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Abstract. The following are expanded lecture notes for the course of eight one
hour lectures given by the second author at the 2014 summer school Asymptotic
Analysis in General Relativity held in Grenoble by the Institut Fourier. The
first four lectures deal with conformal geometry and the conformal tractor cal-
culus, taking as primary motivation the search for conformally invariant tensors
and differential operators. The final four lectures apply the conformal tractor
calculus to the study of conformally compactified geometries, motivated by the
conformal treatment of infinity in general relativity.
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0. Introduction

Definition 1. A conformal n-manifold (n ≥ 3) is the structure (M, c) where

• M is an n-manifold,
• c is a conformal equivalence class of signature (p, q) metrics,

i.e. g, ĝ ∈ c def.⇐⇒ ĝ = Ω2g and C∞(M) 3 Ω > 0.
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To any pseudo-Riemannian n-manifold (M, g) with n ≥ 3 there is an associated
conformal manifold (M, [g]) where [g] is the set of all metrics ĝ which are smooth
positive multiples of the metric g. In Riemannian signature (p, q) = (n, 0) passing
to the conformal manifold means geometrically that we are forgetting the notion of
lengths (of tangent vectors and of curves) and retaining only the notion of angles
(between tangent vectors and curves) and of ratios of lengths (of tangent vectors at
a fixed point) associated to the metric g. In Lorentzian signature (n−1, 1) passing
to the conformal manifold means forgetting the “spacetime interval” (analogous to
length in Riemannian signature) and retaining only the light cone structure of the
Lorentzian manifold. On a conformal Lorentzian manifold one also has the notion
of angles between intersecting spacelike curves and the notion of orthogonality of
tangent vectors at a point, but the conformal structure itself is determined by the
light cone structure, justifying the use of the word only in the previous sentence.

The significance of conformal geometry for general relativity largely stems from
the fact that the light cone structure determines the causal structure of spacetime
(and, under some mild assumptions, the causal structure determines the light
cone structure). On top of this we shall see in the lectures that the Einstein field
equations admit a very nice interpretation in terms of conformal geometry.

In these notes we will develop the natural invariant calculus on conformal man-
ifolds, the (conformal) tractor calculus, and apply it to the study of conformal
invariants and of conformally compactified geometries. The course is divided into
two parts consisting of four lectures each. The first four lectures deal with con-
formal geometry and the conformal tractor calculus, taking as primary motivation
the problem of constructing conformally invariant tensors and differential opera-
tors. The tools developed for this problem however allow us to tackle much more
than our original problem of invariants and invariant operators. In the final four
lectures they will be applied in particular to the study of conformally compactified
geometries, motivated by the conformal treatment of infinity in general relativity.
Along the way we establish the connection between the conformal tractor calculus
and Helmut Friedrich’s conformal field equations. We also digress for one lecture,
discussing conformal hypersurface geometry, in order to facilitate the study of the
relationship of the geometry of conformal infinity to that of the interior. Finally
we show how the tractor calculus may be applied to treat aspects of the asymptotic
analysis of boundary problems on conformally compact manifolds. For complete-
ness an appendix has been added which covers further aspects of the conformal
tractor calculus as well as discussing briefly the canonical conformal Cartan bundle
and connection.

The broad philosophy behind our ensuing discussion is that conformal geome-
try is important not only for understanding conformal manifolds, or conformally
invariant aspects of pseudo-Riemannian geometry (such as conformally invariant
field equations), but that it is highly profitable to think of a pseudo-Riemannian
manifold as a kind of symmetry breaking (or holonomy reduction) of a conformal
manifold whenever there are any (even remotely) conformal geometry related as-
pects of the problem being considered. Our discussion of the conformal tractor
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calculus will lead us naturally to the notions of almost Einstein and almost pseudo-
Riemannian geometries, which include Einstein and pseudo-Riemannian manifolds
(respectively) as well as their respective conformal compactifications (should they
admit one). The general theory of Cartan holonomy reductions then enables us to
put constraints on the smooth structure and the geometry of conformal infinities
of Einstein manifolds, and the tractor calculus enables us to partially generalise
these results to pseudo-Riemannian manifolds.

We deal exclusively with conformal manifolds of at least three dimensions in
these notes. That is not to say that two dimensional conformal manifolds cannot be
fitted in to the framework which we describe. However, in order to have a canonical
tractor calculus on two dimensional conformal manifolds the conformal manifold
needs to be equipped with an extra structure, weaker than a Riemannian structure
but stronger than a conformal structure, called a Möbius structure. In higher
dimensions a conformal structure determines a canonical Möbius structure via the
construction of the canonical conformal Cartan bundle and connection (outlined
in the appendix, Section A.1). In two dimensions there is no canonical Cartan
bundle and connection associated to a conformal manifold, this (Möbius) structure
must be imposed as an additional assumption if we wish to work with the tractor
calculus. We note that to any Riemannian 2-manifold, or to any (nondegenerate)
2-dimensional submanifold of a higher dimensional conformal manifold, there is
associated a canonical Möbius structure and corresponding tractor calculus.

Also left out in these notes is any discussion of conformal spin geometry. In this
case there is again a canonical tractor calculus, known as spin tractor calculus or
local twistor calculus, which is a refinement of the usual conformal tractor calculus
in the same way that spinor calculus is a refinement of the usual tensor calculus
on pseudo-Riemannian spin manifolds. The interested reader is referred to [4, 51].

0.1. Notation and conventions. We may use abstract indices, or no indices, or
frame indices according to convenience. However, we will make particularly heavy
use of the abstract index notation. For instance if L is a linear endomorphism of
a finite dimensional vector space V then we may choose to write L using abstract
indices as Lab (or Lbc, or La

′
b′ , it makes no difference as the indices are just place

holders meant to indicate tensor type, and contractions). In this case we would
write a vector v ∈ V as va (or vb, or va

′
, ...) and we would write the action of L

on v as Labv
b (repeated indices denote tensor contraction so Labv

b simply means
L(v)). Similarly if w ∈ V ∗ then using abstract indices we would write w as wa (or
wb, or wa′ , ...) and w(v) as wav

a, whereas the outer product v⊗w ∈ End(V ) would
be written as vawb (or vbwc, or wbv

a, ...). A covariant 2-tensor T ∈ ⊗2V ∗ may be
written using abstract indices as Tab, the symmetric part of T is then denoted by
T(ab) and the antisymmetric part by T[ab], that is

T(ab) =
1

2
(Tab + Tba) and T[ab] =

1

2
(Tab − Tba) .

Note that swapping the indices a and b in Tab amounts to swapping the “slots” of
the covariant two tensor (so that b becomes the label for the first slot and a for the
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second), this gives in general a different covariant two tensor from Tab whose matrix
with respect to any basis for V would be the transpose of that of Tab. We can
similarly define the symmetric or antisymmetric part of any covariant tensor Tab···e
and these are denoted by T(ab···e) and T[ab···e] respectively. We use the same bracket
notation for the symmetric and antisymmetric parts of contravariant tensors. Note
that we do not have to symmetrise or skew-symmetrise over all indices, for instance
T a[bc]

d denotes
1

2

(
T abcd − T acbd

)
.

The abstract index notation carries over in the obvious way to vector and tensor
fields on a manifold. The virtue of using abstract index notation on manifolds is
that it makes immediately apparent the type of tensorial object one is dealing with
and its symmetries without having to bring in extraneous vector fields or 1-forms.
We will commonly denote the tangent bundle of M by Ea, and the cotangent
bundle of M by Ea. We then denote the bundle of covariant 2-tensors by Eab, its
subbundle of symmetric 2-tensors by E(ab), and so on. In order to avoid confusion,
when working on the tangent bundle of a manifold M we will always use lower
case Latin abstract indices taken from the beginning of the alphabet (a, b, etc.)
whereas we will take our frame indices from a later part of the alphabet (starting
from i, j, etc.).

It is common when working with abstract index notation to use the same nota-
tion Ea for the tangent bundle and its space of smooth sections. Here however we
have used the notation Γ(V) for the space of smooth sections of a vector bundle
V consistently throughout, with the one exception that for a differential operator
D taking sections of a vector bundle U to sections of V we have written

D : U → V
in order to simplify the notation.

Consistent with our use of Ea for TM we will often denote by E the trivial R-
bundle over our manifold M , so that Γ(E) = C∞(M). When using index free nota-
tion we denote the space of vector fields on M by X(M), and we use the shorthand
Λk for ΛkT ∗M (when the underlying manifold M is understood). Unless otherwise
indicated [ · , · ] is the commutator bracket acting on pairs of endomorphisms. Note
that the Lie bracket arises in this way when we consider vector fields as derivations
of the algebra of smooth functions. In all of the following all structures (manifolds,
bundles, tensor fields, etc.) will be assumed smooth, meaning C∞.

0.1.1. Coupled connections. We assume that the reader is familiar with the notion
of a linear connection on a vector bundle V →M and the special case of an affine
connection (being a connection on the tangent bundle of a manifold). Given a pair
of vector bundles V and V ′ over the same manifold M and linear connections ∇
and ∇′ defined on V and V ′ respectively, then there is a natural way to define a
connection on the tensor product bundle V ⊗ V ′ → M . The coupled connection
∇⊗ on V ⊗ V ′ is given on a simple section v ⊗ v′ of V ⊗ V ′ by the Leibniz formula

∇⊗X(v ⊗ v′) = (∇Xv)⊗ v′ + v ⊗ (∇′Xv′)
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for any X ∈ X(M). Since Γ(V ⊗V ′) is (locally) generated by simple sections, this
formula determines the connection ∇⊗ uniquely. In order to avoid clumsy notation
we will often simply write all of our connections as ∇ when it is clear from the
context which (possibly coupled) connection is being used.

0.1.2. Associated bundles. We assume also that the reader is familiar with the
notion of a vector bundle on a smooth manifold M as well as that of an H-
principal bundle over M , where H is a Lie group. If π : G → M is a (right)
H-principal bundle and V is a (finite dimensional) representation of H then the
associated vector bundle G×HV→M is the vector bundle with total space defined
by

G ×H V = G × V/ ∼
where ∼ is the equivalence relation

(u, v) ∼ (u · h, h−1 · v), h ∈ H
on G × V; the projection of G ×H V to M is simply defined by taking [(u, v)] to
π(u). For example if F is the linear frame bundle of a smooth n-manifold M then

TM = F ×GL(n) Rn and T ∗M = F ×GL(n) (Rn)∗.

Similarly if H is contained in a larger Lie group G then one can extend any
principal H-bundle G →M to a principal G-bundle G̃ →M with total space

G̃ = G ×H G = G ×G/ ∼ where (u, g) ∼ (u · h, h−1 · g).

For example if (M, g) is a Riemannian n-manifold and O denotes its orthonormal
frame bundle then

F = O ×O(n) GL(n)

is the Linear frame bundle of M .

1. Lecture 1: Riemannian invariants and invariant operators

Recall that if ∇ is an affine connection then its torsion is the tensor field T ∈
Γ(TM ⊗ Λ2T ∗M) defined by

T∇(u, v) = ∇uv −∇vu− [u, v] for all u, v ∈ X(M).

It is interesting that this is a tensor; by its construction one might expect a differ-
ential operator. Importantly torsion is an invariant of connections. On a smooth
manifold the map

∇ 7→ T∇

taking connections to their torsion depends only the smooth structure. By its
construction here it is clear that it is independent of any choice of coordinates.

For any connection ∇ on a vector bundle V its curvature is defined by

R∇(u, v)W := [∇u,∇v]W −∇[u,v]W for all u, v ∈ X(M), and W ∈ Γ(V),

and R∇ ∈ Γ(Λ2T ∗M ⊗ End(V)). Again the map taking connections to their
curvatures

∇ 7→ R∇
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clearly depends only the (smooth) vector bundle structure of V over the smooth
manifold M . The curvature is an invariant of linear connections. In particular
this applies to affine connections, i.e. when V = TM .

1.1. Ricci calculus and Weyl’s invariant theory. The most familiar setting
for these objects is pseudo-Riemannian geometry. In this case we obtain a beautiful
local calculus that is sometimes called the Ricci calculus. Let us briefly recall how
this works. Recall that a pseudo-Riemannian manifold consists of an n-manifold M
equipped with a metric g of signature (p, q), that is a section g ∈ Γ(S2T ∗M) such
that pointwise g is non-degenerate and of signature (p, q). Then g canonically
determines a distinguished affine connection called the Levi-Civita connection.
This is the unique connection ∇ satisfying:

• ∇g = 0 (metric compatibility), and

• T∇ = 0 (torsion freeness).

Thus on a smooth manifold we have a canonical map from each metric to its
Levi-Civita connection

g 7→ ∇g

and, as above, a canonical map which takes each Levi-Civita connection to its
curvature ∇g 7→ R∇

g
, called the Riemannian curvature. Composing these we get

a canonical map that takes each metric to its curvature

g 7−→ Rg,

and this map depends only on the smooth structure of M . So we say that Rg is an
invariant of the pseudo-Riemannian manifold (M, g). How can we construct more
such invariants? Or “all” invariants, in some perhaps restricted sense?

The first, and perhaps most important, observation is that using the Levi-Civita
connection and Riemannian curvature one can proliferate Riemannian invariants.
To simplify the explanation let’s fix a pseudo-Riemannian manifold (M, g) and use
abstract index notation (when convenient). Then the metric is written gab and we
write Rab

c
d for the Riemannian curvature. So if u, v, w are tangent vector fields

then so is R(u, v)w and this is written

uavbRab
c
dw

d.

From curvature we can form the Ricci and Scalar curvatures, respectively:

Ricab := Rca
c
b and Sc := gab Ricab,

and these are invariants of (M, g). As also are:

∇bRcdef , ∇a∇bRcdef ,

which are tensor valued invariants and

Ricab Ricab Sc = |Ric |2 Sc, RabcdR
abcd = |R|2, (∇aRbcde)∇aRbcde = |∇R|2,

which are some scalar valued invariants. Here we have used the metric (and its
inverse) to raise and lower indices and contractions are indicated by repeated
indices.



8 Curry & Gover

Since this is a practical and efficient way to construct invariants, it would be
useful to know: Do all local Riemannian invariants arise in this way? That is from
partial or complete contractions of expressions made using g, R and its covariant
derivatives ∇ · · ·∇R (and the metric volume form volg, if M is oriented). We shall
term invariants constructed this way Weyl invariants.

Before answering this one first needs to be careful about what is meant by a
local invariant. For example, the following is a reasonable definition for scalar
invariants.

Definition 2. A scalar Riemannian invariant P is a function which assigns to each
pseudo-Riemannian n-manifold (M, g) a function P (g) such that:

(i) P (g) is natural, in the sense that for any diffeomorphism φ : M → M we
have P (φ∗g) = φ∗P (g).

(ii) P is given by a universal polynomial expression of the nature that, given
a local coordinate system (xi) on (M, g), P (g) is given by a polynomial in
the variables gmn, ∂i1gmn, · · · , ∂i1∂i2 · · · ∂ikgmn, (det g)−1, for some positive
integer k.

Then with this definition, and a corresponding definition for tensor-valued in-
variants, it is true that all local invariants arise as Weyl invariants, and the result
goes by the name of Weyl’s classical invariant theory, see e.g. [1, 53]. Given this
result, in the following when we mention pseudo-Riemannian invariants we will
mean Weyl invariants.

1.2. Invariant operators, and analysis. In a similar way we can use the Ricci
calculus to construct invariant differential operators on pseudo-Riemannian man-
ifolds. For example the (Bochner) Laplacian is given by the formula

∇a∇a = ∆ : E −→ E ,

in terms of the Levi-Civita connection ∇. There are also obvious ways to make
operators with curvature in coefficients, e.g.

R c d
a b ∇c∇d : E −→ E(ab).

With suitable restrictions imposed, in analogy with the case of invariants, one
can make the statement that all local natural invariant differential operators arise
in this way. It is beyond our current scope to make this precise, suffice to say that
when we discuss invariant differential operators on pseudo-Riemannian manifolds
we will again mean operators constructed in this way.

Remark 1.1. If a manifold has a spin structure, then essentially the above is still
true but there is a further ingredient involved, namely the Clifford product. This
allows the construction of important operators such as the Dirac operator.

The main point here is that the “Ricci calculus” provides an effective and geo-
metrically transparent route to the construction of invariants and invariant oper-
ators.
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Invariants and invariant operators are the basic objects underlying the first
steps (and often significantly more than just the first steps) of treating problems
in general relativity and, more generally, in:

• the global analysis of manifolds;
• the study and application of geometric PDE;
• Riemannian spectral theory;
• physics and mathematical physics.

Furthermore from a purely theoretical point of view, we cannot claim to understand
a geometry if we do not have a good theory of local invariants and invariant
operators.

2. Lecture 2: Conformal transformations and conformal
covariance

A good theory of conformal geometry should provide some hope of treating the
following closely related problems:

Problem 1. Describe a practical way to generate/construct (possibly all) local
natural invariants of a conformal structure.

Problem 2. Describe a practical way to generate/construct (possibly all) natu-
ral linear differential operators that are canonical and well-defined on (i.e. are
invariants of) a conformal structure.

We have not attempted to be precise in these statements, since here they are
mainly for the purpose of motivation. Let us first approach these näıvely.

2.1. Conformal Transformations. Recall that for any metric g we can associate
its Levi-Civita connection ∇. Let ei = ∂

∂xi
= ∂i be a local coordinate frame and

Ei its dual. Locally, any connection is determined by how it acts on a frame field.
For the Levi-Civita connection the resulting connection coefficients

Γijk := Ei(∇kej), where ∇k := ∇ek ,

are often called the Christoffel symbols, and are given by the Koszul formula:

Γijk :=
1

2
gil (glj,k + glk,j − gjk,l)

where gij = g(ei, ej) and glj,k = ∂kglj.

Using this formula for the Christoffel symbols we can easily compute the trans-
formation formula for ∇ under a conformal transformation g 7→ ĝ = Ω2g. Let
Υa := Ω−1∇aΩ, va ∈ Γ(Ea) and ωb ∈ Γ(Eb). Then we have:

(1) ∇ĝ
av

b = ∇av
b + Υav

b −Υbva + Υcvcδ
b
a,

(2) ∇ĝ
aωb = ∇aωb −Υaωb −Υbωa + Υcωcgab.

For ωb ∈ Γ(Eb) we have from (2) that

ωb 7→ ∇aωb −∇bωa
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is conformally invariant. But this is just the exterior derivative ω 7→ dω, its
conformal invariance is better seen from the fact that it is defined on a smooth
manifold without further structure: for u, v ∈ X(M)

dω(u, v) = uω(v)− vω(u)− ω([u, v]).

Inspecting (2) it is evident that this is the only first order conformally invariant
linear differential operator on T ∗M that takes values in an irreducible bundle.

The Levi-Civita connection acts also on other tensor bundles. We can use the
formulae (1) and (2) along with the product rule to compute the conformal trans-
formation of the result. For example for a simple covariant 2-tensor

ub ⊗ wc we have ∇̂a(ub ⊗ wc) = (∇̂aub)⊗ wc + ub ⊗ (∇̂awc).

Thus we can compute ∇̂a(ub ⊗ wc) by using (2) for each term on the right-hand-
side. But locally any covariant 2-tensor is a linear combination of simple 2-tensors
and so we conclude that for a covariant 2-tensor Fbc

(3) ∇̂aFbc = ∇aFbc − 2ΥaFbc −ΥbFac −ΥcFba + ΥdFdcgab + ΥdFbdgac.

By the obvious extension of this idea one quickly calculates the formula for the con-
formal transformation for the Levi-Civita covariant derivative of an (r, s)-tensor.

From the formula (3) we see that the completely skew part∇[aFbc] is conformally
invariant. In the case F is skew, in that Fbc = −Fcb, this recovers that dF is
conformally invariant. A more interesting observation arises with the divergence
∇bFbc. We have

∇̂bFbc = ĝab∇̂aFbc,

and ĝab = Ω−2gab. Thus we obtain

∇̂bFbc = Ω−2gab
(
∇aFbc − 2ΥaFbc −ΥbFac −ΥcFba + ΥdFdcgab + ΥdFbdgac

)
= Ω−2

(
∇bFbc + (n− 3)ΥdFdc + ΥdFcd −ΥcFb

b
)
.

