CR EMBEDDED SUBMANIFOLDS OF CR
MANIFOLDS
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ABSTRACT. We develop a complete local theory for CR embedded
submanifolds of CR manifolds in a way which parallels the Ricci
calculus for Riemannian submanifold theory. We define a normal
tractor bundle in the ambient standard tractor bundle along the
submanifold and show that the orthogonal complement of this bun-
dle is not canonically isomorphic to the standard tractor bundle of
the submanifold. By determining the subtle relationship between
submanifold and ambient CR density bundles we are able to in-
variantly relate these two tractor bundles, and hence to invariantly
relate the normal Cartan connections of the submanifold and am-
bient manifold by a tractor analogue of the Gauss formula. This
leads also to CR analogues of the Gauss, Codazzi, and Ricci equa-~
tions. The tractor Gauss formula includes two basic invariants of
a CR embedding which, along with the submanifold and ambient
curvatures, capture the jet data of the structure of a CR embed-
ding. These objects therefore form the basic building blocks for the
construction of local invariants of the embedding. From this basis
we develop a broad calculus for the construction of the invariants
and invariant differential operators of CR embedded submanifolds.

The CR invariant tractor calculus of CR embeddings is devel-
oped concretely in terms of the Tanaka-Webster calculus of an
arbitrary (suitably adapted) ambient contact form. This enables
straightforward and explicit calculation of the pseudohermitian in-
variants of the embedding which are also CR invariant. These are
extremely difficult to find and compute by more naive methods.
We conclude by establishing a CR analogue of the classical Bonnet
theorem in Riemannian submanifold theory.

1. INTRODUCTION

Hypersurface type CR geometry is motivated by the biholomorphic
equivalence problem for complex domains, and is rooted in the result
of Poincaré that the analogue of the Riemann mapping theorem fails
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for domains of complex dimension greater than one [41]. On the side
of geometry key pioneering work was developed by Cartan, Tanaka,
and Chern-Moser in which it was seen that the structure is invariantly
captured by a prolonged system now known as a Cartan connection
[12, 13, 43]. The fundamental role of CR geometry in analysis was sig-
nificantly strengthened by the result of Fefferman that any biholomor-
phic map between smoothly bounded strictly pseudoconvex domains
in C"™! extends smoothly to the boundary, and so induces a CR dif-
feomorphism between the boundaries [22]; so Poincaré’s result may be
recovered by a simple counting of invariants argument (that was in
fact proposed in [41]). This brought to the fore the role of CR in-
variants as tools for distinguishing domains. Hypersurface type CR
geometry is an important example in a class of structures known as
parabolic geometries that also includes conformal geometry, projective
differential geometry, and many other structures. Seeking to determine
the asymptotic expansion of the Bergman kernel, Fefferman initiated a
programme for the explicit construction of CR, and more widely para-
bolic, invariants [23]. There has subsequently been much interest and
progress on this [3, 35, 30].

The study of CR embeddings and immersions (in CR manifolds) is
also closely connected with the study of holomorphic mappings between
domains. Although open questions remain about when proper holomor-
phic mappings between domains in C™*! and C"*! extend smoothly
[4, 50], if a holomorphic map between smoothly bounded domains does
extend in this way then it induces a CR map between the boundaries.
So again CR invariants of the boundaries play a fundamental role. The
Chern-Moser moving frames approach to the CR Cartan connection
has been effectively applied to the study of CR embeddings and im-
mersions in the important work of Webster [51] on CR rigidity for real
codimension two embeddings. This theme is significantly extended in
the article [20] of Ebenfelt, Huang and Zaitsev where rigidity is estab-
lished when the codimension is not too large. These works have strong
applications to the study of proper holomorphic maps between balls
and to the study of Milnor links of isolated singularities of analytic
varieties [50, 20]. The Chern-Moser approach has also been applied
in related work generalising the Schwarz reflection principle to several
complex variables, where invariant nondegeneracy conditions on CR
maps play a key role [21, 36].

Despite the strong specific results mentioned, and geometric stud-
ies by several authors [15, 16, 17, 39, 40, 47|, a significant gap has
remained in the general theory for CR embeddings and immersions.
A basic general theory should enable the straightforward construction
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of local CR invariants, but in fact to this point very few invariants
are known. In particular using existing approaches there has been no
scope for a general theory of invariant construction, as the first step
in a Fefferman-type invariants programme cf. [23]|. Closely related is
the need to construct CR invariant differential operators required for
geometric analysis. Again no general theory for their construction has
been previously advanced. The aim of this article is to close this gap.
We develop a general CR invariant treatment that on the one hand
is conceptual and on the other provides a practical and constructive
approach to treating the problems mentioned. The final package may
be viewed as, in some sense, an analogue of the usual Ricci calculus
approach to Riemannian submanifold theory, which is in part based
around the Gauss formula. Our hope is that this may be easily used
by analysts or geometers not already strongly familiar with CR geom-
etry; for this reason we have attempted to make the treatment largely
self contained. The theory and tools developed here may also be viewed
as providing a template for the general problem of treating parabolic
submanifolds in parabolic geometries. This is reasonably well under-
stood in the conformal setting |2, 6, 31, 34, 42, 48| but little is known in
the general case. The CR case treated here is considerably more subtle
than the conformal analogue as it involves dealing with a non-maximal
parabolic.

1.1. CR Embeddings. Abstractly, a nondegenerate hypersurface-type
CR manifold is a smooth manifold M?**! equipped with a contact dis-
tribution H on which there is a formally integrable complex structure
J : H — H. We refer to such manifolds simply as CR manifolds. A
CR mapping between two CR manifolds is a smooth mapping whose
tangent map restricts to a complex linear bundle map between the
respective contact distributions. A CR embedding is a CR mapping
which is also an embedding.

Typically in studying CR embeddings one works with an arbitrary
choice of contact form for the contact distribution in the ambient man-
ifold (ambient pseudohermitian structure). A CR embedding is said
to be transversal if at every point in the submanifold there is a sub-
manifold tangent vector which is transverse to the ambient contact
distribution (this is automatic if the ambient manifold is strictly pseu-
doconvex). Assuming transversality the ambient contact form then
pulls back to a pseudohermitian contact form on the submanifold. As-
sociated with these contact forms are their respective Tanaka-Webster
connections, and these can be used to construct pseudohermitian in-
variants of the embedding. The task of finding some, let alone all,
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pseudohermitian invariants which are in fact CR invariants (not de-
pending on the additional choice of ambient contact form) is very dif-
ficult, unless one can find a manifestly invariant approach. We give
such an approach. Our approach uses the natural invariant calculus
on CR manifolds, the CR tractor calculus. In the CR tractor calculus
the standard tractor bundle and normal tractor (or Cartan) connec-
tion play the role analogous to the (holomorphic) tangent bundle and
Tanaka-Webster connection in pseudohermitian geometry.

1.2. Invariant Calculus on CR Manifolds. Due to the work of Car-
tan, Tanaka, and Chern-Moser we may view a CR manifold (M, H, J)
as a Cartan geometry of type (G, P) with G' a pseudo-special unitary
group and P a parabolic subgroup of G. The tractor bundles are the
associated vector bundles on M corresponding to representations of G,
the standard tractor bundle corresponding to the standard representa-
tion. The normal Cartan connection then induces a linear connection
on each tractor bundle [8]. In order to relate the CR tractor calculus
to the Tanaka-Webster calculus of a choice of pseudohermitian contact
form we work with the direct construction of the CR standard trac-
tor bundle and connection given in [32|. This avoids the need to first
construct the Cartan bundle.

To fully treat CR submanifolds one needs to work with CR density
line bundles, and their Tanaka-Webster calculus. From the Cartan
geometric point of view the CR density bundles &(w,w’) on M?*+?
are the complex line bundles associated to one dimensional complex
representations of P, and include the canonical bundle % as E(—n —
2,0). The bundle £(1,0) is the dual of an (n + 2) root of # and

E(w,w") =&E(1,0)" ® £(1,0)
where w — w’ € Z (and w,w’ may be complex). Since the Tanaka-
Webster connection acts on the canonical bundle it acts on all the
density bundles.

1.3. Invariant Calculus on Submanifolds and Main Results.
We seek to extend the CR tractor calculus to the setting of transversally
CR embedded submanifolds of CR manifolds in order to deal with
the problem of invariants. Our approach parallels the usual approach
to Riemannian submanifold geometry; of central importance in the
Riemannian theory of submanifolds is the second fundamental form.

1.3.1. Normal tractors and the tractor second fundamental form. One
way to understand the Riemannian second fundamental form is in
terms of the turning of normal fields (i.e. as the shape operator).
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To define a tractor analogue of the shape operator one needs a tractor
analogue of the normal bundle for a CR embedding ¢ : 32"+ — M2t

In Section 5.1 we use a CR invariant differential splitting operator to
give a CR analogue of the normal tractor of 2] associated to a weighted
unit normal field in conformal submanifold geometry. It turns out that
this a priori differential splitting gives a canonical bundle isomorphism
between the Levi-orthogonal complement of TH°% in T1Y M|y, tensored
with the appropriate ambient density bundle, and a subbundle A of
the ambient standard tractor bundle along ¥ (Proposition 5.3). The
ambient standard tractor bundle carries a parallel Hermitian metric of
indefinite signature and the normal tractor bundle N is nondegenerate
since > and M are required to be nondegenerate. Thus the ambient
tractor connection induces connections VV and V¥ on N and N+
respectively. We therefore obtain (Section 8.2, see also Sections 5.1,
5.5, and 6.3):

Proposition 1.1. The ambient standard tractor bundle T M splits
along ¥ as Nt N, and the ambient tractor connection V splits as

UV = ( L VN ) on TM|E = ©®
N

where LT(X) is the Hermitian adjoint of L(X) for any X € X(2).

The Hom(N,N*1) valued 1-form LT on ¥ is the CR tractor ana-
logue of the shape operator, and we term L the CR tractor second
fundamental form. The ambient standard tractor bundle can be de-
composed with respect to a choice of contact form. Here it is sensible
to choose an ambient contact form whose Reeb vector field is tangent
to the submanifold (called admissible [20]). We give the components of
L with respect to an admissible ambient contact form in Proposition
6.6 (see also Proposition 5.15). The principal component of L is the CR
second fundamental form II,,7 of ¥ in M, which appears, for example,
in [20].

1.3.2. Relating submanifold and ambient densities and tractors. An-
other way to understand the Riemannian second fundamental form is
in terms of the normal part of the ambient covariant derivative of a
submanifold vector field in tangential directions. This is achieved via
the Gauss formula. In the Riemannian Gauss formula a submanifold
vector field is regarded as an ambient vector field along the submanifold
using the pushforward of the embedding, which relies on the tangent
map. In order to give a CR tractor analogue of the Gauss formula one
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needs to be able to pushforward submanifold tractors to give ambient
tractors along the submanifold — one looks for a CR ‘standard tractor
map’. One might hope for a canonical isomorphism

TS - N+

between the submanifold standard tractor bundle and the orthogonal
complement of the normal tractor bundle (these having the same rank).
In the conformal case there is such a canonical isomorphism [5, 31, 34],
however in the CR case it turns out that there is no natural ‘standard
tractor map’ 7YX — 7 M in general.

The problem has to do with the necessity of relating corresponding
submanifold and ambient CR density bundles. It turns out that these
are not isomorphic along the submanifold, but are related by the top
exterior power of the normal tractor bundle /. Rather than seeking to
identify these bundles we therefore define the ratio bundles of densities

R(w,w") = E(w,w)|s @ Es(w, w')*

where £(w,w')|s is a bundle of ambient CR densities along ¥ and
Es(w,w")* is dual to the corresponding submanifold intrinsic density
bundle. We obtain (in Section 6.2, see also Section 4.11):

Proposition 1.2. Given a transversal CR embedding ¢ : ¥*"1 —
M2+ we have a canonical isomorphism of complex line bundles

R(m +2,0) = AN

where d = n—m. The complez line bundles R(w,w") therefore carry a
canonical CR invariant connection V* induced by V.

The diagonal bundles R(w, w) are canonically trivial and the connec-
tion V7 on these is flat. All the ratio bundles R(w, w’) are therefore
normed, and V® is a U(1)-connection. Using the pseudohermitian
Gauss and Ricci equations (Sections 4.7.1 and 4.7.3) we calculate the
curvature of V® (Section 6.2, see also Section 4.11.1, and in particular
Lemma 4.42) and see that this connection is not flat in general when
w # w'. Thus rather than identifying corresponding density bundles
we should keep the ratio bundles R(w, w’) in the picture.

We are then able to show (from Theorem 5.6 combined with Defini-
tions 5.8, 5.11, 5.13 and Section 6.3):

Theorem 1.3. Let 1 : X2 — M2t be a transversal CR embedding.
Then there is a canonical, metric and filtration preserving, bundle map

TRL:TY — TM|y ®R(1,0)
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over v, which gives an isomorphism of TS with N+ @ R(1,0). More-
over, the submanifold and ambient tractor connections are related by
the tractor Gauss formula

Vxtsu = t(Dxu+ S(X)u) + L(X)e,u
for allu € T(TX) and X € X(X), where S is an End(T) valued 1-

form on 3, D is the submanifold tractor connection, V is the (pulled
back) ambient tractor connection coupled with V™, and the pushforward
map t, 15 defined using using T *¢.

By Proposition 1.1 the tractor Gauss formula implies
VN o = t(Dxu+ S(X)u)

for all w € D(TE) and X € X(X), where VM is coupled with V®.
The difference tractor S measures the failure of the ambient tractor (or
normal Cartan) connection to induce the submanifold one. The com-
ponents of S with respect to an admissible ambient contact form are
given in (5.19), (5.20), and (5.21) (in Section 6.3 it is noted that these
formulae hold in arbitrary codimension and signature). The princi-
pal component of S is the difference between ambient and submanifold
pseudohermitian Schouten tensors P,; — p,s for a pair of compatible
contact forms (Definition 4.2); using the pseudohermitian Gauss equa-
tion (Section 4.7.1) one can give a manifestly invariant expression for
this tensor involving the ambient Chern-Moser tensor and the CR sec-
ond fundamental form (see Lemma 4.42 for the case m =n — 1).

1.3.3. Constructing invariants. In Section 7 we develop both the the-
oretical and practical aspects of constructing invariants of CR embed-
dings. We deal with the geometric part of the invariant theory problem,
using the results stated above. In particular, in Section 7.1 we demon-
strate that the tractor second fundamental form IL, the difference trac-
tor S, and the submanifold and ambient tractor (or Cartan) curvatures
are the basic invariants of the CR embedding, in that they determine
the higher jets of the structure (Proposition 7.2). By applying natural
differential operators to these objects and making suitable contrac-
tions, one can start to proliferate local invariants of a CR embedding.
In practice a more refined construction is useful. The algebraic prob-
lem of showing that one can make all invariants of a CR embedding,
suitably polynomial in the jets of the structure, is beyond the scope
of this article; despite much progress on the analogous problems for
CR or conformal manifolds, these are still far from being completely
solved (see, e.g., [3, 35]). We therefore turn in Section 7.5 to consider-
ing practical constructions of invariants. In Sections 7.5.1 and 7.5.2 we
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develop a richer calculus of invariants than that presented for theoreti-
cal purposes in Sections 7.1 and 7.2. In Section 7.5.3 we illustrate this
calculus with an example of an invariant section Z of Ex(—2, —2) given
by a manifestly invariant tractor expression (7.11) involving L ® LL; we
show how to calculate Z in terms of the pseudohermitian calculus of a
pair of compatible contact forms, yielding the expression (7.17).

1.3.4. A CR Bonnet theorem. With the setup of Proposition 1.1 and
Theorem 1.3 established it is straightforward to give CR tractor ana-
logues of the Gauss, Codazzi and Ricci equations from Riemannian
submanifold theory. These are given in Section 8.2. Just as in the Rie-
mannian theory, if we specialise to the ambient flat case the (tractor)
Gauss, Codazzi and Ricci equations give the integrability conditions for
a Bonnet theorem or fundamental theorem of embeddings. We have
(Theorem 8.5):

Theorem 1.4. Let (X*™ ' H, J) be a signature (p,q) CR manifold and
suppose we have a complex rank d vector bundle N on ¥ equipped with
a signature (p',q') Hermitian bundle metric N and metric connection
VN, Fiz an (m+2)™" root R of AN, and let V* denote the connection
induced by VN . Suppose we have a N@T*S QR valued 1-form L which
annihilates the canonical tractor of ¥ and an A°Y valued 1-form S on
> such that the connection

%)

N

v DgVR+S —Li
T L vV

TY®R*
) on

is flat (where D is the submanifold tractor connection), then (locally)
there exists a transversal CR embedding of 3 into the model (p+p',q+
q') hyperquadric H, unique up to automorphisms of the target, realising
the specified extrinsic data as the induced data.

The bundle A°Y here is the bundle of skew-Hermitian endomor-
phisms of 7 which also preserve the natural filtration of 7, see
Section 3.5.

1.4. Geometric Intuition. In the case where M is the standard CR
sphere S?"*! we can give a clear geometric interpretation of the nor-
mal tractor bundle N of a CR embedded submanifold, or rather of its
orthogonal complement N'*. In the conformal case a similar charac-
terisation of the normal tractor bundle may be given via the notion of
a central sphere congruence (see [5]).
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One may explicitly realise the standard tractor bundle of S?**1 by
considering the sphere as the space of isotropic lines in the projectivi-
sation of C"*1:1; if £ is a complex isotropic line then a standard tractor
at the point £ € §?"*! is a constant vector field along ¢ in the ambient
space C"*11. The tractor parallel transport on S?**! then comes from
the affine structure of C*"™5! and the standard tractor bundle is flat.
Given a point z in our CR embedded submanifold 32"+ ¢ §?**! there

(C]Pm—i-l (Cn-i-l,l .

/\/ZJ_
]P)C (] S2n+ 1

FIGURE 1.1. The orthogonal complement N+ of the
normal tractor bundle when M = S**!. The subspace
Nt intersects the cone C of isotropic lines in C**4! in a
subcone corresponding to the subsphere S, tangent to X
at /.

is a unique totally chain CR subsphere S, of dimension 2m + 1 which
osculates X to first order at z. If we view S?"! as the unit sphere in
C™*! then S, is the intersection of S?"! with the (m + 1)-dimensional
complex affine subspace of C"*! generated by the tangent space to X
at . Viewing S?"*! instead as a projective hyperquadric the sphere S,
with x = £ is the image under the projectivisation map of the inter-
section of the cone C of isotropic lines in C"*1! with a nondegenerate
complex (m + 2)-dimensional subspace Nj-.

In this case the rank d = n — m normal tractor bundle N may be
viewed as giving a Gr(d, C"*1!) valued CR analogue of the Gauss map
of an embedded Riemannian submanifold in Euclidean space.

1.5. Structure of the Article. We aim to produce a calculus of in-
variants for CR embeddings which is both simple and practical, and
yields a machinery for constructing local CR invariants with formulae
in terms the psuedohermitian (Tanaka-Webster) calculus. We thus em-
phasise heavily the connection between the CR tractor calculus and the
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pseudohermitian calculus of a fixed contact form. Although our final
results have a simple interpretation in terms of tractor calculus, they
are often established though explicit calculation using pseudohermitian
calculus. For this reason we have devoted the first part of the article to
giving a detailed exposition of the Tanaka-Webster calculus associated
to a choice of pseudohermitian contact form (Section 2) and an explicit
description of the CR tractor calculus in terms of this pseudohermitian
calculus (Section 3). Although the results of Section 2 may largely be
found elsewhere in the literature, proofs are often merely indicated;
collecting these results, and establishing them by proof, provides the
essential reference for verifying the CR invariance of our later con-
structions. These results are immediately applied in Section 3 where
we present the CR tractor calculus, using the explicit description of the
standard tractor bundle and normal connection given in [32]. For the
purpose of invariant theory we introduce some CR analogues of parts
of the conformal tractor calculus not yet developed in the CR case.

In Section 4 we discuss the pseudohermitian geometry of CR em-
beddings, working in particular with pairs of compatible ambient and
submanifold contact forms (see Definition 4.2). We also discuss in this
section the relationship between the submanifold and ambient CR den-
sity bundles. For simplicity we initially treat the minimal codimension
strictly pseudoconvex case, generalising to nondegenerate transversal
CR embeddings of arbitrary codimension between CR manifolds of any
signature in Section 6.

In Section 5 we develop a manifestly CR invariant approach to study-
ing CR submanifolds using tractor calculus. Again we restrict initially
to the minimal codimension strictly pseudoconvex case, generalising in
Section 6. In Section 7 we apply this calculus to the basic geometric
problems of invariant theory for CR embeddings, addressing practical
constructions of invariants in Section 7.5. In Section 8 we prove a CR
analogue of the Bonnet theorem (Theorem 8.5).

2. WEIGHTED TANAKA-WEBSTER CALCULUS

2.1. CR Geometry. A CR manifold of hypersurface type is a triple
(ML H, J) where M is a real (2n + 1)-dimensional manifold, H is a
corank one distribution in 7'M, and .J is an almost complex structure
on H satisfying the integrability condition

[JX,Y]+[X,JY] € T(H)
(X,Y] = [JX,JY] + J([JX,Y] +[X,JY]) =0
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for any two vector fields X,Y € I'(H). The almost complex structure
J extends by complex linearity to act on H ® C, and since J? = —id
the eigenvalues of J must be +i. It is easy to see that J acts by ¢ on
the bundle

TYM ={X—-iJX : X€e HYCH®C

and by —i on the bundle T%'M = T10M. Moreover one has that
TYOM AT M = {0} and

HC=T"Ma T M.

From the integrability condition imposed on J it follows that T5°M is
formally integrable, that is

[TLOM, TLOM] g Tl,OM

where here we have used the same notation for the bundle T71'°M and
its space of sections.

