bundles E(1, 1)|Σ and
EΣ(1, 1), and have commented in passing that this identification does
not in fact depend on any choice of (compatible) contact forms. Let
ς be a positive real element of E(1, 1)|Σ, then there is a unique real
element ςΣ in EΣ(1, 1) such that ς−1θ pulls back to ςΣθΣ under ι. This
correspondence induces an isomorphism of complex line bundles. In
this way we obtain canonical identifications between all diagonal den-
sity bundles E(w,w)|Σ and EΣ(w,w). These identifications also agree
with those induced by trivialising the ambient and intrinsic (diagonal)
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density bundles using an ambient contact form θ and its pullback ι∗θ
respectively.

On the other hand it is not a priori obvious whether one may canon-
ically identify the density bundles E(1, 0)|Σ and EΣ(1, 0), and therefore
identify all corresponding density bundles E(w,w′)|Σ and EΣ(w,w′).
We require that any isomorphism of E(1, 0)|Σ with EΣ(1, 0) should be
compatible with the identification of E(1, 1)|Σ with EΣ(1, 1) already de-
fined. Any two such isomorphisms of E(1, 0)|Σ with EΣ(1, 0) are related
by an automorphism of E(1, 0)|Σ given by multiplication by eiϕ for some
ϕ ∈ C∞(Σ). This is precisely the same freedom as in the choice of a
unit holomorphic conormal, in fact, we shall see below that these two
choices are intrinsically connected.

4.8.1. Densities and holomorphic conormals. Let Λ1,0
⊥ Σ denote the sub-

bundle of Λ1,0M |Σ consisting of all formsN which vanish on the tangent
space of Σ. The bundle Λ1,0

⊥ Σ may be canonically identified with Nα
by restriction to T 1,0M .

Lemma 4.25. Along Σ the ambient and submanifold canonical bundles
are related by the canonical isomorphism

(4.26) K |Σ ∼= KΣ ⊗ Λ1,0
⊥ Σ.

Proof. The map from Λn(Λ1,0Σ)⊗ Λ1,0
⊥ Σ to Λn+1(Λ1,0M |Σ) is given by

(4.27) ζΣ ⊗N 7→ η ∧N
where η is any element of Λn(Λ1,0M |Σ) with ι∗η = ζΣ. �

Given a section ζΣ ⊗ N of KΣ ⊗ Λ1,0
⊥ Σ we write ζΣ ∧ N for the

corresponding section of K |Σ. The above lemma is the key to relating
ambient and submanifold densities:

Corollary 4.26. The ambient and submanifold density bundles are
related via the canonical isomorphism

(4.28) E(−n− 1, 0)|Σ ∼= EΣ(−n− 1, 0)⊗Nα(1, 0).

Proof. By definition E(−n−2, 0) = K and EΣ(−n−1, 0) = KΣ. Using
this in (4.26), tensoring both sides with E(1, 0)|Σ, and identifying Λ1,0

⊥ Σ
with Nα gives the result. �

Thus any trivialisation of the line bundle Nα(1, 0) gives an identifi-
cation of the corresponding ambient and submanifold density bundles
along Σ. One can check that if the trivialisation of Nα(1, 0) is given by
a unit holomorphic conormal then the resulting identification of density
bundles will be compatible with the usual identification of E(w,w)|Σ
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with EΣ(w,w); this amounts to the claim that, given compatible con-
tact forms θ and θΣ, if ζΣ is a section of KΣ volume normalised for θΣ

and N is a section of Λ1,0
⊥ Σ which is normalised with respect to the

Levi form of θ (i.e. satisfies hαβ̄NαNβ = 1) then the section ζΣ ∧N of
K |Σ is volume normalised for θ.

Remark 4.27. The preceding observation motivates the search for a
canonical unit holomorphic conormal. One way to approach this search
is to observe that for any unit holomorphic conormal Nα the field$µ̄ :=
Nα∇µ̄Nα = −N ᾱ∇µ̄Nᾱ does not depend on the choice of admissible
ambient contact form used to define ∇µ̄ and a calculation shows that
$µ̄ satisfies ∇[µ̄$ν̄] = 0. In the case where one has local exactness
of the tangential Cauchy-Riemann complex of Σ at (0, 1)-forms one
can then (locally) define a canonical unit holomorphic conormal Nα

for which $µ̄ = ∇µ̄f with f a real valued function; the a priori phase
freedom in the unit normal is used to eliminate the imaginary part of
f , leaving no further freedom. However, for smooth (rather than real
analytic) embeddings the required local exactness may not hold, as was
famously demonstrated by Lewy for the three dimensional Heisenberg
group [38]. In the following it will become plain that we should keep
Nα(1, 0) in the picture, rather than trivialise it, and thus we have not
pursued this direction further.

4.9. Relating Connections on Density Bundles. Given an admis-
sible ambient contact form θ, the normal Tanaka-Webster connection
∇⊥ on Nα can equivalently be thought of as the connection on Λ1,0

⊥ Σ
defined by differentiating tangentially using the Tanaka-Webster con-
nection ∇ and then projecting using the Webster metric gθ.

Lemma 4.28. Given any pair of compatible contact forms the isomor-
phism (4.26) of Lemma 4.25 intertwines the respective Tanaka-Webster
connections:

K |Σ ∼= KΣ ⊗ Λ1,0
⊥ Σ

ι∗∇ ∼= D ⊗ ∇⊥.

Proof. Let ζΣ ⊗N be a section of KΣ ⊗Λ1,0
⊥ Σ. Let η be any section of

Λn(Λ1,0M |Σ) which pulls back to ζΣ. Then ζΣ∧N := η∧N . If X ∈ TΣ
then

∇X(ζΣ ∧N) = (∇Xη) ∧N + η ∧ (∇XN),

but (∇Xη) ∧ N = (ΠΣ∇Xη) ∧ N which is the section of K |Σ cor-
responding to (DXζΣ) ⊗ N (here ΠΣ denotes submanifold tangential
projection with respect to gθ), and η ∧ (∇XN) = η ∧ (∇⊥XN). �
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Observing that the connection ∇⊥ on Nα(1, 0) agrees with the cou-
pling of∇⊥ onNα with ι∗∇ on E(1, 0)|Σ we have the following corollary:

Corollary 4.29. Given any pair of compatible contact forms the (canon-
ical) isomorphism (4.28) of Corollary 4.26 intertwines the respective
Tanaka-Webster connections:

E(−n− 1, 0)|Σ ∼= EΣ(−n− 1, 0)⊗Nα(1, 0)

ι∗∇ ∼= D ⊗ ∇⊥.

This means that if we want to identify corresponding ambient and
submanifold density bundles (along Σ) in such a way that the ambient
and submanifold Tanaka-Webster connections of a pair of compatible
contact forms agree (in the sense that ι∗∇ = D), then we must trivi-
alise Nα(1, 0) using a section which is parallel for the normal Tanaka-
Webster connection ∇⊥. This is not a CR invariant condition on the
section of Nα(1, 0), and the following lemma shows that it is not pos-
sible to find a parallel section in general because of curvature:

Lemma 4.30. Let θ and θΣ be compatible contact forms and let RNα(1,0)

denote the curvature of ∇⊥ on the bundle Nα(1, 0), then the (1, 1)-
component of RNα(1,0)|HΣ

satisfies

(4.29) R
Nα(1,0)
µν̄ =

n+ 1

n+ 2
Rµν̄ − rµν̄ ,

where Rµν̄ = Πα
µΠβ̄

ν̄Rαβ̄.

Proof. By Proposition 2.10 the (1, 1)-component of the restriction to H
of the curvature of the Tanaka-Webster connection on the line bundle
E(1, 0) is 1

n+2
Rαβ̄. Thus the (1, 1)-component of the the restriction to

HΣ of the curvature of ι∗∇ on E(1, 0)|Σ is 1
n+2

Rµν̄ . Combining this with
the Ricci equation (4.25) for RN ᾱµν̄ = RNαµν̄ we have

R
Nα(1,0)
µν̄ = Rµν̄NN̄ + hγδ̄IIµλ

γIIν̄
λδ̄ − 1

n+ 2
Rµν̄ .

Using the once contracted Gauss equation

Rµν̄ −Rµν̄NN̄ = rµν̄ + hγδ̄IIµλ
γIIν̄

λδ̄

obtained from (4.20) we have the result. �

Remark 4.31. Here, because of our conventions (cf. Remark 4.24), we
take RNα(1,0) to be minus the usual curvature of Nα(1, 0) as a line
bundle.
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4.10. The Ratio Bundle of Densities. The observations of Sections
4.8 and 4.9 motivate us to look at the relationship between correspond-
ing ambient and submanifold density bundles rather than seeking to
identify them (along Σ). We therefore make the following definition:

Definition 4.32. The ratio bundle of densities of weight (w,w′) is the
complex line bundle
(4.30) R(w,w′) := E(w,w′)|Σ ⊗ EΣ(−w,−w′)
on the submanifold Σ. Equivalently R(w,w′) is the bundle whose sec-
tions are endomorphisms from EΣ(w,w′) to E(w,w′)|Σ.

Note that the bundles R(w,w) are canonically trivial, and therefore
R(w,w′) is canonically isomorphic to R(w − w′, 0). Also by definition
R(−n − 1, 0) is canonically isomorphic to Nα(1, 0), and we make this
into an identification
(4.31) R(−n− 1, 0) = Nα(1, 0).

4.11. The Canonical Connection on the Ratio Bundles. Borrow-
ing insight from Section 5 below we observe that the bundle Nα(1, 0)
carries a natural CR invariant connection, which induces connections
on the density ratio bundles R(w,w′). The reason is that Nα(1, 0) is
canonically isomorphic to a subbundle NA of the ambient cotractor
bundle EA along Σ which has an invariant connection induced by the
ambient tractor connection (Proposition 5.3). We denote this canon-
ical invariant connection on R(w,w′) by ∇R. It turns out to be very
naturally expressed in terms of Weyl connections (recall Section 3.4.1).
Hence we make the following definition:

Definition 4.33. Given an admissible ambient contact form θ, the
normal Weyl connection ∇W,⊥ on N α(w,w′) is the connection induced
by∇W (projecting tangential derivatives of sections back intoN α using
the Levi form). Dually, the connection ∇W,⊥ acts on Nα(−w,−w′).

For calculational purposes we will need the following lemma:

Lemma 4.34. Given an admissible ambient contact form θ the con-
nection ∇W,⊥ on Nα(1, 0) acts on a section τα by

(4.32) ∇W,⊥
µ τα = ∇⊥µ τα, ∇W,⊥

µ̄ τα = ∇⊥µ̄ τα
and

(4.33) ∇W,⊥
0 τα = ∇⊥0 τα − iPNN̄τα +

i

n+ 2
Pτα

where PNN̄ = Pαβ̄N
αN β̄ for any (weighted) unit holomorphic normal

Nα and P = Pα
α.
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Proof. This follows immediately from the definitions of the Weyl and
normal Weyl connections and the formula (3.26). �

The connection ∇R on R(−n − 1, 0) = Nα(1, 0) turns out to agree
precisely with the normal Weyl connection of any admissible contact
form. In particular the normal Weyl connection ∇W,⊥ on the bundle
Nα(1, 0) does not depend on the choice of admissible ambient contact
form. This follows from Proposition 5.3 below, but here we give a
direct proof. Before we prove this we make an important technical
observation, stated in the following lemma:

Lemma 4.35. Let θ be an admissible ambient contact form. The con-
tact form θ̂ = eΥθ is admissible if and only if

(4.34) Υα = Πβ
αΥβ

along Σ.