In particular then, if F is skew then Fb
b = 0 and we have simply

(4) ∇̂bFbc = Ω−2
(
∇bFbc + (n− 4)ΥdFdc

)
.

So we see that something special happens in dimension 4. Combining with our
earlier observation we have the following result.

Proposition 2.1. In dimension 4 the differential operators

Div : Λ2 → Λ1 and Max : Λ1 → Λ1

given by

Fbc 7→ ∇bFbc and uc 7→ ∇b∇[buc]

respectively, are conformally covariant, in that

(5) ∇̂bFbc = Ω−2∇bFbc and ∇̂b∇̂[buc] = Ω−2∇b∇[buc].
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The non-zero powers of Ω (precisely Ω−2) appearing in (5) mean that these
objects are only covariant rather than invariant. Conformal covariance is still a
strong symmetry property however, as we shall see. Before we discuss that in more
detail note that, for the equations, these factors of Ω make little difference:

∇bFbc = 0 ⇔ ∇̂bFbc = 0

and

∇b∇[buc] = 0 ⇔ ∇̂b∇̂[buc] = 0.

In this sense these equations are conformally invariant.

Remark 2.2. In fact these equations are rather important. If we add the condition
that F is closed then on Lorentzian signature 4-manifolds the system

dF = 0 and Div(F ) = 0

is the field strength formulation of the source-free Maxwell equations of electromag-
netism. The locally equivalent equations Div(du) = 0 give the potential formula-
tion of the (source-free) Maxwell equations. The conformal invariance of these has
been important in Physics.

Returning to our search for conformally covariant operators and equations, our
preliminary investigation suggests that such things might be rather rare. From
(3) we see that the divergence of a 2-form is not conformally invariant except in
dimension 4. In fact, in contrast to what this might suggest, there is a rich theory
of conformally covariant operators. However there are some subtleties involved.
Before we come to this it will be useful to examine how conformal rescaling affects
the curvature.

2.2. Conformal rescaling and curvature. Using (1), (2) and the observations
following these we can compute, for example, the conformal transformation for-
mulae for the Riemannian curvature and its covariant derivatives and so forth.
At the very lowest orders this provides a tractable approach to finding conformal
invariants.

Let us fix a metric g. With respect to metric traces, we can decompose the
curvature tensor of g into a trace-free part and a trace part in the following way:

Rabcd = Wabcd︸ ︷︷ ︸
trace-free

+ 2gc[aPb]d + 2gd[bPa]c︸ ︷︷ ︸
trace part

.

Here Pab, so defined, is called the Schouten tensor while the tensor Wab
c
d is called

the Weyl tensor. In dimensions n ≥ 3 we have Ricab = (n − 2)Pab + Jgab, where
J := gabPab. So the Schouten tensor Pab is a trace modification of the Ricci tensor.

Exercise 1. Prove using (1) that under a conformal transformation g 7→ ĝ = Ω2g,
as above, the Weyl and Schouten tensors transform as follows:

W ĝ c
ab d = W g c

ab d
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and

(6) P ĝ
ab = Pab −∇aΥb + ΥaΥb −

1

2
gabΥcΥ

c.

Thus the Weyl curvature is a conformal invariant, while objects such as |W |2 :=
WabcdW

abcd may be called conformal covariants because under the conformal change

they pick up a power of the conformal factor |Ŵ |2 = Ω−4|W |2 (where for simplic-
ity we are hatting the symbol for the object rather than the metric). We will see
shortly that such objects correspond to invariants.

Here we are defining conformal invariants to be Riemannian invariants, that
have the additional property of being unchanged under conformal transformation.

Exercise 2. Consider computing the conformal transformation of the derivatives of
the curvature: ∇R, ∇∇R, etcetera. Then possibly using this and an undetermined
coefficient approach to finding conformal invariants or conformal covariants. This
rapidly gets intractable.

2.3. Conformally invariant linear differential operators. We may try the
corresponding approach for constructing further conformally invariant linear dif-
ferential operators:

(7) Dg : U → V

such thatDĝ = Dg. Namely, first consider the possible Riemannian invariant linear
differential operators between the bundles concerned and satisfying some order
constraint. Next compute their transformation under a conformal change. Finally
seek a linear combination of these that forms a conformally invariant operator.
For our purposes this also defines what we mean by conformally invariant linear
differential operator. For many applications we require that the domain and target
bundles U and V are irreducible.

It turns out that irreducible tensor (or even spinor) bundles are not sufficient
to deal with conformal operators. Let us see a first glimpse of this by recalling
the construction of one of the most well known conformally invariant differential
operators.

2.3.1. The conformal Wave operator. For analysis on pseudo-Riemannian mani-
folds (M, g) the Laplacian is an extremely important operator. The Laplacian ∆
on functions, which is also called the Laplace-Beltrami operator, is given by

∆ := ∇a∇a : E → E ,

where ∇ is the Levi-Civita connection for g.

Let us see how this behaves under conformal rescaling. For a function f , ∇af is
simply the exterior derivative of f and so is conformally invariant. So to compute
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the Laplacian for ĝ = Ω2g we need only use (2) with u := df :

∆ĝf = ∇̂a∇af

= ĝab∇̂b∇af

= Ω−2gab (∇b∇af −Υb∇af −Υa∇bf + gabΥ
c∇cf) .

So

(8) ∆ĝf = Ω−2 (∆f + (n− 2)Υc∇cf) .

By inspecting this formula we learn two things. Let us summarise with a propo-
sition.

Proposition 2.3. The Laplacian on functions is conformally covariant in dimen-
sion 2, but not in other dimensions.

This is reminiscent of our observations surrounding the expression (4) and the
Maxwell system (cf. Proposition 2.1).

We need to modify the Laplacian to have any hope of obtaining an invariant
operator in other dimensions. A key idea will be to introduce a curvature into
the formula for a new Laplacian. However inspecting the formulae for curvature
transformation in Section 2.2 it is easily seen that this manoeuvre alone will not
deal with the term Υc∇cf in (8).

To eliminate the term (n − 2)Υc∇cf we will make what seems like a strange
move (and we will explain later the mathematics behind this). We will allow the
domain “function” to depend on the choice of metric in the following way: We

decree that the function f on (M, g) corresponds to f̂ := Ω1−n
2 f on (M, ĝ), where

ĝ = Ω2g as above. Now let us calculate ∆̂f̂ . First we have:

∇a(Ω
1−n

2 f) =
(

1− n

2

)
Ω1−n

2 Υaf + Ω1−n
2 df

= Ω1−n
2

(
∇af +

(
1− n

2

)
Υaf

)
.

We use this in the next step:

∆ĝf̂ = Ω−2gab∇̂b

[
Ω1−n

2

(
∇af +

(
1− n

2

)
Υaf

)]
.

= Ω−1−n
2 gab

[
∇b∇af +

(
1− n

2

)
Υa∇bf +

(
1− n

2

)
Υb∇af +

(
1− n

2

)2

ΥaΥbf

+
(

1− n

2

)
f∇bΥa −Υb∇af −

(
1− n

2

)
ΥbΥaf −Υa∇bf

−
(

1− n

2

)
ΥaΥbf + gab

(
Υc∇cf +

(
1− n

2

)
Υ2f

)]
= Ω−1−n

2

[
∆f +

(
1− n

2

)(
∇aΥa + Υ2

(n
2
− 1
))

f
]
,

where we used (2) once again and have written Υ2 as a shorthand for ΥaΥa.
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Now in the last line of the formula for ∆ĝf̂ the terms involving Υ do not involve
derivatives of f . Thus there is hope of matching this with a curvature transfor-
mation. Indeed contracting (6) with ĝ−1 gives

(9) Jĝ = Ω−2
(
J−∇aΥa + (1− n

2
)Υ2
)
,

and so

(10)
(

∆ĝ +
(

1− n

2

)
Jĝ
)
f̂ = Ω−1−n

2

(
∆ +

(
1− n

2

)
J
)
f,

and we have found a Laplacian operator with a symmetry under conformal rescal-
ing. Using the relation between J and the scalar curvature this is written as in the
definition here.

Definition 3. On a pseudo-Riemannian manifold (M, g) the operator

Y g : E → E defined by Y g := ∆g − n− 2

4(n− 1)
Scg

is called the conformal Laplacian or, in Lorentzian signature, the conformal wave
operator.

Remark 2.4. On Lorentzian signature manifolds it is often called the conformal
wave operator because the leading term agrees with the operator giving usual wave
equation. It seems that it was in this setting that the operator was first discovered
and applied [54, 16]. On the other hand in the setting of Riemannian signature
Y is often called the Yamabe operator because of its role in Yamabe problem of
scalar curvature prescription.

According to our calculations above this has the following remarkable symmetry
property with respect to conformal rescaling.

Proposition 2.5. The conformal Laplacian is conformally covariant in the sense
that

Y ĝ ◦ Ω1−n
2 = Ω−1−n

2 ◦ Y g.

This property of the conformal Laplacian motivates a definition.

Definition 4. On pseudo-Riemannian manifolds a natural linear differential oper-
ator P g, on a function or tensor/spinor field is said to be a conformally covariant
operator if for all positive functions Ω

P ĝ ◦ Ωw1 = Ωw2 ◦ P g,

where ĝ = Ω2g, (w1, w2) ∈ R×R, and where we view the powers of Ω as multipli-
cation operators.

In this definition it is not meant that the domain and target bundles are neces-
sarily the same. The example in our next exercise will be important for our later
discussions.
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Exercise 3. On pseudo-Riemannian manifolds (Mn≥3, g) show that

Agab : E −→ E(ab)0 given by

f 7−→ ∇(a∇b)0f + P(ab)0f
(11)

is conformally covariant with (w1, w2) = (1, 1). That is if ĝ = Ω2g, for some
positive function Ω, then

Aĝ(Ωf) = Ω(Agf).

2.4. Conformal Geometry. Recall that we defined a conformal manifold as a
manifold M equipped only with an equivalence class of conformally related metric
(see Definition 1). Conformally covariant operators, as in Definition 4, have good
conformal properties but (in general) fail to be invariant in the sense of (7). This
is not just an aesthetic shortcoming, it means that they are not well-defined on
conformal manifolds (M, c). To construct operators on (M, g) that do descend to
the corresponding conformal structure (M, c = [g]) we need the notion of conformal
densities.

2.4.1. Conformal densities and the conformal metric. Let (M, c) be a conformal
manifold of signature (p, q) (with p+ q = n). For a point x ∈M , and two metrics
g and ĝ from the conformal class, there is an element s ∈ R+ such that ĝx = s2gx
(where the squaring of s is a convenient convention). Thus, we may view the
conformal class as being given by a smooth ray subbundle Q ⊂ S2T ∗M , whose
fibre at x is formed by the values of gx for all metrics g in the conformal class. By
construction, Q has fibre R+ and the metrics in the conformal class are in bijective
correspondence with smooth sections of Q.

Denoting by π : Q → M the restriction to Q of the canonical projection
S2T ∗M → M , we can view this as a principal bundle with structure group R+.
The usual convention is to rescale a metric g to ĝ = Ω2g. This corresponds to a
principal action given by ρs(gx) = s2gx for s ∈ R+ and gx ∈ Qx, the fibre of Q
over x ∈M .

Having this, we immediately get a family of basic real line bundles E [w] → M
for w ∈ R by defining E [w] to be the associated bundle to Q with respect to the
action of R+ on R given by s · t := s−wt. The usual correspondence between
sections of an associated bundle and equivariant functions on the total space of a
principal bundle then identifies the space Γ(E [w]) of smooth sections of E [w] with
the space of all smooth functions f : Q → R such that f(ρs(gx)) = swf(gx) for all
s ∈ R+. We shall call E [w] the bundle of conformal densities of weight w. Note
that each bundle E [w] is trivial, and inherits an orientation from that on R. We
write E+[w] for the ray subbundle consisting of positive elements.

If ĝ = Ω2g ∈ c then the conformally related metrics ĝ and g each determine
sections of Q. We may pull back f via these sections and we obtain functions on
M related by

f ĝ = Ωwf g.
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With w = 1− n
2

this explains the “strange move” in Section 2.3.1 for the domain
function of the conformal wave operator; the conformal wave operator is really an
operator on the bundle E [1− n

2
].

Although the bundle E [w] as we defined it depends on the choice of the confor-
mal structure, it is naturally isomorphic to a density bundle (which is independent
of the conformal structure). Recall that the bundle of α–densities is associated
to the full linear frame bundle of M with respect to the 1–dimensional represen-
tation A 7→ | det(A)|−α of the group GL(n,R). In particular, 2-densities may be
canonically identified with the oriented bundle (ΛnT ∗M)2, and 1–densities are ex-
actly the geometric objects on manifolds that may be integrated (in a coordinate–
independent way).

To obtain the link with conformal densities, as defined above, recall that any
metric g on M determines a nowhere vanishing 1–density, the volume density
vol(g). In a local frame, this density is given by

√
| det(gij)|, which implies that

for a positive function Ω we get vol(Ω2g) = Ωn vol(g). So there is bijective a map
from 1-densities to functions Q → R that are homogeneous of degree −n given by
the map

φ 7→ φ(x)/ vol(g)(x),

and this gives an identification of the 1-density bundle with E [−n] and thus an
identification of E [w] with the bundle of (−w

n
)–densities on M .

So we may think of conformal density bundles as those bundles associated to
the frame bundle via 1-dimensional representations, just as tensor bundles are
associated to higher rank representations. Given any vector bundle B we will use
the notation

B[w] := B ⊗ E [w],

and say the bundle is weighted of weight w. Note that E [w]⊗E [w′] = E [w+w′] and
that in the above we assume that B is not a density bundle itself and is unweighted
(weight zero).

Clearly, sections of such weighted bundles may be viewed as homogeneous (along
the fibres of Q) sections of the pullback along π : Q → M . Now the tautological
inclusion of g̃ : Q → π∗S2T ∗M is evidently homogeneous of degree 2, as for
(s2gx, x) ∈ Q, we have g̃(s2gx, x) = (s2gx, x) ∈ π∗S2T ∗M . So g̃ may be identified
with a canonical section of g ∈ Γ(S2T ∗M [2]) which provides another description
of the conformal class. We call g the conformal metric.

Another way to recover g is to observe that any metric g ∈ c is a section of
Q, and hence determines a section σg ∈ Γ(E+[1]) with the characterising property
that the corresponding homogeneous function σ̃g on Q takes the value 1 along the
section g. Then

(12) g = (σg)
2g

and it is easily verified that this is independent of the choice of g ∈ c. Conversely
it is clear that any section σ ∈ Γ(E+[1]) determines a metric via

g := σ−2g.
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On a conformal manifold we call σ ∈ Γ(E+[1]), or equivalently the corresponding
g ∈ c, a choice of scale.

A nice application of g is that we can use it to raise, lower, and contract tensor
indices on a conformal manifold, for example

gab : Ea → Eb[2] by va 7→ gabv
a,

just as we use the metric in pseudo-Riemannian geometry. Also g gives the iso-
morphism

(13) ⊗ng :
(
ΛnTM

)2 '−→ E [2n].

2.4.2. Some calculus with conformal densities. Observe that a choice of scale g ∈ c
determines a connection on E [w] via the formula

(14) ∇gτ := σw
(
d(σ−wτ)

)
, τ ∈ Γ(E [w]),

where d is the exterior derivative and σ ∈ Γ(E+[1]) satisfies g = σ2g, as σ−wτ is a
function (i.e. is a section of E [0] = E). Coupling this to the Levi-Civita connection
for g (and denoting both ∇g) we have at once that ∇gσ = 0 and hence

(15) ∇gg = 0.

On the other hand the Levi-Civita connection directly determines a linear con-
nection on E [w] since the latter is associated to the frame bundle, as mentioned
above. But (15), with (13), shows that this agrees with (14). That is, (14) is the
Levi-Civita connection on E [w]. Thus we have:

Proposition 2.6. On a conformal manifold (M, c) the conformal metric g is
preserved by the Levi-Civita connection ∇g for any g ∈ c.

In view of Proposition 2.6 it is reasonable to use the conformal metric to raise
and lower tensor indices even when working in a scale! We shall henceforth do this
unless we state otherwise. This enables us to give formulae for natural conformally
invariant operators acting between density bundles. For example now choosing
g ∈ c and forming the Laplacian, and trace of Schouten,

∆ := gab∇a∇b and J := gabPab,

we have the following. The conformal Laplacian can be interpreted as a differential
operator

Y : E [1− n

2
]→ E [−1− n

2
], given by ∆ +

(
1− n

2

)
J,

that is conformally invariant, meaning that it is well-defined on conformal mani-
folds.

Similarly the operator Agab of (11) is equivalent to a conformally invariant oper-
ator,

Aab : E [1]→ E(ab)0 [1].
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2.4.3. Conformal transformations. The above constructions enable us to under-
stand how conformally covariant objects may be reinterpreted as objects that
descend to invariant operators on conformal manifolds. A similar result applies to
curvature covariants. However we have not advanced the problem of constructing
these.

It follows at once from the formula (14) that under conformal transformations
g 7→ ĝ = Ω2g the Levi-Civita connection on E [w] transforms by

(16) ∇ĝ
aτ = ∇g

aτ + wΥaτ,

since σĝ = Ω−1σg. We can combine this with the transformation formulae (1),
(2), and (6) to compute the conformal transformations of weighted tensors and
Riemannian invariants. However this remains a hopeless approach to finding con-
formal invariants.

3. Lecture 3: Prolongation and the tractor connection

If we are going to be successful at calculating conformal invariants we are going
to need a better way to calculate, one which builds in conformal invariance from
the start. In the next two lectures we develop such a calculus, the conformal
tractor calculus, which can be used to proliferate conformally invariant tensor (or
tractor) expressions.

For treating conformal geometry it would be clearly desirable to find an ana-
logue of the Ricci calculus available in the pseudo-Riemannian setting. On the
tangent bundle a conformal manifold (M, c) has a distinguished equivalence class
of connections but no distinguished connection from this class. So at first the
situation does not look promising. However we will see that if we pass from the
tangent bundle to a vector bundle with two more dimensions (the standard tractor
bundle), then there is indeed a distinguished connection.

There are many ways to see how the tractor calculus arises on a conformal
manifold; we will give a very explicit construction which facilitates calculation,
but first it will be very helpful to examine how the tractor calculus arises on the
flat model space of (Riemannian signature) conformal geometry, the conformal
sphere.

Remark 3.1. Recall that inverse stereographic projection maps Euclidean space
conformally into the sphere as a one point (conformal) compactification, so that it
makes sense to think of the sphere as the conformally “flat” model of Riemannian
signature conformal geometry. The real reason however is that the conformal
sphere arises naturally as the geometry of a homogeneous space of Lie groups and
that conformal geometry can be thought of as the geometry of curved analogues
of this homogeneous geometry in the sense of Élie Cartan (see, e.g. [12]).

3.1. The model of conformal geometry – the conformal sphere. We now
look at the conformal sphere, which is an extremely important example. We shall
see that the sphere can be viewed as a homogeneous space on which is naturally
endowed a conformal structure, and that the conformal tractor calculus arises
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naturally from this picture. This is the model for Riemannian signature conformal
geometry, but a minor variation of this applies to other signatures.

First some notation. Consider an (n + 2)-dimensional real vector space V ∼=
Rn+2. Considering the equivalence relation on V \ {0} given by

v ∼ v′, if and only if v′ = rv for some r > 0

we now write
P+(V) := {[v] | v ∈ V}

where [v] denotes the equivalence class of v. We view this as a smooth manifold
by the identification with one, equivalently any, round sphere in V.

Suppose now that V is equipped with a non-degenerate bilinear form H of
signature (n + 1, 1). The null cone N of zero-length vectors forms a quadratic
variety in V. Choosing a time orientation, let us write N+ for the forward part of
N \ {0}. Under the the R+-ray projectivisation of V, meaning the natural map
to equivalence classes V → P+(V), the forward cone N+ is mapped to a quadric
in P+(V). This image is topologically a sphere Sn and we will write π for the
submersion N+ → Sn = P+(N+).