To simplify our discussion we assume that M is orientable. Since
H carries an almost complex structure it must be an orientable vector
bundle, thus the annihilator line bundle H+ C 7*M must also be
orientable (so there exists a global section of H' which is nowhere
zero). We say that the CR manifold of hypersurface type (M?"*! H, J)
is nondegenerate if H is a contact distribution for M, that is, for any
global section @ of H+ which is nowhere zero the (2n+1)-form § Adf™ is
nowhere zero (this is equivalent to the antisymmetric bilinear form dé
being nondegenerate at each point when restricted to elements of H).
If H is a contact distribution then a global section 6 of H+ which is
nowhere zero is called a contact form. We assume that the line bundle
H* has a fixed orientation so that we can talk about positive and
negative elements and sections. We also assume that (M?*"*1 H J) is
nondegenerate.

By the integrability condition on J the bilinear form dé(-, J-) on H
is symmetric. The signature (p, q) of this nondegenerate bilinear form
on H does not depend on the choice of positive contact form and is
called the signature of (M, H, J).

Given a choice of contact form 6 for (M, H, J) we refer to the quadru-
ple (M, H, J,0) as a (nondegenerate) pseudohermitian structure. Clearly
for any two positive contact forms 6 and 6 there is a smooth function
T € C~(M) such that § = €Y. One can therefore think of the CR
manifold (M, H,J) as an equivalence class of pseudohermitian struc-
tures much as we may think of a conformal manifold as an equivalence
class of Riemannian structures. In order to make calculations in CR
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geometry it is often convenient to fix a choice of contact form 6, calcu-
late, and then observe how things change if we rescale . We will take
this approach in the following, working primarily in terms of the pseu-
dohermitian calculus associated with the Tanaka-Webster connection
of the chosen contact form 6. In order to make real progress however
we will need to make use of the CR invariant tractor calculus [32] as
a tool to produce CR invariants and invariant operators which can be
expressed in terms of the Tanaka-Webster calculus.

2.2. CR Densities. On a CR manifold (M?""! H, J) we denote the
annihilator subbundle of T*9M by A M C CT*M (where by CT*M
we mean the complexified cotangent bundle). Similarly we denote the
annihilator subbundle of T%* M by AY°M C CT*M. The bundle AY° M
has complex rank n+ 1 and hence # = A" (A'0)]) is a complex line
bundle on M. The line bundle %" is simply the bundle of (n + 1,0)-
forms on M, that is

A =AM ={weNT'M : Viw=0forall Ve T"'M},

and is known as the canonical bundle. We assume that % admits an
(n +2)™ root £(—1,0) and we define £(1,0) to be £(—1,0)*. We then

W

define the CR density bundles £ (w,w") to be £(1,0)* ®E(1,0) where
w,w" € C with w —w' € Z.

Remark 2.1. The assumption that . admits an (n+2)™ root is equiv-
alent to saying that the Chern class ¢;(.#") is divisible by n + 2 in
H?(M,Z). Note that if M is a real hypersurface in C"*! then ¢ is
trivial and therefore admits such a root.

Note that the bundles £(w,w’) and £(w,w’) are complex conjugates
of one another. In particular, each diagonal density bundle &(w,w) is
fixed under conjugation. We denote by €(w, w)g the real line subbundle
of £(w,w) consisting of elements fixed by conjugation.

2.3. Abstract Index Notation. We freely use abstract index nota-
tion for the holomorphic tangent bundle T1°M, denoting it by £,
allowing the use of lower case Greek abstract indices from the start of
the alphabet: «a, (3, v, 0, €, o/, f/, and so on. Similarly we use the ab-
stract index notation £% for T%'M. We denote the dual bundle of £
by &, and the dual bundle of £* by &;. Tensor powers of these bundles
are denoted by attaching appropriate indices to the &, so, for example,
we denote E*®Eg by £% and &, ®E;®E, by &,5,. We attach abstract
indices to the elements or sections of our bundles to show which bundle
they belong to, so a section V of TH°M will be written as V' and a

section @ of (TH'M)* ® T*'M will be denoted by w,”. The tensor
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product of V* and wvﬁ is written as Vo‘w,yﬁ , and repeated indices de-
note contraction, so w (V) is written as V%w,”. Skew-symmetrisation
over a collection of indices is indicated by enclosing them in square
brackets. Correspondingly we denote the k™ exterior power of &, by
Elayay)- We indicate a tensor product of some (unweighted) complex
vector bundle ¥V — M with the density bundle £(w,w’) by appending
(w,w'), ie. V(w,w') =V & E(w,w).

We may conjugate elements (or sections) of £“ to get elements (or
sections) of £%: we write

Ve .=Ve

to say that VV* is the conjugate of V*. This extends in the obvious way
to (weighted) tensor product bundles; note that the complex conjugate
bundle of &£,°(w,w') is E5° (v, w).

We will occasionally use abstract index notation for the tangent bun-
dle, denoting it by £* and allowing lower case Latin abstract indices
from the start of the alphabet.

2.4. The Reeb Vector Field. Given a choice of contact form 6 for
(M, H,J) there is a unique vector field 7' € X(M) determined by the
conditions that 6(7") = 1 and T'.d# = 0; this 7" is called the Reeb vector
field of 6. The Reeb vector field gives us a direct sum decomposition
of the tangent bundle

TM = H&RT
and of the complexified tangent bundle
(2.1) CTM =T""M @ T"'M @ CT,

where RT" (resp. CT') denotes the real (resp. complex) line bundle
spanned by T'. Dually, given 6 we have

(2.2) CT*M = (T"°M)* & (T™ M)* & C6.
2.5. Densities and Scales.

Definition 2.2 ([37]). Given a contact form 6 for H we say that a
section ¢ of £ is volume normalised if it satisfies

(2.3) 0 A (d0)" =i nl(—=1)%0 A (TC) A (T C).

Given ¢ volume normalised for 6 clearly ¢’ = €% is also volume
normalised for 6 for any real valued smooth function ¢ on M, so that
such a ( is determined only up to phase at each point. Note however
that ¢ ® ¢ does not depend on the choice of volume normalised (. Let
us fix a real (n 4 2)% root ¢ of ¢ ® ¢ in E(—1,—1). If § = f0 and ¢
is volume normalised for 6 then fsis an (n + 2) root of 5 ® 5 . The
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map taking 6 to ¢ and f60 to fs determines an isomorphism from H+
to £(—1,—1)g. Fixing this isomorphism simply corresponds to fixing
an orientation of £(—1, —1)g, and we henceforth assume this is fixed.
The isomorphism

(2.4) H-=&(-1,-1)g
defines a tautological £(1,1)g valued 1-form:

Definition 2.3. The CR contact form is the £(1, 1)g-valued 1-form 6
which is given by ¢~'6 where 6 is any pseudohermitian contact form
and ¢ is the corresponding positive section of £(—1, —1)g.

2.6. The Levi Form. The Levi form of a pseudohermitian contact
form @ is the Hermitian form h : TY9M @ T%'M — C defined by

(U, V) = —2id0(U, V) = 2i6([U, V])

for U,V € T(T"°M). The Levi form of # may be thought of as a section
of &,5, which we write as h,z; there is also an inverse of the Levi form
h? determined by the condition that A h.g = 6%, (where §%, is the
identity endomorphism of £%). Note that if € is replaced by 6 = e
then iLaE = eThag and consequently hoB = e~ TheB moreover it is clear
that ¢ = e¥¢ (where § = ¢6 and § = ¢6). This allows us to define a
canonical weighted Levi form:

Definition 2.4. The CR Levi form is the £(1,1)-valued Hermitian
form h,; € I'(€,5(1,1)) given by ¢ *h,z for any pseudohermitian
contact form 0 = <.

In the following we use the CR Levi form h,; and its inverse h*? to
raise and lower indices. Note that lowering indices with h,; identifies
E* with £5(1,1) so that weights generally change when indices are
raised and lowered.

The CR Levi form could also have been defined by the map

(U, V)~ 2i0([U,V]).
By complexifying and dualising the isomorphism (2.4) we obtain an
isomorphism of £(1,1) with (CH*)* = CTM/CH. This allows us to

identify h, up to a constant factor, with the usual CT'M /CH-valued
Levi form in CR geometry.

Remark 2.5. Given a contact form 6 one may also define a pseudo-
Riemannian metric gy on the tangent bundle of M by taking the direct
sum of the bilinear form dé(-, J-) on H (which is precisely the real part
of the Levi form h of ) with § ® # on RT. This metric is called the
Webster metric.
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2.7. Decomposing Tensors. Using the direct sum decomposition of
CT M given by a choice of contact form # a real tangent vector X may
be represented by the triple

(X% X% XY

where X is the holomorphic part of X, X® is the antiholomorphic
part, and X° = 8(X). Note that X" is a (1, 1) density and X¢ = X,
(We follow [32] in using @ rather than 6 in defining X°, this simplifies
later conformal transformation laws.) Similarly we may represent a
real covector w by the triple

(wom Wa, wO)

where w, is the restriction of w to holomorphic directions, ws = Wy
is the restriction of w to antiholomorphic directions, and the (—1,—1)
density wy is the @-component of w (i.e. cw(T) where 6 = ¢0). It is
easy to see that the above decompositions extend to arbitrary tensors
or tensor fields. For instance we can represent a real covariant 2-tensor
T by the 9-tuple

(Ta67 TO[B? T&Ba T&B7 Too, Tao, TOB; TOB7 TOO);
moreover, by reality it is enough to specify the 5-tuple
(Taﬂa Taﬁ_a TaOa TOﬁa TOO)

since Tsp = TB’ Tso = Tno, and Tos = T_Qg.

2.8. The Tanaka-Webster Connection. Since a choice of contact
form 6 for (M, H, J) gives rise to a pseudo-Riemannian metric gy on
M (Remark 2.5) one also obtains the Levi-Civita connection V% of
gg. Calculating with this connection is highly inconvenient however,
since it does not preserve the direct sum decomposition (2.1) of CT'M
induced by 6. We instead look for a connection V on M which still
satisfies

Vge = 0,

but whose parallel transport also preserves H and (as a connection on
H) preserves J; such a connection cannot be torsion free, since by the
contact condition there exist X,Y € I'(H) with [X,Y] ¢ I'(H) and
hence

TV(X,Y)=VxY —VyX — [X,Y]

cannot be zero since VxY — Vy X € I'(H). It turns out that these
conditions do not determine a connection on M uniquely, but we can
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determine V uniquely by imposing the following additional conditions
on the torsion of V,

TV =0, Ty =0, 5" = ih,g,
Ty’ =0, Toy =0, Tpy," =0,

TN =0, Ty =—A7,, and T," =0

for some A7, € I'(E7,(—1,—1)) with A,z symmetric (see [45], Propo-
sition 3.1). The connection V determined uniquely by these conditions
is called the Tanaka-Webster connection of 6 (it was discovered inde-
pendently by Tanaka and Webster in [43, 49]), and A,z is known as
the pseudohermaitian torsion tensor.

Since the Tanaka-Webster connection preserves H and gy it also pre-
serves the gp-orthogonal complement of H, which is spanned by the
Reeb vector field T. Since go(T,T) = 1 this implies that VT = 0.
Thus also

Vo =0,

since 6( - ) = go( -, T). By definition the Tanaka-Webster connection
V preserves the direct sum decomposition (2.1) of CT'M induced by 6.
So, by definition V induces a linear connection on H and on TH°M. Tt
therefore makes sense to take the Tanaka-Webster covariant derivative
of the Levi form h of 6, and it is easily seen that Vh = 0.

2.8.1. Interpreting the torsion conditions. The conditions on the tor-

sion tensor may be alternatively phrased by saying that for any function
f e C®(M) we have

(2.5) VoVif —=VaVaf =—ih,5Vof,
(2.6) VoVsf —VsVaf =0,

and

(2.7) VaVof = VoVaf = AV5f

where A,z is the symmetric pseudohermitian torsion tensor. We note
that since the Tanaka-Webster connection preserves the direct sum
decomposition (2.2) of CT*M induced by 6 there is no ambiguity in the
notation used in the above displays; for instance one can equivalently
think of V,Vgf as the ‘a-component’ of V acting on Vgf or as the
‘af-component’ of VV f.
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2.9. The Tanaka-Webster Connection on Densities. The Tanaka-
Webster connection of a contact form acts on sections of any density
bundle since it acts on sections of £(—1,0)""? = . In equation (2.7)
above we are already implicitly using the action of the connection on
the density bundle £(—1, —1) in the expression V,V,f. It does not
matter whether or not we think of V f as density valued in such equa-
tions because of the following lemma.

Lemma 2.6. The Tanaka- Webster connection V of 0 on E(—1,—1) is
simply the flat connection corresponding to the trivialisation induced by
the contact form 6, i.e. by the section < satisfying @ = 0. In particular
the isomorphism (2.4) is parallel for the Tanaka-Webster connection,
i.e. it intertwines the actions of V on H+ and on £(—1,—1)g.

Proof. Suppose the section ¢ of £ is volume normalised for §. Parallel
transporting ¢ along any curve must preserve ¢ up to phase (since the
result of parallel transport will still be volume normalised, 6, df, and
T being parallel). This implies that ¢ ® ( is parallel, but by definition
¢"? = ( ® ( so that ¢"*2 and hence ¢ is parallel. O

The lemma also tells us that for the Tanaka-Webster connection V
of any contact form 6 we have

(2.8) VO =0 and Vh =0.

The advantage of raising and lowering indices with the CR Levi form
h,z is that these operations commute with any Tanaka-Webster co-
variant derivative.

2.10. Pseudohermitian Curvature. By equation (2.5) the operator
VaV3 = V3V, +ih,;Vo

annihilates smooth functions on M; moreover, this operator preserves
E7. By the Leibniz rule the above displayed operator commutes with
multiplication by smooth functions when acting on sections of £7. Thus
there is a tensor R,375 such that

(29) Va5V = V3V V7 +ih,5VoVT = —R,;75V?
for all sections V7 of £7. Equivalently R,375 is characterised by
(2.10) VaV3Vs — VVaVs +ihaVoVs = R,575V5

for all sections Vs of &. Our conventions agree with those of [32, 49].
We refer to this tensor, or to R,5.5 = h,R,5%, as the pseudohermitian
curvature tensor, and it has the following properties

(2.11) Ro5y5 = Rygas = Rpasy = Ragyp = Risap
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which we derive in section 2.11 below. The trace
(212> RaB = RaB;fﬁ

of the pseudohermitian curvature tensor is referred to as the pseudo-
hermitian Ricci tensor of 6 and its trace

(2.13) R=hR,;

is called the pseudohermitian scalar curvature of . The pseudohermi-
tian curvature tensor can be decomposed as

(2.14)  Rajys = Sagys + Paphos + Poshas + Paghog + Pshgs

where S, 3.5 satisfies

(215) Sa575 = Sfyﬁag = Sﬁ@tsﬁ = PadyB — S’ySaE? Saéfyfy =0
and
1 1
2.16 Pz=—|R,3———Rh_5|.
(2.16) o n+2< 0 2(n+ 1) aﬁ)

The tensor S,3,5 is known as the Chern-Moser tensor and is a CR

invariant, by which we mean that if 0 is another contact form for H
then S,3.5 = S,3,6 (note that we are thinking of S,5.5 as a weighted
tensor field).

2.11. The Full Tanaka-Webster Curvature. The full curvature
tensor of the Tanaka-Webster connection V of a contact form 6 is de-
fined by

(2.17) Vo VYo — ViV, Y+ TV Y = — Ry Y

for any tangent vector field Y, where TV is the torsion of V given in
section 2.8. The pseudohermitian curvature tensor R,375 is just one
component of the full curvature tensor, taken with respect to the direct
sum decomposition

(2.18) CTM =T""M & T"M & CT
and its dual.

Lemma 2.7. The full curvature tensor Ry, q of the Tanaka- Webster
connection is completely determined by the components R,575, Rags,
and Ruy7s.

Proof. Note that the tensor R, is real, so that the component Rz57s
is simply the complex conjugate of R,575 and so on. Also, the symme-
try Rap’a = —RpeCq translates into Ras7s = —Rga "5, Rao”s = —Roa’s,
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etcetera. Now since the Tanaka-Webster connection preserves the split-
ting of sections of CT'M according to (2.18) we must have

Ru"5 =0, Ry”o =0, and Ry’ = 0.
Since T is parallel we also have that
R’ = 0.
From this we see that, up to conjugation and swapping the first two
indices, the only nonzero components of R,,°; are
Ro3"s, Rag"s s Rao”s, Rap's, Rag)s and Rao’s.
Our conclusion follows by observing that if we lower indices using the
CR Levi form then we have that
Ropys = —Rapsy,
since h. 5 is parallel. O
Remark 2.8. From the last display of the above proof we have that

R.3.5 = —Ropsy- It immediately follows that R,z.5 = Rzas, = Rpasy,
establishing one of the claims from Section 2.10.

Using (2.17) the curvature component R,z”5 may also be charac-
terised by a Ricci-type identity

(2.19) VaVsV7 = VsV, VT = —R.57;V°

for any section V7 of £7. Similarly for R,o75 we have
(2.20) VoVoV7T = VoVoV7 — AV VT = —Ryo75V°.
On a section V5 of & we have

(2.21) VoVVs — V5V Vs = Rug'5V5

by duality, and likewise for Ruo75.

2.11.1. The Bianchi symmetry. Recall that for a connection V without
torsion the Bianchi symmetry comes from observing that by torsion
freeness one has

(VaVi = VoV Vaf + (VeVa = VaVi)Vaf + (VaVa — VoV Vi f = 0
for any f € C°°(M), since the curvature tensor must then satisfy
(Rap“a + Rea“a + Raa“s)Vef = 0.

This approach also works for a connection with torsion and we use it
below to express the consequences of the Bianchi symmetry for the
curvature of the Tanaka-Webster connection in terms of the compo-
nents R,575, Rag’s, Rao”5, and the pseudohermitian torsion. Because
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so many components of R,;°; already vanish one obtains expressions
for R,575 and Rq75 in terms of the pseudohermitian torsion.

Proposition 2.9. The Bianchi symmetry for the Tanaka- Webster cur-
vature tensor Rg%q is equivalent to the following identities

(2.22) R.3"s = R.5'3
(2.23) R,5"5 = ih, A} —ihgs A7
(2.24) Ry's = V5A]
(2.25) VoAl = VA7

Proof. By elementary considerations the cyclic sum of R,°; with re-
spect to the lower three indices is determined by the cyclic sums of
Ros%s, Rapg®s, Rao®s, and R0 with respect to their lower three in-
dices. In the case of R,3°s we may instead cyclically permute the lower
indices of R,3"5 since for each permutation the only nonzero part of the
tensor is obtained by replacing ¢ with 4. By (2.6) V,Vj is symmetric
on smooth functions so that

(VoaV—=V3Vo)Vsf+(VVs—VsVe)Vaf+(VsVe—V,V5)Vaf =0
for all f € C*°(M), and hence
(2.26) Ra575 + R(soﬂﬁ + Rﬁ(swa = 0.

This expression is not listed above because it is a consequence of (2.23),
the latter being equivalent to

(2.27) Rags = —i6] Ags + 10} Aus

since R,g.,5 = —Rya5,-
Now let f be a smooth function on M. We similarly compute

(Raps + R5a"s + Rss5a) Vel
Noting that R,5%V.f = R,575V5f, and so on, we get
Raﬁﬁgvﬁf + R5o sV f + Rgs ' oW Vo f
= (VaV5s = VsVa)Vsf 4+ (V5Va = Vo Vs — ih5Vo) Vs f
+ (VVs — V5V +ihgsVo) Vo f
= Va(VsV5sf = V5Vsf) + Va(VsVaf = VaV5/f)
+ Vs(VaVsf — VaVaf) — ihosVoVaf +ihgsVoVaf
= Va(—ihgsVof) + Vs(ihsVof)
—1th,sVoVaf +ihgsVoVaf
= th,s(VsVof —VoVsf) +ihgs(VoVaf — VaVof)
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= ih,sAGVef — ihgs ALV f
Since f was arbitrary the above display holds at any point for all func-
tions f with V., f = 0 (or with V5f = 0) at that point, and thus we
conclude that
Rog75 = ih, ;AT — ihgs AT
and
Rgafyg + Rﬁgva = 0.
By conjugation the last display is equivalent to (2.22), noting that
Rﬁgva = _RS,B’YON
Similarly computing
RaOCSch + ROSCQVCf + RSaCOch
we get (noting Rj,% = 0)
Ro'5Vaf + Ros o Vo f = =(VaADV f + (Vs A V5 f
so that
Raoﬁé = VSAZ'
Finally, computing the cyclic sum for R,osV.f we obtain
Raovév’yf + RO(S'YOcv'yf = _(vaAg)vﬁf + (VaAZ)Vﬁf
so that
V. A = VAL
and
(2.28) Rao"s = Rso”a-
The identity (2.28) follows already from (2.24) since by lowering indices
we have R,o,5 = V5A., and using that R,o5, = —R,0,5 We get that
(2.29) Ruo's = =V Aus.
O
The expressions (2.24) and (2.27) agree with those given in section
1.4.2 of [17], after adjusting (2.27) by factor of two to account for their
slightly different conventions (see (1.84) in [17]).

Note that (2.22) implies that the pseudohermitian curvature tensor
satisfies

Ragns = Fopas
(as was previously claimed) from which we also deduce that

Rapys = Ragys = Hrjap-
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2.12. Curvature of the Density Bundles. Although the Tanaka-
Webster connection V of a contact form 6 is flat on the diagonal den-
sity bundles £(w,w) it is not flat on density bundles in general. The
curvature of the density bundles was calculated in [32, Prop. 2.2|. We
give this proposition with an alternate proof:

Proposition 2.10. Let 6 be a pseudohermitian contact form and V
its Tanaka- Webster connection. On a section f of E(w,w’) we have

(2.30) VoVsf = VsVaf =0,

, w—w
(2.31) VaVif = ViVaf +ihagVof = ~= Raaf.
(2.32) VaVof — VoVaf — Aa, V7 f = "‘;12’ (VIA LS.