Proof. This follows immediately from the transformation law for the
Reeb vector field given in Lemma 2.11 since both T and T̂ must be
tangent to Σ. �

Proposition 4.36. The normal Weyl connection ∇W,⊥ on the bundle
Nα(1, 0) does not depend on the choice of admissible contact form.

Proof. Fix a pair of compatible contact forms θ, θΣ and suppose θ̂ =
eΥθ is any other admissible ambient contact form. Let τα be a section of
Nα(1, 0). Extend τα arbitrarily off Σ. When differentiating in contact
directions the connections ∇W,⊥ and ∇⊥ agree, so from (2.34) and
Proposition 2.14 we have

∇̂W,⊥
µ τδ = Nβ

δΠα
µ∇̂ατβ

= Nβ
δΠα

µ(∇ατβ −Υβτα −Υατβ + Υατβ)

= Nβ
δΠα

µ∇ατβ

since Πα
µτα = 0 (note that Nβ

γΥβ also vanishes since θ and θ̂ are admis-
sible). Similarly, from (2.35) and Proposition 2.14 we have

∇̂W,⊥
µ̄ τδ = Nβ

δΠᾱ
µ̄∇̂ᾱτβ

= Nβ
δΠᾱ

µ̄(∇ᾱτβ + hβᾱΥγτγ)

= Nβ
δΠᾱ

µ̄∇ᾱτβ

since Nβ
δΠα

µhβᾱ = 0.
The operators ∇W

0 and ∇0 acting on τα are related by

∇W
0 τα = ∇0τα − iPαβτβ +

i

n+ 2
Pτα.
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Now, on the one hand, by (2.36) and Proposition 2.14, noting that
Nβ
δΥβ = 0 by Lemma 4.35, we have

∇̂⊥0 τδ = Nβ
δ [∇0τβ + iΥγ̄∇γ̄τβ − iΥγ∇γτβ − iΥγ

βτγ

+ 1
n+2

(Υ0 + iΥγ
γ − iΥγΥγ)τβ].

On the other hand from (2.41) and (2.42), noting that Υαβ̄ + Υβ̄α =
2Υβ̄α − ihαβ̄Υ0 by (2.5), we have

Nβ
δ [iP̂β

γτγ − i
n+2

P̂ τβ] = Nβ
δ [i(Pβ

γ −Υγ
β + i

2
Υ0δ

γ
β − 1

2
ΥεΥεδ

γ
β)τγ

− i
n+2

(P −Υγ
γ + in

2
Υ0 − n

2
ΥεΥε)τβ].

Since 1
2
− n

2(n+2)
= 1

n+2
we obtain that

∇̂W,⊥
0 τδ = ∇W,⊥

0 τβ + iΥµ̄∇W,⊥
µ̄ τβ − iΥµ∇W,⊥

µ τβ,

as required (recall that the ‘0-direction’ has a different meaning on the
left and right hand sides of the above display, cf. Lemma 2.12). �

Remark 4.37. Both Lemma 4.35 and Proposition 4.36 hold in the gen-
eral codimension case with the same proof (as does Proposition 5.3).

We therefore take ∇R to be the connection induced on the ratio
bundles by the normal Weyl connection of an admissible contact form
on Nα(1, 0), and give later in Proposition 5.3 of Section 5.1 the tractor
explanation for this invariant connection. In order to compute with
∇R we will need the following lemma:

Lemma 4.38. In terms of a compatible pair of contact forms, θ, θΣ,
the connection ∇R on a section φ⊗ σ of E(w,w′)|Σ ⊗ EΣ(−w,−w′) is
given by

(4.35) ∇Rµ (φ⊗ σ) = (∇µφ)⊗ σ + φ⊗ (Dµσ),

(4.36) ∇Rµ̄ (φ⊗ σ) = (∇µ̄φ)⊗ σ + φ⊗ (Dµ̄σ),

and

(4.37) ∇R0 (φ⊗σ) = (∇0φ)⊗σ+φ⊗(D0σ)+ w−w′
n+1

(iPNN̄− i
n+2

P )φ⊗σ.

Proof. This follows from Lemma 4.34 combined with Corollary 4.29.
�

Corollary 4.39. The connection ∇R on the diagonal bundles R(w,w)
is flat and agrees with the exterior derivative of sections in the canonical
trivialisation.

Proof. This follows from Lemma 4.38 combined with Lemma 2.6. �
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Remark 4.40. By coupling with the connection ∇R we can invariantly
convert connections (and hence other operators) acting on intrinsic
densities to ones on ambient densities, and vice versa. This will allow us
to relate the intrinsic and ambient tractor connections, their difference
giving rise to the basic CR invariants of the embedding.

4.11.1. The curvature of the canonical ratio bundle connection. We
shall see that the connection ∇R is not flat in general, making it un-
natural to identify the ambient and submanifold density bundles along
Σ.

Let κR(w,w′) denote the curvature of ∇R on the line bundle R(w,w′),
and let RN ∗ denote the curvature of ∇W,⊥ on Nα(1, 0) for any admis-
sible contact form θ. By convention RN ∗ has the opposite sign to the
usual line bundle curvature κR(−n−1,0). Clearly the curvatures κR(w,w′)

are determined by RN ∗ , in particular

κR(1,0) =
1

n+ 1
RN

∗
.

Here we give expressions for the components of RN ∗ . Note that the
components of the restriction RN ∗|HΣ

must be invariant.

Proposition 4.41. The (1, 1)-part of RN ∗ |HΣ
satisfies

(4.38) RN
∗

µν̄ = (n+ 1)(Pµν̄ − pµν̄) + (P − PNN̄ − p)hµν̄ ,

where PNN̄ = Pαβ̄N
αN β̄ for any (weighted) unit holomorphic normal

Nα, P = Pα
α, and p = pµ

µ.

Proof. Recall that ∇R = ∇W,⊥ on R(−n − 1, 0) = Nα(1, 0) for any
admissible ambient contact form θ. Fixing θ admissible we have

−RN ∗µν̄ τα =
(
∇W,⊥
µ ∇W,⊥

ν̄ −∇W,⊥
ν̄ ∇W,⊥

µ + ihµν̄∇W,⊥
0

)
τα

=
(
∇⊥µ∇⊥ν̄ −∇⊥ν̄∇⊥µ + ihµν̄∇⊥0

)
τα

+ (PNN̄ −
1

n+ 2
P )hµν̄τα

for any section τα of Nα(1, 0), using Lemma 4.34. Thus from (4.29) of
Lemma 4.30 we have that

RN
∗

µν̄ =
n+ 1

n+ 2
Rµν̄ − rµν̄ − (PNN̄ −

1

n+ 2
P )hµν̄ .

Now using that Rαβ̄ = (n+ 2)Pαβ̄ + Phαβ̄, from the definition of Pαβ̄,
and using the corresponding expression for rµν̄ , we have the result. �

Note that P −PNN̄ −p is the trace of Pµν̄−pµν̄ , with respect to hµν̄ .
The following lemma therefore manifests the CR invariance of RN ∗µν̄ .
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Lemma 4.42. Given any pair of compatible contact forms, the differ-
ence Pµν̄ − pµν̄ satisfies

Pµν̄ − pµν̄ =
1

n+ 1
(Sµν̄NN̄ + 1

2n
SNN̄NN̄hµν̄)(4.39)

+
1

n+ 1
(IIµλγ̄IIν̄

λγ̄ + 1
2n
IIρλγ̄II

ρλγ̄hµν̄),

where Sµν̄NN̄ = Πα
µΠβ̄

ν̄Sαβ̄γδ̄N
γN δ̄ and SNN̄NN̄ = Sαβ̄γδ̄N

αN β̄NγN δ̄ for
any (weighted) unit holomorphic normal Nα.

Proof. Taking the trace free part of the Gauss equation (4.20) one has
1

n+1
(Sµν̄λ

λ− 1
n
Sρ

ρ
λ
λhµν̄)+Pµν̄ = pµν̄+ 1

n+1
(IIµλγ̄IIν̄

λγ̄+ 1
2n
IIρλγ̄II

ρλγ̄hµν̄)

and noting that Sµν̄λλ = Sµν̄γδ̄(h
γδ̄ − NγN δ̄) = −Sµν̄NN̄ and similarly

that Sρρλλ = SNN̄NN̄ one has the result. �

Remark 4.43. The difference Pµν̄ − pµν̄ is the CR analogue of the
so called Fialkow tensor [14, 48] in conformal submanifold geometry,
though here it is showing up in a completely new role.

Proposition 4.44. We have

(4.40) RN
∗

µν = 0 and RN
∗

µ̄ν̄ = 0.

Proof. By a straightforward calculation along the lines of the proof of
Proposition 4.23 we have, given compatible contact forms, that

∇⊥µ∇⊥ν Nα −∇⊥ν∇⊥µNα = NαN
β(∇µ∇νNβ −∇ν∇µNβ)

for any unit holomorphic conormal field Nα (where both ι∗∇ and ∇⊥
are coupled with the submanifold Tanaka-Webster connectionD). Not-
ing that ∇µ∇ν = ∇ν∇µ on densities by Proposition 2.10, we get
that −RN ∗µν = Πα

µΠβ
νRαβ

γ
δNγN

δ; this is zero by (2.23), noting that
Rαβγ̄δ = −Rαβδγ̄. In a similar manner one shows that RN ∗µ̄ν̄ also van-
ishes. �

Given compatible contact forms, one also has the component RN ∗µ0 .
By a similar but more tedious calculation one arrives at the expression

(4.41) RN
∗

µ0 = VµN̄N − iPNνIIµν

where VµN̄N = Πα
µVαβ̄γN

β̄Nγ (with Vαβ̄γ as in (3.35)), PNν = Pγ
βNγΠν

β

and IIµν = IIµν
γNγ for any (weighted) unit holomorphic normal field

Nα. One can obtain this expression more easily using the description
of the canonical connection on Nα(1, 0) in terms of the ambient tractor
connection given below.
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5. CR Embedded Submanifolds and Tractors

Here we continue to work in the setting where ι : Σ ↪→ M is a CR
embedding of a hypersurface type CR manifold (Σ2m+1, HΣ, JΣ) into a
strictly pseudoconvex CR manifold (M2n+1, H, J) with m = n− 1. We
adopt the notation TM rather than T for the standard tractor bundle
ofM , and write T Σ for the standard tractor bundle of Σ. Similarly we
will denote the adjoint tractor bundles of M and Σ by AM and AΣ
respectively. We will also use the abstract index notation EI for T Σ
and allow the use of indices I, J , K, L, I ′, and so on.

5.1. Normal Tractors. Given any unit section Nα of Nα(1, 0) we de-
fine the corresponding (unit) normal (co)tractor NA to be the section
of EA|Σ, the ambient tractor bundle restricted to fibers over Σ, given
by

(5.1) NA
θ
=

 0
Nα

−H


where H = 1

n−1
hµν̄Πα

µ∇ν̄Nα and ∇ν̄ denotes the Tanaka-Webster con-
nection of θ acting in tangential antiholomorphic directions along Σ;
the tractor field NA does not depend on the choice of ambient contact
form θ since from (2.35) of Proposition 2.13 combined with Proposition
2.14 we have that

Ĥ = H + ΥαNα

when θ̂ = eΥθ (with Υα = ∇αΥ), as required by (3.3). If θ is admissible
for the submanifold Σ then H = 0 (since IIν̄µγ = 0) and

(5.2) NA
θ
=

 0
Nα

0

 .