N+

P+

P+(N+) ∼= Sn
x

π(x)

Each point x ∈ N+ determines a positive definite inner product gx on Tπ(x)S
n

by gx(u, v) = Hx(u
′, v′) where u′, v′ ∈ TxN+ are lifts of u, v ∈ Tπ(x)S

n, meaning
that π(u′) = u, π(v′) = v. For a given vector u ∈ Tπ(x)S

n two lifts to x ∈ N+

differ by a vertical vector (i.e. a vector in the kernel of dπ). By differentiating
the defining equation for the cone we see that any vertical vector is normal to the
cone with respect to H (null tangent vectors to hypersurfaces are normal), and so
it follows that gx is independent of the choices of lifts. Clearly then, each section
of π determines a metric on Sn and by construction this is smooth if the section
is. Evidently the metric agrees with the pull-back of H via the section concerned.
We may choose a coordinates XA, A = 0, · · · , n + 1, for V so that N is the zero
locus of the form −(X0)2 + (X1)2 + · · ·+ (Xn+1)2, in which terms the usual round
sphere arises as the section X0 = 1 of π.

Now, viewed as a metric on TV, H is homogeneous of degree 2 with respect to
the standard Euler (or position) vector field E on V, that is LEH = 2H, where
L denotes the Lie derivative. In particular this holds on the cone, which we note
is generated by E. Write g for the restriction of H to vector fields in TN+ which
are the lifts of vector fields on Sn. Note that u′ is the lift of a vector field u on Sn
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means that for all x ∈ N+, dπ(u′(x)) = u(π(x)), and so LEu′ = 0 (modulo vertical
vector fields) on N+. Thus for any pair u, v ∈ Γ(TSn), with lifts to vector fields
u′, v′ on N+, g(u′, v′) is a function on N+ homogeneous of degree 2, and which
is independent of how the vector fields were lifted. It follows that if s > 0 then
gsx = s2gx, for all x ∈ N+. Evidently N+ may be identified with the total space
Q of a bundle of conformally related metrics on P+(N+). Thus g(u′, v′) may be
identified with a conformal density of weight 2 on Sn. That is, this construction
canonically determines a section of E(ab)[2] that we shall also denote by g. This has
the property that if σ is any section of E+[1] then σ−2g is a metric gσ. Obviously
different sections of E+[1] determine conformally related metrics and, by the last
observation in the previous paragraph, there is a section σo of E+[1] so so that gσo

is the round metric.

Thus we see that P+(N+) is canonically equipped with the standard conformal
structure on the sphere, but with no preferred metric from this class. Furthermore
g, which arises here from H by restriction, is the conformal metric on P+(N+). In
summary then we have the following.

Lemma 3.2. Let c be the conformal class of Sn = P+(N+) determined canonically
by H. This includes the round metric. The map N+ 3 (π(x), gx) ∈ Q gives an
identification of N+ with Q, the bundle of conformally related metrics on (Sn, c).

Via this identification: functions homogeneous of degree w on N+ are equivalent
to functions homogeneous of degree w on Q and hence correspond to conformal
densities of weight w on (Sn, c); the conformal metric g on (Sn, c) agrees with,
and is determined by, the restriction of H to the lifts of vector fields on P+(N+).

The conformal sphere, as constructed here, is acted on transitively by G =
O+(H) ∼= O+(n + 1, 1), where this is the time orientation preserving subgroup of
orthogonal group preservingH, O(H) ∼= O(n+1, 1). Thus as a homogeneous space
P+(N+) may be identified with G/P , where P is the (parabolic) Lie subgroup of
G preserving a nominated null ray in N+.

3.1.1. Canonical Calculus on the model. Here we sketch briefly one way to see this
on the model P+(N+).

Note that as a manifold V has some special structures that we have already
used. In particular an origin and, from the vector space structure of V, the Euler
vector field E which assigns to each point X ∈ V the vector X ∈ TXV, via the
canonical identification of TXV with V.

The vector space V has an affine structure and this induces a global parallelism:
the tangent space TxV at any point x ∈ V may be canonically identified with V.
Thus, in particular, for any parameterised curve in V there is a canonical notion
of parallel transport along the given curve. This exactly means that viewing V
as a manifold, it is equipped with a canonical affine connection ∇V. The affine
structure gives more than this of course. It is isomorphic to Rn+2 with its usual
affine structure, and so the tangent bundle to V is trivialised by everywhere parallel
tangent fields. It follows that the canonical connection ∇V is flat and has trivial
holonomy.
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Next observe that H determines a signature (n + 1, 1) metric on V, where the
latter is viewed as an affine manifold. By the definition of its promotion from
bilinear form to metric, one sees at once that for any vectors U, V that are parallel
on V the quantity H(U, V ) is constant. This means that H is itself parallel since
for any vector field W we have

(∇WH)(U, V ) = W · H(U, V )−H(∇WU, V )−H(U,∇WV ) = 0.

The second key observation is that a restriction of these structures descend to
the model. We observed above that N+ is an R+-ray bundle over Sn. We may
identify Sn with N+/ ∼ where the equivalence relation is that x ∼ y if and only
if x and y are points of the same fibre π−1(x′) for some x′ ∈ Sn. The restriction
TV|N+

is a rank n+ 2 vector bundle over N+. Now we may define an equivalence
relation on TV|N+

that covers the relation on N+. Namely we decree Ux ∼ Vy if
and only if x, y ∈ π−1(x′) for some x′ ∈ Sn, and Ux and Vy are parallel. Considering
parallel transport up the fibres of π, it follows that TV|N+

/ ∼ is isomorphic to the
restriction TV|im(S) where S is any section of π (that S : Sn → N+ is a smooth
map such that π ◦ S = idSn). But im(S) is identified with Sn via π and it follows
that TV|N+

/ ∼ may be viewed as a vector bundle T on Sn. Furthermore it is clear
from the definition of the equivalence relation on TV|N+

that T is independent of
S. The vector bundle T on Sn is the (standard) tractor bundle of (Sn, c).

N+

a tractor
at π(x)x

Figure 1. An element of Tπ(x) corresponds to a homogeneous of
degree zero vector field along the ray generated by x.

By restriction H and ∇V determine, respectively, a (signature (n+ 1, 1)) metric
and connection on the bundle TV|N+

that we shall denote with the same notation.
Since a vector field which is parallel along a curve γ in N+ may be uniquely
extended to a vector field which is also parallel along every fibre of π through the
curve γ, it is clear that ∇V canonically determines a connection on T that we shall
denote ∇T . Sections U, V ∈ Γ(T ) are represented on N+ by vector fields Ũ, Ṽ that
are parallel in the direction of the fibres of π : N+ → Sn. On the other hand H is
also parallel along each fibres of π and so H(Ũ, Ṽ ) is constant on each fibre. Thus
H determines a signature (n + 1, 1) metric h on T satisfying h(U, V ) = H(Ũ, Ṽ ).
What is more, since ∇VH = 0 on N+, it follows that h is preserved by ∇T , that is

∇T h = 0.
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Summarising the situation thus far we have the following.

Theorem 3.3. The model (Sn, c) is canonically equipped with the following: a
canonical rank n + 2 bundle T ; a signature (n + 1, 1) metric h on this; and a
connection ∇T on T that preserves h.

Although we shall not go into details here it is straightforward to show the
following:

Proposition 3.4. The tractor bundle T of the model (Sn, c) has a composition
structure

(17) T = E [1] +
�� TSn[−1] +

�� E [−1].

The restriction of h to the subbundle T 0 = TSn[−1] +
�� E [−1] induces the conformal

metric g : TSn[−1]×TSn[−1]→ E. Any null Y ∈ ΓT [−1] satisfying h(X, Y ) = 1

determines a splitting T
∼=−→ E [1] ⊕ TSn[−1] ⊕ E [−1] such that the metric h is

given by (σ, µ, ρ) 7→ 2σρ+ g(µ, µ) as a quadratic form.

It is easily seen how this composition structure arises geometrically. The sub-
bundle T 0 of T corresponds to the fact that TN+ is naturally identified with
a subbundle of TV|N+ . The vertical directions in there correspond to the fact
that E [−1] is a subbundle of T 0, and the semidirect sum symbols +

�� record this
structure.

3.1.2. The abstract approach to the tractor connection. An alternative way of see-
ing how the tractor connection arises on the flat model is via the group picture.
If G/H is a homogeneous space of Lie groups, then the canonical projection
G→ G/H gives rise to a principal H-bundle over G/H (with total space G). If V is
a representation of H then one obtains a homogeneous vector bundle V := G×HV
over G/H whose total space is defined to be the quotient of G×V by the equiva-
lence relation

(g, v) ∼ (gh, h−1 · v).

If V is in fact a representation of G, then the bundle V := G×H V is trivial. The
isomorphism

G×H V ∼= (G/H)× V
is given by

[g, v] 7→ (gH, g · v)

which is easily checked to be well defined. This trivialisation gives rise to a flat
connection on G×HV. In the case where we have the conformal sphere G/P ∼= Sn

and V is the defining representation of G (i.e. Rn+2) then G×PV is (naturally iden-
tified with) the tractor bundle T and the connection induced by the trivialisation
G×P V ∼= (G/P )×V is the tractor connection. The trivialisation T ∼= (G/P )×V
also immediately gives the existence of a bundle metric preserved by the tractor
connection induced by the bilinear form on V.
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3.1.3. The conformal model in other signatures. With only a little more effort one
can treat the case of general signature (p, q). This again begins with a real vector
space V ∼= Rn+2, but now we equip it with a non-degenerate bilinear form H of
signature (p+ 1, q + 1), where p+ q = n.

Writing again N for the quadratic variety of vectors which have zero-length
with respect to H, we see that the space of null rays in N \ {0} has the topology
of Sp × Sq. This is connected, unless p or q is zero in either which case we get
two copies of Sn. In any case an easy adaption of the earlier discussion shows
that P+(N ) is equipped canonically with a conformal structure of signature (p, q)
and on this a tractor connection preserving now a tractor metric of signature
(p+ 1, q+ 1). (One can easily check that the conformal class c of P+(N ) contains
a metric g which is of the form gSp − gSq for some identification of P+(N ) with
Sp × Sq.)

As constructed here the conformal space P+(N ) is acted on transitively by
G = O(H) ∼= O(p+1, q+1), the orthogonal group preservingH. As a homogeneous
space P+(N ) may be identified with G/P , where P is the Lie subgroup of G
preserving a nominated null ray in N . We may think of this group picture as a
good model for general conformal manifolds. Of course there are other possible
choices of G/P (which may result in models which are only locally equivalent to
the ones here), as we have already seen in the Riemannian case. See [37] for a
discussion of the possible choices of (G,P ) and the connection with global aspects
of the conformal tractor calculus.

Remark 3.5. Note that the model space S1×Sn−1 of Lorentzian signature confor-
mal geometry is simply the quotient of the (conformal) Einstein universe R×Sn−1

by integer times 2π translations. Thus the usual embeddings of Minkowski and de
Sitter space into the Einstein universe can be seen (by passing to the quotient) as
conformal embeddings into the flat model space. In fact, S1 × Sn−1 can be seen
as two copies of Minkowski space glued together along a null boundary with two
cone points, or as two copies of de Sitter space glued together along a spacelike
boundary with two connected components which are (n− 1)-spheres. The signif-
icance of this will become clearer as we continue to develop the tractor calculus
and then move on to study conformally compactified geometries.

3.2. Prolongation and the tractor connection. Here we construct the tractor
bundle, connection, and metric on a conformal manifold of dimension at least
three. We will see that the “conformal to Einstein” condition plays an important
role. The tractor bundle and connection are obtained by “prolonging” the “almost
Einstein equation” (11).

First we state what is meant by Einstein here.

Definition 5. In dimensions n ≥ 3, a metric will be said to be Einstein if

Ricg = λg

for some function λ.
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The Bianchi identities imply that, for any metric satisfying this equation, λ is
constant (as we assume M connected). Throughout the following we shall assume
that n ≥ 3.

Recalling the model above, note that a parallel co-tractor I corresponds to a

homogeneous polynomial which, in standard coordinates XA on V '−→ Rn+2, is
given by σ̃ = IAX

A. Then σ̃ = 1 is a section of N+ that corresponds to the
intersection of N+ with the hyperplane IAX

A = 1, in V. For at least some of these
distinguished (conic) sections the resulting metric on Sn, g = σ̃−2g (on the open
set where the corresponding density σ ∈ Γ(E [1]) is nowhere vanishing) is obviously
Einstein. For example the round metric was already discussed. It is in fact true
that all metrics obtained on open regions of Sn in this way are Einstein, as we
shall shortly see.

3.3. The almost Einstein equation. Let (M, c) be a conformal manifold with

dim(M) ≥ 3. It is clear that go ∈ c is Einstein if and only if Pg
o

(ab)0
= 0, and this

is the link with the equation (11). As a conformally invariant equation this takes
the form

(AE) ∇g
(a∇

g
b)0
σ + Pg(ab)0

σ = 0,

where σ ∈ E+[1] encodes go = σ−2g and we have used the superscripts to emphasise
that we have picked some metric g ∈ c in order to write the equation.

Suppose that σ is a solution with the property that it is nowhere zero. Then,
without loss of generality, we may assume that σ is positive, that is σ ∈ E+[1].
So σ is a scale, and go = σ−2g is a well-defined metric. Since (11) is conformal
invariant, there is no loss if we calculate the equation (AE) in this scale. But then
∇goσ = 0. Thus we conclude that

P(ab)0 = 0.

Conversely suppose that Pg
o

(ab)0
= 0 for some go ∈ c. Then go = σ−2g for some

σ ∈ E+[1]. Therefore σ solves (AE) by the reverse of the same argument. Thus in
summary we have the following, cf. [40].

Proposition 3.6. (M, c) is conformally Einstein (i.e. there is an Einstein metric
go in c) if and only if there exists σ ∈ E+[1] that solves (AE). If σ ∈ E+[1] solves
(AE) then go := σ−2g is the corresponding Einstein metric.

There are some important points to make here.

Remark 3.7. Equation (AE) is equivalent to a system of (n+2)(n−1)
2

scalar equa-
tions on one scalar variable. So it is overdetermined and we do not expect it to
have solutions in general.

3.4. The connection determined by a conformal structure. Proposition 3.6
has the artificial feature that it is a statement about nowhere vanishing sections
of E [1]. Let us rectify this.
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Definition 6. Let (M, c) be a conformal manifold, of any signature, and σ ∈ E [1].
We say that (M, c, σ) is an almost Einstein structure if σ ∈ E [1] solves equation
(AE).

We shall term (AE) the (conformal) almost Einstein equation.

Since the almost Einstein equation is conformally invariant it is natural to seek
integrability conditions that are also conformally invariant. There is a systematic
approach to this using a procedure known as prolongation that goes as follows.
We fix a metric g ∈ c to facilitate the calculations. With this understood, for the
most part in the following we will omit the decoration by g of the natural objects
it determines; for example we shall write ∇a rather than ∇g

a.

As a first step observe that the equation (AE) is equivalent to the equation

(18) ∇a∇bσ + Pabσ + gabρ = 0

where we have introduced the new variable ρ ∈ E [−1] to absorb the trace terms.
The key idea is to attempt to construct an equivalent first order closed system.
We introduce µa ∈ Ea[1], so our equation is replaced by the equivalent system

(19) ∇aσ − µa = 0, and ∇aµb + Pabσ + gabρ = 0 .

This system is almost closed in the sense that the derivatives of σ and µb are
given algebraically in terms of the unknowns σ, µb, and ρ. However to obtain a
similar result for ρ we must differentiate the system; by definition (differential)
prolongation is precisely concerned with this process of producing higher order
systems, and their consequences. Here we use notation from earlier.

The Levi-Civita covariant derivative of (18) gives

∇a∇b∇cσ + gbc∇aρ+ (∇aPbc)σ + Pbc∇aσ = 0.

Contracting this using, respectively, gab and gbc yields

gab : ∆∇cσ +∇cρ+ (∇aPac)σ + Pac∇aσ =0 (1)

gbc : ∇c∆σ + n∇cρ+ (∇cJ)σ + J∇cσ =0 (2).

Then the difference (2)− (1) is simply

(n− 1)∇cρ+ J∇cσ − Pac∇aσ +R b
cb d∇dσ = 0

where we have used the contracted Bianchi identity ∇aPac = ∇cJ and computed
the commutator [∇c,∆] acting on σ. But

R b
cb a∇aσ = −Rca∇aσ = (2− n)Pc

a∇aσ − J∇cσ,

and using this we obtain

(20) ∇cρ− P a
c µa = 0,

after dividing by the overall factor (n − 1). So we have our closed system and,
what is more, this system yields a linear connection. We discuss this now.
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On a conformal manifold (M, c) let us write [T ]g to mean the pair consisting of
a direct sum bundle and g ∈ c, as follows:

(21) [T ]g :=
(
E [1]⊕ Ea[1]⊕ E [−1], g

)
Proposition 3.8. On a conformal manifold (M, c), fix any metric g ∈ c. There
is a linear connection ∇T on the bundle

[T ]g
∼=

E [1]
⊕
Ea[1]
⊕
E [−1]

given by

(22) ∇Ta

 σ
µb
ρ

 :=

 ∇aσ − µa
∇aµb + gabρ+ Pabσ
∇aρ− Pabµ

b

 .

Solutions of the almost Einstein equation (AE) are in one-to-one correspondence
with sections of the bundle [T ]g that are parallel for the connection ∇T .

Proof. It remains only to prove that ∇T is a linear connection. But this is an
immediate consequence of its explicit formula which we see takes the form ∇+ Φ
where ∇ is the Levi-Civita connection on the direct sum bundle [T ]g = E [1] ⊕
Ea[1]⊕ E [−1] and Φ is a section of End([T ]g). �

We shall call ∇T , of (22), the (conformal) tractor connection. Interpreted
näıvely the statement in the Proposition might appear to be not very strong:
we have already remarked that on a particular manifold it can be that the equa-
tion (AE) has no non-trivial solutions. However this is a universal result, and so
it in fact gives an extremely useful tool for investigating the existence of solutions.
Note that the connection (22) is well defined on any pseudo-Riemannian manifold.
The point is that in using (22) for any application, we have immediately available
the powerful theory of linear connections (e.g. parallel transport, curvature, etc.).

It is an immediate consequence of Proposition 3.8 that the almost Einstein
equation (AE) can have at most n+ 2 linearly independent solutions. However we
shall see that far stronger results are available after we refine our understanding
of the tractor connection (22). Furthermore this connection will be seen to have a
role that extends far beyond the almost Einstein equation.

3.5. Conformal properties of the tractor connection. Although derived from
a conformally invariant equation, the bundle and connection described in (21) and
(22) are expressed in a way depending a priori on a choice of g ∈ c, so we wish
to study their conformal properties. Let us again fix some choice g ∈ c, before
investigating the consequences of changing this conformally.
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Given the data of (σ, µb, ρ) ∈ [T ]g at x ∈M , it follows from the general proper-
ties of linear connections that we may always solve

(23) ∇T (σ, µb, ρ) = 0, at x ∈M.

This imposes no restriction on either the conformal class c or the choice g ∈ c.
Examining the formula (22) for the tractor connection we see that if (23) holds
then, at the point x, we necessarily have

(24) µb = ∇bσ, ρ = − 1

n
(∆σ + Jσ),

where the second equation follows by taking a gab trace of the middle entry on
the right hand side of (22). Thus canonically associated to the tractor connection
there is the second order differential E [1]→ [T ]g given by

(25) [Dσ]g =

 nσ
n∇bσ

−(∆σ + Jσ)

 ,

where we have included the normalising factor n (=dim(M)) for later convenience.