Proof. We first consider sections f =  of £(—n—2,0) = #". The map

¢ (TaC)|pron
induces an isomorphism between the complex line bundles J# and
A" (T*°M)*. This isomorphism between ¢ and Ey,...q,] intertwines
the action of the Tanaka-Webster connection V since the Reeb vector
field T is parallel and V preserves T*°M  so the two line bundles have
the same curvature. The curvature of the top exterior power &, ...q,]
of &, is simply obtained by tracing the curvature of &,.

Now let f be a section of £(—n—2,0) = % . By tracing the conjugate
of (2.23) and using the appropriate Ricci-type identity for R;57; we
therefore obtain

V@VBf - VBV@f - 0
since R;37, = 0. Similarly, using that R,z,5 = —R,g5,, we obtain from
(2.23) that R.s", = 0 and hence

VoVsf —VsVuf =0.
Using that R,3", = R,35" = —R,3"5y = —R,3 and the appropriate
Ricci-type identity for R,37s we get
Finally, by tracing the conjugate of (2.24) we obtain

VaVof —VoVaf — Agvvf = (vag)f
and using R,o,5 = —R,05, We obtain from (2.24) that R.o"s = —V7 Aus
so that i
Vozv0f - Vovaf - A’(Zév"yf = _(v’yAa'y)f'

This establishes the proposition for (w,w’) equal to (—n — 2,0), and
for (w,w’) equal to (0, —n — 2) by conjugating.
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Considering the action of the curvature operator(s) on (n+2)" pow-
ers of sections of £(—1,0) and £(0, —1) we obtain the result for (w, w’)
equal to (—1,0) or (0,—1). Taking powers and tensor products then
gives the full proposition. O

2.13. Changing Contact Form. Here we establish how the various
pseudohermitian objects we have introduced transform under confor-
mal rescaling of the contact form. The first thing to consider is the
Reeb vector field:

Lemma 2.11. Under the transformation 6 =eTo of pseudohermitian
contact forms, T € C*°(M), the Reeb vector field transforms according
to

(2.33) T=eT [T+ (@) o J)ﬁ]

where § denotes the usual isomorphism H* — H induced by the bundle
metric d0(-, J-)|g on the contact distribution.

A

Proof. Defining T by (2.33) one has 6( 1 and

) =
T.d0 = Tod(e¥0) = dY(T)0 — AT + e T udo.

We observe that
dO(T, JY) = —dY(JY) +db(e*T, JY) = 0
for any Y € I'(H), using that §(JY) = 0 and
dO(eXT, JY) = do(((dT)|g o J)*,JY) = dY(JY).
Now since df(T",T") = 0 we have T'.df = 0. O

If n is a 1-form whose restrictions to £% and £% are 7, and 7y re-
spectively then (n|g)* is a contact vector field whose antiholomorphic

component is #7¥nz and whose holomorphic component is haféng. It is
easy to see that the restriction of (dY)|g o J to £% is iV, T and the
restriction to £* is —iV4Y. These observations imply:

Lemma 2.12. If a 1-form w has components (wq,wa,wo) with respect
to some contact form 0, then the components of w with respect to €X6
are

(Wa, Wa, wo + 1T %5 — 1T %, )

where T = K%V ;Y and T* = h°?V;5T.
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2.13.1. The Tanaka- Webster transformation laws. We need to see how
the Tanaka-Webster connection transforms under rescaling of the con-
tact form.

Proposition 2.13. Under the transformation 9 =eTo of pseudoher-
mitian contact forms, T € C*(M), the Tanaka- Webster connection on
sections T of Eg transforms according to

(2.34)  VaTs = Vars — To7a — TaTs

A

(235) v&TB = VC_VTﬂ + hg,;ff%’w

(2.36) @07’5 = V()Tﬁ + Z'T:YV:YTB - Z‘T’vaﬂ'ﬁ - i(T’yB — TFYTB)TPY
where T% = V.1, Ta =VaT, T 5= VBVQT, and indices are raised
using h°”.

Remark. Note that on the left hand side of the last equation in the
above display the ‘0-component’ is gaken with respect to the splitting
of the cotangent bundle induced by 6, whereas on the right hand side it
is taken with respect to the splitting of the cotangent bundle induced by
0 (recall Sections 2.5 and 2.7). In other words the operator Vj is taken
to be ¢V where 0 = <0, whereas Vi = ¢V where 6 = ¢0. Note that
0(sT) = 0(T) = 1 and similarly 8(<7T") = 1, so <7 and ¢T' are natural
weighted versions of the Reeb vector fields of # and 6 respectively.

Proof of Proposition 2.13. We define the connection V on Es by the
formulae above, and extend V to a connection on TM in the obvious
way. Precisely, we define V to act on &z by the conjugates of the above
formulae, so that, e.g., @QTB is the conjugate of @@Tg with 75 = 73.
This gives a connection on CH* which preserves the real subbundle H*
and preserves J. Thus by requiring 6 to be parallel for V we obtain
a connection on T*M and hence on T'M. To show that this is the
Tanaka-Webster connection of it remains only to show that @gé =0
and to verify the torsion conditions.

To show that @gé — 0 it is sufficient to show that V preserves the
Levi form h is of . This is a computation using the formulae in the
proposition: By the Leibniz rule we have

Va(756) = Va(15G) = Tal(756) = Ta(Taly) + has T (7565)
for a simple section of £s5. By C-linearity we obtain
Vahgs = Vahgs = Yahgs = Yohas + Ry Yhgs;
the terms on the right hand side of the above display cancel in pairs
since hgy = eThgy. By conjugate symmetry we also get Vahgy = 0.



CR EMBEDDED SUBMANIFOLDS OF CR MANIFOLDS 25
Similarly one computes that
Vohas = Vohas + Y Vahes — iV, 0
— i (Y = YC0) b+ (Y75 — TIY5) has

The terms on the right hand side of the above display all cancel since

~ ~

Vohag = Tohaz and T,5 — T3, = th,5To, where To = VT and
Tz, = V.V3T.

Substituting Vzf (= Vsf) for 75 in equation (2.34) we see that

VaVaf = VaVaf =0,
since —Y 37, — Y75 is symmetric. Similarly from (2.35) we obtain
VaViaf = VaVaf = —ih,s (Vof +iYTV5f —iT'V, f),

and from Lemma 2.12 we have that
(2.37) Vof = Vof +iXYVsf —iTIV, f.

From (2.36) and (2.37) one has that

VoVof = VoVaf =Va (Vof — TV, f +iTTV5f)
(2.38) — (VoVaf +iYV: Vo f — TV, Vo f
—i(Y7, = Y7V, f).

One can easily compute directly that

Vo (Vof — YV, f +iYIV~f) = Vo (Vof — iYIV,f +iTIV5 f)
+ Yo (Vof — XV, f +iYIV-f)

(cf. the proof of Proposition 2.14). Substituting this into (2.38), ex-
panding using the Leibniz rule and simplifying one obtains

VaVof = VoVaf = (Agy + iTay — i T,) V7 f
where YT, = V,V,7T is symmetric. O

Note that in the course of the proof we have established the trans-
formation law

~

(2.39) Agp = Aap+iTas —iTo Ty

for the pseudohermitian torsion.
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2.13.2. The transformation law for the pseudohermitian curvature ten-
sor. From the transformation laws for the Tanaka-Webster connection
one can directly compute that

~

(240)  Rapys = Rapys + Naphos + Ashag + Aoshog + Aghes

where

1 1
(2.41) Aag = _§(TC¥E + Tga) — §T7T’Yha3'

In particular this tells us that 5’,1575 = Sapys and

~

(2.42) Pag = Pag + Aag.

2.13.3. The transformation laws for the Tanaka- Webster connection on
densities. We also need to know how the Tanaka-Webster connection
transforms when acting on densities. These transformation laws follow
from the above since it suffices to compare the action of V and V on
sections of the canonical bundle 7 .

Proposition 2.14. [32, Prop. 2.3 Under the transformation 6 =e¥0
of pseudohermitian contact forms, T € C>(M), the Tanaka-Webster
connection acting on sections f of E(w,w’) transforms according to

Vof = Vaf +w Yo f

@af = Vaf +w'Yaf

Vof = Vof +iXVsf —iY'V, f

+ =5 [(w +w') Yo + iw T — w75 4 i(w' — w) YT, f.
Proof. Since V preserves T and T'(T*°M) the map
Iy : C — (TJC)’TLOM

taking sections of £~ to sections of &, ...q,,] commutes with Vx for all
X € %(M). On the other hand I; : ¢ — (T2C)|r1op intertwines the
action of the connection V. Now Iy =e Yo [y since if Y =T — e 'T
then (Y 1()|r1.0p = 0 for any (n + 1,0)-form (; to see this note that ¥
is contact (by Lemma 2.11) and the antiholomorphic part of Y hooks

into ¢ to give zero, but also (|r1.0y; = 0 since the rank of T'M is n.
Thus we have

[9(®XC) = eT[é(@XC) = eT@X[é(O = eT@X[(TIe(C)]
= VxIp(¢) — dY(X)15(¢)

for any X € X(M), ¢ € D(J#). So the action of V on ¥ is conjugate
under [y to the action of V—dT on &, ...q,]. One now easily translates
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using Iy the transformation laws for the Tanaka-Webster connection
on &, ..., (obtained from Proposition 2.13 by taking traces) to the
transformation laws for the Tanaka-Webster connection on the canon-
ical bundle .#". The transformation laws for £(w, w’) then follow from
those for # = £(—n — 2,0) in the obvious way. O

3. CR TRACTOR CALCULUS

It is well known that nondegenerate (hypersurface type) CR geome-
tries admit an equivalent description as parabolic Cartan geometries.
The Cartan geometric description of CR manifolds was introduced by
Cartan [12] in the case of 3-dimensional CR manifolds, and by Tanaka
[43, 44, 46] and Chern and Moser [13] in the general case. To a sig-
nature (p,q) CR manifold (M, H,J) there is associated a canonical
Cartan geometry (G,w) of type (SU(p + 1,q + 1), P) where the sub-
group P of SU(p + 1,q + 1) is the stabiliser of a complex null line in
Crthatl Moreover, any local CR diffeomorphism of (M, H,J) with
another CR manifold (M’, H', J') lifts to a local equivalence of the
canonical Cartan geometries (G,w) and (G',w’). In the model case of
the CR sphere G is simply the group G = SU(n + 1,1) as a principal
bundle over $*"™! = /P and w is the left Maurer-Cartan form of G.
Strictly speaking, if we do not wish to impose any global assumptions
in the general case we need to quotient SU(p+1,¢+ 1) and P by their
common finite cyclic center, but for the purpose of local calculus we
can ignore this.

Given any representation V of SU(p+ 1, ¢+ 1) there is associated to
the CR Cartan bundle G a vector bundle V = G xp V over M. The
CR Cartan connection w induces on V a linear connection VY. Such
bundles V are known as tractor bundles, and the connection VY is the
(canonical) tractor connection [8]. If T is the standard representation
CPrLatl of SU(p+1,q+ 1) then T = G xp T is known as the standard
tractor bundle. Since T is a faithful representation of P the CR Cartan
bundle G may be recovered from 7 as an adapted frame bundle. The
Cartan connection w is easily recovered from V7. Elementary repre-
sentation theory tells us that all other irreducible representations of
SU(p + 1,q + 1) are subbundles of tensor representations constructed
from T (and T*) given by imposing certain tensor symmetries, so know-
ing the standard tractor bundle 7 and its tractor connection one can
easily explicitly obtain all tractor bundles and connections.

The tractor bundles and their tractor connections, along with cer-
tain invariant differential (splitting) operators from irreducible tensor
bundles on the CR manifold into tractor bundles, form the basis of a
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calculus of local invariants and invariant operators for CR manifolds
known as the CR tractor calculus.

3.1. The Standard Tractor Bundle. There are various ways to con-
struct the CR Cartan bundle and hence the standard tractor bundle.
However for our purposes it is much better to use the direct construc-
tion of the CR standard tractor bundle and connection found in [32].
This allows a very concrete description of the standard tractor bundle
and connection in terms of the weighted tensor bundles and Tanaka-
Webster calculus of Section 2.

Since the subgroup P of SU(p + 1,¢ + 1) stabilises a null complex
line in T it also stabilises the orthogonal complement of this null line
and so there is a filtration

(3.1) T'cT’cT'=T

of T by subbundles where 7' has complex rank 1 and 7° has com-
plex rank n + 1 (and corank 1). The starting point for the explicit
construction of 7 in [32] is the observation that

(3.2) T'=&(-1,0), T°/T'=E*(—1,0), and T /7% =£(0,1).

Let us introduce abstract index notation £4 for 7, allowing the use
of capitalised Latin indices from the start of the alphabet. The dual
of T = £% is denoted by £4 and the conjugate by £4. Following [32]
we present the standard cotractor bundle €4 rather than £4 (it makes
little difference since there will be a parallel Hermitian metric around).
The bundle £4 comes with a naturally defined filtration, dual to (3.1).
Given a choice of contact form 6 for (M, H, J) we identify the standard
cotractor bundle £4 with

[5,4}9 = 5(1, O) D ga(l, 0) D 5(0, —1);

we write vy L (0, Ta, P),

o o

0
va= | 7a |, or [valg=1| Ta
p p

if an element or section of €4 is represented by (o, 7., p) with respect
to this identification; the identifications given by two contact forms 6
and 6 = e¥0 are related by the transformation law

(3.3)
o 1 0 0 o
[5A]9 > Ta ~ T, (Sg 0 T8 S [SA]é
p —2(TPT54+1Ty) =T 1 p
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where T, = V,T and T = VY. This transformation law comes from
the action of the nilpotent part P, of P on T* (see [10] for the general
theory) so that ~ is indeed an equivalence relation on the disjoint
union of the spaces [€4]gp. We can thus take the standard cotractor
bundle £4 to be the quotient of the disjoint union of the [E4]s over all
pseudohermitian contact forms 6 by the equivalence relation (3.3).

3.2. Splitting Tractors. From (3.3) it is clear that there is an invari-
ant inclusion of £(0, —1) into £4 given with respect to any contact form
0 by the map
0
p— 1 0
P

Correspondingly there is an invariant section Z4 of £4(0,1) such that
the above displayed map is given by p — pZ4. The weight (0,1)
canonical tractor Z 4 can be written as

0
Za=1| 0
1
with respect to any choice of contact form 6.

Given a fixed choice of 0, we also get the corresponding splitting
tractors

0 1
wELZ | 68 ] and YaZ | 0
0 0

which both have weight (—1,0). A standard cotractor v, 2 (0y Ty p)
may instead be written as vy = O'YA-f-Wf; Ts+pZ 4 where we understand
that Y, and Wg are defined in terms of the splitting induced by 6. If
0 = Y0 then by (3.3) we have

(3.4) W4 =W45+7182,,
~ 1 )
(3.5) Y=Y - TsWi - §(T5T5 — i) Za.

3.3. The Tractor Metric. Since the group P preserves the inner
product on T = CP+L4+l the standard tractor bundle 7 = G xp T
carries a natural signature (p + 1, ¢ + 1) Hermitian bundle metric. We
denote this bundle metric by h,z, and its inverse by h4Z. Explicitly
the tractor metric h,z is given with respect to any contact form 6 by

(3.6) hag = ZaYs + hosWSWE + YaZp
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where Z3, w2

5> and Yj are the respective conjugates of Zp, Wg, and
Yp. One can easily check directly using (3.4) and (3.5) that the above
expression does not depend on the choice of 6. Dually, the inverse
tractor metric is given by

(3.7) WPy, o5 = op + k7, 7] + po’

for any two sections v, = (0, Ta, p) and v/, 2 (o', 70, p") of E4.
We use the tractor metric to identify £4 with £, the latter of which
can be described explicitly as the disjoint union of the spaces

(3.8) E1lo =E(0,1) & &5(0,1) & E(—1,0)

(over all pseudohermitian contact forms ¢) modulo the equivalence rela-
tion obtained by conjugating (3.3). Identifying £5(0, 1) with £%(—1,0)

via the CR Levi form we write a standard tractor as v4 < (o, 7% p) or

o £(0,1)
)
AL e | e £9(=1,0) .
S
p £(—1,0)

We may also raise and lower indices on the splitting tractors in order
to write v4 = oY + 7‘5WBA + pZ*A with respect to 6.
With these conventions the pairing between v < (o, 7%, p) and v/ 2

(o', 7, p) is given by

(3.9) vy = op + 77+ po’.
The various contractions of the splitting tractors (for a given ) are
described by the following table
\ Yo Wag Za
YA |0 0 1
W21 0 he 0
Z4 1 0 0

(3.10)

which reflects the form of the tractor metric h 5.

3.4. The Tractor Connection. In order to define the canonical (nor-
mal) tractor connection we need two further curvature objects. These
are

1

3.11 T, = JP3? —iVPA,
(3.11) 5 (VaPs® =iV Auy)
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and
1 B _
(3.12) S = —ﬁ(vaTa + VT + PgP — A3A%).

These expressions appear in [32] and can be determined from the follow-
ing formulae for the tractor connection by the normalisation condition
on the tractor curvature (which amounts to certain traces of curva-
ture tensors vanishing, see [9]). Of course the S and T, terms are also
needed to make sure that the formulae for the tractor connection given
below transform correctly so as to give a well defined connection on &4.

On any section vy L (0, Ta, p) of E4 the standard tractor connection
V7 (or simply V) is defined by the following formulae

, Vo — 73
(3.13) VﬁUA = VQTQ + iAaBU ,
V@p - PﬂaTa + TﬁO’

, Vo
(3.14) Vava = | Vara +hogp+ FPogo |,
Vﬂ’p — ’L'ABO‘TQ — TBO
and
Voo + T#QPU —p
(3.15) Vova = | VoTa + 75 Pra — iP. 15 + 2iT,0
Vop + 75 Pp+ 2T, + iSo

where P = P3%. Using (2.39), (2.42), and Proposition 2.13 combined
with Proposition 2.14 one may check directly that the above formulae
transform appropriately under rescaling of the contact form 6 (i.e. are
compatible with (3.3), and with Lemma 2.11 in the case of (3.15)) so
that they give a well defined connection on £4.

Coupling the tractor connection with the Tanaka-Webster connection
of some contact form 6, the tractor connection is given on the splitting
operators by (cf. [9], and also |20, Proposition 3.1|)

(3.16) VY = iAagW +TsZ4
(3.17) VeWq = —05Ya — P5*Za
(3.18) VsZs = 0

(3.19) ViYa = PyWs —TsZ4
(3.20) VW5 = iA5Z4

(3.21) ViZs = bW,
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and

(3.22) VoY = 5 PYa+ 20T W§ +iSZ4
(3.23) VoW§ = —iPs"W§ + -5 PW§ + 20T Z,
(324) VoZas = —iY4+ nL—i-QPZA

Using either set of formulae for the tractor connection one can easily
show by direct calculation that V preserves h 5.

3.4.1. Weyl connections on the tangent bundle. The expression (3.15)
for Vova may be simplified if one absorbs the terms involving P,” and
its trace P into the definition of the connection on the tangent bundle
we are using. This amounts to working with, in the terminology of [10],
the Weyl connection determined by 6 rather than the Tanaka-Webster
connection of . The Weyl connection V" determined by 6 agrees
with the Tanaka-Webster connection when differentiating in contact
directions, but when differentiating in the Reeb direction one has

(3.25) Ve Ta = VoTa — iP75

for a section 7, of &, (the action on & is given by conjugating (3.25)
and VT = 0). Using the isomorphism Iy of £(—n—2,0) with £, ..a,]
from the proof of Proposition 2.14 one obtains from (3.25) that

)

(3.26) Vo = Voo + 5 Do

n
for a section o of £(1,0). Using the Weyl connection rather than the
Tanaka-Webster connection in the expression (3.15) for Vyvs one has
the simpler expression
Vo —ip
(3.27) Voua < VY 7o + 2iT0
Vi p+2iT%7, + iSo

3.5. The Adjoint Tractor Bundle. Another important bundle on
CR manifolds is the adjoint tractor bundle A = G X p g. Since g is the
space of trace free skew-Hermitian endomorphisms of CP14! with
respect to the signature (p+ 1,¢+ 1) inner product we may identify A
with the bundle of trace free h4z-skew-Hermitian endomorphisms of
the standard tractor bundle. Thus we think of A as the subbundle of
EuP = &4 ® EP whose sections t 47 satisfy

ta" =0 and tu5=—tp1.

Since the standard tractor connection V7 is Hermitian, it induces a
connection on A4 C End(7) and this is the usual (normal) tractor
connection on A.
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The adjoint tractor bundle carries a natural filtration
(3.28) AcAlcAcA cA?*=A

corresponding to a P-invariant filtration of su(p + 1,¢ + 1). In partic-
ular, A° = G xpp where p = Lie(P). Sections t of A™! are those trace
free skew-Hermitian endomorphisms which satisfy t42Z4Z5 = 0, and
sections A° are those which additionally satisfy t42Z AWg = 0. In any
parabolic geometry the subbundle A' = G x p_, where p is the nilpo-
tent part of p (in this case p, is a Heisenberg algebra), is canonically
isomorphic to T*M. Here the isomorphism is given explicitly by the
map

(3.29) (Vo Vs 00) = VW Z5 — 05ZaWE — iv9ZaZ

with respect to any contact form 6. Dual to (3.29) there is a bundle
projection from A* = A to T'M. Explicitly, the resulting isomorphism
of A/A° with TM is given with respect to 6 by

(3.30) X°WAYE — XOVAWE + XYY E 4 A% o (X2, X5, XO).