Remark 5.1. The normal tractor NA associated to a unit holomor-
phic conormal Nα is an analogue of the normal tractor associated to
a weighted unit (co)normal field in conformal hypersurface geometry
defined first in [2].

Definition 5.2. The normal cotractor bundle NA is the subbundle of
EA|Σ, the ambient cotractor bundle along Σ, spanned by the normal
tractor NA given any unit holomorphic conormal field Nα. The nor-
mal tractor bundle NA is the dual line subbundle of EA|Σ spanned by
NA = hAB̄NB. We alternatively denote NA and NA by N and N ∗
respectively.
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Since the ambient tractor bundle carries a parallel Hermitian bundle
metric the ambient tractor connection induces a connection ∇N on the
non-null subbundle NA of EA|Σ. Explicitly, if NA

B is the orthogonal
projection from EA|Σ onto NB then we have

(5.3) ∇Ni vB = NA
B∇ivA

for any section vB of NB, where ∇i is the ambient standard tractor
connection (pulled back via ι). We can now explain the origin of the
canonical connection on Nα(1, 0).

Proposition 5.3. The weighted conormal bundle Nα(1, 0) is canoni-
cally isomorphic to the normal cotractor bundle NA via the map

(5.4) τα 7→ τA
θ
=

 0
τα
0


defined with respect to any admissible ambient contact form θ. More-
over, the above isomorphism intertwines the normal tractor connection
∇N on NA with the normal Weyl connection on Nα(1, 0) of any admis-
sible θ.

Proof. The first part follows from the fact that if θ is admissible then
θ̂ = eΥθ is admissible if and only if ΥαN

α = 0, where Nα is a holo-
morphic normal field (a consequence of Lemma 2.11). The second part
follows from the explicit formulae for the tractor connection given in
Section 3.4 (noting in particular (3.27)) and the observation that the
orthogonal projection EA|Σ → NA is given, with respect to any admis-
sible ambient contact form, by

(5.5)

 σ
τα
ρ

 7→
 0

Nβ
ατβ
0

 .

�

Remark 5.4. Clearly the isomorphism of Proposition 5.3 is Hermitian;
in particular if NA is the normal tractor corresponding to a unit normal
field Nα then

NANA = NαNα = 1,

so NA is indeed a unit normal tractor. Although a unit normal tractor
is determined only up to phase, the tractors

NANB̄ and NANB,
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are independent of the choice of unit length section of NA. Indeed,
NANB = NA

B and the section

ΠA
B = δAB −NANB

projects orthogonally from EA|Σ onto the orthogonal complement N⊥A
of NA in EA|Σ.

5.2. Tractor Bundles and Densities. ClearlyN⊥A has the same rank
as EI ; they also have the same rank subbundles in their canonical filtra-
tion structures. Moreover, both N⊥A and EI carry canonical Hermitian
bundle metrics (and Hermitian connections). On the other hand we
note that for N⊥A we have the canonical map

N⊥A → E(1, 0)|Σ
vA 7→ ZAvA

where ZA is the ambient canonical tractor, whereas for EI we have the
canonical map

EI → EΣ(1, 0)
vI 7→ ZIvI

where ZI is the canonical tractor of Σ. It seems natural that we should
look to identify these bundles (canonically), but doing so clearly also
involves identifying the density bundles E(1, 0)|Σ and EΣ(1, 0) (also
canonically). The following lemma shows us that this is the only thing
stopping us from identifying EI with N⊥A :

Lemma 5.5. Fix a local isomorphism ψ : EΣ(1, 0) → E(1, 0)|Σ (com-
patible with the canonical identification of EΣ(1, 1) with E(1, 1)|Σ) and
identify all corresponding density bundles EΣ(w,w′) and E(w,w′)|Σ us-
ing ψ. Then locally there is a canonically induced map from EI to N⊥A ,
given with respect to any pair θ, θΣ of compatible contact forms by

(5.6) vI
θΣ=

 σ
τµ
ρ

 7→ vA
θ
=

 σ
τα
ρ


where τα = Πµ

ατµ, which is a filtration preserving isomorphism of Her-
mitian vector bundles.

Proof. Let us start by fixing θ and θΣ. That the map described above
is a filtration preserving bundle isomorphism is obvious. That the map
pulls back the Hermitian bundle metric of N⊥A to that of EI is also
obvious. It remains to show that the map is independent of the choice
of compatible contact forms. To see this we suppose that θ̂ = eΥθ
is any other admissible contact form and let θ̂Σ = ι∗θ̂ = eΥθΣ. We
need to compare the submanifold and ambient versions of the tractor
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transformation law (3.3). By the compatibility of θ and θΣ we have
∇0Υ = D0Υ along Σ, and by Lemma 4.35 we also have Υα = Πµ

αΥµ

where Υµ = DµΥ. These observations ensure that the map is well
defined. �

The local bundle isomorphism ψ : EΣ(1, 0) → E(1, 0)|Σ in the above
lemma can also be thought of as a nonvanishing local section (or lo-
cal trivialisation) of the ratio bundle R(1, 0). The bundle R(1, 1) is
canonically trivial because of the canonical isomorphism of EΣ(1, 1)
with E(1, 1)|Σ, so that R(1, 0) carries a natural Hermitian bundle met-
ric (i.e. is a U(1)-bundle) and the compatibility of ψ with the iden-
tification EΣ(1, 1) = E(1, 1)|Σ is equivalent to ψ being a unit section
of R(1, 0). The ratio bundle R(1, 0) will prove to be the key to relat-
ing the tractor bundles (globally) without making an unnatural (local)
identification of density bundles.

5.3. Relating Tractor Bundles. If we tensor EI with EΣ(0, 1) then
choosing a submanifold contact form θΣ identifies this bundle with

[EI ]θΣ ⊗ EΣ(0, 1) = EΣ(1, 1)⊕ Eµ(1, 1)⊕ EΣ(0, 0)

where EΣ(0, 0) is the trivial bundle Σ×C. Similarly, given an ambient
contact form θ we may identify the N⊥A ⊗ E(0, 1)|Σ with

[N⊥A ]θ ⊗ E(0, 1)|Σ = E(1, 1)|Σ ⊕N⊥α (1, 1)⊕ E(0, 0)|Σ
where E(0, 0) is the trivial bundle M ×C and N⊥α denotes the orthogo-
nal complement to Nα in Eα|Σ. Since EΣ(w,w) is canonically identified
with E(w,w)|Σ we have the following theorem:

Theorem 5.6. There is a canonical filtration preserving bundle iso-
morphism

ΠI
A : EI ⊗ EΣ(0, 1)→ N⊥A ⊗ E(0, 1)|Σ

given with respect to a pair of compatible contact forms θ, θΣ by

[EI ]θΣ ⊗ EΣ(0, 1) 3

 σ
τµ
ρ

 7→
 σ

τα
ρ

 ∈ [N⊥A ]θ ⊗ E(0, 1)|Σ

where τα = Πµ
ατµ.

Proof. We only need to establish that the map is independent of the
choice of compatible contact forms, and this follows from comparing
the submanifold and ambient versions of (3.3) noting that ∇0Υ = D0Υ
and Υα = Πµ

αΥµ as in the proof of Lemma 5.5. �
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Remark 5.7. If ψ : EΣ(1, 0) → E(1, 0)|Σ is a local bundle isomorphism
(unit as a local section of R(1, 0)) and we denote by Tψι the local iso-
morphism EI → N⊥A given by Lemma 5.5 then isomorphism of Propo-
sition 5.6 agrees with Tψι⊗ ψ where this is defined.

Conjugating the map (5.6) and raising tractor indices one gets an
isomorphism

ΠA
I : EI ⊗ EΣ(1, 0)→ (NA)⊥ ⊗ E(1, 0)|Σ

and tensoring both sides with EΣ(−1, 0) one gets another isomorphism

(5.7) EI → (NA)⊥ ⊗ E(1, 0)|Σ ⊗ EΣ(−1, 0)︸ ︷︷ ︸
R(1,0)

which we may also denote by ΠA
I . We think of ΠA

I as a section of
EI⊗EA|Σ⊗R(1, 0) and ΠI

A as a section of EI⊗EA|Σ⊗R(0, 1). Thinking
about these objects as sections emphasises that they can be interpreted
as maps in a variety of ways.

Definition 5.8. The isomorphism (5.7) gives an injective bundle map

(5.8) T Rι : T Σ→ TM |Σ ⊗R(1, 0)

which we term the twisted tractor map.

The twisted tractor map is clearly filtration preserving, and restricts
to an isomorphism T 1Σ → T 1M |Σ ⊗ R(1, 0). This is just the trivial
isomorphism

(5.9) EΣ(−1, 0) ∼= E(−1, 0)|Σ ⊗ E(1, 0)|Σ ⊗ EΣ(−1, 0).

Since it is filtration preserving T Rι also induces an injective bundle
map T 0Σ/T 1Σ → (T 0M |Σ/T 1M |Σ) ⊗ R(1, 0) and this is simply the
tangent map Eµ → Eα|Σ tensored with the isomorphism (5.9). The
map T Σ/T 0Σ → (TM |Σ/T 0M |Σ) ⊗ R(1, 0) induced by the twisted
tractor map is the isomorphism

EΣ(0, 1) ∼= E(0, 1)|Σ ⊗R(1, 0)

which simply comes from noting thatR(1, 0) = R(0,−1) since EΣ(1, 1) =
E(1, 1)|Σ. Note that since R(1, 0) is Hermitian, so is TM |Σ ⊗R(1, 0),
and T Rι is clearly a Hermitian bundle map. These properties charac-
terise the twisted tractor map.
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5.3.1. The adjoint tractor map. Since R(1, 1) is canonically trivial the
section ΠA

I ΠJ
B gives us a canonical bundle map

End(T Σ)→ End(TM).

Since the twisted tractor map is metric preserving by restricting to
skew-Hermitian endomorphisms we get a map

Aι : AΣ→ AM

which we term the adjoint tractor map. Recalling the projectionAM →
TM given by (3.30) we note that the diagram

(5.10)
AΣ → AM
↓ ↓
TΣ → TM

is easily seen to commute. So the adjoint tractor map is a lift of the
tangent map.

5.4. Relating Tractor Connections on T Σ. Using the twisted trac-
tor map and the connection ∇R we obtain a connection ∇̌ on the stan-
dard (co)tractor bundle induced by the ambient tractor connection.
Given a standard tractor field uJ and a cotractor field vJ on Σ we
define

(5.11) ∇̌iu
J = ΠJ

B∇i(Π
B
Ku

K) and ∇̌ivJ = ΠB
J∇i(Π

K
B vK)

where by ∇ we mean the ambient standard tractor connection ∇ dif-
ferentiating in directions tangent to Σ (i.e. pulled back by ι) coupled
with the connection ∇R.