Recall that we know how the Levi-Civita connection, and hence also ∆ and
J here, transform conformally. Thus it follows that [Dσ]g, or equivalently (24),
determines how the variables σ, µb and ρ of the prolonged system must transform
if they are to remain compatible with ∇T under conformal changes. If ĝ = Ω2g,
for some positive function Ω, then a brief calculation reveals

∇ĝ
bσ = ∇g

bσ+Υbσ, and − 1

n
(∆ĝσ+Jĝσ) = − 1

n
(∆gσ+Jgσ)−Υb∇bσ−

1

2
σΥbΥb,

where as usual Υ denotes dΩ. Thus we decree

σ̂ := σ, µ̂b := µb + Υbσ, ρ̂ := ρ−Υbµb −
1

2
σΥbΥb,

or, writing Υ2 := ΥaΥa, this may be otherwise written using an obvious matrix
notation:

(26) [T ]ĝ 3

 σ̂
µ̂b
ρ̂

 =

 1 0 0
Υb δcb 0
−1

2
Υ2 −Υc 1

 σ
µc
ρ

 ∼

 σ
µb
ρ

 ∈ [T ]g.

Note that at each point x ∈ M the transformation here is manifestly by a group
action. Thus in the obvious way this defines an equivalence relation among the
direct sum bundles [T ]g (of (21)) that covers the conformal equivalence of metrics
in c, and the quotient by this defines what we shall call the conformal standard
tractor bundle T on (M, c). More precisely we have the following definition.

Definition 7. On a conformal manifold (M, c) the standard tractor bundle is

T :=
⊔
g∈c

[T ]g/ ∼,

meaning the disjoint union of the [T ]g (parameterised by g ∈ c) modulo equivalence
relation given by (26). We shall also use the abstract index notation EA for T .
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We shall carry many conventions from tensor calculus over to bundles and trac-
tor fields. For example we shall write E(AB)[w] to mean S2T ⊗ E [w], and so forth.

There are some immediate consequences of the Definition 7 that we should
observe. First, from this definition, the next statement follows tautologically.

Proposition 3.9. The formula (25) determines a conformally invariant differen-
tial operator

D : E [1]→ T .

This operator is evidently intimately connected with the very definition of the
standard tractor bundle. Because of its fundamental role we make the following
definition.

Definition 8. Given a section of σ ∈ E [1] we shall call

I :=
1

n
Dσ

the scale tractor corresponding to σ.

Next observe also that from (26) it is clear that T is a filtered bundle; we
summarise this using a semi-direct sum notation

(27) T = E [1] +
�� Ea[1] +

�� E [−1]

meaning that T has a subbundle T 1 ⊂ T isomorphic to E [−1], Ea[1] is isomorphic
to a subbundle of the quotient T /T 1 bundle, and E [1] is the final factor. We use
X, to denote the bundle surjection X : T → E [1] or in abstract indices:

(28) XA : EA → E [1].

Note that given any metric g ∈ c we may interpret X as the map [T ]g → E [1]
given by  σ

µb
ρ

 7→ σ.

For our current purposes the critical result at this point is that the tractor
connection ∇T “intertwines” with the transformation (26) in the following sense.

Exercise 4. Let V = (σ, µb, ρ), a section of [T ]g, and V̂ = (σ̂, µ̂b, ρ̂), a section of
[T ]ĝ, be related by (26), where ĝ = Ω2g. Show that then ̂∇aσ − µa

̂∇aµb + gabρ+ Pabσ
̂∇aρ− Pabµb

 =

 1 0 0
Υb δcb 0
−1

2
Υ2 −Υc 1

 ∇aσ − µa
∇aµb + gacρ+ Pacσ
∇aρ− Pacµ

c

 .

Here Υ = dΩ, as usual, and for example ̂∇aσ − µa means ∇̂aσ̂ − µ̂a.

Given a tangent vector field va, the exercise shows that va∇Ta V transforms
conformally as a standard tractor field, that is by (26). Whence ∇T descends to a
well defined connection on T . Let us summarise as follows.
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Theorem 3.10. Let (M, c) be a conformal manifold of dimension at least 3. The
formula (22) determines a conformally invariant connection

∇T : T → Λ1 ⊗ T .

For obvious reasons this will also be called the conformal tractor connection (on
the standard tractor bundle T ); the formula (22) is henceforth regarded as the
incarnation of this conformally invariant object on the realisation [T ]g of T , as
determined by the choice g ∈ c.

It is important to realise that the conformal tractor connection exists canon-
ically on any conformal manifold (of dimension at least 3). (One also has the
tractor connection on 2 dimensional Möbius conformal manifolds). In particular
its existence does not rely on solutions to the equation (AE). Nevertheless by its
construction in Section 3.4 (as a prolongation of the equation (AE)), and using
also equation (24), we have at once the following important property.

Theorem 3.11. On a conformal manifold (M, c) we have the following. There is
a 1-1 correspondence between sections σ ∈ E [1], satisfying the conformal equation

(AE) ∇(a∇b)0σ + P(ab)0σ = 0,

and parallel standard tractors I. The mapping from almost Einstein scales to
parallel tractors is given by σ 7→ 1

n
DAσ while the inverse map is IA 7→ XAIA.

So a parallel tractor is necessarily a scale tractor, as in Definition 8, but in general
the converse does not hold.

3.6. The tractor metric. It turns out that the tractor bundle has beautiful and
important structure that is perhaps not at expected from its origins via prolonga-
tion in Section 3.4 above.

Proposition 3.12. Let (M, c) be a conformal manifold of signature (p, q). The
formula

[VA]g = (σ, µa, ρ) 7→ 2σρ+ gabµaµb =: h(V, V )

defines, by polarisation, a signature (p+ 1, q + 1) metric on T .

Proof. As a symmetric bilinear form field on the bundle [T ]g, h takes the form

(29) h(V ′, V )
g
=

( σ′ µ′ ρ′ )
 0 0 1

0 g−1 0
1 0 0

 σ
µ
ρ

 ,

where
g
= should be read as “equals, calculating in the scale g”. So we see that

the signature is as claimed. By construction h(V, V ′) has weight 0. It remains to
check the conformal invariance. Here we use the notation from (26):

2σ̂ρ̂+ µ̂aµ̂a =2σ(ρ−Υcµ
c − 1

2
Υ2σ) + (µa + Υaσ)(µa + Υaσ)

=2σρ+ µaµa − 2σΥµ− σ2Υ2 + 2Υµσ + Υ2σ2

=2σρ+ µaµa
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�

In the abstract index notation the tractor metric is hAB ∈ Γ(E(AB)), and its
inverse hBC .

The standard tractor bundle, as introduced in Sections 3.4 and 3.5, would more
naturally have been defined as the dual tractor bundle. But Proposition (3.12)
shows that we have not damaged our development; the tractor bundle is canoni-
cally isomorphic to its dual and normally we do not distinguish these, except by
the raising and lowering of abstract indices using hAB.

From these considerations we see that there is no ambiguity in viewing X, of
(28), as a section of T ⊗ E [1] ∼= T [1]. In this spirit we refer to X as the canonical
tractor. At this point it is useful to note that in view of this canonical self duality
T ∼= T ∗, and the formula (29), we have the following result.

Proposition 3.13. The canonical tractor XA is null, in that

hABX
AXB = 0.

Furthermore XA = hABX
B gives the canonical inclusion of E [−1] into EA:

XA : E [−1]→ EA.
In terms of the decomposition of EA given by a choice of metric this is simply

ρ 7→

 0
0
ρ

 .

As another immediate application of the metric we observe the following. Given
a choice of scale σ ∈ E+[1], consider the corresponding scale tractor I, and in
particular is squared length h(I, I). This evidently has conformal weight zero and
so is a function on (M, c) determined only by the choice of scale σ. Explicitly we
have

(30) h(I, I)
g
= gab(∇aσ)(∇bσ)− 2

n
σ(J + ∆)σ

from Definition 8 with (25) and (29). Here we have calculated the right hand side

in terms of some metric g in the conformal class (hence the notation
g
=). But since

σ is a scale we may, in particular, use g := σ−2g. Then ∇gσ = 0 and we find the
following result.

Proposition 3.14. On a conformal manifold (M, c), let σ ∈ E+[1], and I = 1
n
Dσ

the corresponding scale tractor. Then

hABIBIC = − 2

n
Jσ,

where Jσ := gabPab, and gab = σ−2gab.

Note we usually write J to mean the density gabPab, as calculated in the scale g.
So here Jσ = σ2J. In a nutshell the conformal meaning of scalar curvature is that
it is the length squared of the scale tractor.
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Next we come to the main reason the tractor metric is important, namely be-
cause it is preserved by the tractor connection. With V as in Proposition 3.12 we
have

∇ah(V, V )
g
=2[ρ∇aσ + σ∇aρ+ gbcµb∇aµc]

=2[ρ(∇aσ − µa) + σ(∇aρ− Pabµb) + gbcµb(∇aµc + gacρ+ Pacσ)]

=2h(V,∇Ta V ).

We summarise this with also the previous result.

Theorem 3.15. On a conformal manifold (M, c) of signature (p, q), the tractor
bundle carries a canonical conformally invariant metric h of signature (p+1, q+1).
This is preserved by the tractor connection.

We see at this point that the tractor calculus is beginning to look like an analogue
for conformal geometry of the Ricci calculus of (pseudo-)Riemannian geometry: A
metric on a manifold canonically determines a unique Levi-Civita connection on
the tangent bundle preserving the metric. The analogue here is that a confor-
mal structure of any signature (and dimension at least 3) determines canonically
the standard tractor bundle T equipped with the connection ∇T and a metric h
preserved by ∇T .

Note also that the tractor bundle, metric, and connection seem to be analogues
of the corresponding structures found for model in Theorem 3.3. Especially in
view of matching filtration structures: (27) should be compared with that found
on the model in Proposition 17 (noting that TSn[−1] ∼= T ∗Sn[1]). In fact the
tractor connection here of Theorem 3.10, and the related structures, generalise the
corresponding objects on the model. This follows by more general results in [7], or
alternatively may be verified directly by computing the formula for the connection
of Theorem 3.3 in terms of the Levi-Civita connection on the round sphere.

4. Lecture 4: The tractor curvature, conformal invariants and
invariant operators.

Let us return briefly to our motivating problems: the construction of invariants
and invariant operators.

4.1. Tractor curvature. Since the tractor connection ∇T is well defined on a
conformal manifold its curvature κ on EA depends only on the conformal structure;
by construction it is an invariant of that. If we couple the tractor connection with
any torsion free connection (in particular with the Levi-Civita connection of any
metric in the conformal calss) then, according to our conventions from Lecture 1,
the curvature of the tractor connection is given by

(∇a∇b −∇b∇a)U
C = κabCDUD for all UC ∈ Γ(EC),

where ∇ denotes the coupled connection. Now using that the tractor connection
preserves the inverse metric hCD we have

0 = (∇a∇b −∇b∇a)h
CD = κabCEhED + κabDEhCE.
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In other words, raising an index with hCD

(31) κabCD = −κabDC .

It is straightforward to compute κ in a scale g. We have

(32) (∇a∇b −∇b∇a)

 σ
µc

ρ

 =

 0 0 0
Cab

c Wab
c
d 0

0 −Cabd 0

 σ
µd

ρ


where, recall W is the Weyl curvature and C is the Cotton tensor,

Cabc := 2∇[aPb]c.

In the expression for κ, the zero in the top right follows from the skew symmetry
(31), while the remaining zeros of the right column show that the canonical tractor
XD annihilates the curvature,

κabCDXD = 0.

This with the skew symmetry determines the top row of the curvature matrix.
It follows from the conformal transformation properties of the tractor splittings
that the central entry of the matrix is conformally invariant, and this is consistent
with the appearance there of the Weyl curvature Wab

c
d. Note that in dimension 3

this necessarily vanishes, and so it follows that then the tractor curvature is fully
captured by and equivalent to the Cotton curvature Cabc. Again this is consistent
with the well known conformal invariance of that quantity in dimension 3. Thus
we have the following result.

Proposition 4.1. The normal conformal tractor connection ∇T is flat if and only
if the conformal manifold is locally equivalent to the flat model.

So we shall say a conformal manifold (M, c) is conformally flat if κ = 0.

4.1.1. Application: Conformally invariant obstructions to metric being conformal-
to-Einstein. Note that as an immediate application we can use the tractor curva-
ture to easily manufacture obstructions to the existence of an Einstein metric in
the conformal class c.

From Proposition 3.6 and Theorem 3.11 a metric g is Einstein if and only if the
corresponding scale tractor IA = 1

n
DAσ is parallel, where g = σ−2g. Thus if g is

Einstein then we have

(33) κabCDID = 0.

Recall that κabCDXD = 0. If at any point p the kernel of κabCD : ED → EabC is
exactly 1-dimensional then we say that tractor curvature has maximal rank. We
have:

Proposition 4.2. Let (M, c) be a conformal manifold. If at any point p ∈ M
the tractor curvature has maximal rank then there is no Einstein metric in the
conformal equivalence class c.
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From this observation it is easy to manufacture conformal invariants that must
vanish on an Einstein manifold, see [29].

Proof. If a metric g is Einstein then σ is a true scale and hence nowhere zero.
Thus IDp is not parallel to XD

p , and the result follows from (33). �

4.2. Toward tractor calculus. Although the tractor connection and its curva-
ture are conformally invariant it is still not evident how to easily manufacture
conformal invariants. The tractor curvature takes values in Λ2(T ∗M) ⊗ End(T )
and this not a bundle on which the tractor connection acts.

To deal with this and the related problem of constructing differential invariants
of tensors and densities we need need additional tools.

The simplest of these is the Thomas-D operator. Recall that in Proposition
3.9 (cf. (25)) we constructed a differential operator D : E [1] → T that was, by
construction, tautologically conformally invariant. This generalises. Let us write
EΦ[w] to denote any tractor bundle of weight w. Then:

Proposition 4.3. There is a conformally invariant differential operator

DA : EΦ[w]→ EA ⊗ EΦ[w − 1],

defined in a scale g by

V 7→ [DAV ]g :=

 (n+ 2w − 2)wV
(n+ 2w − 2)∇aV
−(∆V + wJV )


where ∇ denotes the coupled tractor–Levi-Civita connection.

Proof. Under a conformal transformation g 7→ ĝ = Ω2g, [DAf ]g transforms by
(26). �

Note that this result is not as trivial as the written proof suggests since V (with
any indices suppressed) is a section of any tractor bundle, and the operator is
second order. In fact there are nice ways to construct the Thomas-D operator
from more elementary invariant operators [8, 25].

4.2.1. Application: differential invariants of densities and weighted tractors. A key
point about the Thomas-D operator is that it can be iterated. For V ∈ Γ(EΦ[w])
we may form (suppressing all indices):

V 7→ (V, DV, D ◦DV, D ◦D ◦DV, · · · )

and, for generic weights w ∈ R, in a conformally invariant way this encodes the jets
of the section V entirely into weighted tractor bundles. Thus we can proliferate
invariants of V .

For example for f ∈ Γ(E [w]) we can form

(DAf)DAf = −2w(n+ 2w − 2)f(∆f + wJf) + (n+ 2w − 2)2(∇af)∇af.
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By construction this is conformally invariant, for any weight w. So in fact it is a
family of invariants (of densities). Similarly we may form

(DADBf)DABBf = −2(n+2w−4)(n+2w−2)w(w−1)f∆2f+ lower order terms,

and so forth.

4.2.2. Conformal Laplacian-type linear operators. One might hope that the tractor-
D operator is also effective for the construction of conformally invariant linear dif-
ferential operators. In particular the construction of Laplacian type operators is
important. Certainly DADA is by construction conformally invariant but, on any
weighted tractor bundle:

DADA = 0.

This is verified by a straightforward calculation, but it should not be surprising
as by construction it would be invariant on, for example, densities of any weight.
On the standard conformal sphere it is well-known that there is no non-trivial
operator with this property.

From our earlier work we know the domain bundle of the conformal Laplacian
is E [1− n

2
]. Observe that for V ∈ Γ(EΦ[1− n

2
]) we have n+ 2w − 2 = 0, and

DAf
g
=

 0
0

−(∆ + 2−n
2
J)V

 , that is DAV = −XA�V

where � is the (tractor-twisted) conformal Laplacian. In particular, the proof of
Proposition 4.3 was also a proof of this result:

Lemma 4.4. The operator �
g
= (∆ + 2−n

2
J) is a conformally invariant differential

operator

� : EΦ[1− n

2
]→ EΦ[−1− n

2
],

where EΦ is any tractor bundle.

This is already quite useful, as the next exercise shows.

Exercise 5. Show that if f ∈ E [2− n
2
] then

(34) �DAf = −XAP4f.

Thus there is a conformally invariant differential operator

P4 : E [2− n

2
]→ E [−2− n

2
] where P4

g
= ∆2 + lower order terms.

In fact this is the celebrated Paneitz operator discovered by Stephen Paneitz in
1983, see [46] for a reproduction of his preprint from the time. See [25, 30] for
further discussion and generalisations.

An important point is that (34) does not hold if we replace f with a tractor field
of the same weight! Those who complete the exercise will observe the first hint of
this subtlety, in that during the calculation derivatives will need to be commuted.
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4.3. Splitting tractors. Although the importance of the tractor connection stems
from its conformal invariance we need efficient ways to handle the decomposition
of the tractor bundle corresponding to a choice of scale.

Recall that a metric g ∈ c determines an isomorphism

(35)

E [1]
⊕
Ea[1]
⊕
E [−1]

'−→ EA, mapping

 σ
µa
ρ

 = [UA]g 7→ UA ∈ EA.

The inclusion of E [−1] into the direct sum followed by this map is just XA :
E [−1]→ EA, as observed earlier in Proposition (3.13). This is conformally invari-
ant. However let us now fix the notation

(36) ZAa : Ea[1]→ EA, and Y A : E [−1]→ EA,
for the other two bundle maps determined by (35). We call these (along with XA)
the tractor projectors and view them as bundle sections ZAa ∈ Γ(EAa)[−1], and
Y A ∈ EA[−1]. So in summary [UA]g = (σ, µa, ρ) is equivalent to

(37) UA = Y Aσ + ZAaµa +XAρ.

Using the formula (29) for the tractor metric it follows at once that XAYA = 1,
ZAaZAb = δab and all other quadratic combinations of the X, Y , and Z are zero as
summarised in Figure 2. Thus we also have YAU

A = ρ, XAU
A = σ, ZAbU

A = µb

Y A ZAc XA

YA 0 0 1
ZAb 0 δb

c 0
XA 1 0 0

Figure 2. Tractor inner product

and the metric may be decomposed into a sum of projections, hAB = ZA
cZBc +

XAYB + YAXB .

The projectors Y and Z depend on the metric g ∈ c. If Ŷ A and ẐA
b are the

corresponding quantities in terms of the metric ĝ = Ω2g then altogether we have

(38) X̂A = XA, ẐAb = ZAb + ΥbXA, Ŷ A = Y A −ΥbZ
Ab − 1

2
ΥbΥ

bXA

as follows immediately from (37) and (26).

Remark 4.5. In the notation ZA
a the tractor and tensor indices are both abstract.

If we move to a concrete frame field for TM , e1, · · · , en and then write ZA
i,

i = 1, · · · , n, for the contraction ZA
ae
a
i we come to the (weighted) tractor frame

field:
XA, ZA

1, · · · , ZA
n, Y

A.

This is a frame for the tractor bundle adapted to the filtration (27), as reflected
in the conformal and inner product properties described in (38) and figure 2.
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Of course tensor products of the tractor bundle are also decomposed by the
isomorphism (35) and this is described by the tensor products of the projectors
in an obvious way. To illustrate consider the case of the bundle of tractor k-
forms ΛkT (which note is non-zero for k = 0, · · · , n + 2.) The composition series
T = E [1] +

�� T ∗M [−1] +
�� E [−1] determines the composition series for ΛkT ,

(39) ΛkT ∼= Λk−1[k] +
�� Λk−2[k − 2]

⊕
Λk[k]

+
�� Λk−1[k − 2].

Given a choice of metric g from the conformal class there is a splitting of this
composition series corresponding to the splitting (35) of T , and this is easily
computed and dealt with using the “projectors” X, Y , and Z, see e.g. [26].