3.6. The Tractor Curvature. The curvature of the standard tractor
connection agrees with the usual (g-valued) curvature of the canonical
Cartan connection when the latter is thought of as an adjoint tractor
(A =G xpg) valued two form. To normalise our conventions with the
index notation we define the curvature of the tractor bundle by

(3.31) VoVive — ViiVave + Ty Veve = —Kac vp

for all sections vo of E-, where V denotes the tractor connection cou-
pled with any connection on the tangent bundle and TV is the torsion
of that connection on the tangent bundle. Since we allow for the use of
connections with torsion on the tangent bundle in the above, we may
compute KqpcPvp explicitly in its decomposition with respect to any
contact form 6 using the weighted Tanaka-Webster calculus developed
in Section 2. The resulting expressions were given in [32| (cf. [13]); we
have

(3.32) Kagc” = 0,
. 0 0 0
(3.33) Rage” = | Vo, Saz’ 0 ],
Uaus —Z'Vag‘s 0
. 0 0 0
(334) KJaOC’D - Qa'y Va67 0 )
Yo —ilU° 0
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where

(3.35) Vag,y = VBAOW + Z‘VWPO(B - Z'thag - QiTah,yB,
(3.36) Uag = VQTB + VBTQ + POI’YP,},B - AOWA% + Shag,
(3.37) Qus = iVoAug — 20V 4T + 2P A5,

(3.38) Y, = VoI, — iVaS + 2iP)T, — 3AIT:.

Here the matrices appearing in (3.33) and (3.34) are arranged so that
the action of K,50" and Kaoc” on vp is given (with respect to 6) by
the action of the respective matrices on the column vector representing
vp. The remaining components of the tractor/Cartan curvature K are
determined by the obvious symmetries. We also have from [32] (again
cf. [13]) that

Vasy = Vpa Vo =0,
UaB = U_Bc'w U,* =0,
and Qaﬁ = an.

The tractor connection on the CR sphere S?***! is flat, and for a
general strictly pseudoconvex CR manifold the tractor curvature is
precisely the obstruction to being locally CR equivalent to the sphere
(see Theorem 8.1).

3.7. Invariant Tractor Operators. The tractor calculus can be used
to give a uniform construction of curved analogues for almost all CR in-
variant differential operators between irreducible bundles on the model
CR sphere. The key idea behind this is to apply Eastwood’s ‘curved
translation principle’ [19] to the tractor covariant exterior derivative
dV using certain invariant differential splitting operators constructed
via the ‘BGG machinery’ of [11, 7]. Important exceptional cases are
dealt with in [32] where the authors construct CR invariant powers of
the sublaplacian on curved CR manifolds using the tractor D-operator
(which extends one of the BGG splitting operators to a family of op-
erators parametrised by weight). Such invariant differential splitting
operators are also very useful in the problem of constructing invariants
of CR structures, since they allow the jets of the structure (or rather
of some invariant curvature tensor) to be packaged in a tractorial ob-
ject which can be further differentiated invariantly. In the following we
present the most basic and important of these (families of) invariant
operators.

3.7.1. The tractor D-operator(s). Let £% denote any tractor bundle
and let £®(w,w’) denote the tensor product of £* with &(w,w’).
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Definition 3.1. The tractor D-operator of |32]
Da: E%(w,w') = E4@EP(w— 1,w)
is defined by

w(n +w +w')f®
(n+w+w)Vuf® /
— (VAVsf? +iwVof® + w(l + LZ2)Pf®)

n+2

(3.39) D.f*<

where V denotes the tractor connection coupled to the Tanaka-Webster
connection of 6.

One may easily check directly that D4, as defined, does not depend
on the choice of . This operator is an analogue of the Thomas tractor
D-operator in conformal geometry [2]. Observe that D4 is a splitting
operator (has a bundle map as left inverse) except at weights where
w(n+w+w') =0.

Related to the tractor D-operator is the # dependent operator D
given by wf®Y4 + (Vo f®)W$ on a section f® of £*(w,w’). The oper-
ator Dy defined by

(3.40) Dapf® = 2Z4Dp f*

does not depend on the choice of #. The operator D, has a partner
D45 defined by

(341) Dapf® = ZpDaf® — ZaDpf® — ZaZp [iVof® + L2 Pf?]
where D5 f® = D f®. Note that if f® has weight (0,0) then
(342)  Dapf® = ZsWiVaf® — ZAWEVsf® —iZaZ5V0o f®,

cf. (3.29), so that D, 5 takes sections of £? to sections of A® E®. The
pair of invariant operators D 45 and D 4 5 acting on sections of £% (w, w’)
are called double-D-operators [29].

Remark 3.2. The less obvious operator D45 comes from coupling the
fundamental derivative of [8] on densities with the tractor connection
to give an operator on weighted tractors. The conformal double-D-
operator on the Fefferman space, which comes from similarly twisting
the fundamental derivative on conformal densities with the conformal
tractor connection, can be seen to induce the pair of operators D4z,
Dap (and the conjugate operator D 55) on the underlying CR manifold
|9, Theorem 3.7].
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3.7.2. Middle operators. One can also create CR invariant differential
splitting operators which take weighted sections of tensor bundles of
E* to weighted tractors. These are analogues of operators in conformal
geometry used by Eastwood for ‘curved translation’ (see, e.g., [18]).
We only construct the particular operators from this family that we
will need in the following.

Definition 3.3. The middle operator acting on sections of &,(w, w")
is the operator M9 : &, (w,w') = Ea(w — 1,w’) given with respect to a
choice of contact form 6 by

(3.43) Yo = (n+ W Wity — ZaVT,.

To see that the operator defined by (3.43) is invariant one simply
observes (by combining Proposition 2.13 with Proposition 2.14) that if
0 = eY0 then
(3.44) VT = Vo7 + (n + w') Yo7,
for 7, of weight (w,w’), and on the other hand from (3.4) we have
Wi =W3q+7T"Zy.

Remark 3.4. The operator M4 defined by (3.43) is a differential split-
ting operator, except when w’ = —n, in which case 7, — V%1, is an
invariant operator and M% simply becomes (minus) the composition

of this operator with the bundle map p — pZ4 (for p of appropriate
weight).

In the same manner, by observing that when 6 = ¢¥6 we have
(3.45) VoTos = V5 + (n+w' — 1)T7,5 — T57,°

for 7,5 of weight (w,w’), we see that there is an invariant operator on
trace free sections of &£,5(w,w’) given by

(3.46) MiT.s = (n+w' — 1)Wit,5 — ZaVT,5.

Conjugating one obtains an operator M% on trace free sections of
Eo5(w,w') given by

(3.47) M]B;,Tag = (n +w — 1)W§Ta5 — ZBVBTQB.

3.8. The Curvature Tractor. The operators M% defined above are
all first order, so in particular they are ‘strongly invariant’ meaning
that we may couple the Tanaka-Webster connection V used in their
definitions with the tractor connection (on any tractor bundle £%) to
obtain invariant operators M% on sections of £,®(w,w’) and on trace
free sections of Sagq’(w,w’ ). We use these strongly invariant middle
operators to define a CR analogue of the conformal ‘W-tractor’ of [29].
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Definition 3.5. The curvature tractor of a CR manifold is the section
of £450p given by

(3.48) Kapep = MGMLEz0p
where Rogep = /{IQBCEhED'

Remark 3.6. The expression for the curvature tractor K 4,505 does not
involve the (6-dependent) component K,oop of the tractor curvature
Kapcp- One way to include this component in a CR invariant tractor
is to define

(3.49)

Kaggcp = M4 (’%,@cDWgZB/ - /%BCDZBW@, - Z'K/aDCDZBZE”) ;

where we have used the map T*M — A, given explicitly by (3.29),
on the ‘0’ index of K, cp to obtain K,gzcp and then applied Mg to
Kappcp- Alternatively one can apply the tensorial map T*M — A to
both the ‘a’ and ‘b’ indices of Kycp to obtain K4 uppep (as is done
in Section 7.2).

3.9. Projecting Parts. If a standard tractor v lies in subbundle 7°
of T, s=1,0,—1 (see (3.1)), then the image of v under the projection

T = T*/T*

(where the subbundle 772 is the zero section) is called a projecting part
of v. A projecting part may be zero. Since the filtration of the standard
tractor bundle induces a filtration of all corresponding tensor bundles
(and hence all tractor bundles), we may define a notion of projecting
part(s) similarly for sections of any tractor bundle.

The notion can be easily formalised using the splitting tractors of
Section 3.2. The invariant ‘top slot’ v4Z, of a standard tractor is
always a projecting part. If this top slot vanishes, then the ‘middle
slot’ vAW¢ is independent of the choice of § by (3.4) and is a projecting
part. If both v4Z4 = 0 and UAWX = 0, then the ‘bottom slot’ v4Y} is
independent of the choice of # by (3.5) and is a projecting part of v4.

To see how this works for higher valence tractors consider a trac-
tor t42 in EMP. Skewness implies t48Z,Z5 = 0, so t'BZ,W} is
independent of the choice of 6 by (3.4) and is a projecting part. If
tABZ AWg = 0 then both tABWXWg and t48Z,Yp are independent
of the choice of 0, and are both called projecting parts (the relevant
composition factor of £4P! splits as a direct sum).
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4. CR EMBEDDED SUBMANIFOLDS AND CONTACT FORMS

We turn now to the main subject of the article. We suppose that
Lt % — M is a CR embedding of a nondegenerate CR manifold
(X2 Hy, Jx) into (M?"T1 H, J), that is ¢ is an embedding for which
Tt maps Hy, into H and

JoTv=Tio Js.

Equivalently (the complex linear extension of) T¢ maps T1Y% into
THOM.

Suppose (M?*"*1 H,.J) has signature (p,q). Without loss of gener-
ality ¢ < p (q is often alternatively called the signature). If ¢ < m
(in particular, if M is strictly pseudoconvex) then T,.(7T,%) ¢ H, for
all x € ¥. In this case a choice of contact form 6 for H induces a
choice of contact form for Hy by pullback. If ¢ > m then we need
to impose the condition T,.(T,X) ¢ H, for all z € X as an additional
assumption; such a CR embedding is said to be transversal. (Note that
if T,.(T,3) C H, then T,(T}°%) C THOM is a totally isotropic sub-
space, but the maximum dimension of such a subspace is the signature
q, so ¢ > m.) We consider transversal CR embeddings in the following.

We will work in terms of a pair of pseudohermitian structures (M, H,
J,0) and (X, Hy, Jx, t*0) and aim for constructions which are invariant
under ambient rescalings 6 — 6 = e¥0. More precisely, our goal is to
construct operators and quantities which may be expressed in terms of
the Tanaka-Webster calculus of 6 and of +*0 which are invariant under
the replacement of the pair (6,:*0) with (e¥8, *(e¥6)).

For simplicity we will initially restrict our attention to the case where
m =n—1(m > 1) and where both manifolds are strictly pseudoconvex
(i.e. have positive definite Levi form for positively oriented contact
forms). The general codimension (and signature) case is treated in
Section 6, and much carries over directly.

4.1. Notation. We fix a bundle of (1,0)-densities on X, that is the
dual of an (m + 2)" root of #5, and denote it by Ex(1,0). The cor-
responding (w, w’)-density bundles are denoted Es(w,w’). We use ab-
stract index notation £* for 1%, and allow the use of Greek indices
from the later part of the alphabet: u, v, A, p, ¢/, and so on. Of course
then EF denotes T*'Y, £, denotes (TH°%X)*, and so on. We denote the
CR Levi form of ¥ by h,; and its inverse by h*”. We also occasion-
ally use abstract index notation for T'S), denoting it by £¢ and allowing
indices i, 7, k, [, etcetera.

We identify ¥ with its image under ¢ and write £%x, — X for the
restriction of £* — M to fibers over ¥ (so £%y = *€%). We define
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the section IIj; of £%|x ® £, to be (the complex linear extension of) T
as a map from TH0% into TVOM, ie. if X € T and Y = Tu(X)
then Y = II7X*. We define the section IIf to be the map from
THOM|s onto T3 given by orthogonal projection with respect to the
CR Levi form. Clearly IIXII% = §%, and HZ‘HZ is simply the orthogonal
projection map from TH°M|s onto Tt(TH°Y) given by the Levi form.
It is also clear that

(4.1) by =110 h,g
along ..

4.2. Compatible Scales. In developing the pseudohermitian and CR
tractor calculus we have been making use of the fact that a choice
of contact form 6 for M gives us a direct sum decomposition of the
complexified tangent bundle

CTM =T""M & T""'M & CT,

T being the Reeb vector field of §. Now the contact form 0y, = 1*6 for
>’ also determines a direct sum decomposition

(4.2) CTE =TYY o T™'S @ CTx

where T%; is the Reeb vector field of fx. It is easy to see that in general
these two Reeb vector fields will not agree along Y. Clearly this will
become a problem for us when we try to relate components of ambient
tensor fields (decomposed w.r.t. 6) with components of submanifold
tensor fields (decomposed w.r.t. 0y). To remedy this problem we will
make use of a basic lemma (cf. [20, Lemma 4.1]).

Lemma 4.1. Lett: X — M be a CR embedding between nondegenerate
CR manifolds. If Ox, is a contact form for ¥ with Reeb vector field T,
then there exists a contact form 6 for M with .*0 = 0y, and whose Reeb
vector field agrees with Ty, along Y. Moreover, the 1-jet of 0 is uniquely
determined along 3.

Proof. Fix a contact form 6’ for M with .*6¢’ = 0s,. Let f be an arbitrary
smooth (real valued) function on M with f|y = 0, and consider the
contact form 6 = e/#'. First of all we have

(Te-Tx)odd = e/ (T - Tx)2d6 + el df

along ¥ since ¢ (T Tx) = (1*¢')(Tx) = 0x(Tx) = 1. Now since +*0 = Oy,
we have

L*((TI, . TE)JdQ) = TngGE = 0.
This means that (7 - Tx)ud6 is zero when restricted to tangential di-
rections. Consequently, we only need to see if we can make (T¢-Ty;) 1d6
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zero on the quotient space T'M |y /TY.. This requires choosing f such
that along X

df = —(Tv - Ts)od¢/

on T'M|x /T, which simply amounts to prescribing the normal deriva-
tives of f off 3. Choosing such an f we have that (T't-Tx).df = 0 and
O(Te-Tx) = 0x(Tx) = 1 as required. O

Definition 4.2. A pair of contact forms #, 6y, for M and ¥ respectively
will be called compatible if 6y, = 1*0 and the Reeb vector field of 6
restricts to the Reeb vector field of fx along . A contact form 6
which is compatible with ¢1*6, i.e. whose Reeb vector field is tangent to
¥, will be said to be admissible 20].

We will work primarily in terms of compatible contact forms in the
following. When working in terms of compatible contact forms 6 for
M and 6y, for ¥ we identify the density bundles £(1,1)|x with Ex(1,1)
using the trivialisations of these bundles induced by 6 and 6y, respec-
tively (in fact this identification is canonical, i.e. it is independent of
the choice of compatible contact forms). We also identify the Reeb vec-
tor field Ty of Ay with 7|y where T is the ambient Reeb vector field.
This means that the ‘O-component’ of X € T3 taken with respect to
either 6y, or 6 (identifying X with 7 - X)) is the same, and that our
ambient and intrinsic decompositions of tensors will always be nicely
compatible.

Remark 4.3. Note that Lemma 4.1 holds for general codimension CR
embeddings (with the same proof). We can therefore continue to work
with compatible contact forms in the general codimension case dis-
cussed in Section 6.

4.3. Normal Bundles. Clearly T%°% has complex corank one inside
T'"9M|s. The CR Levi form determines then a canonical complex line
bundle N'* C €|y whose sections are those V¢ for which IT#V* = 0.
There is also the corresponding dual complex line bundle N, C &,|s
whose sections V,, satisfy Vol = 0.

Remark 4.4. Given any choice of ambient contact form 6 the manifold
M gains a Riemannian structure from the Webster metric gg. One can
therefore treat ¥ as a Riemannian submanifold, in particular we have
a Riemannian normal bundle to . This Riemannian normal bundle
will be the same for any admissible contact form 6, and we denote it
by NX. Complexifying we see that CNY = N*® N where N® is the
1-eigenspace of J.
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4.3.1. Unit Normal Fields. Given a choice of ambient contact form @,
one may ask that a section N, be unit with respect to the Levi form of
6. However, for CR geometry it is more natural to work with sections
of the bundle N,(1,0) = N, ® £(1,0)|s, which is normed by the CR
Levi form. Thus we make the following definition:

Definition 4.5. By a (weighted) unit holomorphic conormal field we
mean a section N, of N, (1,0) for which hO‘BNaNB- = 1 where Nz = Nj.
The field N® = h*° N 5 obtained from such an N, will be referred to as
a (weighted) unit holomorphic normal field.

Remark 4.6. The bundles NV, (w + 1, —w) are also normed by the CR
Levi form, but the natural weight for conormals is indeed (1,0). The
line bundle N,(1,0) plays an important role in the following since it
relates ambient and intrinsic density bundles (see (4.28) below). More-
over, N,(1,0) can be canonically identified with a non-null subbundle
of the ambient cotractor bundle £4|x, and hence carries a canonical
CR invariant connection (see Proposition 5.3).

If N, is a unit holomorphic conormal then so is N/ = e¥ N,, for any
p € C®(X), and N'® = e " N“. However, the combinations N“Ng
and N, Nj are independent of the choice of holomorphic conormal, and
these satisfy

(43) 05 =15+ N°Ns and h,s = hy 11005 + NN,

along X, where II3 is the tangential orthogonal projection Hfng and
h,; is the CR Levi form of X.

4.4. Tangential Derivatives. Let 6 be an admissible ambient contact
form with Tanaka-Webster connection V. The pullback connection t*V
allows us to differentiate sections of ambient tensor bundles along 3 in
directions tangential to 3. Recall that we may think of the Tanaka-
Webster connection V as a triple of ‘partial connections’ (V,, Vs, V).
Now suppose that the Reeb vector field T" of # is tangent to ¥, then
0 and 0y = *60 are compatible. Then we can break up /*V into a
corresponding triple (V,, V;, Vo). Precisely, V,, is defined to act on
sections of £%|x according to the formula

(4.4) V7 =TV 7"

where 7% is any extension of the section 7® of £%|y to a neighbourhd of
Y, and V, is defined similarly on sections of £%|x;, &,x, and so on. We
define V; similarly, and define V; on sections of £%|y; by the formula

(4.5) Vor® = Vi



CR EMBEDDED SUBMANIFOLDS OF CR MANIFOLDS 42

along Y, where 7% is any extension of 7%, and similarly on sections
of €% s, &4|x, and so on (note the independence of the choice of the
extension relies on the fact that 7" is tangential to X).

Remark. We have identified £(1,1)|y with x(1,1) and T'|sx and with
the Reeb vector field Ty, of 0y, thus splitting ¢*V up into (V,,, Vj, Vo)
corresponds precisely to restricting t*V to the respective summands in
the direct sum decomposition (4.2) induced by 6.

4.4.1. The normal Tanaka-Webster connection. The ambient Tanaka-
Webster connection also induces a connection on the normal bundle.

Definition 4.7. Given an admissible ambient contact form 6, we define
the normal Tanaka-Webster connection V+ on N, by differentiating
tangentially using the Tanaka-Webster connection V of 6 and then
projecting orthogonally onto N, using the Levi form.

4.5. The Submanifold Tanaka-Webster Connection. We may de-
fine a connection D on T'Y = & (which we identify with T¢(T'0%)
in TY9M|yx) by differentiating in tangential directions using ¢(*V and
projecting the result back onto T1% = £# orthogonally with respect
to the Levi form. This means that if 7# is a section of £# then we have

(4.6) D, =1LV, ¢

where 7 = T1$7*. One may define D to act also on T%!3 = £# by the
analogous formula

(4.7) D, =TIAV, 7.

Thus D may be thought of as a connection on Hy, which preserves Jy.
One may then extend D to a connection on 7% by requiring that Ty
be parallel.

Remark. Equivalently one may define D as a connection on 7Y from
the start by differentiating tangent vectors to X in tangential directions
using ¢*V and projecting the result back onto T3 orthogonally with
respect to the Webster metric of 6.

Provided # and 6y, are compatible, the connection D constructed
in this manner will be the Tanaka-Webster connection of s (cf. [17,
Theorem 6.4]):

Proposition 4.8. If 0, Ox. are contact forms for M and X respectively
which are compatible, that is, Ox, = 1*0 and the Reeb vector field of 0 is
tangential to X3, then the connection D on T induced by the Tanaka-
Webster connection ¥V of 6 (and projection with respect to the ambient
Webster metric) is the Tanaka- Webster connection of Oy..
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Proof. We need to show that D preserves (Hs, Js,0s) and satisfies
the torsion conditions of Section 2.8. It is clear that D preserves the
decomposition (4.2) and gives a linear connection on each of the three
direct summands. This implies that D preserves H and J in the appro-
priate senses. Since V preserves the Reeb vector field T', t*V preserves
T|s = T and hence DTy, = 0. Since D preserves Ty, and H it must
also preserve Oy.

Now let f € C*(X) and choose an extension f of f to M such that

along ¥ we have V,f = II4V,f, i.e. the derivative of f vanishes in
ge-normal directions along ¥ (these directions don’t depend on 6 so
long as we choose ¢ admissible). Then we have that V;f = H%V;\ f

along > and hence also that
D,Dyf — DyD,f = D,Nof — DsV . f
= IV, (V5 /) - IV (IR V)
=V, V5[ — T8V, Vo f
= M1 (VoVaf — V5Vaf)
= 11 (—ihasVof)
= —th,;Dyf
where we have used that D, f=V,fand Dyf = Vi f as well as that
Dyf =Vof =Vyof along ¥ . Similarly we may easily compute that
D,D,f—D,D,f=0.
Finally we have
D,Dof — DoD,f =V, Nof =VoV,.f
=11%(VaVof — VoValf)
=I8ATV,f
=I0TI3 A7, Vs f = AN D5 f

where A, = HfijAag. Since f was arbitrary, we conclude that D is
the Tanaka-Webster connection of 6. O

Corollary 4.9. Given an admissible ambient contact form 6 with pseu-
dohermitian torsion A.g, the pseudohermitian torsion of Oy, = %0 is
Ay = TIETI Ans.

Remark 4.10. Note that Proposition 4.8 and Corollary 4.9 hold in the
general codimension case by the same arguments.



CR EMBEDDED SUBMANIFOLDS OF CR MANIFOLDS 44

4.6. The Second Fundamental Form. We can now define a sec-
ond fundamental form using an analogue of the Gauss formula from
Riemannian submanifold geometry.