From Section 3.4 the submanifold intrinsic tractor connection D on
a section vI

θΣ= (σ, τµ, ρ) is given by
(5.12)

DµvJ
θΣ=

 Dµσ − τµ
Dµτν + iAµνσ

Dµρ− pµντν + tµσ

 , Dµ̄vJ
θΣ=

 Dµ̄σ
Dµ̄τν + hµν̄ρ+ pνµ̄σ
Dµ̄ρ− iAµ̄ντν − tµ̄σ

 ,

and

(5.13) D0vJ
θΣ=

 D0σ + i
n+1

pσ − iρ
D0τν + i

n+1
pτν − ipνλτλ + 2itνσ

D0ρ+ i
n+1

pρ+ 2itντν + isσ


where tµ and s are the submanifold intrinsic versions of Tα and S
defined by (3.11) and (3.12) respectively. By contrast, for ∇̌ we have:
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Proposition 5.9. The connection ∇̌ on a section vI
θΣ= (σ, τµ, ρ) of EI

is given, in terms of any ambient contact form compatible with θΣ, by

(5.14) ∇̌µvJ
θΣ=

 Dµσ − τµ
Dµτν + iAµνσ

Dµρ− Pµντν + Tµσ

 ,

(5.15) ∇̌µ̄vJ
θΣ=

 Dµ̄σ
Dµ̄τν + hµν̄ρ+ Pνµ̄σ
Dµ̄ρ− iAµ̄ντν − Tµ̄σ

 ,

and

(5.16) ∇̌0vJ
θΣ=

 D0σ + i
n+1

Pλ
λσ − iρ

D0τν + i
n+1

Pλ
λτν − iPνλτλ + 2iTνσ

D0ρ+ i
n+1

Pλ
λρ+ 2iT ντν + iSσ

 .

Proof. Choose any local isomorphism ψ : EΣ(1, 0)→ E(1, 0)|Σ compat-
ible with the canonical identification of EΣ(1, 1) with E(1, 1)|Σ. Replac-
ing σ with fσ where f ∈ C∞(Σ,C) we may take σ to satisfy σσ = ςΣ
where θΣ = ςΣθΣ. We can thus factor the components of vI so that
vI

θΣ= (fσ, ξµσ, gσ), where ξµ ∈ Γ(Eµ) and g ∈ Γ(EΣ(−1,−1)). If θ is
an ambient contact form compatible with θΣ then (splitting the tractor
bundles w.r.t. θ, θΣ) under the map Tψι⊗ ψ of Remark 5.7

(fσ, ξµσ, gσ)⊗ σ 7→ (fφ, ξαφ, gφ)⊗ φ

where φ = ψ(σ) and ξα = Πµ
αξµ. Thus by definition we have

vB = ΠJ
BvJ

θ
=

 fφ
ξβφ
gφ

⊗ (φ⊗ σ−1)

as a section of EB|Σ ⊗R(1, 0). Now one simply computes ∇ivB using
the formulae (3.13), (3.14), and (3.15) for the tractor connection along
with Lemma 4.38 which relates ∇R to the Tanaka-Webster connections
on the ambient and intrinsic density bundles. We have

ΠB
C∇µvB

θ
=

 (∇µf)φ+ f∇µφ− ξµφ
Πβ
γ(∇µξβ)φ+ ξγ∇µφ+ iΠβ

γAµβfφ
(∇µg)φ+ g∇µφ− Pµγξγφ+ Tµfφ

⊗ (φ⊗ σ−1)

(5.17)

+

 fφ
ξγφ
gφ

⊗∇Rµ (φ⊗ σ−1)



CR EMBEDDED SUBMANIFOLDS OF CR MANIFOLDS 66

where Aµβ = Πα
µAαβ, Pµγ = Πα

µPα
γ, and Tµ = Πα

µTα. By Corollary
4.13 we have Πβ

γAµβ = Πν
γAµν . We also have Πβ

γ∇µξβ = Πν
γDµξν . Now

by Lemma 4.38 we have

∇Rµ (φ⊗ σ−1) = (∇µφ)⊗ σ−1 + φ⊗Dµ(σ−1)

= (∇µφ)⊗ σ−1 + (σ−1Dµσ)φ⊗ σ−1

using that σDµ(σ−1) = −σ−1Dµσ = σ−1Dµσ since DµςΣ = 0. If θ = ςθ

then since φ = ψ(σ) we must have φφ = ς|Σ, and this implies that

(∇µφ)⊗ φ+ φ⊗∇µφ = 0.

Using these to simplify (5.17) we have

ΠB
C∇µvB

θ
=

 (Dµf)φ− ξµφ
Πν
γ(Dµξν)φ+ iΠν

γAµνfφ
(Dµg)φ− Pµνξνφ+ Tµfφ

⊗ (φ⊗ σ−1)

+ (σ−1Dµσ)

 fφ
ξγφ
gφ

⊗ (φ⊗ σ−1).

Applying ΠC
J to the above display gives

ΠB
J∇µvB

θΣ=

 (Dµf)σ − ξµσ
(Dµξν)σ + iAµνfσ

(Dµg)σ − Pµνξνσ + Tµfσ

+

 fDµσ
ξνDµσ
gDµσ


which proves (5.14). Formula (5.15) is obtained similarly. In following
the same process for (5.16) we obtain that

∇̌0vJ
θΣ=

 D0σ + i
n+2

Pσ − iρ
D0τν + i

n+2
Pτν − iPνλτλ + 2iTνσ

D0ρ+ i
n+2

Pρ+ 2iT ντν + iSσ


+

(
− i

(n+ 1)
PNN̄ +

i

(n+ 2)(n+ 1)
P

) σ
τν
ρ

 ,

the second term arising from the use of Lemma 4.38. Simplifying this
gives the result. �

Remark 5.10. By construction ∇̌ preserves the tractor metric hJK̄ .
One can therefore obtain the formulae for ∇̌ acting on sections of EI
by conjugating the above formulae and using the identification of EI
with EĪ via the tractor metric.

One can now easily compare the two connections ∇̌ and D on T Σ.
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Definition 5.11. The difference tractor S is the tractor endomorphism
valued 1-form on Σ given by the difference between ∇̌ and D on T Σ.
Precisely, we have

(5.18) ∇̌Xu = DXu+ S(X)u and ∇̌Xv = DXv − v ◦ S(X)

for X ∈ X(Σ), u ∈ Γ(T Σ), and v ∈ Γ(T ∗Σ).

Given a contact form θΣ on Σ the difference tractor S splits into com-
ponents SµJ

K , Sµ̄JK and S0J
K (with only the last of these depending

on θΣ). From the above formulae for ∇̌ and D we have, in terms of a
compatible pair of contact forms,

(5.19) SµJ
K = (Pµ

λ − pµλ)ZJWK
λ − (Tµ − tµ)ZJZ

K ,

(5.20) Sµ̄J
K = −(Pνµ̄ − pνµ̄)W ν

JZ
K + (Tµ̄ − tµ̄)ZJZ

K ,

and

S0J
K = − i

m+2
(Pλ

λ − p)δKJ + i(Pν
λ − pνλ)W ν

JW
K
λ

(5.21)

− 2i(Tν − tν)W ν
JZ

K − 2i(T λ − tλ)ZJWK
λ − i(S − s)ZJZK ,

where m+2 = n+1 in this case. Both SµJ
K and Sµ̄J

K are invariant ob-
jects. Both have as projecting part the difference Pµν̄−pµν̄ ; a manifestly
CR invariant expression for this difference was given in Lemma 4.42.
We can also give matrix formulae for the difference tractor, following
the same conventions used in Section 3.6 we have

SµJ
K =

 0 0 0
0 0 0

tµ − Tµ Pµ
λ − pµλ 0

 , Sµ̄J
K =

 0 0 0
pνµ̄ − Pνµ̄ 0 0
Tµ̄ − tµ̄ 0 0


and

S0J
K =

 − i(Pλ
λ−p)

m+2
0 0

−2i(Tν − tν) i(Pν
λ − pνλ)− i(Pλ

λ−p)
m+2

0

−i(S − s) −2i(T λ − tλ) − i(Pλ
λ−p)

m+2

 .

Remark 5.12. Since both tractor connections ∇̌ and D preserve the
tractor metric on T Σ, the difference tractor must take values in skew-
Hermitian endomorphisms of the tractor bundle (i.e. S is an AΣ-valued
1-form). This can also easily be seen from (5.19), (5.20) and (5.21),
from which we see that S is in fact A0Σ-valued.
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5.5. The Tractor Gauss Formula. In order to write down the Gauss
formula in Riemannian geometry one needs the tangent map (more pre-
cisely the pushforward) of the embedding, though one typically sup-
presses this from the notation. In order to give a standard tractor ana-
logue we have sought a canonical ‘standard tractor map’, but ended
up instead with the twisted tractor map T Rι. However this poses no
problem for constructing a Gauss formula, since the line bundle R(1, 0)
we have had to twist with carries an invariant connection ∇R.

Letting ι∗ denote the induced map on sections coming from T Rι we
make he following definition:

Definition 5.13. We define the tractor second fundamental form L by
the tractor Gauss formula

(5.22) ∇Xι∗u = ι∗(DXu+ S(X)u) + L(X)ι∗u

which holds for any X ∈ X(Σ) and u ∈ Γ(T Σ), where ∇ denotes the
ambient tractor connection coupled with ∇R.

This (combined with Theorem 5.6) establishes Theorem 1.3 for the
case m = n− 1, the result generalises straightforwardly (Section 6.3).

Remark 5.14. By the definition of the difference tensor S, for any X ∈
X(Σ) and u ∈ Γ(T Σ) we have that L(X)ι∗u is the orthogonal projection
of∇Xι∗u ontoN⊗R(1, 0). By definition then L is a 1-form on Σ valued
in Hom(N⊥ ⊗R(1, 0),N ⊗R(1, 0)) = Hom(N⊥,N ).

Suppressing ι∗ we write the tractor Gauss formula as

(5.23) ∇Xu = DXu+ S(X)u︸ ︷︷ ︸
‘tangential part’

+ L(X)u︸ ︷︷ ︸
‘normal part’

for any X ∈ X(Σ) and u ∈ Γ(T Σ).
Writing ΠB

J u
J as uB and contracting the Gauss formula on both sides

with a unit normal cotractor NA we get that

NCL(X)B
CuB = NB∇Xu

B = −uB∇XNB

for all sections uJ of EJ and X ∈ X(Σ). Thus L is given by

(5.24) LiBC = −NCΠB′

B ∇iNB′

for any unit normal cotractor NC . From this we have:

Proposition 5.15. With respect to a compatible pair of contact forms
the components LµBC, Lµ̄BC, and L0B

C of the tractor second funda-
mental form L are given by

(5.25) LµBC = IIµν
γΠν

βW
β
BW

C
γ + PµN̄N

γZBW
C
γ ,
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(5.26) Lµ̄BC = 0,

and

(5.27) L0B
C = iΠβ′

β Pβ′N̄N
γW β

BW
C
γ − 2iTN̄N

γZBW
C
γ

where Nα is some unit holomorphic normal field, PµN̄ = Πα
µPαβ̄N

β̄,
and TN̄ = TᾱN

ᾱ.

Proof. One simply chooses a unit holomorphic normal field Nα and
corresponding normal tractor NA, then calculates ΠB′

B ∇iNB′ using the
formulae (3.13), (3.14), and (3.15) for the ambient tractor connection.
Using (5.24) one immediately obtains (5.25); for (5.26) one also has
to use that IIµ̄νγ = 0 (by Proposition 4.12) and Πᾱ

µ̄Aᾱβ̄N
β̄ = 0 (by

Corollary 4.13), and for (5.27) one also has to use that II0ν
γ = 0 (again

by Proposition 4.12). �

The proposition shows that the invariant projecting part of LµBC
is IIµνγΠν

β, giving a manifestly CR invariant way of defining the CR
second fundamental form.