4.4. The connection. Just as connections are often described in terms of their
action on a suitable frame field it is useful to give the tractor connection in terms
of its action on the projectors X, Y , and Z. The tractor covariant derivative of a
field UA ∈ Γ(EA), as in (37), is given by (22). Using the isomorphism (35) this is
written

∇aU
B = Y B(∇aσ − µa) + ZBb(∇aµb + gabρ+ Pabσ) +XB(∇aρ− Pabµ

b).

On the other hand applying the connection directly to UA expanded as in (37) we
have

∇aU
B = Y B∇aσ + σ∇aY

B + ZBb∇aµb + µb∇aZ
Bb +XB∇aρ+ ρ∇aX

B,

where we have used the Leibniz rule for ∇a, viewed as the coupled tractor-Levi-
Civita connection. Comparing these we obtain:

(40) ∇aX
B = ZB

a , ∇aZ
B
b = −PabXB − gabY B , ∇aY

B = PabZ
Bb.

This gives the transport equations for the projectors (and determines these for
the adapted frame as in the Remark 4.5 above). From a practical point of view
the formulae (40) here enable the easy computation of the connection acting on a
tractor field of any valence.

4.4.1. Application: Computing, and conformal Laplacian operators. The formulae
are effective for reducing most tractor calculations to a routine task. For example
suppose we want to compute DAXAf = DA(XAf) for f ∈ Γ(EΦ[w]), i.e. a section
of any weighted tractor bundle. We calculate in some scale g. First note that

XA(∆ + (w + 1)J)XAf =XA∆XAf,

=XA[∆, XA]f,

=XA∇b[∇b, XA]f +XA[∇b, XA]∇bf

=XA(∇bZbA)f + 2XAZbA∇bf

=XA(−JXA − nYA)f

= − nf,
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where we used that XAXA = 0, XAZbA = 0, and XAYA = 1. Thus we have

DAXAf = [(w + 1)(n+ 2w)Y A + (n+ 2w)ZAa∇a −XA∆]XAf

= (w + 1)(n+ 2w)f + (n+ 2w)ZaAZaAf + nf

= (w + 1)(n+ 2w)f + (n+ 2w)nf + nf,

and collecting terms we come to

(41) DAXAf = (n+ 2w + 2)(n+ w)f.

A straightforward induction using (41) and (40) then enables us to show that:

Theorem 4.6. On a conformal manifold (Mn, c), for any tractor bundle EΦ, and
for each k ∈ Z≥1 if n is odd (or k ∈ Z≥1 and 2k < n if n is even) there is a
conformally invariant differential operator

�2k : EΦ[k − n

2
]→ EΦ[−k − n

2
]

of the form ∆k + lower order terms (up to a non-zero constant factor). These are
given by

�2k := DA1 · · ·DAk−1�DAk−1
· · ·DA1 .

Remark 4.7. The operators in the Theorem were first reported in [25], (and with
a different proof) as part of joint work of the second author with M.G. Eastwood.

Acting on densities of weight (k − n/2) there are the GJMS operators of [36].
For k ≥ 3 these operators of Theorem 4.6 differ from the GJMS operators, as
follows easily from the discussion in [30].

4.5. Constructing invariants. We can now put together the above tools and
proliferate curvature invariants. As a first step, following [27] we may form

WAB
K
L :=

3

n− 2
DPX[PZA

aZb
B]κab

K
L.

This is conformally invariant by construction, as it is immediate from (38) that
X[PZA

aZb
B] is conformally invariant. It is exactly the object X3 which, for example,

gives the conformally invariant injection

X3 : Λ2[1]→ Λ3T .

It turns out that the W -tractor WABCD has the symmetries of an algebraic Weyl
tensor. In fact in a choice of conformal scale, WABCE is given by

(42)
(n− 4)

(
ZA

aZB
bZC

cZE
eWabce − 2ZA

aZB
bX[CZE]

eCabe
−2X[AZB]

bZC
cZE

eCceb
)

+ 4X[AZB]
bX[CZE]

eBeb,

where Cabc is the Cotton tensor, and

(43) Bab := ∇cCcba + PdcWdacb,

see [31]. Note that from (42) it follows that, in dimension 4, Beb is conformally
invariant. This is the Bach tensor.
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Since WABCD takes values in a weighted tractor bundle we may apply the
Thomas-D to this to capture jets of structure invariantly

WABCD 7→ (W, DW, D ◦DW, D ◦D ◦DW, · · · )
following the idea of Section 4.2.1. Contractions of these terms then yield invari-
ants. On odd dimensional manifolds this idea with some minor additional input
produces a generating set of scalar conformal invariants [27]. An alternative (but
closely related [7]) approach to the construction of conformal invariants uses the
Fefferman-Graham ambient metric [3, 17]. With either approach, in even dimen-
sions the situation is far more subtle, deeper ideas are needed, and even for the
construction of scalar conformal invariants open problems remain (as mentioned
in the sources referenced).

5. Lecture 5: Conformal compactification of pseudo-Riemannian
manifolds

At this point we change directions from developing the theory of tractor calculus
for conformal geometries to applying this calculus to various problems inspired by
asymptotic analysis in general relativity. We will see that the conformal treatment
of infinity in general relativity fits very nicely with the conformal tractor calculus,
and our basic motivation will be to produce results which are useful in this setting.
For the most part will work fairly generally however, and much of what is presented
will be applicable in other situations involving hypersurfaces or boundaries (such
as Cauchy surfaces or various kinds of horizons in general relativity, or to the study
of Poincaré-Einstein metrics in differential geometry). From this point on we will
adopt the convention that d = n+ 1 (rather than n as before) is the dimension of
our manifold M , so that n will be the dimension of ∂M or of a hypersurface in M .

5.1. Asymptotic flatness and conformal infinity in general relativity. It
is natural in seeking to understand and describe the physics of general relativity
to want to study isolated systems. In particular we want to be able to understand
the mass and/or energy of the system (as well as other physical quantities) and
how the system radiates gravitational energy (or how the system interacts with
gravitational radiation coming in from infinity, i.e. from outside the system).
Clearly it is quite unnatural to try to isolate a physical system from a spacetime by
simply considering the inside of a timelike tube containing the system (events inside
the tube would depend causally on events outside, and there would be no natural
choice of such a tube anyway). From early on in the history of general relativity
then physicists have sought to define isolated systems in terms of spacetimes which
are asymptotically flat, that is which approach the geometry of Minkowski space
in a suitable way as you approach “infinity”.

Definitions of asymptotic flatness typically involve the existence of special co-
ordinate systems in which the metric components and other physical fields fall off
sufficiently quickly as you approach infinity (infinity being defined by the coordi-
nate system). Once a definition of asymptotically flat spacetimes is established one
can talk about the asymptotic symmetry group of such spacetimes (which is not
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in general the Poincare group) and the corresponding physical quantities such as
mass and energy. One must be careful in defining the asymptotic flatness condition
to not require the fields to fall off too fast (thereby excluding massive spacetimes,
or gravitationally radiating ones) nor too slow (so that one loses the asymptotic
symmetries needed to define physical quantities).

A condition on asymptotically flat spacetimes which came to be seen as im-
portant is the Sachs peeling-off property, this is the condition that along a future
directed null geodesic which goes out to infinity with affine parameter λ the Weyl
curvature W a

bcd satisfies

W =
W (4)

λ
+
W (3)

λ2
+
W (2)

λ3
+
W (1)

λ4
+O

(
1

λ5

)
where each tensor W (k) is of special algebraic type with the tangent vector to the
null geodesic as a k-fold repeated principal null direction. Typically asymptotically
flat spacetimes were required to be Ricci flat near infinity, so the Weyl curvature
was in fact the full curvature tensor in this region; the term W (4) in the asymptotic
expansion was interpreted as the gravitational radiation reaching infinity.

The mass associated with this approach to isolated systems is called the Bondi
mass, it is not a conserved quantity but satisfies a mass loss formula as energy is
radiated away from the spacetime. The asymptotic symmetry group (which is the
same abstract group for any spacetime) is known as the BMS (Bondi-Metzner-
Sachs) group. There is an alternative way of defining asymptotic flatness using the
3+1 formalism. In this case one talks about the spacetime being asymptotically flat
at spatial infinity, the corresponding mass is the ADM (Arnowitt-Deser-Misner)
mass, and the asymptotic symmetry group is known as the SPI group. Questions
of how these two notions of asymptotic flatness are related to each other can be
subtle and tricky. For a good introductory survey of these issues see the chapter
on asymptotic flatness in [56].

After a great deal of work in these areas, a new approach was suggested by
Roger Penrose in the 1960s [47, 48, 50]. Penrose required of an asymptotically
flat spacetime that the conformal structure of spacetime extend to a pair of null
hypersurfaces called future and past null infinity. This mirrored the the conformal
compactification of Minkowski space obtained by adding a lightcone at infinity.
It was quickly shown that (i) Penrose’s notion of conformal infinity satisfied the
appropriate uniqueness property [22], (ii) this form of asymptotic flatness implied
the peeling property [47, 50], and (iii) the corresponding group of asymptotic
symmetries was the usual BMS group [23]. It is not totally surprising that this
idea worked out so well: the causal (or light-cone) structure of spacetime, which is
encoded by the conformal structure, had played an important role in the analysis
of gravitational radiation up to that point. The conformal invariance of the zero
rest mass equations for arbitrary spin particles and their peeling-off properties also
fit nicely with Penrose’s proposal, providing further motivation. What is really
nice about this approach however is that it is both natural and coordinate free.

Let us now give the formal definition(s), following [19].
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R× Sn−1

Mn

I +

I −

i0

i+

i−

Figure 3. The standard conformal embedding of n-dimensional
Minkowski space Mn into the Einstein cylinder.

Definition 9. A smooth (time- and space-orientable) spacetime (M+, g+) is called
asymptotically simple if there exists another smooth Lorentzian manifold (M, g)
such that

(i) M+ is an open submanifold of M with smooth boundary ∂M+ = I ;
(ii) there exists a smooth scalar field Ω on M , such that g = Ω2g+ on M+, and

so that Ω = 0, dΩ 6= 0 on I ;
(iii) every null geodesic in M+ acquires a future and a past endpoint on I .

An asymptotically simple spacetime is called asymptotically flat if in addition
Ricg+ = 0 in a neighbourhood of I .

The Lorentz manifold (M, g) is commonly referred to as the unphysical space-
time, and g is called the unphysical metric. One can easily see that I must have
two connected components (assuming M+ is connected) I + and I − consisting
of the future and past endpoints of null geodesics respectively. It is also easy to
see that I + and I − are booth smooth null hypersurfaces. Usually (in the 4-
dimensional setting) I + and I − will have topology S2 × R, however this is not
necessarily the case.

Remark 5.1. The third condition is in some cases too strong a requirement, for
instance in a Schwarzschild black hole spacetime there are null geodesics which
circle about the singularity forever. To include Schwarzschild and other such
sapcetimes one must talk about weakly asymptotically flat spacetimes (see [49]).

Remark 5.2. (For those wondering “whatever happened to the cosmological con-
stant?”) One can also talk about asymptotically de Sitter spacetimes in which case
the boundary hypersurface(s) will be spacelike and one asks for the spacetime to
be Einstein, rather than Ricci flat, in a neighbourhood of the conformal infinity.
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Similarly one can talk about asymptotically anti-de Sitter spacetimes, which have
a timelike hypersurface as conformal infinity.

Just how many spacetimes satisfy this definition of asyptotic flatness, and how
do we get our hands on them? These questions lead us to the discussion of
Friedrich’s conformal field equations. We will see that the conformal field equa-
tions arise very naturally from the tractor picture. However, first we will discuss
more generally the mathematics of conformal compactification (inspired by the
conformal treatment of infinity above) for pseudo-Riemannian manifolds, and the
geometric constraints placed on such “compactifications”. Again we shall see that
this fits nicely within a tractor point of view.

5.2. Conformal compactification. A pseudo-Riemannian manifold (M+, g+) is
said to conformally compact if M+ may be identified with the interior of a smooth
compact manifold with boundary M and there is a defining function r for the
boundary Σ = ∂M+ so that

g+ = r−2g on M+

where g is a smooth metric on M . In calling r a defining function for Σ we mean
that r is a smooth real valued function on M such that Σ is exactly the zero locus
Z(r) of r and furthermore that dr is non-zero at every point of Σ.

Any such g induces a metric g on Σ, but the defining function r by r′ = f ·r where
f is any non-vanishing function. This changes g conformally and so canonically
the boundary has a conformal structure determined by g+, but no metric. The
metric g+ is then complete and (Σ, c) is sometimes called the conformal infinity of
M+. Actually for our discussion here we are mainly interested in the structure and
geometry of the boundary and the asymptotics of M+ near this, so it is not really
important to us that M is compact. An important problem is how to link the
conformal geometry and conformal field theory of Σ to the corresponding pseudo-
Riemannian objects on M+.

We will see that certainly this kind of “compactification” is not always possible,
but it is useful in a number of settings. Clearly conformal geometry is involved. In
a sense it arises in two ways (that are linked). Most obviously the boundary has a
conformal structure. Secondly the interior was conformally rescaled to obtain the
metric g that extends to the boundary. This suggests a strong role for conformal
geometry – and it is this that we want to discuss.

Toward our subsequent discussion let us first make a first step by linking this
notion of compactification to our conformal tools and notations. Let us fix a
choice of r and hence g above. If τ ∈ Γ(E [1]) is any non-vanishing scale on M then
σ := rτ is also a section of E [1] but now with zero locus Z(σ) = Σ. This satisfies
that ∇gσ is nowhere zero along Σ and so we say that σ is a defining density for Σ.
Clearly we can choose τ so that

g = τ−2g
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where g is the conformal metric on M . Then

g+ = σ−2g.

Thus we may think of a conformally compact manifold, as defined above, as a
conformal manifold with boundary (M, c) equipped with a section σ ∈ Γ(E [1])
that is a defining density for the boundary ∂M .

The key examples of conformally compactified manifolds fit nicely within this
framework. Indeed, consider the Poincare ball model of hyperbolic space Hd.
This conformal compactification can be realised by considering the extra structure
induced on the conformal sphere (Sd, c) by a choice of constant spacelike tractor
field I on Sd (i.e. a constant vector I in V). This choice gives a symmetry
reduction of the conformal group G = SO+(H) to the subgroup H ∼= SO+(d, 1)
which stabilises I. On each of the two open orbits of Sd under the action of H
there is induced a hyperbolic metric, whereas the closed orbit (an n-sphere) recieves
only the conformal structure induced from (Sd, c). The two open orbits correpond
to the two regions where the scale σ of I is positive and negative respectively,
and the closed orbit is the zero locus of σ. If we choose coordinates XA for
V as before, then the 1-density σ corresponds to the homogeneous degree one
polynomial σ̃ = IAX

A (dualising I using H); that σ−2g gives a hyperbolic metric
on each of the open orbits can be seen by noting that the hyperplanes IAX

A = ±1
intersect the future light cone N+ in hyperbolic sections, and the fact that Z(σ)
recieves only a conformal structure can be seen from the fact that the hyperplane
IAX

A = 0 intersects N+ in a subcone. Thus we see that the scale corresponding
to a constant spacelike tractor I on (Sd, c) gives rise to a decomposition of the
conformal d-sphere into two copies of conformally compactified hyperbolic space
glued along their boundaries.

N+

I

σ̃=0 σ̃=1

σ̃ = IAX
A

P+
Hd

Sd−1

Figure 4. The orbit decomposition of the conformal sphere corre-
sponding to the subgroup H of the conformal group G preserving
a fixed spacelike vector I. An open orbit may be thought of as Hd

conformally embedded into Sd.

One can repeat the construction above in the case of the Lorentzian signature
model space Sn×S1 in which case one obtains a decomposition of Sn×S1 into two
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copies of comformally compactified AdSd/Z glued together along their conformal
infinities (where the Z-action on anti-de Sitter space is given by integer times 2π
time translations); this conformal compactification of AdSd/Z corresponds to the
usual embedding of AdSd into (half of) the Einstein universe after we take the
quotient by Z. If one instead takes a constant null tractor I on Sn × S1 then the
corresponding scale σ gives decomposition of Sn×S1 into two copies of conformally
compactified Minkowski space glued along their null boundaries (plus two isolated
points where Z(σ) has a double cone-like singularity).

5.3. Geometry of scale. There is an interesting perspective which emerges from
the above correspondence between constant (parallel) tractors and conformal com-
pactifications. This may be motivated by Proposition 3.8 and Theorem 3.11 which
linked almost Einstein scales to parallel tractors. Together they imply:

Proposition 5.3. An Einstein manifold (M, g) is the same as a conformal man-
ifold (M, c) equipped with a parallel standard tractor I such that σ := XAIA is
nowhere zero: Given c and I the metric is recovered by

(44) g = σ−2g.

Conversely a metric g determines c := [g], and σ ∈ E+[1] by (44) again, now used
as an expression for this variable. Then I = 1

n
Dσ.

So this suggests that if we wish to draw on conformal geometry then using the
package (M, c, I) may give perspectives not easily seen via the (M, g) framework.
Some questions arise:

(1) First the restriction that σ := XAIA is nowhere zero seems rather unnatural
from this point of view. So what happens if we drop that? Then, if I is a
parallel standard tractor, recall we say that (M, c, I) is an almost Einstein
structure. What, for example, does the zero locus Z(σ) of σ = XAIA look
like in this case?

(2) Is there a sensible way to drop the Einstein condition and use this approach
on general pseudo-Riemannian manifolds?

5.3.1. The zero locus of almost Einstein and ASC manifolds. In fact there is now
known a way to answer the first question via a very general theory. Using “the
package (M, c, I)” amounts to recovering the underlying pseudo-Riemannian struc-
ture (and its generalisations as below) as a type of structure group reduction of a
conformal Cartan geometry. If I is parallel then this a holonomy reduction. On an
extension of the conformal Cartan bundle to a principal bundle with fibre group
G = O(p+ 1, q + 1), the parallel tractor I gives a bundle reduction to a principal
bundle with fibre H where this is: (i) O(p, q+ 1), if I is spacelike; (ii) O(p+ 1, q),
if I is timelike; and (iii) a pseudo-Euclidean group Rd oO(p, q), if I is null.

By the general theory of Cartan holonomy reductions [11] any such reduction
yields a canonical stratification of the underlying manifold into a disjoint union of
curved orbits. These are parametrised by H\G/P , as are the orbits of H on G/P .
Each curved orbit is an initial submanifold carrying a canonically induced Cartan
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geometry of the same type as that of the corresponding orbit in the model. Fur-
thermore this curved orbit decomposition must look locally like the decomposition
of the model G/P into H-orbits. This means that in an open neighbourhood U
of any point on M there is a diffeomorphism from U to the an open set U◦ in the
model that maps each curved orbit (intersected with U) diffeomorphically to the
corresponding H-orbit (intersected with U◦) of G/P .

In our current setting P is the stabiliser in G of a null ray in Rp+1,q+1 and
the model G/P is isomorphic to conformal Sd × {1,−1}, if c is Riemannian, and
conformal Sp × Sq otherwise. The curved orbits arise here because as we move
around the manifold the algebraic relationship between the parallel object I and
the canonical tractor X changes. (For general holonomy reductions of Cartan
geometries the situation is a simple generalisation of this.) In particular, in Rie-
mannian signature (or if I2 6= 0), it is easily verified using these tools that the
curved orbits (and the H-orbits on the model) are distinguished by the strict sign
of σ = XAIA, see [11, Section 3.5]. By examining these sets on the model we
conclude.

Theorem 5.4. The curved orbit decomposition of an almost Einstein manifold
(M, c, I) is according to the strict sign of σ = IAX

A. The zero locus satisfies:

• If I2 6= 0 (i.e. go Einstein and not Ricci flat) then Z(σ) is either empty or
is a smooth embedded hypersurface.

• If I2 = 0 (i.e. go Ricci flat) then Z(σ) is either empty or, after excluding
isolated points from Z(σ), is a smooth embedded hypersurface.