Definition 4.11. Given 6 and Ay, compatible with respective Tanaka-
Webster connections V and D we define the (pseudohermitian) second
fundamental form by

(4.8) VxY = DxY + II(X,Y),

for all XY € X(X), where we implicitly identify submanifold vector
fields with tangential ambient vector fields along 3 and use the pullback
connection ¢*V on the left hand side.

Clearly II(X,Y) is tensorial in X and Y, and is normal bundle (NX)
valued. It is also clear from the definition that II(-,Ty) = 0 and that
II(-,-)|my is complex linear (with respect to J and Jy) in the second
argument, that is

I[('7JE')|HE :JII('7'>|H2'

In fact, these properties also hold for the first argument, II being sym-
metric.

Proposition 4.12. The only nonzero components of the (pseudohermi-
tian) second fundamental form II are I1,,,” and its conjugate. Moreover
(4.9) 1, =1,,",

so that II is symmetric.

Proof. Since II(-,Tx) = 0 and II(-,-)|n, is complex linear in the
second argument, to prove the first claim it suffices to show that Ily,” =
0 and I1;,” = 0.

Let N, be a section of N, such that ho‘ﬂNaNB = 1. From the Gauss
formula (4.8) we have that

(4.10) V.V =D,V + I, V"
for any section V* of £, where V7 = II]JV*. Contracting the above
display with N, and replacing the ‘4’ index with ‘p’, ‘ii’, and ‘0 respec-
tively gives
N, = 110V, N,, N,II;" = -II)V;N,,
and N,IIy," = —IIJV(N,,

since N,V7 =0 for all VA € T'(€*). By conjugating, one also has that

Now let f be a real valued function on M which vanishes on ¥ and
for which (V,f, Vaf, Vof) is equal to (N,, N5, 0) along ¥. (Note that
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we must require Vi f to be zero along ¥ since T' is tangent to > and we
ask that f|x = 0. Such an f exists because we are simply prescribing
the normal derivatives of f off . Any such f is, locally about X, a
defining function for a real hypersurface in M containing ¥ which is
ge-orthogonal to the real part and tangent to the imaginary part of
N®.) From (2.5) and (2.6) we have that

VoV f =VeVef and V,Vzf =VzV,f
along Y. Projecting tangentially along > we immediately have that
N,11,7 = N,II,,” and N;II,;” = N,II;,”.

The first of these implies that I1,,” = II,,,”. Since N, was arbitrary
the second implies that I7,;7 = 0 (replacing N, with ¢V, gives a minus
sign).

Using the same function f, (2.7) states

VoVof = VoVaf = A1, Vxf.

Applying II} to both sides of the above display we get that
—EVoVaf = Hgmav#
along % (since IV, V, f is zero along ¥). We conclude that
N, IIy," = N:YH;OL‘AZ.
Again, since N, was arbitrary we must have
(4.11) I, =0 and N5IISAY = 0.
O

The second of the expressions (4.11) should be seen as a constraint
on the pseudohermitian torsion of an admissible contact form. We state
this as a corollary:

Corollary 4.13. If 6 is an admissible ambient contact form then the
pseudohermitian torsion of 0 satisfies

(4.12) % AqsN? =0
for any holomorphic normal field N°.

Remark 4.14. Note that in the higher codimension case (of CR embed-
dings) if one defines the (pseudohermitian) second fundamental form of
a pair of compatible contact forms as in Definition 4.11 then Proposi-
tion 4.12 holds with the proof unchanged (and consequently Corollary
4.13 also holds).
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Remark 4.15. Our claim that [I(T, -) = 0, and the above corollary,
disagree with [15] and the book [17|. Our claim that II(7, -) = 0 is
confirmed however by the later article [16].

4.6.1. The CR second fundamental form. We shall now see that the
component I1,,” does not depend on the choice of compatible contact
forms 6 and 6Oy..

Lemma 4.16. Given compatible contact forms 6 and Osx, one has
(4.13) 11, = —-N"1T°V,Ng
for any unit holomorphic conormal field N,.
Proof. From the Gauss formula (cf. (4.10)) we have
V.V =10D,V* + 11,V

for any section V* of £}, where V7 = II;V*. Contracting the above
display with N, and using that N,V ,V7 = —V7V N, yields the result.
O

Corollary 4.17. The component 11,7 of the pseudohermitian second
fundamental form does not depend on the pair of compatible contact
forms used to define it.

Proof. Combining the Tanaka-Webster transformation laws of Propo-
sition 2.13 and Proposition 2.14 we have that

V,.Ns =V, N5 —I8T5N, — T, N5 + T, N5 = V,.N;
since N3 has weight (1,0). The claim then follows from (4.13). O
We therefore term 11,7 the CR second fundamental form.

Remark 4.18. The pseudohermitian second fundamental form II (of
a pair of compatible contact forms) is not CR invariant, even though
11,7 is, since the direct sum decompositions of CT'M and CT™3 change
under rescaling of the ambient and submanifold contact forms.

Recall that we write I for the tangential orthogonal projection
HZ‘Hg on the ambient holomorphic tangent bundle along 3. The fol-
lowing lemma will be useful in the derivations of Section 4.7:

Lemma 4.19. For any admissible ambient contact form we have

(4.14) VI = 11,010, VI = 10,711,
(4.15) Vall} = I, g, VRIE = 1711,
and

(4.16) Voll} =0, VoI =0.



CR EMBEDDED SUBMANIFOLDS OF CR MANIFOLDS 47

Proof. These follow immediately by differentiating 5?3 — N7Ng, however
we wish to give a proof that will also work in the higher codimension
case. Pick a section V¥ and let V# = I1°V"”. Then

V.V =V, V) = (VIHVP + 1V, VP
Noting that HgV“Vﬁ =1IDD,V?, from the Gauss formula we have
(4.17) v, I, = 11,

since V¥ was arbitrary. Now on the other hand if N* is any unit
holomorphic normal then

(4.18) NPV I = (VNI =0

since HH,;(S = 0. The previous two displays imply the first equation
of (4.14), and the second then follows by raising and lowering indices.
Conjugating these gives (4.15). The expressions (4.16) are proved sim-
ilarly using that II;,” = 0 and ;7 = 0. O

4.7. The Pseudohermitian Gauss, Codazzi, and Ricci Equa-
tions. Here we give pseudohermitian analogues of the Gauss, Codazzi,
and Ricci equations from Riemannian submanifold theory. Real forms
of these equations can be found in chapter 6 of [17], note that @ = 0
in the pseudohermitian Codazzi equation they give (cf. Remark 4.15).

When working with compatible contact forms we denote the ambient
and submanifold Tanaka-Webster connections by V and D respectively.
We write

(4.19) 6 =69 — 113

for the orthogonal projection onto N C £%|x. In this case NG = N*Nj
for any unit holomorphic normal N¢. We adopt the convention of re-
placing uppercase root letters with lowercase root letters for subman-
ifold curvature tensors, so the pseudohermitian curvature tensor of fx
will be denoted by 7,55, the pseudohermitian Ricci curvature by 7,
and so on. For the ambient curvature tensors along > we will use sub-
manifold abstract indices to denote tangential projections, for example

Ry = ISIDIIA R, 5,5 and  Rp05 = 10110 Ry 3.

4.7.1. The pseudohermitian Gauss equation.

Proposition 4.20. Given compatible contact forms, the submanifold
pseudohermitian curvature is related to the ambient curvature via

(420) R,U,D/\ﬁ - Tulj)\ﬁ + h'yS[[p,)\’yI[Dﬁg'
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Proof. Let V be a section of T%%, let V7 = H;V;\, and let V7 be a
smooth extension of V7 to a neighbourhood of X. Proposition 4.8 says
that Dy V> = IIATI;V3V7 and thus

DDV = LY, (MI2V;V7)
= ISV, IOV 5V + TSI (V,112)V 517
+ IR IV, V5V
= I[NV, V7 + IRV, V5V,
where we have used (4.14) of Lemma 4.19 in the final step. Since
NiV7 = 0 we have N%VDVW = —V;YV;Ng = VPII,;° using (4.15) of
Lemma 4.19, and hence by writing I7,*5 as II H’\gNéy we obtain
DDV = IL 511, VP 4+ TRV, V5V,
By a similar calculation with the roles of p and v interchanged we
obtain
A ArraTBv Yol
_Dp.D#V - Hﬁnungvﬁvavwa
no second fundamental form terms arise since II,,;7 = 0. Noting that
DoV = H;\YVOVW we have the result. O

Remark 4.21. The above proposition holds with the same proof in the
general codimension setting. The equation (4.20) can also be found in
[20] where it (or its trace free part) is the key to proving rigidity for CR
embeddings into the sphere with sufficiently low codimension because
it allows one to show that the intrinsic pseudohermitian curvature de-
termines the second fundamental form I7,,7.

4.7.2. The pseudohermitian Codazzi equation.
Proposition 4.22. Given compatible contact forms,
(4.21) RHﬂﬁNg —-D, Umf

where the submanifold Tanaka- Webster connection D s coupled with
the normal Tanaka- Webster connection V*.

Proof. Let N7 be an unweighted unit normal field and let N7 be an
extension of N7 to all of M such that, along %, NGV,N” = 0 and

Ngvdﬂﬂ = 0. Then along ¥ we have

VN = —II57sN° + NJV5N°
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where Il575 = H%HKU;\;, using that II;*sN° = —II}V,N7. Thus we
compute that

TV, VN = IR (=Y, (11575N°) + (V,.N})V5N°)
= —D,(II,*sN°)

along >, where in the first step we used that HﬁNg = 0 and in the
second step we used (4.14) to show that II3V,N] = 0 and Proposition
4.8. Now on the other hand (since II,,;7 = 0) we have

VoN? = N]V,N°
along 3, and this time we compute that
STV Vo N = — 1LV, N° = —I1,) VN
since V;Nyj = —II,75IT) by (4.15). Putting these together we get
CILID (Vo V5 — V5Va) NY = —(D,I1,5)N°
along ¥. Since IIp,” = 0 we have II}VoN” = 0 and hence from (2.9)
we obtain

(4.22) R, N° = (D, II,”5)N°.

Noting that R,;55 = —R,;s5 then gives the result. U

4.7.3. The pseudohermitian Ricci equation. Given a compatible pair of
contact forms we let RV denote the curvature of the normal Tanaka-
Webster connection V* on the antiholomorphic normal bundle N®.
With our conventions we have

(423)  (VIVENT = VEVEINT 4k, VENT) = —RA 5N

for any section N® of N'®, where we have coupled the normal Tanaka-
Webster connection V+ with the submanifold Tanaka-Webster connec-
tion D. The pseudohermitian Ricci equation relates the component
Rﬁf;% of RN" to the component R,,;" g,Nz,Ng—/ of the ambient pseudo-
hermitian curvature tensor:

Proposition 4.23. Given compatible contact forms,
(4.24) RN 75 = Ry gNILNS + WY1 51T,

Proof. To facilitate calculation we couple the connection V+ with the
submanifold Tanaka-Webster connection D; we also couple V with D.
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If N7 is a holomorphic normal field then
ViVINT = VEH(NIV,N')
= NIV, (NSV,N?)
= NI (~ I TI595N7 + N5V, V5N )
= NIV, V,N°
On the other hand, when we interchange the roles of ;1 and v we obtain
VLVNT = NI (—Ilﬂxgﬂéqug + NEVDVMN5>
= I, 1, sN° + N1V, V,N°

Now observe that if one extends N7 off ¥ such that N ay/ N7 =0 and
NeV, N7 = 0, then

eIV, V5N = V, VN and  TCTEV;V,N° = V,V,N°.

Thus by (4.23) and (2.9) (noting that Vi N7 = V,N7) one has the
result. O

Remark 4.24. Since N'® is a line bundle we may think of the curvature
RN® instead as a two form. By convention we take Rﬁg to be Rﬁ,@a%,
which means that RV" is minus the usual curvature two form of the
connection V+ on the line bundle AN®. With this convention we may

write
(4.25) RN = Ry + hosh™ I\ I1,,°

where R ;ny = RumgN”NS for any weight (1, 0) unit normal field N.
Also, since V* is Hermitian with respect to the Levi form of 6 (on N®),

one has that RN = RNe as two forms. Moreover, by duality one has
that RNe = — RV,

4.8. Relating Density Bundles. We have already been using com-
patible contact forms to identify the density bundles £(1,1)|y and
Ex(1,1), and have commented in passing that this identification does
not in fact depend on any choice of (compatible) contact forms. Let
¢ be a positive real element of £(1,1)|s, then there is a unique real
element ¢ in Ex(1,1) such that ¢ pulls back to ¢sfx under ¢. This
correspondence induces an isomorphism of complex line bundles. In
this way we obtain canonical identifications between all diagonal den-
sity bundles £(w, w)|y and Ex(w,w). These identifications also agree
with those induced by trivialising the ambient and intrinsic (diagonal)
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density bundles using an ambient contact form 6 and its pullback ¢*6
respectively.

On the other hand it is not a prior: obvious whether one may canon-
ically identify the density bundles £(1,0)|s and Ex(1,0), and therefore
identify all corresponding density bundles £(w,w’)|s and Ex(w,w’).
We require that any isomorphism of £(1,0)|x with Ex(1,0) should be
compatible with the identification of £(1,1)|x with £x(1, 1) already de-
fined. Any two such isomorphisms of £(1,0)|s with £x(1,0) are related
by an automorphism of £(1, 0)|x given by multiplication by e** for some
p € C™(X). This is precisely the same freedom as in the choice of a
unit holomorphic conormal, in fact, we shall see below that these two
choices are intrinsically connected.

4.8.1. Densities and holomorphic conormals. Let A°% denote the sub-
bundle of A% M|y, consisting of all forms N which vanish on the tangent
space of ¥. The bundle A'"Y may be canonically identified with A,
by restriction to THOM.

Lemma 4.25. Along ¥ the ambient and submanifold canonical bundles
are related by the canonical isomorphism

(4.26) H |y = s @ ALY

Proof. The map from A"(AM%) @ AY'S to A»TH(AYOM|s) is given by
(4.27) (c®N—=nAN

where 7 is any element of A"(AYM|x) with 1*n = (s. O

Given a section (x;, ® N of Js ® AEOE we write (s A N for the
corresponding section of J |5;. The above lemma is the key to relating
ambient and submanifold densities:

Corollary 4.26. The ambient and submanifold density bundles are
related via the canonical isomorphism

(4.28) E(—n —1,0)|s 2 Es(—n —1,0) @ N,(1,0).

Proof. By definition £(—n—2,0) = % and Ex(—n—1,0) = 5. Using
this in (4.26), tensoring both sides with £(1,0)|s, and identifying A'’%
with NV, gives the result. O

Thus any trivialisation of the line bundle N, (1,0) gives an identifi-
cation of the corresponding ambient and submanifold density bundles
along . One can check that if the trivialisation of N, (1,0) is given by
a unit holomorphic conormal then the resulting identification of density
bundles will be compatible with the usual identification of &(w,w)|s
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with Es(w,w); this amounts to the claim that, given compatible con-
tact forms 0 and Oy, if (5, is a section of 5 volume normalised for s
and N is a section of AEOZ which is normalised with respect to the
Levi form of 6 (i.e. satisfies h*’N,Ng = 1) then the section (s A N of
A|s is volume normalised for 6.

Remark 4.27. The preceding observation motivates the search for a
canonical unit holomorphic conormal. One way to approach this search
is to observe that for any unit holomorphic conormal IV, the field @ :=
NV N, = —N®V;N; does not depend on the choice of admissible
ambient contact form used to define V; and a calculation shows that
oy satisfies Vi = 0. In the case where one has local exactness
of the tangential Cauchy-Riemann complex of ¥ at (0, 1)-forms one
can then (locally) define a canonical unit holomorphic conormal N,
for which w; = V f with f a real valued function; the a priori phase
freedom in the unit normal is used to eliminate the imaginary part of
f, leaving no further freedom. However, for smooth (rather than real
analytic) embeddings the required local exactness may not hold, as was
famously demonstrated by Lewy for the three dimensional Heisenberg
group [38]. In the following it will become plain that we should keep
N,(1,0) in the picture, rather than trivialise it, and thus we have not
pursued this direction further.

4.9. Relating Connections on Density Bundles. Given an admis-
sible ambient contact form 6, the normal Tanaka-Webster connection
V+ on N, can equivalently be thought of as the connection on AEOE
defined by differentiating tangentially using the Tanaka-Webster con-
nection V and then projecting using the Webster metric gy.

Lemma 4.28. Giwen any pair of compatible contact forms the isomor-
phism (4.26) of Lemma 4.25 intertwines the respective Tanaka- Webster
connections:

Ay = 5 @ A%
L'V D ® V=,

I

Proof. Let (x ® N be a section of #5 ® AEOE. Let 1 be any section of
A" (A M]|s) which pulls back to (x. Then (s AN :==nAN. If X € TS
then

Vx((eAN) = (Vxn) AN+ A (VxN),
but (Vxn) AN = (IIsVxn) A N which is the section of |5 cor-
responding to (Dx(s) ® N (here Iy, denotes submanifold tangential
projection with respect to gg), and n A (VxN) =n A (VxN). O
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Observing that the connection V+ on N, (1,0) agrees with the cou-
pling of V+ on AV, with ¢*V on £(1, 0) |5 we have the following corollary:

Corollary 4.29. Given any pair of compatible contact forms the (canon-
ical) isomorphism (4.28) of Corollary 4.26 intertwines the respective
Tanaka-Webster connections:

g(_n - 1a 0)|Z = 52(_n - 170) ®Na(170)
v = D ® V.

This means that if we want to identify corresponding ambient and
submanifold density bundles (along X) in such a way that the ambient
and submanifold Tanaka-Webster connections of a pair of compatible
contact forms agree (in the sense that (*V = D), then we must trivi-
alise NV, (1,0) using a section which is parallel for the normal Tanaka-
Webster connection V+. This is not a CR invariant condition on the
section of N,(1,0), and the following lemma shows that it is not pos-
sible to find a parallel section in general because of curvature:

Lemma 4.30. Let 0 and 05, be compatible contact forms and let RN~(1,0)
denote the curvature of V+ on the bundle N,(1,0), then the (1,1)-
component of RN«L0| . satisfies

«(1,0 n -+ 1
(4.29) R0 = " 5 Buw = 7o

where R,; = HZ‘H’?:RQB.

Proof. By Proposition 2.10 the (1, 1)-component of the restriction to H
of the curvature of the Tanaka-Webster connection on the line bundle
£(1,0) is =5 R,3. Thus the (1,1)-component of the the restriction to
Hy; of the curvature of :*V on £(1,0)|s; is =5 R,p. Combining this with

. . NG N
the Ricci equation (4.25) for Ry, = R, we have

2 (10) _ ) ] N1
RO — Ry + b Iy I — P
Using the once contracted Gauss equation
Ryp — Rupny = Ty + hogIln VI
obtained from (4.20) we have the result. O

Remark 4.31. Here, because of our conventions (cf. Remark 4.24), we

take RM=(1:0) to be minus the usual curvature of N,(1,0) as a line
bundle.



CR EMBEDDED SUBMANIFOLDS OF CR MANIFOLDS 54

4.10. The Ratio Bundle of Densities. The observations of Sections
4.8 and 4.9 motivate us to look at the relationship between correspond-
ing ambient and submanifold density bundles rather than seeking to
identify them (along ). We therefore make the following definition:

Definition 4.32. The ratio bundle of densities of weight (w,w’) is the
complex line bundle

(4.30) R(w,w') = E(w,w)|s @ Es(—w, —w')

on the submanifold ¥. Equivalently R(w,w’) is the bundle whose sec-
tions are endomorphisms from Ex(w,w’) to E(w,w’)|s.

Note that the bundles R(w,w) are canonically trivial, and therefore
R(w,w’) is canonically isomorphic to R(w — w’,0). Also by definition
R(—n — 1,0) is canonically isomorphic to N,(1,0), and we make this
into an identification

(4.31) R(—n —1,0) = Ny(1,0).

4.11. The Canonical Connection on the Ratio Bundles. Borrow-
ing insight from Section 5 below we observe that the bundle N,(1,0)
carries a natural CR invariant connection, which induces connections
on the density ratio bundles R(w,w’). The reason is that N, (1,0) is
canonically isomorphic to a subbundle N of the ambient cotractor
bundle £4 along ¥ which has an invariant connection induced by the
ambient tractor connection (Proposition 5.3). We denote this canon-
ical invariant connection on R(w,w’) by V®. Tt turns out to be very
naturally expressed in terms of Weyl connections (recall Section 3.4.1).
Hence we make the following definition:

Definition 4.33. Given an admissible ambient contact form 6, the
normal Weyl connection VW+ on N®(w,w’) is the connection induced
by VW (projecting tangential derivatives of sections back into N'* using
the Levi form). Dually, the connection V¥ acts on N, (—w, —w").

For calculational purposes we will need the following lemma:

Lemma 4.34. Given an admissible ambient contact form 0 the con-
nection VWt on N,(1,0) acts on a section 7, by

(4.32) VWAt = Vin, Vit =Vir,
and

4.33 ViV, = Vir, — iPyyTa " _pr,
( ) 0 T 0 T 1 NNT + n + 2 T

where Pyy = PQBN“NB for any (weighted) unit holomorphic normal
N% and P = P,*.
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Proof. This follows immediately from the definitions of the Weyl and
normal Weyl connections and the formula (3.26). O

The connection V* on R(—n — 1,0) = N,(1,0) turns out to agree
precisely with the normal Weyl connection of any admissible contact
form. In particular the normal Weyl connection V> on the bundle
N,(1,0) does not depend on the choice of admissible ambient contact
form. This follows from Proposition 5.3 below, but here we give a
direct proof. Before we prove this we make an important technical
observation, stated in the following lemma:

Lemma 4.35. Let 6 be an admissible ambient contact form. The con-
tact form 0 = e¥0 is admissible if and only if

(4.34) T, =1°7,

along 3.