6. Higher Codimension Embeddings

It is straightforward to adapt our treatment of CR embeddings in
the minimal codimension case to general codimension transversal CR
embeddings. Here we consider a CR embedding of ι : Σ2m+1 →M2n+1

with n = m+ d, and m, d > 0. We keep our notation for bundles on Σ
and M as before. We now have a rank 2d real conormal bundle N∗Σ,
and the complexification of N∗Σ splits as

(6.1) CN∗Σ = Nα ⊕Nᾱ
where Nα is the annihilator of T 1,0Σ in (T 1,0M)∗|Σ = Eα|Σ and Nᾱ =
Nα. We denote by Nα

β the orthogonal projection of Eβ|Σ onto the
holomorphic normal bundle N α, and by Πα

β the tangential projection,
so that Πα

β + Nα
β = δαβ . We will also write Nαβ̄ for hγδ̄Nα

γNβ̄

δ̄
= hγβ̄Nα

γ .

Remark 6.1. Note that in passing to the general codimension there is no
restriction on the signatures (or relative signature) of the CR manifolds,
provided we have a nondegenerate transversal CR embedding.

6.1. Pseudohermitian Calculus. We may continue to work with
compatible contact forms in the general codimension case (see Remark
4.3). By Remark 4.10 the Tanaka-Webster connection ∇ of an admis-
sible ambient contact form θ induces the Tanaka-Webster connection
D of θΣ via the Webster metric gθ as in Proposition 4.8. We can there-
fore define the (pseudohermitian) second fundamental form of a pair



CR EMBEDDED SUBMANIFOLDS OF CR MANIFOLDS 70

of compatible contact forms as in Definition 4.11 (i.e. via a Gauss
formula). By Remark 4.14 the only nontrivial components of the pseu-
dohermitian second fundamental form are IIµνγ and its conjugate. Also
by Remark 4.14 the pseudohermitian torsion of any admissible ambient
contact form satisfies Πα

µAαβNβ
γ = 0.

The higher codimension analogue of Lemma 4.16 is:

Lemma 6.2. Given compatible contact forms one has

(6.2) NγIIµν
γ = −Πβ

ν∇µNβ

for any holomorphic conormal field.

From Lemma 6.2 we see again that the component IIµνγ of the pseu-
dohermitian second fundamental form does not depend on the compat-
ible pair of contact forms used to define it (cf. Corollary 4.17).

The Gauss, Codazzi and Ricci equations given in the three proposi-
tions of Section 4.7 hold in the general codimension case with the same
proofs (noting that the normal fields used in the proofs of Proposition
4.22 and Proposition 4.23 were arbitrary).

6.2. Relating Densities. As before we define Λ1,0
⊥ Σ to be the bundle

of forms in Λ1,0M |Σ annihilating TΣ. Again we may identify Λ1,0
⊥ Σ

with Nα by restriction to T 1,0M |Σ. We write Λd,0
⊥ Σ for the line bundle

Λd(Λ1,0
⊥ Σ). The following lemma is easily established (cf. Lemma 4.25

and Lemma 4.28):

Lemma 6.3. Along Σ the submanifold and ambient canonical bundles
are related by the canonical isomorphism which intertwines the Tanaka-
Webster connections of any compatible pair of contact forms

K |Σ ∼= KΣ ⊗ Λd,0
⊥ Σ

ι∗∇ ∼= D ⊗ ∇⊥.

Identifying Λ1,0
⊥ Σ withNα we may write Λd,0

⊥ Σ asN[α1···αd]. Tensoring
both sides of the isomorphism of Lemma 6.3 with E(d, 0)|Σ we obtain
(cf. Corollary 4.26 and Corollary 4.29):

Corollary 6.4. Along Σ the submanifold and ambient density bundles
are related by the canonical isomorphism which intertwines the Tanaka-
Webster connections of any compatible pair of contact forms

E(−m− 2, 0)|Σ ∼= EΣ(−m− 2, 0)⊗N[α1···αd](d, 0)

ι∗∇ ∼= D ⊗ ∇⊥.
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Note that the line bundle N[α1···αd](d, 0) is the dth exterior power of
Nα(1, 0). Once again this bundle will turn out to be canonically iso-
morphic to a subbundle N ∗ = NA of the ambient cotractor bundle EA|Σ
(see Section 6.3), and hence once again Nα(1, 0) carries a canonical in-
variant connection. As before this connection turns out to be explicitly
realised as the normal Weyl connection on Nα(1, 0) of any admissible
ambient contact form. The normal Weyl connection on Nα(1, 0) agrees
with the normal Tanaka-Webster connection when differentiating in
contact directions; when differentiating in Reeb directions the two are
related by

(6.3) ∇W,⊥
0 τα = ∇⊥0 τα − iNα′

α Pα′
βτβ +

i

n+ 2
Pτα

for any section τα of Nα(1, 0). The curvature RΛdN ∗ of this connection
on N[α1···αd](d, 0) is again generically non zero, and we have

(6.4) RΛdN ∗
µν̄ = (m+ 2)(Pµν̄ − pµν̄) + (Pλ

λ − p)hµν̄
(cf. Lemma 4.41), RΛdN ∗

µν = 0, RΛdN ∗
µ̄ν̄ = 0, and (cf. (4.41))

(6.5) RΛdN ∗
µ0 = Vµβ̄γN

γβ̄ − iPγνIIµνγ.
We thus define the ratio bundle of densities R(w,w′) as before (Def-

inition 4.32) and see from Corollary 6.4 that these bundles carry a
canonical connection ∇R coming from the connection ∇N on ΛdN ∗ =
N[α1···αd](d, 0). We have therefore established Proposition 1.2. Using
Corollary 6.4 and (6.3) we may relate the connection∇R to the coupled
submanifold-ambient Tanaka-Webster connection (cf. Lemma 4.38):

Lemma 6.5. In terms of a compatible pair of contact forms, θ, θΣ,
the connection ∇R on a section φ⊗ σ of E(w,w′)|Σ ⊗ EΣ(−w,−w′) is
given by

(6.6) ∇Rµ (φ⊗ σ) = (∇µφ)⊗ σ + φ⊗ (Dµσ),

(6.7) ∇Rµ̄ (φ⊗ σ) = (∇µ̄φ)⊗ σ + φ⊗ (Dµ̄σ),

and

(6.8) ∇R0 (φ⊗σ) = (∇0φ)⊗σ+φ⊗(D0σ)+w−w′
m+2

(iPαβ̄Nαβ̄− i
n+2

P )φ⊗σ.

6.3. Relating Tractors. As before we have a canonical isomorphism
from Nα(1, 0) to a subbundle NA of EA|Σ, given with respect to any
admissible ambient contact form θ by

(6.9) τα 7→ τA
θ
=

 0
τα
0

 .
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There is a corresponding isomorphism of N α(−1, 0) with a subbundle
NA of EA|Σ, and we alternatively denote the dual pair NA and NA
by N and N ∗ respectively. The normal tractor connection ∇N on
NA agrees with the normal Weyl connection of any admissible ambient
contact form on Nα(1, 0) (cf. Proposition 5.3).

Sections 5.2 and 5.3 are valid without change in the general codi-
mension case. In particular, Lemma 5.5 and Theorem 5.6 hold. Thus
we may talk about the twisted standard tractor map

T Rι : T Σ→ TM |Σ ⊗R(1, 0)

and the corresponding sections ΠA
I of EI ⊗ EA|Σ ⊗ R(1, 0) and ΠI

A of
EI ⊗ EA|Σ ⊗ R(0, 1). This allows us to define the connection ∇̌ on
T Σ as in (5.11); one can then easily establish the expressions for ∇̌
given in Proposition 5.9 in the general codimension setting (the proof
is essentially the same, with Lemma 6.5 generalising Lemma 4.38). The
difference tractor S, defined as in Definition 5.11, is then still given in
component form by (5.19), (5.20), and (5.21).

We define the tractor second fundamental form L by a tractor Gauss
formula as in Definition 5.13. This establishes Theorem 1.3. One then
also has that

(6.10) LiBCNC = −ΠB′

B ∇iNB′

for any section NA of NA. From this we get (cf. Proposition 5.15):

Proposition 6.6. With respect to a compatible pair of contact forms
the components LµBC, Lµ̄BC, and L0B

C of the tractor second funda-
mental form L are given by

(6.11) LµBC = IIµν
γΠν

βW
β
BW

C
γ + Pµδ̄N

γδ̄ZBW
C
γ ,

(6.12) Lµ̄BC = 0,

and

(6.13) L0B
C = iΠβ′

β Pβ′δ̄N
γδ̄W β

BW
C
γ − 2iTδ̄N

γδ̄ZBW
C
γ .

7. Invariants of CR Embedded Submanifolds

For many problems in geometric analysis it is important to construct
the invariants that are, in a suitable sense, polynomial in the jets of
the structure. Riemannian theory along these lines was developed by
Atiyah-Bott-Patodi for their approach to the heat equation asymp-
totics [1], and in [23] Fefferman initiated a corresponding programme
for conformal geometry and hypersurface type CR geometry. As ex-
plained in [3] there are two steps to such problems. The first is to
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capture the jets (preferably to all orders) of the geometry invariantly
and in an algebraically manageable manner. The second is to use this
algebraic structure to construct all invariants. The latter boils down
to Lie representation theory, for the case of parabolic geometries this is
difficult, and despite the progress in [3] and [30] for conformal geome-
try and CR geometry many open problems remain. For the conformal
and CR cases the first part is treated by the Fefferman and Fefferman-
Graham ambient metric constructions [23, 24, 25] and alternatively by
the tractor calculus [2, 8, 30]. It is beyond the scope of the current
work to fully set up and treat the corresponding invariant theory for
CR submanifolds. However we wish to indicate here that the first geo-
metric step, of capturing the jets effectively, is solved via the tools
developed above. In particular we will show that it is straightforward
to proliferate invariants of a (transversally embedded) CR submanifold.
It seems reasonable to hope that these methods will form the basis of
a construction of all invariants of CR embeddings (in an appropriate
sense).

7.1. Jets of the Structure. We now show that the jets of the struc-
ture of a CR embedding are captured effectively by the basic invariants
we have introduced in our ‘tractorial’ treatment of CR embeddings.

Observe that the tractor Gauss formula (5.22) may be rewritten in
the form

(7.1) ∇XT Rι = T Rι ◦ S(X) + L(X) ◦ T Rι

for any X ∈ TΣ, where T Rι is interpreted as a section of TM |Σ ⊗
T ∗Σ ⊗ R(1, 0) and ∇ here denotes the (pulled back) ambient tractor
connection coupled with the submanifold tractor connection and the
canonical connection∇R. Using this we have the following proposition:

Proposition 7.1. Given a transversal CR embedding ι : Σ → M , the
2-jet of the map ι at a point x ∈ Σ is encoded by ι(x), T Rx ι, Sx and Lx.

Proof. Recalling Section 5.3.1 we note that the twisted tractor map
T Rι determines the adjoint tractor map Aι (by restricting T Rι⊗T Rι).
Since the adjoint tractor map lifts the tangent map, the 1-jet (ι(x), Txι)
of ι at a point x ∈ Σ is also determined by the pair (ι(x), T Rx ι). The
proposition then follows from (7.1). �

In the jets of the structure of a CR embedding ι : Σ → M we
include the jets of the ambient and submanifold CR structures, along
with the jets of the map ι. A CR invariant of the embedding should
depend only on these jets evaluated along the submanifold. The jets
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of the ambient and submanifold CR structures are determined by the
respective tractor curvatures. Thus from Proposition 7.1 we have:

Proposition 7.2. The jets of the structure of a transversal CR em-
bedding ι : Σ → M at x ∈ Σ are determined algebraically by ι(x), the
submanifold and ambient CR structures (as Cartan geometries) at x,
the twisted tractor map T Rx ι, as well as the jets of the difference tensor
S, the tractor second fundamental form L, the submanifold tractor cur-
vature κΣ at x, and the full (i.e. ambient) jets of the ambient tractor
curvature κ at ι(x).