Here go means the metric σ−2g on the open orbits (where σ is nowhere zero).

M+

M−

M0

σ > 0σ < 0

σ = 0

Figure 5. The curved orbit decomposition of an almost Einstein
manifold with Z(σ) an embedded separating hypersurface.

Remark 5.5. Much more can be said using the tools mentioned. For example in
the case of Riemannian signature it is easily shown that:

• If I2 < 0 (i.e. go Einstein with positive scalar curvature) then Z(σ) is
empty.
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• If I2 = 0 (i.e. go Ricci flat) then Z(σ) is either empty or consists of isolated
points.

• If I2 > 0 (i.e. go Einstein with negative scalar curvature) then Z(σ) is
either empty or is a smooth embedded separating hypersurface.

This holds because this is how things are locally on the flat model [24, 11]; if
I2 < 0 then on the model we have a round metric induced on the whole conformal
sphere, the one open orbit is the whole space; if I2 = 0 then on the model we are
looking at the one point conformal compactification of Euclidean space given by
inverse stereographic projection, and there are two orbits, one open and one an
isolated point, so in the curved case Z(σ) is either empty or consists of isolated
points; if I2 > 0 then on the model we are looking at two copies of conformally
compactified hyperbolic space glued along their boundaries as discussed earlier, in
this case the closed orbit is a separating hypersurface so in the curved case Z(σ) is
either empty or is a smooth embedded separating hypersurface. In the Lorentzian
setting one can obtain a similar improvement of Theorem 5.4 by considering the
model cases.

In fact similar results hold in greater generality (related to the question (2)
above) and this is easily seen using the earlier tractor calculus and elementary
considerations. We learn from the Einstein case above that an important role is
played by the scale tractor

IA =
1

d
DAσ.

In the Einstein case this is parallel and hence non-zero everywhere. Let us drop
the condition that I is parallel and for convenience say that a structure

(Md, c, σ) where σ ∈ Γ(E [1])

is almost pseudo-Riemannian if the scale tractor IA := 1
d
DAσ is nowhere zero. Note

then that σ is non-zero on an open dense set, since DAσ encodes part of the 2-jet of
σ. So on an almost pseudo-Riemannian manifold there is the pseudo-Riemannian
metric go = σ−2g on the same open dense set. In the following the notation I will
always refer to a scale tractor, so I = 1

d
Dσ, for some σ ∈ Γ(E [1]). Then we often

mention I instead of σ and refer to (M, c, I) as an almost pseudo-Riemannian
manifold.

Now recall from (30) that

(45) I2 g
= gab(∇aσ)(∇bσ)− 2

d
σ(J + ∆)σ

where g is any metric from c and ∇ its Levi-Civita connection. This is well-
defined everywhere on an almost pseudo-Riemannian manifold, while according to
Proposition 3.14, where σ is non-zero, it computes

I2 = −2

d
Jg

o

= − Scg
o

d(d− 1)
where go = σ−2g.
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Thus I2 gives a generalisation of the scalar curvature (up to a constant factor
−1/d(d − 1)); it is canonical and smoothly extends the scalar curvature to in-
clude the zero set of σ. We shall use the term ASC manifold (where ASC means
almost scalar constant) to mean an almost pseudo-Riemannian manifold with
I2 = constant. Since the tractor connection preserves the tractor metric, an almost
Einstein manifold is a special case, just as Einstein manifolds have constant scalar
curvature.

Much of the previous theorem still holds in the almost pseudo-Riemannian set-
ting when I2 6= 0:

Theorem 5.6. Let (M, c, I) be an almost pseudo-Riemannian manifold with I2 6=
0. Then Z(σ), if not empty, is a smooth embedded separating hypersurface. This
has a spacelike (resp. timelike) normal if g has negative scalar (resp. positive)
scalar curvature.

If c has Riemannian signature and I2 < 0 then Z(σ) is empty.

Proof. This is an immediate consequence of (45): Along the zero locus Z(σ) of σ
(assuming it is non empty) we have

I2 = gab(∇aσ)(∇bσ).

in particular∇σ is nowhere zero on Z(σ), and so σ is a defining density. Thus Z(σ)
is a smoothly embedded hypersurface by the implicit function theorem. Evidently
Z(σ) separates M according to the sign of σ. Also ∇σ is a (weight 1) conormal
field along Z(σ) so the claimed signs for the normal also follow from the display.

Finally if c (and hence g) has Riemannian signature, then the display shows
that at any point of Z(σ) the constant I2 must be positive. This is a contradiction
if I2 < 0 and so Z(σ) = ∅. �

Remark 5.7. Note that if M is compact then Theorem 5.6 gives a decomposition
of M into conformally compact manifolds glued along their conformal infinities.
Note also that if M is allowed to have boundary then we only mean that Z(σ) is
separating if it is not a boundary component of M .

What we can conclude from all this is that almost pseudo-Riemannian manifolds
(M, c, I) naturally give rise to nicely conformally compactified metrics (at least in
the case where I2 6= 0). If the scalar curvature of the manifold (M+, g+) admitting
a conformal compactification (M, c) is bounded away from zero then the conformal
compactification must arise from an almost pseudo-Riemannian manifold (M, c, I)
in this way because I2 is then bounded away from zero on M+ and hence I extends
to be nowhere zero on M (all that we really need is that I2 6= 0 on ∂M+). Thus we
can apply the results above to the conformal compactification of (M+, g+). This
tells us for instance that Riemannian manifolds with negative scalar curvature
bounded away from zero must have a nice smooth boundary as conformal infinity
if they can be conformally compactified. In the next section we develop this kind
of idea.
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5.4. Constraints on possible conformal compactifications. Here we show
that elementary geometric considerations restrict the topological (and geometric)
possibilities for a conformal infinity.

Theorem 5.8. Let (M+, g+) be a geodesically complete pseudo-Riemannian man-
ifold and i : M+ → M an embedding of M+ as an open submanifold in a closed
conformal manifold (M, c) and σ a smooth section of E [1] on M so that on the
image i(M+), which we identify with M+, we have that

g+ = σ−2g

where g is the conformal metric on M . If the scalar curvature of g+ is bounded
away from zero then either M+ = M or the boundary points of M+ in M form a
smooth embedded hypersurface in M . This has a timelike normal field if Scg+ > 0
and a spacelike normal field if Scg+ < 0.

Proof. We can form the scale tractor

IA =
1

d
DAσ.

Then I2 is a smooth function on M that is bounded away from zero on the open
set M+ ⊂M . Thus I2 6= 0 on the topological closure M+ of M+ in M . Now since
I2 6= 0 on M+ we have at any point p ∈ Z(σ) ∩M+ that ∇σ(p) 6= 0. Thus the
zero locus of σ (intersected with M+) is a regular embedded submanifold of M+.
By construction this lies in the set ∂M+ of boundary points to M+.

On the other hand any boundary point is in the zero locus, as otherwise for any
p ∈ ∂M+ s.t. σ(p) 6= 0 there is an open neighbourhood of p in M+ such that σ is
nowhere zero and so g extends as a metric to this neighbourhood. So then there
is a geodesic from a point in M+ that reaches p in finite time, which contradicts
that M+ is geodesically complete. �

In particular if g+ is Einstein with non-zero cosmological constant then I is
parallel, and hence I2 is constant and nonzero. So the above theorem applies in
this case. In fact in the Einstein case we can also get results which in some aspects
are stronger. For example:

Theorem 5.9. Suppose that M+ is an open dense submanifold in a compact con-
nected conformal manifold (Md, c), possibly with boundary, and that one of the
following two possibilities hold: either M is a manifold with boundary ∂M and
M \M+ = ∂M , or M is closed and M \M+ is contained in a smoothly embedded
submanifold of M of codimension at least 2. Suppose also that g+ is a geodesi-
cally complete Einstein, but not Ricci flat, pseudo-Riemannian metric on M+ such
that on M+ the conformal structure [g+] coincides with the restriction of c. Then,
either

• M+ is closed and M+ = M ; or
• we are in the first setting with M \M+ the smooth n-dimensional boundary

for M .



48 Curry & Gover

Proof. M+ is canonically equipped with a parallel standard tractor I such that
I2 = c 6= 0, where c is constant.

Now [g+] on M+ is the restriction of a smooth conformal structure c on M . Thus
the conformal tractor connection on M+ is the restriction of the smooth tractor
connection on M . Working locally it is straightforward to use parallel transport
along a congruence of curves to give a smooth extension of I to a sufficiently small
open neighborhood of any point in M \ M+, and since M+ is dense in M the
extension is parallel and unique. (See [15] for this extension result in general for
the case where M \M+ lies in a submanifold of dimension at least 2.) It follows
that I extends as a parallel field to all of M .

It follows that σ := IAX
A also extends smoothly to all of M . This puts us back

in the setting of Theorem 5.8, so that M \M+ is either empty or is an embedded
hypersurface. If M \ M+ is empty then M is closed and M = N . If M \ M+

is an embedded hypersurface then, buy our assumptions, we must be in the case
where M is a manifold with boundary and M \M+ = ∂M (since an embedded
hypersurface cannot be contained in a submanifold of codimension two). �

Remark 5.10. In Theorem 5.8 we had to assume that there was a smooth globally
defined conformal 1 density σ which glued the metric on M+ smoothly to the
conformal structure of M . In Theorem 5.9 we are able to drop this condition
because we are requiring that the metric g+ on M+ is Einstein with conformal
structure agreeing with that on M , allowing us to recover the smooth global 1
density σ by parallel extension of the scale tractor for g+ to M \M+. However, it
is not hard to see that one must place some restriction on the submanifold M \M+

in order for a parallel extension to exist, this is where the condition that M \M+

must lie in a submanifold of codimension two comes in for the case where M is
closed.

5.5. Friedrich’s conformal field equations and tractors. In this section we
briefly discuss Friedrich’s conformal field equations and their applications. We will
see that the equations can be very easily arrived at using tractor calculus, and that
the tractor point of view is also nicely compatible with the way the equations are
used in applications.

5.5.1. The equations derived. Suppose that (M+, g+) is an asymptotically flat
spacetime with corresponding unphysical spacetime (M, g) and conformal factor
Ω. (We may assume that M = M+∪I .) Then since (M+, g+) is Ricci flat near the
conformal infinity I the conformal scale tractor I defined on M+ corresponding
to the metric g+ is parallel (and null) near I and thus has a natural extension (via
parallel transport, or simply by taking the limit) to all of M . Let us assume for
simplicity that (M+, g+) is globally Ricci flat, then the naturally extended tractor
I is globally parallel on the non-physical spacetime (M, g). If we write out the
equation ∇aI

B = 0 on M in slots using the decomposition of the standard tractor
bundle of (M, [g]) induced by g then we get the system of equations
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∇aσ = µa

∇aµb = −σPab − ρgab
∇aρ = Pabµ

b

where I
g
= (σ, µa, ρ). If we also trivialise the conformal density bundles using g

then σ becomes Ω, g becomes g, and we recognise the above three equations as
the first three equations in what are commonly known as Friedrich’s conformal
field equations. A fourth member of the conformal field equations can be obtained
by writing IAI

A = 0 out as

2σρ+ µaµ
a = 0.

Next we observe that ∇aI
B = 0 clearly implies κabCDID = 0, and the projecting

part of this equation gives the conformal C-space equation

∇bPac −∇aPbc = Wabcdσ
−1µd

after multiplication by σ−1. (The “bottom slot” of κabCDID = 0 taken w.r.t. g
is (∇bPac −∇aPbc)µ

c = 0 which also follows from contracting the above displayed
equation with µc.) The contracted Bianchi identity states that

∇dWabcd = ∇bPac −∇aPbc

and from this and the previous display it follows that

∇d(σ−1Wabcd) = 0

(where we have used that ∇aσ = µa). It can be shown [19] that the field σ−1Wab
c
d

is regular at I (recall the Sachs peeling property), and we will write this field
as Kab

c
d. If we substitute Kabcd = gceKab

e
d for σ−1Wabcd in the C-space equation

and in the last equation displayed above we get the remaining two equations from
Friedrich’s conformal system

∇bPac −∇aPbc = Kabcdµ
d

and

∇aKabcd = 0,

which hold not only on M+ but on all of M . This pair of equations encode not only
the fact that (M+, g+) is Cotton flat (both equations being in some sense conformal
C-space equations), but also by their difference they encode the contracted Bianchi
identity (and hence the full Bianchi identity if M+ is 4-dimensional [21]).

The equations from Friedrich’s conformal system are thus seen to be elementary
consequences of the system of four tractor equations

∇aI
B = 0

IAIA = 0

κabCDID = 0

∇[aκbc]DE = 0.
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Remark 5.11. There are in fact more equations that could be considered as a part
of Friedrich’s conformal system, however these simply define the connection and
the curvature terms used in the equations we have given. These equations would
be the expressions ∇g = 0 and T∇ = 0 satisfied by the Levi-Civita connection of
g, and the decomposition of the Riemannian curvature tensor of ∇ as

Rabcd = σKabcd + 2Pa[cgd]b − 2Pb[cgd]a

which serves to define the curvature tensors Kabcd and Pab (along with the ap-
propriate symmetry conditions on Kabcd and Pab as well as the condition that
gacKabcd = 0).

Note that we can easily allow for a nonzero cosmological constant in our tractor
system by taking IAIA to be a constant rather than simply zero.

5.5.2. The purpose of the equations. What are the conformal Field equations for?
The answer is that one seeks solutions to them in the same way that one seeks
solutions to Einstein’s field equations. A global solution to the conformal field
equations gives a conformally compactified solution of Einstein’s field equations.
(In fact solutions of the conformal field equations may extend to regions “beyond
infinity” where Ω becomes negative.) We should note one can very easily allow for a
non zero cosmological constant and even for non zero matter fields (especially ones
with nice conformal behaviour) in the conformal field equations. The conformal
field equations are then a tool for obtaining and investigating isolated systems in
general relativity.

Like Einstein’s field equations, the conformal field equations have an initial
value formulation where initial data is specified on a Cauchy hypersurface. But
when working with the conformal field equations is that it is also natural to pre-
scribe data on the conformal infinity; when initial data is prescribed on (part of)
I − as well as on an ingoing null hypersurface which meets I − transversally we
have the characteristic initial value problem. When initial data is specified on a
spacelike hypersurface which meets conformal infinity transversally we have the
hyperboloidal initial value problem. (The name comes from the fact that spacelike
hyperboloid in Minkowski space are the prime examples of such initial data hyper-
surfaces.) If the hyperboloidal initial data hypersurface meets I − (rather than
I +) then one should also prescribe data on the part of I − to the future of the
hypersurface, giving rise to an initial-boundary value problem.

What is being sought in the study of these various geometric PDE problems?
Firstly information about when spacetimes will admit a conformal infinity and
what kind of smoothness it might have. Secondly information about gravitational
radiation produced by various gravitational systems as well as the way that such
systems interact with gravitational radiation (scattering properties). Thirdly, one
is obviously interested in the end in having a general understanding of the solu-
tions of the conformal field equations (though this is a very hard problem). These
problems have been studied a good deal, both analytically and numerically, how-
ever there are many questions left to be answered. For helpful overviews of this
work consult [19, 21].
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5.5.3. Regularity. An important feature of the conformal field equations is that
they are regular at infinity. From the tractor calculus point of view this is obvi-
ous since the conformal structure extends to the conformal infinity so the tractor
system displayed above cannot break down there, but one can also easily see this
from the usual form of the equations. The significance of this is highlighted when
one considers what field equations one might naively expect to use in this setting:
the most obvious guess would be to rewrite Ricg+ = 0 in terms of the Ricci tensor
of the unphysical metric g and it’s Levi-Civita connection yielding

Ricab +
d− 2

Ω
∇a∇bΩ− gab

(
1

Ω
∇c∇cΩ−

d− 1

Ω2
(∇cΩ)∇cΩ

)
= 0

which degenerates as Ω→ 0.

It is worth noting the significance of the regularity of the conformal field equa-
tions in the area of numerical relativity. The appeal of “conformal compactifica-
tion” to numerical relativists should be obvious: it means that one is dealing with
finite domains.

5.5.4. Different reductions and different forms of the equations. The conformal
field equations are a system of geometric partial differential equations. In order
to study them analytically or numerically they need to be reduced to a classical
system of PDE; this involves introducing coordinates and adding conditions on
various fields to pin down the natural gauge freedom in the equations (gauge
fixing). There is a significant amount of freedom in how one reduces the system. If
this process is done carefully with the conformal field equations one can obtain (in
4 dimensions) a symmetric hyperbolic system of evolution equations together with
an elliptic system of constraint equations (reflecting the fact that the conformal
field equations are overdetermined). The constraint equations can be taken as
conditions on initial data for the Cauchy problem for the conformal field equations,
whereas the evolution equations can be taken as prescribing how such data will
evolve off the Cauchy hypersurface. For further discussion of the reduction process
and a demonstration of how the conformal field equations can be reduced see [19].

One may employ different reductions of the conformal field equations in different
settings and for different purposes. Indeed, the form of Friedrich’s conformal
field equations which we presented above is by no means the only form of the
equations that is used, and the significance of the other forms is that they allow
for a still broader range of different reductions. As an example of this, note that
one could instead have employed the splitting of the tractor bundle induced by a
Weyl connection [8] to obtain a system of conformal field equations in a similar to
what we did above; this would result in a different form of the equations which have
different gauge freedoms and from which we can obtain different reduced systems;
the equations which one would obtain this way are what Friedrich calls the general
conformal field equations whereas the equations we presented above are referred
to as the metric conformal field equations [21]. Friedrich also frequently casts the
equations in spinor form, and now we have seen that the conformal field equations
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take a very simple tractor form

∇aI
B = 0

IAIA = 0

κabCDID = 0

∇[aκbc]DE = 0

(where we also need to impose the appropriate conditions on∇ and κ as variables).
It may indeed prove profitable to see the various reductions of the conformal field
equations as being reductions of this tractor system. The gauge freedom(s) in
Friedrich’s field equations can be seen as coming from the splitting of the trac-
tor equations into tensor equations (along with freedom to choose coordinates).
Friedrich’s use of conformal geodesics [21] in constructing coordinates as part of the
reduction process also fits quite nicely with the tractor picture (see, e.g., [42, 44]).

Remark 5.12. In [20] Fraundiener and Sparling observed that in the 4-dimensional
(spin) case Friedrich’s conformal field equations could be recast in terms of local
twistors involving the so called “infinity twistor” Iαβ. In this case the bundle of
real bitwistors is canonically isomorphic to the standard tractor bundle, and the
“infinity twistor” Iαβ corresponds (up to a constant factor) to the scale tractor
IA, so that the local twistor system in [20] is closely related to the tractor system
above. Indeed the connection is so close (the modern approach to conformal trac-
tors having developed out of study of the local twistor calculus [2]) that we may
consider the local twistor formulation to be the origin of the above tractor system.
The conformal field equations have also been presented in terms of tractors by
Christian Lübbe [42]. Lübbe and Tod have applied the tractor calculus to the
study of conformal gauge singularities in general relativity (see, e.g., [44]).

6. Lecture 6: Conformal hypersurfaces

In order to progress in our study of conformal compactification we first need to
spend some time considering the geometry of embedded hypersurfaces in confor-
mal manifolds (or of boundaries to conformal manifolds if you like). In particular
we will need to examine how the standard tractor bundle (and connection, etc.)
of the hypersurface with its induced conformal structure is related to the standard
tractor bundle (and connection, etc.) of the ambient space. Although our main
motivation is the study of conformal compactification for this lecture we will con-
sider conformal hypersurfaces more generally since there are many other important
kinds of hypersurface which turn up in general relativity. We will however restrict
ourselves to the case of nondegenerate hypersurfaces, in particular we do not give
a treatment of null hypersurfaces here.

6.1. Conformal hypersurfaces. By a hypersurface Σ in a manifold M we mean
a smoothly embedded codimension 1 submanifold of M . We recall some facts
concerning hypersurfaces in a conformal manifold (Md, c), d ≥ 3. In fact we wish
to include the case that Σ might be a boundary component. In the case of a
pseudo-Riemannian (or conformal pseudo-Riemannian) manifold with boundary
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then, without further comment, we will assume that the conformal structure ex-
tends smoothly to the boundary.