Proof. This follows immediately from the transformation law for the

Reeb vector field given in Lemma 2.11 since both 7" and T must be
tangent to 2. U

Proposition 4.36. The normal Weyl connection V'"'* on the bundle
N.(1,0) does not depend on the choice of admissible contact form.

Proof. Fix a pair of compatible contact forms 6, 6y, and suppose 0 =
e¥0 is any other admissible ambient contact form. Let 7, be a section of
N,(1,0). Extend 7, arbitrarily off ¥. When differentiating in contact
directions the connections VW1 and V* agree, so from (2.34) and
Proposition 2.14 we have

ViVt r = NIV, g
= N’fHZ’(VQTB — Y370 — Yot + Lats)
= Ny V 75
since II5;7, = 0 (note that NgTB also vanishes since 6 and § are admis-
sible). Similarly, from (2.35) and Proposition 2.14 we have
Vit T, = NS Varg
= NJTI2(Vars + hga Y77,)
= NJTISV 475
since N?Hfjhga = 0.
The operators V{V and Vj acting on 7, are related by

1
n+2

V(V)Vra =V, — iPa'BTg + Pr,.
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Now, on the one hand, by (2.36) and Proposition 2.14, noting that
N?TB = 0 by Lemma 4.35, we have

VO Ts = ﬁ[Vng + Z'Tﬁva,g — Z'T’YV,YT/B — Z'T’Yﬂ'r,y
n+2 (Yo + Y7, =TT ) ]

On the other hand from (2.41) and (2.42), noting that Y,5 + T3, =
205, —ih,3To by (2.5) we have

NS[iPs 7T, — ~55Prg] = NJ[i(Ps" — Y75 + 2100} — AYY5))7,
— 5 (P =17 + 5Ty — 57T )75).
Since % — m = n+r2 we obtain that

A P e RS e v P N (s

as required (recall that the ‘O-direction’ has a different meaning on the
left and right hand sides of the above display, cf. Lemma 2.12). 0

Remark 4.37. Both Lemma 4.35 and Proposition 4.36 hold in the gen-
eral codimension case with the same proof (as does Proposition 5.3).

We therefore take V™ to be the connection induced on the ratio
bundles by the normal Weyl connection of an admissible contact form
on N, (1,0), and give later in Proposition 5.3 of Section 5.1 the tractor
explanation for this invariant connection. In order to compute with
V7 we will need the following lemma:

Lemma 4.38. In terms of a compatible pair of contact forms, 0, O,
the connection V= on a section ¢ ® o of E(w,w')|s ® Es(—w, —w') is
given by

(4.35) V(¢ ® o) = (V) @0+ ¢ @ (Do),

(4.36) VE¢®0)=(Vip) @0+ ¢® (Do),

and

(4.37) VE(900) = (Vod) @0 +¢@ (Do) + % (iPyy — 75 P) o @ 0.
Proof. This follows from Lemma 4.34 combined with Corollary 4.29.

O

Corollary 4.39. The connection V® on the diagonal bundles R(w,w)
is flat and agrees with the exterior derivative of sections in the canonical
trivialisation.

Proof. This follows from Lemma 4.38 combined with Lemma 2.6. [
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Remark 4.40. By coupling with the connection V* we can invariantly
convert connections (and hence other operators) acting on intrinsic
densities to ones on ambient densities, and vice versa. This will allow us
to relate the intrinsic and ambient tractor connections, their difference
giving rise to the basic CR invariants of the embedding.

4.11.1. The curvature of the canonical ratio bundle connection. We
shall see that the connection V® is not flat in general, making it un-
natural to identify the ambient and submanifold density bundles along
3.

Let £K*(®) denote the curvature of V7 on the line bundle R(w, w’),
and let RN denote the curvature of V"* on N, (1,0) for any admis-
sible contact form #. By convention RV" has the opposite sign to the
usual line bundle curvature KR(-"=1.0) Clearly the curvatures K=®®")
are determined by RV, in particular

1 .

——RM".
n+1
Here we give expressions for the components of RV". Note that the
components of the restriction RV|z,, must be invariant.
Proposition 4.41. The (1,1)-part of RN |y, satisfies

(4.38) R,/:g = (n+1)(Puw — puz) + (P — Pyy — p)hys,

ROL0) —

where Pyy = PQBNO‘NB for any (weighted) unit holomorphic normal
N, P=PF), andp=p,".

Proof. Recall that VR = V"W on R(—n — 1,0) = N,(1,0) for any
admissible ambient contact form 6. Fixing 6 admissible we have

R = (VR - VI i)
= (VyVy = ViV, +ihu Vi) 7o

1
+ (Pyy — n—+2p)h‘“ﬂa

for any section 7, of N,(1,0), using Lemma 4.34. Thus from (4.29) of

Lemma 4.30 we have that
N (Pyg — ——P)h
e A NN T T 7
Now using that R,; = (n + 2)P,3 + Ph,j, from the definition of P,3,
and using the corresponding expression for r,;, we have the result. [

Note that P — Pyy —p is the trace of P,; —p,s, with respect to h,;.
The following lemma therefore manifests the CR invariance of Rﬁg.



CR EMBEDDED SUBMANIFOLDS OF CR MANIFOLDS 58

Lemma 4.42. Given any pair of compatible contact forms, the differ-
ence P, — puy satisfies
(439) P:U‘ﬁ —_ p.u'l_/ =

n —l-_l (SWNN + %SNNNNh,m)

1 - _
+ n—Jrl(UmﬂpM + Ll 11" hys),
where Spny = NeT2S,5.5NTN® and Syxng = Sugs N*NPNTNY for
any (weighted) unit holomorphic normal N.

Proof. Taking the trace free part of the Gauss equation (4.20) one has
#(S‘u‘p)\)\ - %Spp)\)\hul‘,) +P/Jl7 - p/ﬂj + #(II“)\f?]Iﬂ)\ﬁ + %]]p)\ry[]p)\:{hle)

and noting that S,;,* = #575(h75 — N'N%) = =S, sy and similarly
that S,°\* = Syynyx one has the result. O

Remark 4.43. The difference P,; — p,s is the CR analogue of the
so called Fialkow tensor [14, 48| in conformal submanifold geometry,
though here it is showing up in a completely new role.

Proposition 4.44. We have
N* N*
(4.40) R, =0 and R =0.

Proof. By a straightforward calculation along the lines of the proof of
Proposition 4.23 we have, given compatible contact forms, that

VIVEN, — VEVEN, = NoNP(V,V,N; — V,V,Ny)

for any unit holomorphic conormal field N, (where both (*V and V+
are coupled with the submanifold Tanaka-Webster connection D). Not-
ing that V,V, = V,V, on densities by Proposition 2.10, we get
that —Rﬁg = II9TI) Rop"sN,N%; this is zero by (2.23), noting that
Ropss = —Rapsy. In a similar manner one shows that Rﬁg also van-
ishes. U

Given compatible contact forms, one also has the component Rﬁg.
By a similar but more tedious calculation one arrives at the expression

(4.41) RN, =V,ny — P11,

n

where V,yn = HﬁVaBVNBNV (with V5, asin (3.35)), Pn" = PvﬁNWHg
and I, = II,,"N, for any (weighted) unit holomorphic normal field
N%. One can obtain this expression more easily using the description
of the canonical connection on N,(1,0) in terms of the ambient tractor
connection given below.



CR EMBEDDED SUBMANIFOLDS OF CR MANIFOLDS 59

5. CR EMBEDDED SUBMANIFOLDS AND TRACTORS

Here we continue to work in the setting where ¢ : ¥ < M is a CR
embedding of a hypersurface type CR manifold (X?™*!, Hy,, J) into a
strictly pseudoconvex CR manifold (M?*"*1 H, J) with m =n—1. We
adopt the notation 7 M rather than 7 for the standard tractor bundle
of M, and write T for the standard tractor bundle of . Similarly we
will denote the adjoint tractor bundles of M and ¥ by AM and AX
respectively. We will also use the abstract index notation £ for 7%
and allow the use of indices I, J, K, L, I’, and so on.

5.1. Normal Tractors. Given any unit section N, of N, (1,0) we de-
fine the corresponding (unit) normal (co)tractor N to be the section
of €4|x, the ambient tractor bundle restricted to fibers over ¥, given

by

(5.1) P A
“H

where H = ﬁh“ﬂ Hij,—,Na and V; denotes the Tanaka-Webster con-
nection of # acting in tangential antiholomorphic directions along ¥3;
the tractor field V4 does not depend on the choice of ambient contact
form 6 since from (2.35) of Proposition 2.13 combined with Proposition
2.14 we have that

H=H+TN,

when 0 = €T (with T* = VY), as required by (3.3). If # is admissible
for the submanifold ¥ then H = 0 (since II;,” = 0) and

0
(5.2) P A
0

Remark 5.1. The normal tractor N4 associated to a unit holomor-
phic conormal N, is an analogue of the normal tractor associated to
a weighted unit (co)normal field in conformal hypersurface geometry

defined first in [2].

Definition 5.2. The normal cotractor bundle N4 is the subbundle of
Eals, the ambient cotractor bundle along ¥, spanned by the normal
tractor N4 given any unit holomorphic conormal field N,. The nor-
mal tractor bundle N is the dual line subbundle of £4|5; spanned by
N4 = hAPNg. We alternatively denote N4 and Ny by N and N*

respectively.
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Since the ambient tractor bundle carries a parallel Hermitian bundle
metric the ambient tractor connection induces a connection VV on the
non-null subbundle Ny of E4]s. Explicitly, if N4 is the orthogonal
projection from 4|y, onto N then we have

(5.3) VN = NaV 04

for any section vg of N, where V; is the ambient standard tractor
connection (pulled back via ¢). We can now explain the origin of the
canonical connection on N,(1,0).

Proposition 5.3. The weighted conormal bundle N,(1,0) is canoni-
cally isomorphic to the normal cotractor bundle Ny via the map

0
TO{

0

(5.4) To b Ta =

defined with respect to any admissible ambient contact form 0. More-
over, the above isomorphism intertwines the normal tractor connection
VN on Na with the normal Weyl connection on N.(1,0) of any admis-
sible 6.

Proof. The first part follows from the fact that if 6 is admissible then
6 = Y6 is admissible if and only if T,N® = 0, where N* is a holo-
morphic normal field (a consequence of Lemma 2.11). The second part
follows from the explicit formulae for the tractor connection given in
Section 3.4 (noting in particular (3.27)) and the observation that the
orthogonal projection E4|s — Ny is given, with respect to any admis-
sible ambient contact form, by

o 0
(5.5) T | — Ngrg
p 0

O

Remark 5.4. Clearly the isomorphism of Proposition 5.3 is Hermitian;
in particular if N, is the normal tractor corresponding to a unit normal

field N, then
NAN, = NN, =1,

so N, is indeed a unit normal tractor. Although a unit normal tractor
is determined only up to phase, the tractors

N4uNz and NANp,
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are independent of the choice of unit length section of A4. Indeed,
NANp = N4 and the section

I = 63 — N*Ng

projects orthogonally from €45 onto the orthogonal complement Ny
of Njin E4ls.

5.2. Tractor Bundles and Densities. Clearly A'; has the same rank
as &r; they also have the same rank subbundles in their canonical filtra-
tion structures. Moreover, both A3 and & carry canonical Hermitian
bundle metrics (and Hermitian connections). On the other hand we
note that for N’ we have the canonical map

Vg ZAUA

where Z4 is the ambient canonical tractor, whereas for £ we have the
canonical map

E 7 — gz(l, 0)

vy ZIU]

where Z7 is the canonical tractor of . It seems natural that we should
look to identify these bundles (canonically), but doing so clearly also
involves identifying the density bundles £(1,0)|x and &x(1,0) (also
canonically). The following lemma shows us that this is the only thing
stopping us from identifying £ with N7:

Lemma 5.5. Fix a local isomorphism ¢ : Ex(1,0) — £(1,0)|g (com-
patible with the canonical identification of Ex(1,1) with £(1,1)|s) and
identify all corresponding density bundles Es,(w,w") and E(w,w')|s, us-
ing 1. Then locally there is a canonically induced map from E; to N1,
given with respect to any pair 0, s, of compatible contact forms by

o [ C 0 g
(5.6) v=| 71 | —mua=1| T
p p

where 7, = 147, which is a filtration preserving isomorphism of Her-
matian vector bundles.

Proof. Let us start by fixing # and fx. That the map described above
is a filtration preserving bundle isomorphism is obvious. That the map
pulls back the Hermitian bundle metric of A’y to that of &; is also
obvious. It remains to show that the map is independent of the choice
of compatible contact forms. To see this we suppose that Y
is any other admissible contact form and let éz = "0 = eTly,. We
need to compare the submanifold and ambient versions of the tractor
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transformation law (3.3). By the compatibility of # and 65 we have
VoT = DyT along ¥, and by Lemma 4.35 we also have T, = IIAT,
where T, = D,Y. These observations ensure that the map is well
defined. O

The local bundle isomorphism ¢ : Ex(1,0) — £(1,0)|y in the above
lemma can also be thought of as a nonvanishing local section (or lo-
cal trivialisation) of the ratio bundle R(1,0). The bundle R(1,1) is
canonically trivial because of the canonical isomorphism of £x(1,1)
with £(1,1)]x, so that R(1,0) carries a natural Hermitian bundle met-
ric (i.e. is a U(1)-bundle) and the compatibility of ¢ with the iden-
tification Ex(1,1) = £(1,1)|s is equivalent to ¢ being a unit section
of R(1,0). The ratio bundle R(1,0) will prove to be the key to relat-
ing the tractor bundles (globally) without making an unnatural (local)
identification of density bundles.

5.3. Relating Tractor Bundles. If we tensor & with £x(0,1) then
choosing a submanifold contact form fy, identifies this bundle with

[E1]oy ® E2(0,1) = Ex(1,1) @ £,(1,1) @ Ex(0,0)

where £x(0,0) is the trivial bundle ¥ x C. Similarly, given an ambient
contact form 6 we may identify the N1 ® £(0,1)|x with

Wile® E(0, ]z = E(L, )]s & N7 (1,1) © £(0,0)]5

where £(0,0) is the trivial bundle M x C and N} denotes the orthogo-
nal complement to NV, in &,|s. Since Es(w,w) is canonically identified
with £(w,w)|s we have the following theorem:

Theorem 5.6. There is a canonical filtration preserving bundle iso-
morphism

I & @ Ex(0,1) = Nt @ £(0,1)|5

given with respect to a pair of compatible contact forms 6, Ox, by

ag g
€1y @E5(0,1) 5 [ 7 | = | 7o | € Nalo®E(0,D)]s
p P

— I~
where 7, = 1147,.

Proof. We only need to establish that the map is independent of the
choice of compatible contact forms, and this follows from comparing
the submanifold and ambient versions of (3.3) noting that VY = DY
and T, =1II4Y, as in the proof of Lemma 5.5. O
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Remark 5.7. If ¢ : Ex(1,0) — £(1,0)]x is a local bundle isomorphism
(unit as a local section of R(1,0)) and we denote by T the local iso-
morphism & — N1 given by Lemma 5.5 then isomorphism of Propo-
sition 5.6 agrees with Tyt ® 1) where this is defined.

Conjugating the map (5.6) and raising tractor indices one gets an
isomorphism

I &0 @ Eg(1,0) = (WNHE @ E(1,0)s
and tensoring both sides with Ex(—1,0) one gets another isomorphism

(5.7) EN = (NN @ E(1,0)]s ® En(-1,0)

R(1,0)

which we may also denote by II#. We think of II{' as a section of
ErREAs®R(1,0) and T as a section of 1 ®E4|x @R (0,1). Thinking
about these objects as sections emphasises that they can be interpreted
as maps in a variety of ways.

Definition 5.8. The isomorphism (5.7) gives an injective bundle map
(5.8) TR : TS = TM|s ® R(1,0)
which we term the twisted tractor map.

The twisted tractor map is clearly filtration preserving, and restricts
to an isomorphism 73 — T'M|y ® R(1,0). This is just the trivial
isomorphism

(5.9) Ex(—1,0) 2 £(—1,0)|s ® E(1,0)]5 ® Ex(—1,0).

Since it is filtration preserving 7. also induces an injective bundle
map T°S/T'S — (T°M|s/T'M|s) ® R(1,0) and this is simply the
tangent map £ — £%x tensored with the isomorphism (5.9). The
map TX/T°E — (TM|s/T°M|s) ® R(1,0) induced by the twisted
tractor map is the isomorphism

which simply comes from noting that R(1,0) = R(0, —1) since Ex(1,1) =
E(1,1)|g. Note that since R(1,0) is Hermitian, so is TM|s ® R(1,0),
and T is clearly a Hermitian bundle map. These properties charac-
terise the twisted tractor map.
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5.3.1. The adjoint tractor map. Since R(1,1) is canonically trivial the
section II#11% gives us a canonical bundle map

End(7%) — End(TM).

Since the twisted tractor map is metric preserving by restricting to
skew-Hermitian endomorphisms we get a map

Av: A — AM

which we term the adjoint tractor map. Recalling the projection AM —
TM given by (3.30) we note that the diagram

AY — AM
(5.10) I I
T, — TM

is easily seen to commute. So the adjoint tractor map is a lift of the
tangent map.

5.4. Relating Tractor Connections on 7X. Using the twisted trac-
tor map and the connection V* we obtain a connection V on the stan-
dard (co)tractor bundle induced by the ambient tractor connection.
Given a standard tractor field u’ and a cotractor field v; on X we

define
(5.11) V! = MLV (MEWX)  and Vs = TV (ITEvg)

where by V we mean the ambient standard tractor connection V dif-
ferentiating in directions tangent to 3 (i.e. pulled back by ¢) coupled
with the connection V.

From Section 3.4 the submanifold intrinsic tractor connection D on
a section vy 2= (0,7, p) is given by

(5.12)
. D,oc—1, , Do
D,vy = D,1, +iA,0 . Dpvy = Dut, +hypp + pupo
D,p—p,)'1, +t,o Dup —iAz" T, — tio
and
) Doo + 7iqpo —ip
(513) D(ﬂ}J = D[)’T,/ + #1'])7'” — ipy)\TA + 22%,,0

Dop + 5pp + 2it"T, + iso

where ¢, and s are the submanifold intrinsic versions of 7, and S
defined by (3.11) and (3.12) respectively. By contrast, for V we have:

)
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Proposition 5.9. The connection V on a section v; 22 (0,74, p) of &
1s given, in terms of any ambient contact form compatible with Oy, by

§ D,o—1,
(5.14) Vv = D,7, +iA,,0 ,
D.,p— P}, +T,0

D/_—LO'
(515) Vﬂ'UJ = DﬁTy + hul‘/p + PV[LU )
Dﬁp — iAﬁVTV — TﬁO’

and

) ) DQU + nj—lPA./\U —ip .
(5.16) Vovy = | Dot + nLHP)\ATV — P Ay 4+ 2iT,0

Dop + #ﬁPAAp + 211, + iSo

Proof. Choose any local isomorphism 1 : Ex(1,0) — £(1,0)|x compat-
ible with the canonical identification of (1, 1) with £(1,1)|s. Replac-
ing o with fo where f € C*(X,C) we may take o to satisfy 07 = ¢
where 0y, = ¢s0sx.. We can thus factor the components of v; so that
v & (fo,€,0,90), where ¢, € I'(§,) and g € ['(Ex(—1,-1)). If 0 is
an ambient contact form compatible with 6y, then (splitting the tractor
bundles w.r.t. 6, 6y) under the map Tyt ® 1 of Remark 5.7

(f0,6.0,90) ©T = (f,6a0,90) @ &
where ¢ = (o) and , = II*¢,,. Thus by definition we have

J o Jo - 1
vp=Mgzv;=| &0 | ®(P®RT )
9o
as a section of Eg|y ® R(1,0). Now one simply computes V;vp using
the formulae (3.13), (3.14), and (3.15) for the tractor connection along

with Lemma 4.38 which relates V* to the Tanaka-Webster connections
on the ambient and intrinsic density bundles. We have

(5.17)
9 (V)6 + £V, — Eu )
HgquB = Hg(vugﬁ)(b + £7Vu¢ + ngAuﬂf¢ X <¢ ® 6_1)
(Vug>¢ + 9V — PO+ T fo
fo B
+| &0 | @Vi(eeT )
g9
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where A5 = I} Ans, B, = 1IF,7, and T, = II§T,,. By Corollary
4.13 we have H,[jAuﬁ =117 A,,. We also have Hgvugg =1I7D,&,. Now
by Lemma 4.38 we have
Vi(0@a ) =(Vui9)®7 ' + 6@ Dy )
= (Vu0) @7 + (0 ' Duo)p @7

using that 7D, (¢ ') = -5 'D,o = 0 'D,0 since D,s5, = 0. If = ¢0
then since ¢ = 1(0) we must have ¢¢ = ¢|y, and this implies that

(Vﬂ¢) ®$+ (b@Vuﬁ_b: 0.
Using these to simplify (5.17) we have

) (D)6 = &0 )
oV,p = | (D)o +illiALfé | ®@ (0T ")
(Dug)ﬁb - P,ff,,gb + Tqub
fo
+ (U_lDua) &9 (¢®__1)-
go

Applying I1§ to the above display gives

(Duf)g —&u0 fDMO'
HBVHUB = (Du&)o +iAufo + | &Dyuo
(Dug)o — P60+ T, fo gD,0

which proves (5.14). Formula (5.15) is obtained similarly. In following
the same process for (5.16) we obtain that

Doo + *5Po —ip
Vouys 22 D1, + - Pr,, ZP ™+ 2¢1,0

n+2
n+2 T, +1So

. . o
i i
+ | —Pyy+ P 7 |,
( (n+1)" "™ 7 (n+2)(n+1) ) p
the second term arising from the use of Lemma 4.38. Simplifying this
gives the result. U

Remark 5.10. By construction V preserves the tractor metric hjz.
One can therefore obtain the formulae for V acting on sections of &’
by conjugating the above formulae and using the identification of &’
with &7 via the tractor metric.