In order to complete the first step of the invariant theory programme
we need to package the jets of S, L, κΣ and κ in an algebraically man-
ageable way. Note that the standard tractor bundle, tractor metric,
and canonical tractor Z are all determined algebraically from struc-
ture of a CR geometry (as a Cartan geometry). Thus if we package the
jets of S, L, κΣ and κ into sequences of CR invariant tractors then one
may combine these tractors by tensoring them and using the subman-
ifold and ambient metrics to contract indices. One can also use the
twisted tractor map to change submanifold tractor indices to ambient
ones before making contractions (the ratio bundle of densities is also
determined algebraically from the submanifold and ambient CR struc-
tures). This would not only complete the first step of the invariant
theory programme, but would also suggest an obvious approach to the
second of the two steps.

7.2. Packaging the Jets. One way to define iterated derivatives of
the difference tractor S and submanifold curvature κΣ would be to re-
peatedly apply the submanifold fundamental derivative (or D-operator)
of [8]. Denoting the submanifold fundamental derivative byD, if f is S
or κΣ then by Theorem 3.3 of [8] the k-jet of f at x ∈ Σ is determined
by the section

(f,Df,D2f, . . . ,Dkf)

of
⊕k

l=0

(⊗lA∗Σ⊗W
)
evaluated at x, whereW equals Λ1Σ⊗AΣ or

Λ2Σ ⊗ AΣ respectively. The ambient jets of κ can be similarly cap-
tured by iterating the ambient fundamental derivative, and one can also
capture the jets of L by using the submanifold fundamental derivative
twisted with the ambient tractor connection. Here instead we parallel
the approach taken in [30] to conformal invariant theory by first putting
the tractor valued forms S, L, κΣ and κ into tractors (invariantly and
algebraically) using the natural inclusion of the cotangent bundle into
the adjoint tractor bundle, and then using double-D-operators.
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Let Ba
AB̄

denote the map T ∗M ↪→ AM given explicitly by (3.29) and
Bi
IJ̄

denote the map T ∗Σ ↪→ AΣ.

Definition 7.3. We define the respective lifted (tractor) expressions
of the tractor valued forms S, L, κΣ and κ to be

SIĪ′J
K = Bi

IĪ′SiJ
K , LIĪ′BC = Bi

IĪ′LiB
C , κΣ

IĪ′JJ̄ ′KL̄ = Bi
IĪ′B

j

JJ̄ ′
κΣ
ijKL̄,

and
κAĀ′BB̄′CD̄ = Ba

AĀ′B
b
BB̄′κabCD̄.

Explicitly this means, for example, that

SIJ̄K
L = SµK

LW µ
I ZJ̄ − Sν̄K

LZIW
ν̄
J̄ − iS0K

LZIZJ̄ .

By (3.42) the double-D-operator DAB̄ acting on unweighted ambient
tractors can be written as

(7.2) DAB̄ = Ba
AB̄∇a

where ∇ is the ambient tractor connection. Similarly the double-D-
operatorDIJ̄ acting on unweighted submanifold tractors can be written
as

(7.3) DIJ̄ = Bi
IJ̄Di

where Di denotes the submanifold tractor connection. By coupling Di

in (7.3) with ∇i we enable the double-D-operator operator DIJ̄ to act
iteratively on the unweighted (mixed) tractor LKL̄CD. Noting that each
of the lifted tractor expressions given in Definition 7.3 is unweighted
we therefore have:

Proposition 7.4. Let ι : Σ→M be a transversal CR embedding, and
let D denote the submanifold double-D-operator DIJ̄ . If f equals S, L,
or κΣ then the k-jet of f at x is determined by the section

(7.4) (f̃ ,Df̃ ,D2f̃ , . . . ,Dkf̃)

of
⊕k

l=0

(⊗lAΣ⊗W
)

evaluated at x, where f̃ is the lifted tractor
expression for f and W equals ⊗2AΣ, AΣ⊗AM |Σ, or ⊗3AΣ respec-
tively.

Along with the corresponding proposition for the ambient curvature:

Proposition 7.5. Let ι : Σ → M be a transversal CR embedding,
and let D denote the ambient double-D-operator DAB̄. The k-jet of the
ambient curvature κ at ι(x) is determined by the section

(7.5) (κ̃,Dκ̃,D2κ̃, . . . ,Dkκ̃)

of
⊕k

l=0

(⊗l+3AM
)
evaluated at ι(x).
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By packaging the jets of the basic invariants S, L, κΣ and κ into
sequences of tractors (i.e. sections of associated bundles corresponding
to representations of the appropriate pseudo-special unitary groups) we
have solved the first step of the invariant theory.

7.3. Tensor and Scalar Invariants. Given a compatible pair of con-
tact forms there is a natural notion of submanifold pseudohermitian
Weyl invariant, analogous to the notions of Riemannian Weyl invari-
ant and hypersurface Riemannian Weyl invariant in [1, 25, 30, 33].
Submanifold pseudohermitian Weyl invariants are sections of the bun-
dles

Eµ1···µsν̄1···ν̄t ⊗ Eα1···αs′ β̄1···β̄t′ |Σ.
The pseudohermitian Weyl invariants of a given tensor type are gen-
erated (complex linearly) by partial (or in the scalar case, full) con-
tractions of tensor products of covariant derivatives of the submanifold
and ambient pseudohermitian curvatures, the submanifold and ambi-
ent pseudohermitian torsions, and the CR second fundamental form
(this being the only nontrivial component of the pseudohermitian sec-
ond fundamental form); each of the covariant derivatives may be in the
holomorphic, antiholomorphic, or Reeb direction(s); the contractions
are made using the submanifold and ambient CR Levi forms, as well
as the restriction Nαβ̄ of the ambient Levi form to the normal bun-
dle, and the tensors Πα

µ and Πα
µ (and their conjugates) may be used

to contract ambient indices with submanifold indices; any remaining
upper indices are lowered using the submanifold and ambient CR Levi
forms. Since rµν̄ λ̄ρ̄, Rαβ̄

γ̄
δ̄, Aµν , Aαβ, and IIµν

γ all have no weight,
the generators we describe all have diagonal weight and can be treated
as weightless, since the fixed pair of compatible contact forms gives
a canonical trivialisation of EΣ(w,w) ∼= E(w,w)|Σ. Some examples of
scalar pseudohermitian Weyl invariants are

IIµν
γIIµνγ, Πν

αΠλ
βΠµ̄

γ̄(∇αRβγ̄)D0Dµ̄Aνλ, Rαβ̄N
αβ̄

and any complex linear combination of these. Some examples of tensor
pseudohermitian invariants are

IIµν
γ, Dµ1 · · ·DµsIIµν

γ, rµν̄λρ̄II
µλ
γ,

where D denotes the submanifold Tanaka-Webster connection coupled
with the normal Tanaka-Webster connection ∇⊥.

Although we define pseudohermitian Weyl invariants to be of weight
zero (since we may trivialise the diagonal density bundles) each of
the generators described above has its own natural weight. Using the
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canonical CR invariant identification of E(w,w)|Σ with EΣ(w,w) each
of the generators may be thought of as a section of

(7.6) Eµ1···µsν̄1···ν̄t(w,w)⊗ Eα1···αs′ β̄1···β̄t′ |Σ
for some w ∈ Z. For example IIµν

γIIµνγ is naturally a section of
EΣ(−1,−1). When fixing a pair of compatible contact forms it makes
sense to trivialise EΣ(w,w) ∼= E(w,w)|Σ and add together invariants
of different weights. However, if one is really interested in CR invari-
ants it is unnatural to trivialise the diagonal density bundles and one
should only consider pseudohermitian Weyl invariants which are homo-
geneous in weight. Being homogeneous in weight is a necessary (but
not sufficient) condition for a pseudohermitian Weyl invariant to be
conformally covariant, i.e. to transform merely by factor ewΥ for some
w ∈ Z when the the compatible pair of contact forms are rescaled by
eΥ. A pseudohermitian Weyl invariant which is conformally covariant
is in fact conformally invariant (i.e. CR invariant) as a section of the
appropriately weighted bundle (7.6). By local CR invariant tensor (or
scalar) field in the following we mean a pseudohermitian Weyl invariant
which is homogeneous in weight and is thought of as a weighted tensor
(or scalar) field. Although it is easy to write down pseudohermitian
Weyl invariants which are homogeneous in weight, these will in general
have very complicated transformation laws under a conformal rescaling
of the compatible pair of contact forms. This makes local CR invariant
tensor (or scalar) fields very difficult to find by naïve methods, hence
the need for an invariant theory.

7.4. Making All Invariants. By tensoring together tractors of the
form appearing in (7.4) and (7.5) along Σ, making partial contractions,
and taking projecting parts one may construct a large family of local
CR invariant (weighted) scalars and tensors. It is an algebraic problem
to show that all scalar (or all tensor) invariants can be obtained by
such a procedure. This is a subtle and difficult problem, which extends
Fefferman’s parabolic invariant theory programme to the submanifold-
relative case (where there are two parabolics around, P and PΣ). Even
in the original case of invariant theory for CR manifolds, despite much
progress, important questions remain unresolved [3, 35]. We do not
attempt to resolve these issues here.

We do wish to indicate, however, that there is scope for development
of the invariant theory for CR manifolds, and now CR embeddings,
along the lines of the treatment of invariant theory for conformal and
projective structures in [26, 27, 28, 30]. The tractor calculus we have
developed for CR embeddings provides all the machinery needed to
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emulate the constructions of conformal Weyl and quasi-Weyl invariants
in [30]. We anticipate that further insight from the projective case [28]
will be needed, and our machinery is sufficient for this also. With all
the tools in hand this article therefore puts us in good stead in terms of
our ability to construct (potentially all) invariants of CR embeddings.

7.5. Practical Constructions. Although in principle one may need
only the invariant tractors appearing in Propositions 7.4 and 7.5 for
construction of general invariants, in practice it is much more efficient
to use the richer calculus which is available. First of all, there are many
alternative ways to construct tractor expressions from the basic invari-
ants (recall for instance the curvature tractor of Section 3.8). Secondly,
there are several invariant operators besides the double-D-operators
DIJ̄ and DAB̄ that can be used to act on these tractor expressions.

7.5.1. Alternative tractor expressions. Along with the lifted tractor ex-
pressions for the submanifold and ambient tractor curvatures one may
of course construct invariants using the curvature tractor of Section 3.8
or using the tractor defined in equation (3.49) of that section. Corre-
spondingly we may also use the middle operators of Section 3.7.2 to
construct tractors from our basic invariants S and L

SIJ
K = Mµ

ISµJ
K , SĪJ

K = Mµ̄

Ī
Sµ̄J

K , and LIBC = Mµ
ILµB

C

using indices to distinguish them from the difference tractor S and
the tractor second fundamental form L (and from their lifted tractor
expressions in Section 7.2). Recall that Lµ̄BC = 0.