Here we shall restrict to hypersurfaces Σ with the property that the any conormal
field along Σ is nowhere null (i.e. to nondegenerate hypersurfaces). In this case
the restriction of any metric g ∈ c gives a metric ḡ on Σ. Different metrics,
among the metrics so obtained, are related conformally and so the conformal class
c determines a conformal structure c on Σ. To distinguish from the ambient
objects, we shall overline the corresponding objects intrinsic to this conformal
structure. For example g denotes the conformal metric on Σ.

Then by working locally we may assume that there is a section na ∈ Γ(Ea[1])
on M such that, along Σ, na is a conormal satisfying |n|2g := gabnanb = ±1. This

means that if g = σ−2g is any metric in c then nga = σ−1na is an extension to M
of a unit conormal to Σ in (M, g). So na|Σ is the conformally invariant version of
a unit conormal in pseudo-Riemannian geometry; na must have conformal weight
1 since g−1 has conformal weight −2.

We choose to work with the weighted (extended) conormal field na even in the
presence of a metric g from the conformal class. Thus we end up with a weight
1 second fundamental form Lab by restricting, along Σ, ∇anb to TΣ × TΣ ⊂
(TM × TM)|Σ, where ∇ = ∇g. (Here we are viewing T ∗Σ as the subbundle of
T ∗M |Σ orthogonal to na.) Explicitly Lab is given by

Lab := ∇anb ∓ nanc∇cnb along Σ,

since |n|2g is constant along Σ. From this formula, it is easily verified that Lab is
independent of how na is extended off Σ. It is timely to note that Lab harbours
a hypersurface conformal invariant: Using the formulae (2) and (16) we compute
that under a conformal rescaling, g 7→ ĝ = e2ωg, Lab transforms according to

Lĝab = Lgab + gabΥcn
c,

where as usual Υ is the exterior derivative of ω (which is equal to the log exterior
derivative Ω−1dΩ of Ω = eω) and we use this notation below without further
mention. Thus we see easily the following well-known result:

Proposition 6.1. The trace-free part of the second fundamental form

L̊ab = Lab −Hgab, where, H :=
1

d− 1
gcdLcd

is conformally invariant.

The averaged trace of L (= Lg), denoted H above, is the mean curvature of Σ.
Evidently this a conformal −1-density and under a conformal rescaling, g 7→ ĝ =
e2ωg, Hg transforms to H ĝ = Hg + naΥa.

Thus we obtain a conformally invariant section N of T |Σ

NA
g
=

 0
na
−Hg

 ,
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and from (29) h(N,N) = ±1 along Σ; the conformal invariance follows because the
right-hand-side of the display transforms according to the “tractor characterising”
transformation (26). Obviously N is independent of any choices in the extension
of na off Σ. This is the normal tractor of [2] and may be viewed as a tractor
bundle analogue of the unit conormal field from the theory of pseudo-Riemannian
hypersurfaces.

6.1.1. Umbilicity. A point p in a hypersurface is said to be an umbilic point if, at
that point, the trace-free part L̊ of the second fundamental form is zero. Evidently
this is a conformally invariant condition. A hypersurface is totally umbilic if this
holds at all points. As an easy first application of the normal tractor we recall
that it leads to a nice characterisation of the the umbilicity condition.

Differentiating N tangentially along Σ using ∇T , we obtain the following result.

Lemma 6.2.

(46) LaB := ∇aNB
gcb=

 0

L̊ab
− 1
d−2
∇bL̊ab


where ∇ is the pullback to Σ of the ambient tractor connection.

Proof. Using the formula (22) for the tractor connection, we have

∇cNB
g
=

 −nc
∇cnb − gcbH
−∇cH − Pcbnb

 .

Thus applying the orthogonal TM |Σ → TΣ projector Πc
a := (δca∓ncna) we obtain

immediately the top two terms on the right-hand-side of (46). The remaining
term follows after using the hypersurface Codazzi equation for pseudo-Riemannian
geometry

∇aLbc −∇bLac = Πa′

a Πb′

b Ra′b′cdn
d,

where ∇ denotes the Levi-Civita connection for the metric g induced by g (for full
details see [55, 32]). �

Thus we recover the following result.

Proposition 6.3. [2] Along a conformal hypersurface Σ, the normal tractor N is
parallel, with respect to ∇T , if and only if the hypersurface Σ is totally umbilic.

6.1.2. Conformal calculus for hypersurfaces. The local calculus for hypersurfaces
in Riemannian geometry is to a large extent straightforward because there is a
particularly simple formula, known as the Gauss formula, which relates the am-
bient Levi-Civita connection to the Levi-Civita connection of the induced metric.
It is natural to ask if we have the same with our conformal tractor calculus.

Given an ambient metric g we write ∇ to denote the pullback of the ambi-
ent Levi-Civita connection along the embedding of the hypersurface Σ, i.e. the
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ambient connection differentiating sections of TM |Σ in directions tangent to the
hypersurface. Then the Gauss formula may be expressed as

∇av
b = ∇av

b ∓ nbLacvc

for any tangent vector field v to Σ (thought of as a section va of Ea|Σ satisfying
vana = 0). We now turn towards deriving a tractor analogue of this.

Note that by dint of its conformal structure the hypersurface (Σ, c) has its own
intrinsic tractor calculus, and in particular a rank d + 1 standard tractor bundle
T . Before we could hope to address the question above we need to relate T to the
ambient tractor bundle T .

First observe that, along Σ, T has a natural rank (d + 1)-subbundle, namely
N⊥ the orthogonal complement to NB. As noted in [5, 38], there is a canonical
(conformally invariant) isomorphism

(47) N⊥
'−→ T .

Calculating in a scale g onM the tractor bundle T , and hence alsoN⊥, decomposes
into a triple. Then the mapping of the isomorphism is

(48) [N⊥]g 3

 σ
µb
ρ

 7→
 σ

µb ∓Hnbσ
ρ± 1

2
H2σ

 ∈ [T ]g

where, as usual, H denotes the mean curvature of Σ in the scale g and g is the
pullback of g to Σ. Since (σ, µb, ρ) is a section of [N⊥]g we have naµa = Hσ.
Using this one easily verifies that the mapping is conformally invariant: If we
transform to ĝ = e2ωg, ω ∈ E , then (σ, µb, ρ) transforms according to (26). Using

that Ĥ = H + naΥa one calculates that the image of (σ, µb, ρ) (under the map
displayed) transforms by the intrinsic version of (26), that is by (26) except where
Υa is replaced by Υa = Υa ∓ nanbΥb (which on Σ agrees with dω, the tangential
derivative of ω). This signals that the explicit map displayed in (48) descends to
a conformally invariant map (47). We henceforth use this to identify N⊥ with T ,
and write ProjΣ : T |Σ → T for the orthogonal projection afforded by N (or using
abstract indices ΠA

B = δAB ∓NANB).

It follows easily from (48) that the tractor metric h on T agrees with the re-
striction of the ambient tractor metric h to N⊥. In summary we have:

Theorem 6.4. Let (Md, c) conformal manifold of dimension d ≥ 4 and Σ a
regular hypersurface in M . Then, with T deonting the intrinsic tractor bundle of
the induced conformal structure cΣ, there is a canonical isomorphism

T → N⊥.

Furthermore the tractor metric of cΣ coincides with the pullback of the ambient
tractor metric, under this map.

Henceforth we shall simply identify T and N⊥.
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Remark 6.5. Note that if Σ is minimal in the scale g, that is if Hg = 0, then the
isomorphism (48) is simply

(49) [N⊥]g 3

 σ
µb
ρ

 7→
 σ

µb
ρ

 ∈ [T ]g.

Moreover, it is easy to see that one can always find such a minimal scale g for Σ. Let
g = σ−2g be any metric in c and let ω := ∓sσHg, where s is a normalised defining
function for Σ (at least in a neighbourhood of Σ) and Hg has been extended off Σ
arbitrarily. Then if ĝ = e2ωg we have that, along Σ,

H ĝ = Hg + naΥa = Hg + na∇aω = 0

since by assumption ∇as = σ−1na along Σ and s|Σ = 0.

Now we have two connections on T that we may compare, namely the intrinsic

tractor connection ∇T , meaning the normal tractor connection determined by

conformal structure (Σ, c), and the projected ambient tractor connection
v

∇. On
U ∈ Γ(T ) the latter is defined by

v

∇aU
B := ΠB

C(Πc
a∇cU

C) along Σ,

where we view U ∈ Γ(T ) as a section of N⊥, and make an arbitrary smooth
extension of this to a section of T in a neighbourhood (in M) of Σ. It is then

easily verified that
v

∇ is a connection on T . By construction it is conformally
invariant. Thus the difference between this and the intrinsic tractor connection is
some canonical conformally invariant section of T ∗Σ⊗ End(T ).

The difference between the projected ambient and the intrinsic tractor connec-
tions can be expressed using the tractor contorsion Sa

B
C defined by the equation

(50)
v

∇aV
B = ∇aV

B ∓ Sa
B
CV

C

where V B ∈ Γ(EB) is an intrinsic tractor. The intrinsic tractor contorsion can be
computed explicitly in any scale g to take the form

(51) Sa
B
C

g
= X̄BZ̄C

cFac − Z̄B
bX̄CFab

or in other words

(52) SaBC = XBC
cFac,

where evidently Fac must be some conformal invariant of hypersurfaces (here X̄B

and Z̄B
b are standard tractor projectors for Σ and XBC

c = 2X̄[BZ̄C]
c, which is

conformally invariant). In fact the details of the computation (see [52, 55]) reveal
this is the Fialkow tensor (cf. [18])

(53) Fab = 1
n−2

(
Wacbdn

cnd + L̊2
ab −

|L̊|2
2(n−1)

gab

)
,
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where L̊2
ab := L̊a

cL̊cb and n = d− 1. Altogether we have,

∇aV
B=ΠB

C∇aV
C ± NBNC∇aV

C

=
v

∇aV
B ∓ NBLaCV C

=∇aV
B − SaBCV C ∓ NBLaCV C

(54)

for an intrinsic tractor V B ∈ T B. The tractor Gauss formula is therefore

(55) ∇aV
B = ∇aV

B ∓ SaBCV C ∓ NBLaCV C

for any V B ∈ T B. Here we see that the object

LaB := ∇aNB

is a tractor analogue of the second fundamental form, we shall therefore call it the
tractor shape form.

These results provide the first steps in a calculus for conformal hypersurfaces
that is somewhat analogous to the local invariant calculus for Riemannian hy-
persurfaces. In particular it can be used to proliferate hypersurface conformal
invariants and conformally invariant operators [55, 32]. We will apply this calcu-
lus to the study of conformal infinities in the final two lectures.

7. Lecture 7: Geometry of conformal infinity

Here we apply the results of the previous lecture on conformal hypersurfaces to
the geometry of conformal infinity.

7.1. Geometry of conformal infinity and its embedding. We return now to
the study of conformally compact geometries. We will consider in particular those
which near the conformal infinity are asymptotically of constant nonzero scalar
curvature. By imposing a constant dilation we may assume that I2 approaches
±1.

We begin by observing that the normal tractor is linked, in an essential way, to
the ambient geometry off the hypersurface Σ := Z(σ).

Proposition 7.1. Let (Md, c, I) be an almost pseudo-Riemannian structure with
scale singularity set Σ 6= ∅ and I2 = ±1 + σ2f for some smooth (weight −2)
density f . Then by Theorem 5.6 Σ is a smoothly embedded hypersurface and, with
N denoting the normal tractor for Σ, we have N = I|Σ.

Proof. For simplicity let us first assume I2 = ±1 (so f = 0 and the structure is
ASC). As usual let us write σ := h(X, I). By definition

IA =
1

d
DAσ

g
=

 σ
∇aσ

−1
d
(∆σ + Jσ)

 ,



58 Curry & Gover

where g ∈ c and ∇ denotes its Levi-Civita connection. Let us write na := ∇aσ.
Along Σ we have σ = 0, therefore

I|Σ
g
=

 0
na
−1
d
∆σ

 ,

along Σ. Clearly then |n|2g = ±1, along Σ, since I2 = ±1. So na|Σ is a conformal
weight 1 conormal field for Σ.

Next we calculate the mean curvature H = Hg in terms of σ. Recall (d−1)H =
∇ana ∓ nanb∇bna, on Σ. We calculate the right hand side in a neighbourhood of
Σ. Since na = ∇aσ, we have ∇ana = ∆σ. On the other hand

nanb∇bna =
1

2
nb∇b(n

ana) =
1

2
nb∇b(±1 +

2

d
σ∆σ +

2

d
Jσ2),

where we used that |1
d
Dσ|2 = ±1 and so nana = ±1 + 2

d
σ∆σ + 2

d
Jσ2. Now along

Σ we have ±1 = nana = na∇aσ, and so there this simplifies to

nanb∇bna = ±1

d
∆σ.

Putting these results together, we have

(d− 1)H =
1

d
(d− 1)∆σ ⇒ H =

1

d
∆σ along Σ.

Thus

I|Σ
g
=

 0
na
−H

 ,

as claimed. Now note that if we repeat the calculation with I2 = ±1+σ2f then the
result still holds, as in the calculation this relation was differentiated just once. �

Corollary 7.2. Let (Md, c, I) be an almost pseudo-Riemannian structure with
scale singularity set Σ 6= ∅, and that is asymptotically Einstein in the sense that
I2|Σ = ±1, and ∇aIB = σfaB for some smooth (weight -1) tractor valued 1-form
faB. Then Σ is a totally umbilic hypersurface.

Proof. The assumptions on the scale tractor I imply that I2 = ±1 + σ2f for
some smooth function f (since we assume c and σ smooth). Thus it follows from
Proposition 7.1 above that, along the singularity hypersurface, I agrees with the
normal tractor N . Thus N is parallel along Σ and so, from Proposition 6.3, Σ is
totally umbilic. �

Note that a hypersurface is totally umbilic if and only if is conformally totally
geodesic: if Σ is totally umbilic then locally it is straightforward to find a metric
g ∈ c so that Hg = 0 whence Lgab = 0 (this was demonstrated in Remark 6.5). In
this scale any geodesic on the submanifold Σ, with its induced metric g, is also
a geodesic of the ambient (M, g). So the condition of being totally umbilic is a
strong matching of the conformal structures.
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In fact for a conformally compact metric that is asymptotically Einstein, as in
Corollary 7.2 above, there is an even stronger compatibility (involving a higher
order of contact) between the geometry of c and c. First a preliminary result.

Proposition 7.3. Let (Md≥4, c, I) be an almost pseudo-Riemannian structure with
scale singularity set Σ 6= ∅, and that is asymptotically Einstein in the sense that
I2|Σ = ±1, and ∇aIB = σ2faB for some smooth (weight −2) tractor valued 1-form
field faB. Then the Weyl curvature Wab

c
d satisfies

Wab
c
dn

d = 0, along Σ,

where nd is the normal field.

Proof. Since, along Σ, IB is parallel to the given order we have that the tractor
curvature satisfies

κabCDID = κabCDND = 0 along Σ,

and from the formulae for κ and N the result is immediate. �

Theorem 7.4. Let (Md≥4, c, I) be an almost pseudo-Riemannian structure with
scale singularity set Σ 6= ∅, and that is asymptotically Einstein in the sense that
I2|Σ = ±1, and ∇aIB = σ2faB for some smooth (weight −2) tractor valued 1-form
field faB. Then the tractor connection of (M, c) preserves the intrinsic tractor
bundle of Σ, where the latter is viewed as a subbundle of the ambient tractors:
TΣ ⊂ T . Furthermore the restriction of the parallel transport of ∇T coincides with
the intrinsic tractor parallel transport of ∇TΣ.

Proof. From Theorem 6.4 the tractor bundle T of (Σ, c) may be identified with the
subbundle N⊥ in T |Σ, consisting of standard tractors orthogonal to the normal
tractor N . Since N = I|Σ is parallel along Σ this subbundle is preserved by

the ambient tractor connection and the projected ambient tractor connection
v

∇
coincides with restriction to T of the pullback of the ambient tractor connection:

v

∇a = Πb
a∇Tb on T ⊂ T .

Thus the result follows from the tractor Gauss formula if the Fialkow tensor

Fab = 1
n−2

(
Wacbdn

cnd + L̊2
ab −

|L̊|2
2(n−1)

gab

)
,

of (53) vanishes. Now from Corollary 7.2 Σ is totally umbilic, and so L̊ab = 0,
while Proposition 7.3 states that Wacbdn

d = 0 along Σ. Thus Fab = 0. �

Remark 7.5. In the case of an almost Einstein manifold the Theorem 7.4 can
also be seen to follow directly from the general theory of [11], see Theorem 3.5.

8. Lecture 8: Boundary calculus and asymptotic analysis

In the previous lectures we have seen that for conformally compact manifolds
with a nondegenerate conformal infinity there are nice tools for studying the link
between the conformal structure on the conformal infinity and its relation to the
ambient pseudo-Riemannian structure. These showed for example that conditions
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like asymptotically ASC and then asymptotically Einstein lead to a higher order
of contact between the ambient and boundary conformal structures.

Here we show that the same tools, which are canonical to the geometry of
almost-pseudo Riemannian manifolds, lead first to an interesting canonical calculus
along the boundary and then to canonical boundary problems that can be partly
solved by these tools. Further details of the boundary calculus for conformally
compactified manifolds presented in this lecture, and on applications, can be found
in [28, 33, 34, 35].

8.1. The canonical degenerate Laplacian. On an almost pseudo-Riemannian
manifold (M, c, I) there is a canonical degenerate Laplacian type differential op-
erator, namely

I·D := IADA.

This acts on any weighted tractor bundle, preserving its tensor type but lowering
the weight:

I·D : EΦ[w]→ EΦ[w − 1].

In the following it will be useful to define define the weight operator w. On
sections of a conformal density bundle this is just the linear operator that returns
the weight. So if τ ∈ Γ(E [w0]) then

w τ = w0τ.

Then this is extended in obvious way to weighted tensor or tractor bundles. So if
B is some vector bundle of conformal weight zero then w acts as the zero operator
on its sections and then if β ∈ Γ(B[w0]) we have

w β = w0β.

Now expanding I·D in terms of some background metric g ∈ c, we have

I·D g
=
(
−1
d
(∆σ + Jσ) ∇aσ σ

) w(d+ 2w− 2)
∇a(d+ 2w− 2)
−(∆ + Jw)

 .

As an operator on any density or weighted tractor bundle of weight w each occur-
rence of w evaluates to w. So then

(56) I·D g
= −σ∆ + (d+ 2w − 2)[(∇aσ)∇a −

w

d
(∆σ)]− 2w

d
(d+ w − 1)σJ

on EΦ[w]. Now if we calculate in the metric g+ = σ−2g, away from the zero locus
of σ, and trivialise the densities accordingly, then σ is represented by 1 in the
trivialisation, and we have

I·D g+
= −

(
∆g+ +

2w(d+ w − 1)

d
Jg+

)
.

In particular if g+ satisfies Jg+ = ∓d
2

(i.e. Scg+ = ∓d(d−1) or equivalently I2 = ±1)
then, relabeling d+ w − 1 =: s and d− 1 =: n, we have

(57) I·D g+
= −

(
∆g+ ± s(n− s)

)
.
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On the other hand, looking again to (56), we see that I ·D degenerates along
the conformal infinity Σ = Z(σ) (assumed non-empty), and there the operator is
first order. In particular if the structure is asymptotically ASC in the sense that
I2 = ±1 + σf , for some smooth (weight −1) density f , then along Σ

I·D = (d+ 2w − 2)δn ,

on EΦ[w], where δn is the conformal Robin operator,

δn
g
= na∇g

a − wHg,

of [13, 5] (twisted with the tractor connection); here na is a length ±1 normal
and Hg the mean curvature, as measured in the metric g.

8.2. A boundary calculus for the degenerate Laplacian. Let (M, c) be a
conformal structure of dimension d ≥ 3 and of any signature. Given σ a section
of E [1], write IA for the corresponding scale tractor as usual. That is IA = 1

d
DAσ.