One can now easily compare the two connections V and D on TX.
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Definition 5.11. The difference tractor S is the tractor endomorphism
valued 1-form on X given by the difference between V and D on T X.
Precisely, we have

(5.18) Vxu=Dxu+S(X)u and Vxv= Dxv—voS(X)
for X € X(X), w e I(T%), and v € I'(T*Y).

Given a contact form fy, on X the difference tractor S splits into com-
ponents S, 7, Sz 7% and Sy % (with only the last of these depending
on ). From the above formulae for V and D we have, in terms of a
compatible pair of contact forms,

(5-19) SuJK = (Pu)\ - pu/\)ZJW){( - (Tu - tu)ZJZKv

(5.20) Sps" = —(Pop = pop) Wy Z5 + (T — 1) Z, 2%,

and
(5.21)
Sost = =5 (P = p)of +i(B) — p,YWIWE

—2i(T, — t, )WY Z5 — 2(T* =t Z,WE —i(S — 82,25,

where m+2 = n+1 in this case. Both S, ; and S;;* are invariant ob-
jects. Both have as projecting part the difference P,;—p,»; a manifestly
CR invariant expression for this difference was given in Lemma 4.42.
We can also give matrix formulae for the difference tractor, following
the same conventions used in Section 3.6 we have

0 0 0 0 0 0
S~ = 0 0 0, Su=|ps—Pr 00
tl‘_Tﬂ P,uk_p,uk 0 Tﬂ_tﬂ O 0
and
i(P\*—p)
« - r2+2p 0 o 0
S/ = | —2(T, —t,) (P> —p) -1 0
. . iW(Py—
—i(S —s) —2i(T* — %) U —p) £+2p)

Remark 5.12. Since both tractor connections V and D preserve the
tractor metric on 7Y, the difference tractor must take values in skew-
Hermitian endomorphisms of the tractor bundle (i.e. S is an A¥-valued
1-form). This can also easily be seen from (5.19), (5.20) and (5.21),
from which we see that S is in fact A°S-valued.
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5.5. The Tractor Gauss Formula. In order to write down the Gauss
formula in Riemannian geometry one needs the tangent map (more pre-
cisely the pushforward) of the embedding, though one typically sup-
presses this from the notation. In order to give a standard tractor ana-
logue we have sought a canonical ‘standard tractor map’, but ended
up instead with the twisted tractor map 7 %:. However this poses no
problem for constructing a Gauss formula, since the line bundle R(1,0)
we have had to twist with carries an invariant connection V.

Letting ¢, denote the induced map on sections coming from 7% we
make he following definition:

Definition 5.13. We define the tractor second fundamental form IL by
the tractor Gauss formula

(5.22) Vxtu = t.(Dxu+S(X)u) + L(X)wu

which holds for any X € X(X) and u € TI'(TX), where V denotes the

ambient tractor connection coupled with V=.

This (combined with Theorem 5.6) establishes Theorem 1.3 for the
case m = n — 1, the result generalises straightforwardly (Section 6.3).

Remark 5.14. By the definition of the difference tensor S, for any X €
X(X) and u € I'(T3) we have that (X )¢,u is the orthogonal projection
of Vxu.uonto NQR(1,0). By definition then L is a 1-form on ¥ valued
in Hom(N* @ R(1,0), N @ R(1,0)) = Hom(N*, N).

Suppressing ¢, we write the tractor Gauss formula as

(5.23) Vxu = Dxu+S(X)u + L(X)u
—_——— N——
‘tangential part’ ‘normal part’

for any X € X(¥) and u € I'(TY).
Writing T4’ as u” and contracting the Gauss formula on both sides
with a unit normal cotractor N4 we get that

NeL(X)g%u? = NpVxu? = —uPVxNp
for all sections u”/ of £/ and X € X(X). Thus L is given by
(5.24) Lip® = —NCIIE V, Ny
for any unit normal cotractor N¢. From this we have:

Proposition 5.15. With respect to a compatible pair of contact forms
the components L“BC, ]LﬁBC, and Log® of the tractor second funda-

mental form 1L are given by

(5.25) L.s¢ = I, T{WEWE + P,y N ZgWY,
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(5.26) L =0,
and
(5.27) Lo = illy Py gy N"WaWC — 2Ty N ZWC

where N is some unit holomorphic normal field, P,y = 11} QBNB,
and Ty = Ty N©.

Proof. One simply chooses a unit holomorphic normal field N¢ and
corresponding normal tractor N4, then calculates Hgl V,;Np: using the
formulae (3.13), (3.14), and (3.15) for the ambient tractor connection.
Using (5.24) one immediately obtains (5.25); for (5.26) one also has
to use that I, = 0 (by Proposition 4.12) and II$A,zN” = 0 (by
Corollary 4.13), and for (5.27) one also has to use that II,” = 0 (again
by Proposition 4.12). O

The proposition shows that the invariant projecting part of L,z°
is 11,7113, giving a manifestly CR invariant way of defining the CR
second fundamental form.

6. HIGHER CODIMENSION EMBEDDINGS

It is straightforward to adapt our treatment of CR embeddings in
the minimal codimension case to general codimension transversal CR
embeddings. Here we consider a CR embedding of ¢ : X?™ 1 — py2ntt
with n = m+d, and m,d > 0. We keep our notation for bundles on %
and M as before. We now have a rank 2d real conormal bundle N*},
and the complexification of N*¥ splits as

(61) (CN*E:NQ @N@

where N, is the annihilator of T10% in (T"OM)*|s = &,|s and N =
N,. We denote by N7 the orthogonal projection of EPly; onto the
holomorphic normal bundle N'*, and by I the tangential projection,

so that T3 + N3 = §5. We will also write N°? for R?N?N? = R77N2.

Remark 6.1. Note that in passing to the general codimension there is no
restriction on the signatures (or relative signature) of the CR manifolds,
provided we have a nondegenerate transversal CR embedding.

6.1. Pseudohermitian Calculus. We may continue to work with
compatible contact forms in the general codimension case (see Remark
4.3). By Remark 4.10 the Tanaka-Webster connection V of an admis-
sible ambient contact form 6 induces the Tanaka-Webster connection
D of 0y, via the Webster metric gy as in Proposition 4.8. We can there-
fore define the (pseudohermitian) second fundamental form of a pair
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of compatible contact forms as in Definition 4.11 (i.e. via a Gauss
formula). By Remark 4.14 the only nontrivial components of the pseu-
dohermitian second fundamental form are I7,,7 and its conjugate. Also
by Remark 4.14 the pseudohermitian torsion of any admissible ambient
contact form satisfies IT¢ AqgN? = 0.

The higher codimension analogue of Lemma 4.16 is:

Lemma 6.2. Giwen compatible contact forms one has
(6.2) N, 11, = —11V,,Nj
for any holomorphic conormal field.

From Lemma 6.2 we see again that the component I1,,” of the pseu-
dohermitian second fundamental form does not depend on the compat-
ible pair of contact forms used to define it (cf. Corollary 4.17).

The Gauss, Codazzi and Ricci equations given in the three proposi-
tions of Section 4.7 hold in the general codimension case with the same
proofs (noting that the normal fields used in the proofs of Proposition
4.22 and Proposition 4.23 were arbitrary).

6.2. Relating Densities. As before we define AEOE to be the bundle
of forms in A M|y annihilating TY. Again we may identify A'°%
with N, by restriction to THOM|5. We write A?°S for the line bundle

Ad(AtOE). The following lemma is easily established (cf. Lemma 4.25
and Lemma 4.28):

Lemma 6.3. Along X the submanifold and ambient canonical bundles
are related by the canonical isomorphism which intertwines the Tanaka-
Webster connections of any compatible pair of contact forms

Ay = Ay @ A%
UV 2 D@ V-
Identifying A'°Y with AV, we may write A%’ as Nay--a,)- Tensoring

both sides of the isomorphism of Lemma 6.3 with £(d,0)|x we obtain
(cf. Corollary 4.26 and Corollary 4.29):

Corollary 6.4. Along X the submanifold and ambient density bundles
are related by the canonical isomorphism which intertwines the Tanaka-
Webster connections of any compatible pair of contact forms

E(—=m —2,0)g = Ex(—m —2,0) @ Ny ay(d, 0)
'V o D ® v+t
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Note that the line bundle N, ..q,(d, 0) is the d™ exterior power of
N, (1,0). Once again this bundle will turn out to be canonically iso-
morphic to a subbundle N'* = A4 of the ambient cotractor bundle €45
(see Section 6.3), and hence once again N, (1, 0) carries a canonical in-
variant connection. As before this connection turns out to be explicitly
realised as the normal Weyl connection on N, (1,0) of any admissible
ambient contact form. The normal Weyl connection on N, (1,0) agrees
with the normal Tanaka-Webster connection when differentiating in
contact directions; when differentiating in Reeb directions the two are
related by

7
n+ 2
for any section 7, of N,(1,0). The curvature RAN™ of this connection
on N, .. )(d,0) is again generically non zero, and we have

(6.3) VT, = Vit —iNY PP + P,

(6.4) RN = (m+2)(Pus — Do) + (B3 = p)hys

(cf. Lemma 4.41), RQZN* =0, Ré;w* =0, and (cf. (4.41))
d A[* 2 3 v

(6.5) RAN = V5, NP —iP. V11,0

We thus define the ratio bundle of densities R(w, w’) as before (Def-
inition 4.32) and see from Corollary 6.4 that these bundles carry a
canonical connection V® coming from the connection VV on AYN* =
Na;-a,)(d,0). We have therefore established Proposition 1.2. Using
Corollary 6.4 and (6.3) we may relate the connection V* to the coupled
submanifold-ambient Tanaka-Webster connection (cf. Lemma 4.38):

Lemma 6.5. In terms of a compatible pair of contact forms, 6, Ox,
the connection V= on a section ¢ @ o of E(w,w')|s @ Es(—w, —w') is
given by

(6.6) V(o ®0)=(Vup) ®0+¢® (Do),

(6.7) VE¢®0)=(Vip) @0+ ¢® (Do),

and

(6.8) Vi(¢p®0) = (Vod)@0+0@ (Do) + =% (iP,sN* — -1 P)p@o.

6.3. Relating Tractors. As before we have a canonical isomorphism
from N, (1,0) to a subbundle N4 of £4lx, given with respect to any
admissible ambient contact form 6 by

0
Ta

0

(6.9) Ta b T4 =
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There is a corresponding isomorphism of A'*(—1,0) with a subbundle
N4 of €4y, and we alternatively denote the dual pair N4 and Ny
by N and N* respectively. The normal tractor connection VV on
N4 agrees with the normal Weyl connection of any admissible ambient
contact form on N,(1,0) (cf. Proposition 5.3).

Sections 5.2 and 5.3 are valid without change in the general codi-
mension case. In particular, Lemma 5.5 and Theorem 5.6 hold. Thus
we may talk about the twisted standard tractor map

TR TS = TM|s ®R(1,0)

and the corresponding sections 14 of & ® 4]y ® R(1,0) and IT of
E' ® E4ly ® R(0,1). This allows us to define the connection V on
7% as in (5.11); one can then easily establish the expressions for V
given in Proposition 5.9 in the general codimension setting (the proof
is essentially the same, with Lemma 6.5 generalising Lemma 4.38). The
difference tractor S, defined as in Definition 5.11, is then still given in
component form by (5.19), (5.20), and (5.21).

We define the tractor second fundamental form IL by a tractor Gauss
formula as in Definition 5.13. This establishes Theorem 1.3. One then
also has that

(6.10) Lig’Ne = —TI18'V,;Np
for any section Ny of Ns. From this we get (cf. Proposition 5.15):

Proposition 6.6. With respect to a compatible pair of contact forms
the components LNBC, L,;BC, and Log® of the tractor second funda-
mental form 1L are given by

(6.11) Ly.sC = I, TWWE + PsN° ZsWE,
(6.12) Laz¢ =0,

and

(6.13) Lo = ill) PysNYWEWE — 2(TsNY 2 WE.

7. INVARIANTS OF CR EMBEDDED SUBMANIFOLDS

For many problems in geometric analysis it is important to construct
the invariants that are, in a suitable sense, polynomial in the jets of
the structure. Riemannian theory along these lines was developed by
Atiyah-Bott-Patodi for their approach to the heat equation asymp-
totics [1], and in [23] Fefferman initiated a corresponding programme
for conformal geometry and hypersurface type CR geometry. As ex-
plained in [3| there are two steps to such problems. The first is to
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capture the jets (preferably to all orders) of the geometry invariantly
and in an algebraically manageable manner. The second is to use this
algebraic structure to construct all invariants. The latter boils down
to Lie representation theory, for the case of parabolic geometries this is
difficult, and despite the progress in [3] and [30] for conformal geome-
try and CR geometry many open problems remain. For the conformal
and CR cases the first part is treated by the Fefferman and Fefferman-
Graham ambient metric constructions [23, 24, 25| and alternatively by
the tractor calculus |2, 8, 30]. It is beyond the scope of the current
work to fully set up and treat the corresponding invariant theory for
CR submanifolds. However we wish to indicate here that the first geo-
metric step, of capturing the jets effectively, is solved via the tools
developed above. In particular we will show that it is straightforward
to proliferate invariants of a (transversally embedded) CR submanifold.
It seems reasonable to hope that these methods will form the basis of
a construction of all invariants of CR embeddings (in an appropriate
sense).

7.1. Jets of the Structure. We now show that the jets of the struc-
ture of a CR embedding are captured effectively by the basic invariants
we have introduced in our ‘tractorial’ treatment of CR embeddings.

Observe that the tractor Gauss formula (5.22) may be rewritten in
the form

(7.1) VxTRi=TRoS(X)+L(X)o TR

for any X € TY, where TR, is interpreted as a section of TM|y ®
T3 ® R(1,0) and V here denotes the (pulled back) ambient tractor
connection coupled with the submanifold tractor connection and the
canonical connection V*. Using this we have the following proposition:

Proposition 7.1. Given a transversal CR embedding v : > — M, the
2-jet of the map v at a point v € ¥ is encoded by 1(z), T.%t, Sy and L,.

Proof. Recalling Section 5.3.1 we note that the twisted tractor map
TR determines the adjoint tractor map A: (by restricting ﬂb@ﬁ).
Since the adjoint tractor map lifts the tangent map, the 1-jet (v(x), T;t)
of ¢ at a point z € X is also determined by the pair (¢(z), T,%¢). The
proposition then follows from (7.1). O

In the jets of the structure of a CR embedding ¢ : ¥ — M we
include the jets of the ambient and submanifold CR structures, along
with the jets of the map ¢. A CR invariant of the embedding should
depend only on these jets evaluated along the submanifold. The jets
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of the ambient and submanifold CR structures are determined by the
respective tractor curvatures. Thus from Proposition 7.1 we have:

Proposition 7.2. The jets of the structure of a transversal CR em-
bedding v : ¥ — M at x € X are determined algebraically by ((x), the
submanifold and ambient CR structures (as Cartan geometries) at x,
the twisted tractor map T.Xt, as well as the jets of the difference tensor
S, the tractor second fundamental form 1L, the submanifold tractor cur-
vature K* at x, and the full (i.e. ambient) jets of the ambient tractor
curvature K at (x).

In order to complete the first step of the invariant theory programme
we need to package the jets of S, L, k¥ and K in an algebraically man-
ageable way. Note that the standard tractor bundle, tractor metric,
and canonical tractor Z are all determined algebraically from struc-
ture of a CR geometry (as a Cartan geometry). Thus if we package the
jets of S, L, k¥ and K into sequences of CR invariant tractors then one
may combine these tractors by tensoring them and using the subman-
ifold and ambient metrics to contract indices. One can also use the
twisted tractor map to change submanifold tractor indices to ambient
ones before making contractions (the ratio bundle of densities is also
determined algebraically from the submanifold and ambient CR struc-
tures). This would not only complete the first step of the invariant
theory programme, but would also suggest an obvious approach to the
second of the two steps.

7.2. Packaging the Jets. One way to define iterated derivatives of
the difference tractor S and submanifold curvature £* would be to re-
peatedly apply the submanifold fundamental derivative (or D-operator)
of [8]. Denoting the submanifold fundamental derivative by D, if f is S
or Ky then by Theorem 3.3 of [8] the k-jet of f at x € ¥ is determined
by the section

(f,Df,D*f,...,D"f)
of @f:o (®l A ® W) evaluated at x, where W equals A'Y ® AY or

A%Y ® AX respectively. The ambient jets of K can be similarly cap-
tured by iterating the ambient fundamental derivative, and one can also
capture the jets of I by using the submanifold fundamental derivative
twisted with the ambient tractor connection. Here instead we parallel
the approach taken in [30] to conformal invariant theory by first putting
the tractor valued forms S, L, k¥ and K into tractors (invariantly and
algebraically) using the natural inclusion of the cotangent bundle into
the adjoint tractor bundle, and then using double-D-operators.
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Let B¢ 5 denote the map 7™M — AM given explicitly by (3.29) and
Bj; denote the map T*% — AX.

Definition 7.3. We define the respective lifted (tractor) expressions
of the tractor valued forms S, L., k* and K to be

K ' K c ' c by i i %
Sipy = BipSut, Lypp” = Brpllis™,  Kipppxe = B}f’B(]/'j'Rinli’
and
b
Kaxpecd = BiyBpsKach-
Explicitly this means, for example, that
Siik’ = Suk"WFZ5 — So " ZIWY — iSox 2, Z 5.

By (3.42) the double-D-operator D45 acting on unweighted ambient
tractors can be written as
(7.2) Dap = Bj5Va

where V is the ambient tractor connection. Similarly the double-D-
operator D; 7 acting on unweighted submanifold tractors can be written
as

where D, denotes the submanifold tractor connection. By coupling D;
in (7.3) with V; we enable the double-D-operator operator D; 7 to act
iteratively on the unweighted (mixed) tractor Ly r~”. Noting that each
of the lifted tractor expressions given in Definition 7.3 is unweighted
we therefore have:

Proposition 7.4. Let v : X — M be a transversal CR embedding, and
let D denote the submanifold double-D-operator D;5. If f equals S, 1L,
or K= then the k-jet of f at x is determined by the section

(74) (f,Df,D*f,....D"f)
of @;‘;0 <®l AX ®W> evaluated at x, where f is the lifted tractor

expression for f and W equals @?AY, AY @ AM|s, or @3AY respec-
tively.

Along with the corresponding proposition for the ambient curvature:

Proposition 7.5. Let v : X — M be a transversal CR embedding,
and let D denote the ambient double-D-operator D ,5. The k-jet of the
ambient curvature Kk at o(x) is determined by the section

(7.5) (R, DR, DR, ..., DFR)
of B, <®l+3 AM) evaluated at ().
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By packaging the jets of the basic invariants S, L, k¥ and K into
sequences of tractors (i.e. sections of associated bundles corresponding
to representations of the appropriate pseudo-special unitary groups) we
have solved the first step of the invariant theory.

7.3. Tensor and Scalar Invariants. Given a compatible pair of con-
tact forms there is a natural notion of submanifold pseudohermitian
Weyl invariant, analogous to the notions of Riemannian Weyl invari-
ant and hypersurface Riemannian Weyl invariant in [1, 25, 30, 33].
Submanifold pseudohermitian Weyl invariants are sections of the bun-
dles

gﬂl"'#sl_/l"'l_/t ® gal"'(XS/Bl"'Bt/ |E.

The pseudohermitian Weyl invariants of a given tensor type are gen-
erated (complex linearly) by partial (or in the scalar case, full) con-
tractions of tensor products of covariant derivatives of the submanifold
and ambient pseudohermitian curvatures, the submanifold and ambi-
ent pseudohermitian torsions, and the CR second fundamental form
(this being the only nontrivial component of the pseudohermitian sec-
ond fundamental form); each of the covariant derivatives may be in the
holomorphic, antiholomorphic, or Reeb direction(s); the contractions
are made using the submanifold and ambient CR Levi forms, as well
as the restriction N,z of the ambient Levi form to the normal bun-
dle, and the tensors IIf and IIf; (and their conjugates) may be used
to contract ambient indices with submanifold indices; any remaining
upper indices are lowered using the submanifold and ambient CR Levi

forms. Since 7,,*5, R,5"5, A, Aap, and II,,7 all have no weight,
the generators we describe all have diagonal weight and can be treated
as weightless, since the fixed pair of compatible contact forms gives
a canonical trivialisation of Ex(w,w) = &(w,w)|x. Some examples of

scalar pseudohermitian Weyl invariants are

I, 1", TYIE(VOR)DyDaA,,, RN

s

and any complex linear combination of these. Some examples of tensor
pseudohermitian invariants are

11,7, D D, 11,7, 7",

where D denotes the submanifold Tanaka-Webster connection coupled
with the normal Tanaka-Webster connection V+.

Although we define pseudohermitian Weyl invariants to be of weight
zero (since we may trivialise the diagonal density bundles) each of
the generators described above has its own natural weight. Using the
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canonical CR invariant identification of £(w,w)|s with Es(w,w) each
of the generators may be thought of as a section of

(76) €u1~~~u5171“'17t (’LU, U)) ® gal"'OlS/BI"'Bt/ ‘E

for some w € Z. For example II,,71I" . is naturally a section of
Es(—1,—1). When fixing a pair of compatible contact forms it makes
sense to trivialise & (w,w) = E(w,w)|s and add together invariants
of different weights. However, if one is really interested in CR invari-
ants it is unnatural to trivialise the diagonal density bundles and one
should only consider pseudohermitian Weyl invariants which are homo-
geneous in weight. Being homogeneous in weight is a necessary (but
not sufficient) condition for a pseudohermitian Weyl invariant to be
conformally covariant, i.e. to transform merely by factor e®T for some
w € 7Z when the the compatible pair of contact forms are rescaled by
e¥. A pseudohermitian Weyl invariant which is conformally covariant
is in fact conformally invariant (i.e. CR invariant) as a section of the
appropriately weighted bundle (7.6). By local CR invariant tensor (or
scalar) field in the following we mean a pseudohermitian Weyl invariant
which is homogeneous in weight and is thought of as a weighted tensor
(or scalar) field. Although it is easy to write down pseudohermitian
Weyl invariants which are homogeneous in weight, these will in general
have very complicated transformation laws under a conformal rescaling
of the compatible pair of contact forms. This makes local CR invariant
tensor (or scalar) fields very difficult to find by naive methods, hence
the need for an invariant theory.