From (3.4) it follows immediately that

Z[AW
β
B] =

1

2
(ZAW

β
B − ZBW

β
A)

does not depend on the choice of contact form, so is CR invariant.
Using Z[AW

β
B] and Z[IW

ν
J ] we construct the tractors

SII′J
K = Z[IW

µ
I′]SµJ

K , SĪ Ī′J
K = Z

[Ī
W µ̄

Ī′]
Sµ̄J

K ,

LII′BC = Z[IW
µ
I′]LµB

C ,

κΣ
II′J̄ J̄ ′KL̄ = Z[IW

µ
I′]Z[J̄W

ν̄
J̄ ′]κ

Σ
µν̄KL̄,

and
κAA′B̄B̄′CD̄ = Z[AW

α
A′]Z[B̄

W β̄

B̄′]
καβ̄CD̄.

Of course one can also make invariant tractors from the invariant
components SµJ

K , Sµ̄J
K , LµBC , and so on, by making contractions
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with the submanifold (or ambient) CR Levi form. For example, we
have the following invariant tractors on Σ

hµν̄SµI
JSν̄K

L, hµν̄LµABSν̄K̄ L̄, hµρ̄hλν̄κΣ
µν̄KL̄LλA

BLρ̄C̄ D̄,

where Sν̄K̄
L̄ = SνKL and Lρ̄C̄ D̄ = LρCD. One can also contract some,

or all, of the tractor indices. Note that

(7.7) LµBC̄LµBC̄ = IIµνγ̄II
µνγ̄

whereas

(7.8) SµJK̄S
µJK̄ = 0 and ΠJ

BΠK̄
C̄ SµJK̄L

µBC̄ = 0

from the explicit formulae for S and L in terms of compatible con-
tact forms and the orthogonality relations (3.10) between the splitting
tractors.

Remark 7.6. Although SµJK̄S
µJK̄ = 0 one can extract a scalar invariant

from the partial contraction SµJK̄S
µJ ′K̄ by observing that this tractor

is of the form fZJZ
J ′ , so that the (−1,−1) density f must be CR

invariant. In fact f is simply the invariant

(Pµν̄ − pµν̄)(P µν̄ − pµν̄).
One of the difficulties inherent in constructing all invariants is pre-
dicting when this type of phenomenon will happen when dealing with
various contractions of higher order invariant tractors (such as those
appearing in Proposition 7.4).

7.5.2. Invariant operators. Along with the double-D-operators (7.2)
and (7.3) used in Section 7.2 one may of course use the submani-
fold and ambient tractor D-operators of Section 3.7.1 and the other
double-D-operators DIJ and DAB. In order to act on tractors of mixed
(submanifold-ambient) type, with potentially submanifold and ambient
weights, we will need to appropriately couple the submanifold intrinsic
invariant D-operators with the ambient tractor connection and with
the canonical connection on the density ratio bundles. Note that these
operators also form the building blocks for constructing invariant dif-
ferential operators on CR embedded submanifolds.

We first need to use the ratio bundles to eliminate ambient weights.
Let EΦ

Σ denote any submanifold intrinsic tractor bundle and let EΦ
Σ (w,w′)

denote EΦ
Σ ⊗EΣ(w,w′). Let E Φ̃(w̃, w̃′) denote any ambient tractor bun-

dle, weighted by ambient densities. We make the identification

(7.9) EΦ
Σ (w,w′)⊗E Φ̃(w̃, w̃′)|Σ = EΦ

Σ (w+ w̃, w′+ w̃′)⊗E Φ̃|Σ⊗R(w̃, w̃′)

which motivates the following definition:
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Definition 7.7. We define the reduced weight of a section fΦΦ̃ of the
bundle (7.9) to be (w̌, w̌′) = (w + w̃, w′ + w̃′).

One can extend any of the submanifold D-operators to act on sec-
tions of the bundle (7.9) by taking the relevant D-operator acting on
submanifold tractors with the reduced weight, expressed in terms of a
choice of contact form θΣ, and coupling the Tanaka-Webster connection
of θΣ with the (pulled back) ambient tractor connection and the ratio
bundle connection ∇R.

We illustrate how this works for the submanifold tractor D-operator
DI . We define the CR invariant operator

DI : EΦ
Σ (w̌, w̌′)⊗E Φ̃|Σ⊗R(w̃, w̃′)→ EI⊗EΦ

Σ (w̌−1, w̌′)⊗E Φ̃|Σ⊗R(w̃, w̃′)

by
(7.10)

DIf
ΦΦ̃ θΣ=

 w̌(m+ w̌ + w̌′)fΦΦ̃

(m+ w̌ + w̌′)Dµf
ΦΦ̃

−
(
DνDνf

ΦΦ̃ + iw̌D0f
ΦΦ̃ + w̌(1 + w̌′−w̌

m+2
)pfΦΦ̃

)


where D denotes the Tanaka-Webster connection of θΣ coupled with
the submanifold tractor connection, the (pulled back) ambient tractor
connection, and the ratio bundle connection ∇R.

7.5.3. Computing higher order invariants. Using the tractor calculus
we have developed it is now straightforward to construct further local
(weighted scalar, or other) invariants of a CR embedding. One can
differentiate the various tractors constructed from the basic invariants
in Sections 7.2 and 7.5.1 using the invariant operators of Section 3.7.1
and Section 7.5.2, tensor these together, and make contractions using
the tractor metrics (and the twisted tractor map). One can also make
partial contractions and take projecting parts.

To illustrate our construction we give an example invariant and com-
pute the form of the invariant in terms of the Tanaka-Webster calculus
of a pair of compatible contact forms: Consider the nontrivial reduced
weight (−2,−2) density

(7.11) I = DIDJ̄(ΠB
I ΠD̄

J̄ h
µν̄hCĒLµBCLν̄D̄Ē).

Since ΠB
I ΠD̄

J̄
is by definition a section of EIJ̄ ⊗ EBD̄|Σ ⊗ R(1, 1), and

R(1, 1) is canonically trivial and flat, we see that

(7.12) fIJ̄ = ΠB
I ΠD̄

J̄ h
µν̄hCĒLµBCLν̄D̄Ē

has reduced weight (−1,−1) and no ratio bundle weight (diagonal ra-
tio bundle weights can be ignored). Therefore in this case we do not
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need to couple the submanifold tractor D-operator with any ambient
connection in order to define DIDJ̄fIJ̄ . From the definition of DJ we
have

DJ̄fIJ̄ = −(m− 2)Y J̄fIJ̄ + (m− 2)W νJ̄DνfIJ̄(7.13)

− Z J̄ (DνDνfIJ̄ − iD0fIJ̄ − pfIJ̄)

where D denotes the submanifold tractor connection coupled with the
Tanaka-Webster connection of some submanifold contact form θΣ and
Z, W , Y are the splitting tractors corresponding to the choice of θΣ.
The tractor DJ̄fIJ̄ has weight (−2,−1) and so, applying DĪ and con-
tracting, we have

DIDJ̄fIJ̄ = −2(m− 3)Y IDJ̄fIJ̄ + (m− 3)W µ̄IDµ̄D
J̄fIJ̄

(7.14)

− ZI

(
Dµ̄Dµ̄D

J̄fIJ̄ − 2iD0D
J̄fIJ̄ − 2

m+ 3

m+ 2
pDJ̄fIJ̄

)
.

If we choose θ admissible and compatible with θΣ then (6.11) implies

(7.15) fIJ̄ = IIµλ
γIIν̄ρ

ε̄hµν̄hγε̄W
λ
I W

ρ̄

J̄
+ PµᾱNβᾱPβν̄h

µν̄ZIZJ̄ .

In each term on the right hand side of (7.13) and (7.14) there is a con-
traction with a tractor, using the orthogonality relations between the
tractor projectors simplifies the calculation significantly since one can
ignore terms that will vanish after these contractions. So, for example,
one easily computes that

W νJ̄DνfIJ̄ = Dρ̄(IIµλ
γIIµρ̄γW

λ
I ) +mPµᾱNβᾱPβ

µZI .

Another efficient way to compute terms is to commute the splitting
tractors forward past each appearance of the connection D using the
submanifold versions of (3.16)-(3.24). Since Z J̄fIJ̄ = 0 and [Dν , Z

J̄ ] =
DνZ

J̄ = 0 we have Z J̄DνfIJ̄ = 0, from which we get

Z J̄DνDνfIJ̄ = −W νJ̄DνfIJ̄

using [Dν , Z J̄ ] = DνZ J̄ = W νJ̄ ; thus two of the terms in (7.13) coincide,
up to a factor, simplifying our calculations significantly. Computing
similarly

Z J̄D0fIJ̄ = D0(Z J̄fIJ̄)− (D0Z
J̄)fIJ̄

= iPµᾱNβᾱPβ
µZI
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using that Z J̄fIJ̄ = 0 and D0Z
J̄ = −iY J̄ + i

m+2
pZ J̄ . Putting these

together yields

(7.16) DJ̄fIJ̄ = (m− 1)Dρ̄(IIµλ
γIIµρ̄γW

λ
I ) + (m− 1)2PµᾱNβᾱPβ

µZI .

Repeating this procedure for (7.14) we eventually obtain

I = (m− 1)
[
(m− 2)DλDρ̄(IIµλ

γIIµρ̄γ)(7.17)

+ (Dρ̄Dρ̄ − 2iD0 − (m+4)(m−2)
m+2

p)(IIµλ
γIIµλγ)

− (m− 2)(m− 4)pλρ̄IIµλ
γIIµρ̄γ

+ (m− 1)(m− 2)(m− 4)PµᾱNβᾱPβ
µ
]
.

8. A CR Bonnet Theorem

In classical surface theory the Bonnet theorem (or fundamental the-
orem of surfaces) says that if a covariant 2-tensor II on an abstract
Riemannian surface (Σ, g) satisfies the Gauss and Codazzi equations
then (locally about any point) there exists an embedding of (Σ, g) into
Euclidean 3-space which realises the tensor II as the second fundamen-
tal form. A more general version of the Bonnet theorem states that if
we specify on a Riemannian manifold (Σm, g) a rank d vector bundle
NΣ with bundle metric and metric preserving connection and an NΣ-
valued symmetric covariant 2-tensor II satisfying the Gauss, Codazzi
and Ricci equations then (locally) there exists an embedding of (Σm, g)
into Euclidean n-space, where n = m + d, realising NΣ as the normal
bundle and II as the second fundamental form. Here we give a CR
geometric analogue of this theorem.

8.1. Locally Flat CR Structures. The Bonnet theorem given in sec-
tion 8.3 generalises and is motivated by the following well-known the-
orem on locally flat CR structures. The proof we give will be adapted
to give a proof of the Bonnet theorem.

Theorem 8.1. A nondegenerate CR manifold (M2n+1, H, J) of signa-
ture (p, q) with vanishing tractor curvature is locally equivalent to the
signature (p, q) model hyperquadric H.

Proof. The signature (p, q) model hyperquadric H can be realised as
the space of null (i.e. isotropic) complex lines in the projectivisation of
Cp+1,q+1. Since the tractor curvature vanishes one may locally identify
the standard tractor bundle TM with the trivial bundle M ×Cp+1,q+1

so that the tractor connection becomes the trivial flat connection and
the tractor metric becomes the standard inner product on Cp+1,q+1.
The canonical null line subbundle L = T 1M of TM (spanned by the
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weighted canonical tractor ZA) then gives rise to a map from M into
the model hyperquadric given by

(8.1) M 3 x 7→ Lx ⊂ Cp+1,q+1.

We need to show that the map f : M → P(Cp+1,q+1) given by (8.1) is
a local CR diffeomorphism.

The maximal complex subspace in the tangent space to H at the
point `, where ` ⊂ Cp+1,q+1 is an isotropic line, is the image of `⊥ under
the tangent map of the projection Cp+1,q+1 → P(Cp+1,q+1). Choosing a
nowhere zero local section ρ of L = E(−1, 0) we get a lift of the map
f to a map fρ : M → Cp+1,q+1. The map L = E(−1, 0) ↪→ TM = EA
is given explicitly by ρ 7→ ρZA. Since the tractor connection is flat the
tangent map of fρ at x ∈M is given by

TxM 3 X 7→ ∇X(ρZA) ∈ Cp+1,q+1.

By the respective conjugates ∇β̄Z
A = 0 and ∇βZ

A = WA
β of (3.18)

and (3.21) (fixing any background contact form and raising indices
using the tractor metric) the tangent map Txfρ restricted to contact
directions maps onto a complementary subspace to Lx inside L⊥x and
induces a complex linear isomorphism of Hx with L⊥x /Lx; combined
with (3.24) we see that Txfρ is injective and its image is transverse
to Lx. Now f is the composition of fρ with the projectivisation map
Cp+1,q+1 \ {0} → P(Cp+1,q+1); thus we have that Txf is injective, and
further that f is a local CR diffeomorphism from M to the signature
(p, q) model hyperquadric in P(Cp+1,q+1). �

Remark 8.2. Throughout this article we have implicitly identified the
CR tractor bundle TM with the holomorphic part of its complexifica-
tion in the standard way. In the above proof we have therefore also
implicitly identified the tangent space to Cp+1,q+1 at any point with the
holomorphic tangent space; the section ρZA should be understood as a
section of the holomorphic tractor bundle, the map fρ being determined
by the corresponding section of the real tractor bundle.

The map constructed in the proof is the usual Cartan developing
map for a flat Cartan connection, though constructed using tractors
and the projective realisation of the model hyperquadric. The fact
that the map constructed is a local CR diffeomorphism relies on the
soldering property of the canonical Cartan/tractor connection on M ,
which is captured in the formulae (3.18), (3.21), and (3.24).

8.2. CR Tractor Gauss-Codazzi-Ricci Equations. Our tractor
based treatment of transversal CR embeddings in Sections 5 and 6
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has shown us exactly what data should be prescribed on a CR man-
ifold in a CR version of the Bonnet theorem: Consider a transversal
CR embedding Σ2m+1 ↪→M2n+1 between nondegenerate CR manifolds.
Then along Σ the ambient standard tractor bundle splits as an orthog-
onal direct sum (T Σ⊗R(−1, 0))⊕N with the ratio bundle R(−1, 0)
being the dual of an (m + 2)th root of the top exterior power ΛdN of
the normal tractor bundle N . It is also easy to see that the (pulled
back) ambient tractor connection decomposes along Σ as

(8.2) ∇ =

(
D ⊗∇R + S −L†

L ∇N
)

on
T Σ⊗R(−1, 0)

⊕
N

where D⊗∇R denotes the coupled connection on T Σ⊗R(−1, 0), with
D the submanifold tractor connection and ∇R the connection induced
on R(−1, 0) by the normal tractor connection ∇N . The objects S and
L are as defined in Sections 5.4 and 5.5, and L†(X) is the Hermitian
adjoint of L(X) with respect to the ambient tractor metric for any
X ∈ X(Σ). The bundle N carries a Hermitian metric hN induced
by the ambient tractor metric. We refer to the triple (N ,∇N , hN )
along with (R(−1, 0),∇R) and the invariants S and L as the (extrinsic)
induced data coming from the CR embedding.

The above observations also establish Proposition 1.1.

Remark 8.3. The Hermitian adjoint L† of L appears because of (6.10).
Note that L†iBC = LiC̄ B̄ so that in particular L†µ̄BC = LµC̄B̄ and L†µBC =
0. Note also that for any X ∈ X(Σ)

(8.3)
(

S(X) −L†(X)
L(X) 0

)
is a skew-Hermitian endomorphism of TM |Σ since each of the connec-
tions appearing in (8.2) preserves the appropriate Hermitian bundle
metric.

We can also easily see what the integrability conditions should be on
this abstract data: Observe that the curvature of the connection (8.2)
acting on sections of TM |Σ is given by(
D ⊗∇R + S −L†

L ∇N
)
∧
(
D ⊗∇R + S −L†

L ∇N
)

=

(
κD⊗∇R+S − L† ∧ L −dL† − S ∧ L†

dL + L ∧ S κN − L ∧ L†

)
where κD⊗∇R+S is the curvature of D ⊗ ∇R + S, dL and dL† are the
respective covariant exterior derivatives of L and L† with respect to
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D ⊗ ∇R ⊗ ∇N , and κN is the curvature of ∇N . The above display
expresses the pullback of the ambient curvature by the embedding in
terms of the induced data of the CR embedding. Writing these relations
component-wise leads to the CR tractor Gauss, Codazzi, and Ricci
equations; denoting the pullback of the ambient curvature simply by κ
these are, respectively,

(8.4) Π ◦ κ ◦ Π = κD⊗∇
R+S − L† ∧ L,

(8.5) N ◦ κ ◦ Π = dL + L ∧ S,

and

(8.6) N ◦ κ ◦ N = κN − L ∧ L†

where Π and N denote the complementary ‘tangential’ and ‘normal’
projections acting on a section v = (v>, v⊥) of TM |Σ. Of course

κD⊗∇
R+S = κΣ − κR(1,0) + dS + S ∧ S

where κR(1,0) denotes the curvature of R(1, 0) acting as a bundle endo-
morphism via multiplication, κΣ is the submanifold tractor curvature,
and dS is the covariant exterior derivative of S with respect to the
submanifold tractor connection. Note that the equation Π ◦ κ ◦ N =
−dL†− S∧L† is determined by (8.5). Note also that the tractor Ricci
equation (8.6) determines the normal tractor curvature κN in terms of
the ambient curvature and the tractor second fundamental form.

Remark 8.4. One can easily write the terms appearing in the tractor
Gauss, Codazzi, and Ricci equations more explicitly using abstract
indices. For instance we have

(L† ∧ L)ijK
L = 2L†[i|E

LL|j]K
E = 2L[i|

L
EL|j]KE

where we use LjKE = LjCEΠC
K and L†iEL = L†iEDΠL

D since we are
identifying N⊥ ⊂ TM |Σ with T Σ⊗R(−1, 0).

8.3. The CR Bonnet Theorem. With the notion of induced data
on the submanifold from a CR embedding given in the previous section
we can now give the following theorem:

Theorem 8.5. Let (Σ2m+1, H, J) be a signature (p, q) CR manifold and
suppose we have a complex rank d vector bundle N on Σ equipped with
a signature (p′, q′) Hermitian bundle metric hN and metric connection
∇N . Fix an (m+2)th root R of ΛdN , and let ∇R denote the connection
induced by ∇N . Suppose we have a N⊗T ∗Σ⊗R valued 1-form L which
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annihilates the canonical tractor of Σ and an A0Σ valued 1-form S on
Σ such that the connection

∇ :=

(
D ⊗∇R + S −L†

L ∇N
)

on
T Σ⊗R∗
⊕
N

is flat (where D is the submanifold tractor connection), then (locally)
there exists a transversal CR embedding of Σ into the model (p+p′, q+
q′) hyperquadric H, unique up to automorphisms of the target, realising
the specified extrinsic data as the induced data.

Proof. Since the complex line bundle ΛdN is normed by hN , the bundle
R is also normed. This means that the tractor metric hT Σ induces a
Hermitian bundle metric on T Σ⊗R∗, which we again denote by hT Σ.
We therefore have a Hermitian bundle metric h = hT Σ + hN on the
bundle (T Σ⊗R∗) ⊕ N . Since S is adjoint tractor valued (i.e. skew-
Hermitian endomorphism of T Σ valued) the connection D ⊗ ∇R + S
on T Σ⊗R∗ preserves hT Σ. Collectively, the terms involving L and L†
in the displayed definition of ∇ constitute a one form valued in skew-
Hermitian endomorphisms of (T Σ⊗R∗) ⊕ N . Combined with the
fact that ∇N preserves hN this shows that ∇ preserves the Hermitian
bundle metric h.

The signature (p + p′, q + q′) model hyperquadric H can be re-
alised as the space of null complex lines in the projectivisation of
T = Cp+p′+1,q+q′+1. Since the connection ∇ on (T Σ⊗R∗) ⊕ N is
flat and preserves h one may locally identify this bundle with the triv-
ial bundle Σ × T such that ∇ becomes the trivial flat connection and
h becomes the standard signature (p + p′ + 1, q + q′ + 1) inner prod-
uct on T; this trivialisation is uniquely determined up to the action
of SU(p + p′ + 1, q + q′ + 1) on T. The canonical null line subbundle
EΣ(−1, 0) of T Σ gives rise to a null line subbundle L = EΣ(−1, 0)⊗R∗
of Σ × T. The null line subbundle L then gives rise to a smooth map
into the model (p+ p′ + 1, q + q′ + 1) hyperquadric given by

(8.7) Σ 3 x 7→ Lx ⊂ T = Cp+p′+1,q+q′+1.

Since the local trivialisation of (T Σ⊗R∗)⊕N is uniquely determined
up to the action of SU(T) the above displayed map from Σ to H is
determined up to automorphisms of H. It remains to show that this
map is a transversal CR embedding inducing the specified extrinsic
data.

Let us denote the map (8.7) by f : Σ→ H ⊂ P(T). Given a nowhere
zero local section ρ of L = EΣ(−1, 0)⊗R∗ we may think of the section
ρZI of T Σ⊗R∗ as a section of Σ× T via inclusion; this section gives
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rise to a lifted map fρ : Σ → T. The tangent map of fρ at x ∈ Σ is
given by

TxΣ 3 X 7→ ∇X(ρZI) ∈ T.
From (3.18) and (3.21) we have that Dν̄Z

I = 0 and DνZ
I = W I

ν

(fixing some background contact form on Σ); using these, the definition
of ∇, and the facts that SiJ

KZJ mod ZK = 0 (since S is adjoint
valued) and that L annihilates the canonical tractor ZI , we see that
Txfρ restricted to contact directions is injective and induces a complex
linear isomorphism of Hx onto a subspace of L⊥x /Lx; combined with
(3.24) we see that Txfρ is injective and its image is transverse to Lx.
This implies that the composition f of fρ with the projectivisation map
T\{0} → P(T) is a local CR embedding into the model hyperquadricH.
Equation (3.24) further shows that Txfρ(TxΣ) 6⊂ L⊥x , so f is transversal.

To see that this embedding induces back the specified extrinsic data
we simply need to note that we may identify (T Σ⊗R∗)⊕N = Σ×T
with T H|Σ, identifying ∇ with the flat tractor connection on T H|Σ
and h with the tractor metric hT H along Σ. Then

T H|Σ =
T Σ⊗R∗
⊕
N

is the usual decomposition of the ambient tractor bundle along the
submanifold, and the definition of ∇ in the statement of the theorem
gives the usual decomposition of the ambient tractor connection. �

Our formulation and proof of this CR Bonnet theorem is inspired
by the conformal Bonnet theorem formulated and proved in terms of
standard conformal tractors by Burstall and Calderbank in [6]. The
condition that the connection ∇ we define be flat is alternatively given
in terms of the prescribed data on (Σ, HΣ, JΣ) by the tractor Gauss,
Codazzi, and Ricci equations (8.4), (8.5), and (8.6) with the left hand
sides equal to zero.
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