7.4. Making All Invariants. By tensoring together tractors of the
form appearing in (7.4) and (7.5) along ¥, making partial contractions,
and taking projecting parts one may construct a large family of local
CR invariant (weighted) scalars and tensors. It is an algebraic problem
to show that all scalar (or all tensor) invariants can be obtained by
such a procedure. This is a subtle and difficult problem, which extends
Fefferman’s parabolic invariant theory programme to the submanifold-
relative case (where there are two parabolics around, P and Ps). Even
in the original case of invariant theory for CR manifolds, despite much
progress, important questions remain unresolved [3, 35]. We do not
attempt to resolve these issues here.

We do wish to indicate, however, that there is scope for development
of the invariant theory for CR manifolds, and now CR embeddings,
along the lines of the treatment of invariant theory for conformal and
projective structures in |26, 27, 28, 30]. The tractor calculus we have
developed for CR embeddings provides all the machinery needed to
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emulate the constructions of conformal Weyl and quasi-Weyl invariants
in [30]. We anticipate that further insight from the projective case [28]
will be needed, and our machinery is sufficient for this also. With all
the tools in hand this article therefore puts us in good stead in terms of
our ability to construct (potentially all) invariants of CR embeddings.

7.5. Practical Constructions. Although in principle one may need
only the invariant tractors appearing in Propositions 7.4 and 7.5 for
construction of general invariants, in practice it is much more efficient
to use the richer calculus which is available. First of all, there are many
alternative ways to construct tractor expressions from the basic invari-
ants (recall for instance the curvature tractor of Section 3.8). Secondly,
there are several invariant operators besides the double-D-operators
D;;7 and D45 that can be used to act on these tractor expressions.

7.5.1. Alternative tractor expressions. Along with the lifted tractor ex-
pressions for the submanifold and ambient tractor curvatures one may
of course construct invariants using the curvature tractor of Section 3.8
or using the tractor defined in equation (3.49) of that section. Corre-
spondingly we may also use the middle operators of Section 3.7.2 to
construct tractors from our basic invariants S and L

S =MIS, 5, Spt = M?SpJK, and Lrp® =ML,

using indices to distinguish them from the difference tractor S and
the tractor second fundamental form L (and from their lifted tractor
expressions in Section 7.2). Recall that L,z = 0.

From (3.4) it follows immediately that

1
Z[AWJ% = §<ZAW§ - ZBW£)

does not depend on the choice of contact form, so is CR invariant.
Using Z[ AWg] and Z[IWfﬁ we construct the tractors

S[I/JK = Z[]W]lf}S/LJKa S]_[_/JK - Z[TW}%}S;}JK,
C (&
Lirp~ = Z[[W#]LMB )
¥ 2>
Krr it = ZuWinZiWink okt
and .
/‘{/AA/BB/CD == Z[AWX’]Z[BWE/]HQBCD

Of course one can also make invariant tractors from the invariant

components S,;%, S;;%, L,z and so on, by making contractions
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with the submanifold (or ambient) CR Levi form. For example, we
have the following invariant tractors on X

v J L v B L P AV .2 B D
h'ij,uI SDK ) h"uVL,LLA SDK 9 h*"h V'%MDKE]L)\A ]L’ﬁC' ’

where S, L = S, kL and ]Lﬁ@D = L,c”. One can also contract some,
or all, of the tractor indices. Note that

(7.7) L, peLPC = I1,,, 117
whereas
(7.8) S, gS"E =0 and TZIES, zLAPC =0

from the explicit formulae for S and IL in terms of compatible con-
tact forms and the orthogonality relations (3.10) between the splitting
tractors.

Remark 7.6. Although'S,,; #S*7E = 0 one can extract a scalar invariant
from the partial contraction S, JrS*'E by observing that this tractor

is of the form fZ;Z”, so that the (—1,—1) density f must be CR
invariant. In fact f is simply the invariant

(pr/ — puf/)(PW - puf/).
One of the difficulties inherent in constructing all invariants is pre-
dicting when this type of phenomenon will happen when dealing with

various contractions of higher order invariant tractors (such as those
appearing in Proposition 7.4).

7.5.2. Invariant operators. Along with the double-D-operators (7.2)
and (7.3) used in Section 7.2 one may of course use the submani-
fold and ambient tractor D-operators of Section 3.7.1 and the other
double-D-operators D;; and D45. In order to act on tractors of mixed
(submanifold-ambient) type, with potentially submanifold and ambient
weights, we will need to appropriately couple the submanifold intrinsic
invariant D-operators with the ambient tractor connection and with
the canonical connection on the density ratio bundles. Note that these
operators also form the building blocks for constructing invariant dif-
ferential operators on CR embedded submanifolds.

We first need to use the ratio bundles to eliminate ambient weights.
Let £2 denote any submanifold intrinsic tractor bundle and let £F (w, w’)
denote £ @ Ex(w,w'). Let £2(w,w’) denote any ambient tractor bun-
dle, weighted by ambient densities. We make the identification

(7.9) E2(w, W) @ EX (W, 0|y = EX(w+ b, W +7) @ E¥ |y @ R(W, &)

which motivates the following definition:
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Definition 7.7. We define the reduced weight of a section fq"i’ of the
bundle (7.9) to be (w,w') = (w + w,w" + @").

One can extend any of the submanifold D-operators to act on sec-
tions of the bundle (7.9) by taking the relevant D-operator acting on
submanifold tractors with the reduced weight, expressed in terms of a
choice of contact form 6y, and coupling the Tanaka-Webster connection
of fx, with the (pulled back) ambient tractor connection and the ratio
bundle connection V=.

We illustrate how this works for the submanifold tractor D-operator
D;. We define the CR invariant operator

Dr: E2(w, 0 RE s @R(W, @) — ErREL(W—1, W) REX | @R (1, ¥)

by
(7.10) )
) w(m 4w + ') f**
D, /"% = (m + @+ @)D, f*
— (DVDyf‘I"I> + a0 Do f** 4 (1 + —%;g)pf‘l’q’)

where D denotes the Tanaka-Webster connection of 5y coupled with
the submanifold tractor connection, the (pulled back) ambient tractor
connection, and the ratio bundle connection V.

7.5.3. Computing higher order invariants. Using the tractor calculus
we have developed it is now straightforward to construct further local
(weighted scalar, or other) invariants of a CR embedding. One can
differentiate the various tractors constructed from the basic invariants
in Sections 7.2 and 7.5.1 using the invariant operators of Section 3.7.1
and Section 7.5.2, tensor these together, and make contractions using
the tractor metrics (and the twisted tractor map). One can also make
partial contractions and take projecting parts.

To illustrate our construction we give an example invariant and com-
pute the form of the invariant in terms of the Tanaka-Webster calculus
of a pair of compatible contact forms: Consider the nontrivial reduced
weight (—2, —2) density

(7.11) T = D'D/ (P TIY W he gL, 5 Ly 5 7).

Since H?H? is by definition a section of &7 ® £8P|y ® R(1,1), and
R(1,1) is canonically trivial and flat, we see that

(7.12) fi7 = TP TFR hoplys Ly p”

has reduced weight (—1,—1) and no ratio bundle weight (diagonal ra-
tio bundle weights can be ignored). Therefore in this case we do not
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need to couple the submanifold tractor D-operator with any ambient
connection in order to define D'D”’ f;7. From the definition of D; we
have

(7.13) D' fr7 = —(m —2)Y/ f,7+ (m — 2)W"/D, f,;
—z’ (DVDquj - iDoij - pffj)

where D denotes the submanifold tractor connection coupled with the
Tanaka-Webster connection of some submanifold contact form 6y, and
Z, W, Y are the splitting tractors corresponding to the choice of 5.
The tractor D’ f;; has weight (—2,—1) and so, applying D; and con-
tracting, we have

(7.14)
D'DY f;; = —2(m — 3)Y'D' f,7 + (m — 3)W* DD’ f,;

_ 7 _ 7 m+3 7
~ 7! (D“DMDJ fr7 —2iDoD’ f,5 — 2—pD”’f1j> :
m+ 2

If we choose 6 admissible and compatible with 5 then (6.11) implies
(7.15) fr7 = )" 15, R hoeWPW? + PN Py WY 7, Z ;.

In each term on the right hand side of (7.13) and (7.14) there is a con-
traction with a tractor, using the orthogonality relations between the
tractor projectors simplifies the calculation significantly since one can
ignore terms that will vanish after these contractions. So, for example,
one easily computes that

WY D, fr7 = DP(IL\IT" 5, W3) + mP,aN°® Ps Z;.

Another efficient way to compute terms is to commute the splitting
tractors forward past each appearance of the connection D using the
submanifold versions of (3.16)-(3.24). Since Z7 f;; =0 and [D,, Z7] =
D,Z7 =0 we have Z’D, f;7 = 0, from which we get

7DD, f17 = -W"'D,f15

using [D¥, Z7] = D" Z7 = W*”; thus two of the terms in (7.13) coincide,
up to a factor, simplifying our calculations significantly. Computing
similarly
ZJDofIJ = DO(ZJfIJ) - (DOZJ>ij
= iP,aN*Ps" 7,
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using that ijlj = 0 and DyZ7 = —iY’ + mLHij. Putting these
together yields
(7.16) D7 fr; = (m — 1)DP(IL,\" 11" 5, W) 4 (m — 1) P,sNP Py 7,
Repeating this procedure for (7.14) we eventually obtain
(717) I =(m—1)[(m—2)D*D(IL,\"1I";,)

+ (DD — 2iDy — B2 ) (77 TN

— (m = 2)(m — 4)p™IL,\" 11",

+ (m—1)(m — 2)(m — 4)P,aN"*Ps#] .

8. A CR BONNET THEOREM

In classical surface theory the Bonnet theorem (or fundamental the-
orem of surfaces) says that if a covariant 2-tensor /I on an abstract
Riemannian surface (X, g) satisfies the Gauss and Codazzi equations
then (locally about any point) there exists an embedding of (¥, g) into
Euclidean 3-space which realises the tensor II as the second fundamen-
tal form. A more general version of the Bonnet theorem states that if
we specify on a Riemannian manifold (3™, g) a rank d vector bundle
N with bundle metric and metric preserving connection and an N3-
valued symmetric covariant 2-tensor II satisfying the Gauss, Codazzi
and Ricci equations then (locally) there exists an embedding of (3™, g)
into Euclidean n-space, where n = m + d, realising NX as the normal
bundle and II as the second fundamental form. Here we give a CR
geometric analogue of this theorem.

8.1. Locally Flat CR Structures. The Bonnet theorem given in sec-
tion 8.3 generalises and is motivated by the following well-known the-
orem on locally flat CR structures. The proof we give will be adapted
to give a proof of the Bonnet theorem.

Theorem 8.1. A nondegenerate CR manifold (M**1, H, J) of signa-
ture (p,q) with vanishing tractor curvature is locally equivalent to the
signature (p,q) model hyperquadric H.

Proof. The signature (p,q) model hyperquadric H can be realised as
the space of null (i.e. isotropic) complex lines in the projectivisation of
Cr+Latl Since the tractor curvature vanishes one may locally identify
the standard tractor bundle 7'M with the trivial bundle M x Cr+Lat!
so that the tractor connection becomes the trivial flat connection and
the tractor metric becomes the standard inner product on CP+1.atl,
The canonical null line subbundle L = 7'M of TM (spanned by the



CR EMBEDDED SUBMANIFOLDS OF CR MANIFOLDS 83

weighted canonical tractor Z4) then gives rise to a map from M into
the model hyperquadric given by

(8.1) M5z~ L, C CPHiatt,

We need to show that the map f : M — P(CPT14%1) given by (8.1) is
a local CR diffeomorphism.

The maximal complex subspace in the tangent space to H at the
point ¢, where ¢ C CP19%! is an isotropic line, is the image of /* under
the tangent map of the projection CP*h4+t — P(CPTh4+1) Choosing a
nowhere zero local section p of L = £(—1,0) we get a lift of the map
ftoamap f,: M — CPT4*!1 The map L = £(—1,0) — TM = &4
is given explicitly by p + pZ“. Since the tractor connection is flat the
tangent map of f, at x € M is given by

T.M 3> X s Vx(pZ?) € CPrhatt,

By the respective conjugates VBZA = 0 and V5ZA = W[{‘ of (3.18)
and (3.21) (fixing any background contact form and raising indices
using the tractor metric) the tangent map 7, f, restricted to contact
directions maps onto a complementary subspace to L, inside L and
induces a complex linear isomorphism of H, with Ll/L,; combined
with (3.24) we see that T, f, is injective and its image is transverse
to L,. Now f is the composition of f, with the projectivisation map
Crrhati L0} — P(CPT14*1); thus we have that T, f is injective, and
further that f is a local CR diffeomorphism from M to the signature
(p, q) model hyperquadric in P(CP+ha+1), O

Remark 8.2. Throughout this article we have implicitly identified the
CR tractor bundle 7 M with the holomorphic part of its complexifica-
tion in the standard way. In the above proof we have therefore also
implicitly identified the tangent space to CP*14+! at any point with the
holomorphic tangent space; the section pZ* should be understood as a
section of the holomorphic tractor bundle, the map f, being determined
by the corresponding section of the real tractor bundle.

The map constructed in the proof is the usual Cartan developing
map for a flat Cartan connection, though constructed using tractors
and the projective realisation of the model hyperquadric. The fact
that the map constructed is a local CR diffeomorphism relies on the
soldering property of the canonical Cartan/tractor connection on M,
which is captured in the formulae (3.18), (3.21), and (3.24).

8.2. CR Tractor Gauss-Codazzi-Ricci Equations. Our tractor
based treatment of transversal CR embeddings in Sections 5 and 6
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has shown us exactly what data should be prescribed on a CR man-
ifold in a CR version of the Bonnet theorem: Consider a transversal
CR embedding ¥2™*! < M?7*! between nondegenerate CR manifolds.
Then along > the ambient standard tractor bundle splits as an orthog-
onal direct sum (72 ® R(—1,0)) N with the ratio bundle R(—1,0)
being the dual of an (m + 2) root of the top exterior power AN of
the normal tractor bundle A/. It is also easy to see that the (pulled
back) ambient tractor connection decomposes along ¥ as

D®VR+S —LT) TE@R(-1,0)
on S

sa v (POTHS i

where D ® V™ denotes the coupled connection on TX ®R(—1,0), with
D the submanifold tractor connection and V7 the connection induced
on R(—1,0) by the normal tractor connection V. The objects S and
L are as defined in Sections 5.4 and 5.5, and L(X) is the Hermitian
adjoint of IL(X) with respect to the ambient tractor metric for any
X € %(¥). The bundle N carries a Hermitian metric »" induced
by the ambient tractor metric. We refer to the triple (N, vV, N )
along with (R(—1,0), V?) and the invariants S and L as the (extrinsic)
induced data coming from the CR embedding.
The above observations also establish Proposition 1.1.

Remark 8.3. The Hermitian adjoint LT of I appears because of (6.10).
Note that ILZTBC = L,C 5 so that in particular ILLBC = Luég and ILLBC =
0. Note also that for any X € X(X)

S(X) -LYX
(8.3) ( e I )

is a skew-Hermitian endomorphism of 7 M|y since each of the connec-
tions appearing in (8.2) preserves the appropriate Hermitian bundle
metric.

We can also easily see what the integrability conditions should be on
this abstract data: Observe that the curvature of the connection (8.2)
acting on sections of TM|x is given by

<D®VR+S —Lf >A(D®VR+S —IU)

L vV L \vad
KPOVEHS AL —dLt —SALt
- dL+LAS KN —L ALt

where KPEV™HS is the curvature of D ® VR + S, dLL and dL' are the
respective covariant exterior derivatives of L and L with respect to
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D@ VR @ VY, and k" is the curvature of VV. The above display
expresses the pullback of the ambient curvature by the embedding in
terms of the induced data of the CR embedding. Writing these relations
component-wise leads to the CR tractor Gauss, Codazzi, and Ricci
equations; denoting the pullback of the ambient curvature simply by K
these are, respectively,

(8.4) Mokoll = KPEVHS LI AL,
(8.5) Nokoll=dL+LAS,
and

(8.6) NokoN=krN -LALf

where II and N denote the complementary ‘tangential’ and ‘normal’
projections acting on a section v = (v",v*) of TM|y. Of course

RPOVEAS _ ¥ R0 1 S+ SA'S

where K*(1:0) denotes the curvature of R(1,0) acting as a bundle endo-
morphism via multiplication, K* is the submanifold tractor curvature,
and dS is the covariant exterior derivative of S with respect to the
submanifold tractor connection. Note that the equation ITo K o N =
—dLLT — S ALT is determined by (8.5). Note also that the tractor Ricci
equation (8.6) determines the normal tractor curvature £/ in terms of
the ambient curvature and the tractor second fundamental form.

Remark 8.4. One can easily write the terms appearing in the tractor
Gauss, Codazzi, and Ricci equations more explicitly using abstract
indices. For instance we have

(LY AL)yx" =218 L1

E L E
LIE 51K = 2Ly " gLy

where we use Ljx? = L;cPII$ and LI,* = LI, P11} since we are
identifying N+ C TM|s with TY ® R(-1,0).

8.3. The CR Bonnet Theorem. With the notion of induced data
on the submanifold from a CR embedding given in the previous section
we can now give the following theorem:

Theorem 8.5. Let (X*™ 1 H,J) be a signature (p,q) CR manifold and
suppose we have a complex rank d vector bundle N on Y equipped with
a signature (p',q') Hermitian bundle metric N and metric connection
VN, Fiz an (m+2)™" root R of AN, and let V* denote the connection
induced by VN . Suppose we have a N@T*SQR valued 1-form L which
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annihilates the canonical tractor of ¥ and an A°Y valued 1-form S on
Y} such that the connection

R it
v;:(D®V +S —-L

L v ®

N

is flat (where D is the submanifold tractor connection), then (locally)
there exists a transversal CR embedding of 2 into the model (p+p’, q+
q') hyperquadric H, unique up to automorphisms of the target, realising
the specified extrinsic data as the induced data.

Proof. Since the complex line bundle AN is normed by A", the bundle
R is also normed. This means that the tractor metric 7> induces a
Hermitian bundle metric on 7% ® R*, which we again denote by 7.
We therefore have a Hermitian bundle metric h = A7> + B on the
bundle (7TX ® R*) @ N. Since S is adjoint tractor valued (i.e. skew-
Hermitian endomorphism of 7Y valued) the connection D ® V* + S
on 7Y ® R* preserves h’>. Collectively, the terms involving L and L
in the displayed definition of V constitute a one form valued in skew-
Hermitian endomorphisms of (7Y ® R*) & N. Combined with the
fact that V/ preserves iV this shows that V preserves the Hermitian
bundle metric h.

The signature (p + p’,q + ¢’) model hyperquadric H can be re-
alised as the space of null complex lines in the projectivisation of
T = CrP'+hatd ™+l Since the connection V on (T ® R*) & N is
flat and preserves h one may locally identify this bundle with the triv-
ial bundle > x T such that V becomes the trivial flat connection and
h becomes the standard signature (p + p’ + 1,q + ¢’ + 1) inner prod-
uct on T; this trivialisation is uniquely determined up to the action
of SUp+p +1,¢g+ ¢ + 1) on T. The canonical null line subbundle
Es(—1,0) of TX gives rise to a null line subbundle L = &x(—1,0) ® R*
of ¥ x T. The null line subbundle L then gives rise to a smooth map
into the model (p + p’ +1,q + ¢’ + 1) hyperquadric given by

(8.7) Yox— L, CT= Cptp +latd+1

Since the local trivialisation of (72X ® R*) @ N is uniquely determined
up to the action of SU(T) the above displayed map from X to H is
determined up to automorphisms of H. It remains to show that this
map is a transversal CR embedding inducing the specified extrinsic
data.

Let us denote the map (8.7) by f : ¥ — H C P(T). Given a nowhere
zero local section p of L = &Ex(—1,0) ® R* we may think of the section
pZ! of TY ® R* as a section of ¥ x T via inclusion; this section gives

TYR®R*
) on
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rise to a lifted map f, : ¥ — T. The tangent map of f, at x € X is
given by
T,X > X — Vx(pZ") € T.

From (3.18) and (3.21) we have that D,Z! = 0 and D,Z! = W!
(fixing some background contact form on Y); using these, the definition
of V, and the facts that S;;%Z7 mod ZX = 0 (since S is adjoint
valued) and that L annihilates the canonical tractor Z!, we see that
T, f, restricted to contact directions is injective and induces a complex
linear isomorphism of H, onto a subspace of Li/L,; combined with
(3.24) we see that T, f, is injective and its image is transverse to L,.
This implies that the composition f of f, with the projectivisation map
T\{0} — P(T) is alocal CR embedding into the model hyperquadric #.
Equation (3.24) further shows that T, f,(T,X) ¢ Ly, so f is transversal.

To see that this embedding induces back the specified extrinsic data
we simply need to note that we may identify (TX @ R*) &N =X x T
with TH|y, identifying V with the flat tractor connection on T H|s
and h with the tractor metric A7 along 3. Then

TER®R*
TH|s = S
N

is the usual decomposition of the ambient tractor bundle along the
submanifold, and the definition of V in the statement of the theorem
gives the usual decomposition of the ambient tractor connection. [J

Our formulation and proof of this CR Bonnet theorem is inspired
by the conformal Bonnet theorem formulated and proved in terms of
standard conformal tractors by Burstall and Calderbank in [6]. The
condition that the connection V we define be flat is alternatively given
in terms of the prescribed data on (3, Hy, Js) by the tractor Gauss,
Codazzi, and Ricci equations (8.4), (8.5), and (8.6) with the left hand
sides equal to zero.
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