Then σ = XAIA.

8.2.1. The sl(2)-algebra. Suppose that f ∈ EΦ[w], where EΦ denotes any tractor

bundle. Select g ∈ c for the purpose of calculation, and write IA
g
= (σ, νa, ρ) to

simplify the notation. Then using νa = ∇aσ, we have

I·D
(
σf
)

= (d+ 2w)
(
(w + 1)σρf + σνa∇af + fνaν

a
)

−σ
(
σ∆f + 2νa∇af + f∆σ + (w + 1)Jσf

)
,

while

−σ I·Df = −σ(d+ 2w − 2)
(
wρf + νa∇af

)
+ σ2(∆f + wJf) .

So, by virtue of the fact that ρ = −1
d
(∆σ + Jσ), we have

[I·D, σ]f = (d+ 2w)(2σρ+ νaν
a)f.

Now IAIA = I2 g
= 2σρ+ νaν

a, whence the last display simplifies to

[I·D, σ]f = (d+ 2w)I2f.

Denoting by w the weight operator on tractors, we have the following.

Lemma 8.1. Acting on any section of a weighted tractor bundle we have

[I·D, σ] = I2(d+ 2w),

where w is the weight operator.

Remark 8.2. A similar computation to above shows that, more generally,

I ·D
(
σαf

)
− σαI ·Df = σα−1α I2(d+ 2w + α− 1)f ,

for any constant α.
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The operator I ·D lowers conformal weight by 1. On the other hand, as an
operator (by tensor product) σ raises conformal weight by 1. We can record this
by the commutator relations

[w, I·D] = −I·D and [w, σ] = σ,

so with the Lemma we see that the operators σ, I·D, and w, acting on weighted
scalar or tractor fields, generate an sl(2) Lie algebra, provided I2 is nowhere van-
ishing. It is convenient to fix a normalisation of the generators; we record this and
our observations as follows.

Proposition 8.3. Suppose that (M, c, σ) is such that I2 is nowhere vanishing.
Setting x := σ, y := − 1

I2 I·D, and h := d+2w we obtain the commutation relations

[h, x] = 2x, [h, y] = −2y, [x, y] = h,

of standard sl(2)-algebra generators.

In the case of I2 = 0 the result is an Inönü-Wigner contraction of the sl(2)-
algebra:

[h, x] = 2x, [h, y] = −2y, [x, y] = 0,

where h and x are as before, but now y = −I·D.

Subsequently g will be used to denote this (sl(2)) Lie algebra of operators. From
Proposition 8.3 (and in concordance with remark 8.2) follow some useful identities
in the universal enveloping algebra U(g).

Corollary 8.4.

[xk, y] = xk−1k(d+ 2w + k − 1) = xk−1k(h+ k − 1)

and(58)

[x, yk] = yk−1k(d+ 2w− k + 1) = yk−1k(h− k + 1) .

8.3. Tangential operators and holographic formulæ. Suppose that σ ∈ Γ(E [1])
is such that IA = 1

d
DAσ satisfies that IAIA = I2 is nowhere zero. As explained

in Section 5.3, the zero locus Z(σ) of σ is then either empty or forms a smooth
hypersurface.

Conversely if Σ is any smooth oriented hypersurface then, at least in a neigh-
bourhood of Σ, there is a smooth defining function s. Now take σ ∈ Γ(E [1]) to be
the unique density which gives s in the trivialisation of E [1] determined by some
g ∈ c. It follows then that Σ = Z(σ) and ∇gσ is non-zero at all points of Σ. If
∇gσ is nowhere null along Σ then Σ is nondegenerate and I2 is nowhere vanishing
in a neighbourhood of Σ, and we are in the situation of the previous paragraph.
We call such a σ a defining density for Σ (recall our definition from Lecture 6),
and to simplify the discussion we shall take M to agree with this neighbourhood
of Σ. Until further notice σ will mean such a section of E [1] with Σ = Z(σ) non-
empty and nondegenerate. Note that Σ has a conformal structure c induced in
the obvious way from (M, c) and is a conformal infinity for the metric g+ := σ−2g
on M \ Σ.
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8.3.1. Tangential operators. Suppose that σ is a defining density for a hypersurface
Σ. Let P : EΦ[w1] → EΦ[w2] be some linear differential operator defined in a

neighbourhood of Σ. We shall say that P acts tangentially (along Σ) if P◦σ = σ◦P̃ ,

where P̃ : EΦ[w1 − 1] → EΦ[w2 − 1] is some other linear operator on the same
neighbourhood. The point is that for a tangential operator P we have

P (f + σh) = Pf + σP̃h.

Thus along Σ the operator P is insensitive to how f is extended off Σ. It is easily
seen that if P is a tangential differential operator then there is a formula for P ,
along Σ, involving only derivatives tangential to Σ, and the converse also holds.

Using Corollary 8.4 we see at once that certain powers of I·D act tangentially
on appropriately weighted tractor bundles. We state this precisely. Suppose that
Σ is a (nondegenerate) hypersurface in a conformal manifold (Mn+1, c), and σ
a defining density for Σ. Then recall Σ = Z(σ) and I2 is nowhere zero in a
neighbourhood of Σ, where IA := 1

n+1
DAσ is the scale tractor. The following

holds.

Theorem 8.5. Let EΦ be any tractor bundle and k ∈ Z≥1. Then, for each k ∈ Z≥1,
along Σ

(59) Pk : EΦ[
k − n

2
]→ EΦ[

−k − n
2

] given by Pk :=
(
− 1

I2
I·D

)k
is a tangential differential operator, and so determines a canonical differential
operator Pk : EΦ[k−n

2
]|Σ → EΦ[−k−n

2
]|Σ.

Proof. The Pk are differential by construction. Thus the result is immediate from

Corollary 8.4 with P̃ =
(
− 1

I2 I·D
)k

. �

8.4. The extension problems and their asymptotics. Henceforth we consider
an almost pseudo-Riemannian structure (M, c, σ) with σ a defining density for a
hypersurface Σ and I2 nowhere zero. We consider the problem of solving, off Σ
asymptotically,

I·Df = 0 ,

for f ∈ Γ(EΦ[w0]) and some given weight w0. For simplicity we henceforth calculate
on the side of Σ where σ is non-negative, so effectively this amounts to working
locally along the boundary of a conformally compact manifold.

8.4.1. Solutions of the first kind. Here we treat an obvious Dirichlet-like problem
where we view f |Σ as the initial data. Suppose that f0 is an arbitrary smooth
extension of f |Σ to a section of EΦ[w0] over M . We seek to solve the following
problem:

Problem 8.6. Given f |Σ, and an arbitrary extension f0 of this to EΦ[w0] over M ,
find fi ∈ EΦ[w0 − i] (over M), i = 1, 2, · · · , so that

f (`) := f0 + σf1 + σ2f2 + · · ·+O(σ`+1)

solves I·Df = O(σ`), off Σ, for ` ∈ N ∪∞ as high as possible.
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Remark 8.7. For i ≥ 1 we do not assume that the fi are necessarily non-vanishing
along Σ. Also, note that the stipulation “given f |Σ, and an arbitrary extension
f0 of this” can be rephrased as “given f0 in the space of sections with a fixed
restriction to Σ (denoted f |Σ)”.

We write h0 = d+ 2w0 so that hf0 = h0f0, for example. The existence or not of
a solution at generic weights is governed by the following result.

Lemma 8.8. Let f (`) be a solution of Problem 8.6 to order ` ∈ Z≥0. Then provided
` 6= h0 − 2 = n+ 2w0 − 1 there is an extension

f (`+1) = f (`) + σ`+1f`+1,

unique modulo σ`+2, which solves

I·Df (`+1) = 0 modulo O(σ`+1).

If ` = h0 − 2 then the extension is obstructed by P`+1f0|Σ, where P`+1 = (− 1
I2 I·

Df)`+1 is the tangential operator on densities of weight w0 given by Theorem 8.5.

Proof. Note that I ·Df = 0 is equivalent to − 1
I2 I ·Df = 0 and so we can recast

this as a formal problem using the Lie algebra g = 〈x, y, h〉 from Proposition 8.3.
Using the notation from there

yf (`+1) = yf (`) − x`(`+ 1)(h+ `)f`+1 +O(x`+1).

Now hf`+1 =
(
h0 − 2(`+ 1)

)
f`+1, thus

(60) yf (`+1) = yf (`) − x`(`+ 1)(h0 − `− 2)f`+1 +O(x`+1).

By assumption yf (`) = O(x`), thus if ` 6= h0 − 2 we can solve yf (`+1) = O(x`+1)
and this uniquely determines f`+1|Σ.

On the other hand if ` = h0 − 2 then (60) shows that, modulo O(x`+1),

yf (`) = y
(
f (`) + x`+1f`+1

)
,

regardless of f`+1. It follows that the map f0 7→ x−`yf (`) is tangential and
x−`yf (`)|Σ is the obstruction to solving yf (`+1) = O(x`+1). By a simple induc-
tion this is seen to be a non-zero multiple of y`+1f0|Σ. �

Thus by induction we conclude the following.

Proposition 8.9. For h0 /∈ Z≥2 Problem (8.6) can be solved to order ` = ∞. For
h0 ∈ Z≥2 the solution is obstructed by [Ph0−1f ]|Σ; if, for a particular f , [Ph0−1f ]|Σ
= 0 then there is a family of solutions to order ` = ∞ parametrised by sections
fh0−1 ∈ ΓEΦ[−d− w0 + 1]|Σ.
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Appendix A. Conformal Killing vector fields and adjoint tractors

Here we discuss conformal Killing vector fields and the prolongation of the con-
formal Killing equation which is given by a connection on a conformal tractor
bundle called the adjoint tractor bundle. Although the adjoint bundle is not a
new tractor bundle per se (being the bundle of skew endomorphisms of EA, natu-
rally isomorphic to E[AB]), it is a very important tractor bundle and is worthy of
our further attention; we discuss briefly the connection of the conformal Cartan
bundle with the adjoint tractor bundle and its calculus. We finish this section
by applying the adjoint tractor calculus and the prolongation of the conformal
Killing equation to Lie derivatives of tractors with respect to conformal Killing
vector fields.

A.1. The conformal Cartan bundle and the adjoint tractor bundle. In the
lectures we have been discussing tractor calculus on the so called standard tractor
bundle on a conformal manifold (M, c), which can be seen as the associated bundle
G ×P Rp+1,q+1 to the P -principal conformal Cartan bundle G → M . We have not
discussed the construction of the conformal Cartan bundle in the lectures because
it is easier to construct the standard tractor bundle directly from the underlying
conformal structure. Indeed, having understood the conformal standard tractor
bundle one could simply define the conformal Cartan bundle as an adapted frame
bundle for the standard tractor bundle T ; from this point of view the conformal
Cartan connection simply encodes the tractor parallel transport of the frames, cf.
(40). Although for calculational purposes the standard tractor approach presented
in the lectures is optimal, we have seen (e.g., in section 5.3.1) that the Cartan
geometric point of view can afford additional insights. This is also the case when
it comes to discussing the adjoint tractor bundle.

If P ⊂ G = O(p, q) is the stabiliser of a null ray in Rp+1,q+1 then P contains a
subgroup which may be identified with CO(p, q). The conformal Cartan bundle
of (M, c) is then easily defined as the extension of the conformal orthogonal frame
bundle G0 → M to a principal P -bundle G → M corresponding to the inclusion
CO(p, q) ⊂ P . The total space of this bundle is then G0 ×CO(p,q) P .

The conformal Cartan connection ω is a 1-form on G taking values in the Lie
algebra of G, which can be written as a (vector space) direct sum

Rd ⊕ co(p, q)⊕
(
Rd
)∗

where d = p + q. The Rd component of ω is simply the trivial extension of
the soldering form of G0 (which is tautologically defined on any reduction of the
frame bundle of a manifold) to G; this component corresponds to the terms −µa
and +gabρ in the formula (22) for the standard tractor connection. The next
component arises from noting that sections of the bundle G → G0 are in 1-1
correspondence with affine connections on M which preserve the conformal metric
g (Weyl connections); the co(p, q) component of ω is the 1-form γ on G whose
pullback to G0 by any section is the connection 1-form for the corresponding Weyl
connection. In order to obtain the formula for the tractor connection from that
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of the Cartan connection one must first pull everything down from G to G0 using
a Weyl connection, allowing you to break tractors (in associated bundles to G)
up into weighted tensors (in associated bundles to G0). If one does this using the
Levi-Civita connection ∇ of a metric g then one can see that the component γ of
ω gives rise to the three terms involving ∇ in (22). The final component of ω gives
rise to the two terms involving the Schouten tensor in (22) and is determined by
the other two components of ω and an algebraic condition on the curvature

dω + ω ∧ ω
of ω (which can be identified with the tractor curvature). For more details see the
first chapter of [12].

The conformal Cartan connection has the following three properties:

• ωu : TuG → G × g is a linear isomorphism for each u ∈ G;
• ω is P -equivariant, i.e. (rp)∗ω = Ad(p−1)◦ω for all p ∈ P (where rp denotes

the right action of p on G);
• ω returns the generators of fundamental vector fields, i.e.

ω

(
d

dt

∣∣∣∣
0

u · exp(tX)

)
= X

for all u ∈ G and X ∈ p = Lie(P ).

These properties more generally define what is called a Cartan connection of type
(G,P ) on a P -principal bundle G. In the model case the Lie group G can be seen
as a P -principal bundle over the model space G/P and the Maurer-Cartan 1-form
ωMC , which evaluates left invariant vector fields at the identity, is a Cartan con-
nection which has vanishing curvature by the Maurer-Cartan structure equations

dωMC + ωMC ∧ ωMC = 0.

The adjoint tractor bundle A → M of a conformal manifold (M, c) is the as-
sociated bundle to the conformal Cartan bundle G corresponding to the adjoint
representation of G (restricted to P ), i.e. A = G ×P g. Since g = so(p + 1, q + 1)
can be identified with the skew-symmetric endomorphisms of Rp+1,q+1 the adjoint
tractor bundle can similarly be identified with the bundle of skew-symmetric endo-
morphisms of the standard tractor bundle T (with respect to the tractor metric).
Clearly then we may identify A with E[AB] by lowering a tractor index. An adjoint
tractor LAB can be written in terms of the direct sum decomposition of T (and
hence A) as

(61)

 −ν −lb 0
−ρa µab la

0 ρb ν


where µab = µ[ab] and the matrix acts on standard tractors from the left, as the
tractor curvature does in (32) (the tractor curvature is in fact an adjoint tractor
valued 2-form). It is easy to see that the two appearances of la make up the “top
slot” of LAB, so that there is an invariant projection Π from A to TM that takes
LAB to la.
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By writing an adjoint tractor LAB in terms of the splitting tractors (XA, ZA
a ,

Y A) corresponding to a choice of metric g one can easily obtain the formula for
the tractor connection acting on LAB using (40). If LAB is given in matrix form
(w.r.t. g) by (61) then we have

(62) ∇aLBC
g
=

 ∗ ∗ 0
∗ gbb

′
(∇aµb′c − 2Pa[b′lc] + 2ga[b′ρc]) ∇al

b + µa
b + νδba

0 ∇aρc − Pbaµbc + νPac ∇aν − Pbalb − ρa


where the entries marked with a ∗ are determined by skew-symmetry.

A.2. Prolonging the conformal Killing equation. Note that if L is a parallel
adjoint tractor, and l = Π(L), then from the above display we must have

∇alb + µab + νgab = 0

where µab is skew. This implies that ∇(alb)o = 0, in other words la is a conformal
Killing vector field. A conformal Killing vector field ka is a nonzero solution of the
conformally invariant equation

∇(akb)o = 0,

where kb = gbck
c. Geometrically this equation says that the local flow of k pre-

serves any metric g ∈ c up to a conformal factor, equivalently, the Lie derivative
of any metric g ∈ c with respect to k is proportional to g. It is natural to ask
whether there is a 1-1 correspondence between conformal Killing vector fields and
(nonzero) parallel adjoint tractor fields – the answer to this question turns out
to be no, except for on the flat model (where one can use this correspondence to
easily write the d(d− 1)-dimensional space of Killing vector fields explicitly).

One can however construct a different conformally invariant connection on the
adjoint tractor bundle which does prolong the conformal Killing equation, i.e. for
which parallel sections are in 1-1 correspondence with solutions. One can obtain
this system directly by (fixing g and ∇ = ∇g and then) writing the equation
∇(akb)o = 0 as

∇akb = µab + νgab,

introducing the new variables µab ∈ Γ(E[ab][2]) and ν ∈ Γ(E). Beyond this the key
step is to introduce the fourth variable

ρa = ∇aν + Pabk
b ∈ Γ(Ea)

(rather than ρa = ∇aν), cf. (62). The remainder of the prolongation process
simply involves taking covariant derivatives of the above two displays and then
skew-symmetrising over certain pairs of indices in them in order to bring out cur-
vature terms (as well as using Bianchi identities to simplify expressions); from these
“differential consequences” of the above two displays one may derive expressions
for ∇aµbc and ∇aρb which are linear in the other three variables (respectively).
(The way to accomplish this process efficiently is to suppose you have a flat Levi-
Civita connection first and go through the process to obtain both expressions, then
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go back through the same steps and take into account the non-vanishing curvature
for the general case.) The result is the following system of differential equations

∇akb = νgab + µab

∇aµbc = −2Pa[bkc] − 2ga[bρc] +Wdabck
d

∇aν = ρa − Pabk
b

∇aρb = −Pcaµbc − Pabν − Ccabkc

where Cabc = 2∇[aPbc] is the Cotton tensor.

From the above system we can see that if we define the connection ∇̃ on A by

(63) ∇̃L = ∇L + iΠ(L)κ for all L ∈ Γ(A)

then there is a one to one correspondence between (nonzero) ∇̃-parallel sections of
A and conformal Killing vector fields on (M, c). To check this we simply calculate
(in a scale g) that

∇̃a

 ∗ ∗ 0
∗ µbc lb

0 ρc ν

 =

 ∗ ∗ 0
∗ gbb

′
(∇aµb′c − 2Pa[b′lc] + 2ga[b′ρc]) ∇al

b + µa
b + νδba

0 ∇aρc − Pbaµbc + νPac ∇aν − Pbalb − ρa


+

 ∗ ∗ 0
∗ Wda

b
cl
d 0

0 −Cdacld 0


and observe that by setting the right hand side equal to zero (and substituting
ka = −la) we recover our prolonged system for the conformal Killing equation.
Note that it is possible to take a much more abstract and theoretical approach to
obtaining this prolonged system and the corresponding connection ∇̃ on A (see,
e.g., [6, 12]). From the general theory (or direct observation) we also have the
invariant linear differential operator L : TM → A which takes a vector field la

on M to the adjoint tractor LAB given in a scale g by (61) with µab = −∇[alb],
ν = −1

d
∇al

a, and ρa = ∇aν − Pabl
b. Clearly Π ◦ L = idTM and consequently L is

referred to as a differential splitting operator.

A.3. The fundamental derivative and Lie derivatives of tractors. Let V
be a representation of P and let V = G ×P V. If a function ṽ : G → V satisfies

ṽ(u · p) = p−1 · ṽ(u) for all u ∈ G, p ∈ P

then we say that ṽ is P -equivariant. Observe that if ṽ : G → V is a smooth P -
equivariant map then the map v : M → V which takes x to [(u, v(u))] for some
u ∈ Gx defines a smooth section of V →M (being independent of the choice of u ∈
Gx for each x). It is easy to see that sections of V →M are in 1-1 correspondence
with such functions. (We have used this already in discussing conformal densities
where R+ replaces P and Q replaces G, see section 2.4.) Now observe that the
conformal Cartan connection ω allows us to view smooth P -equivariant functions
L̃ : G → g as smooth vector fields VL on G (since ωu : TuG → g is an isomorphism
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for each u ∈ G and ω is smooth). From the properties of the Cartan connection it
is not hard to see that any such vector field VL must be P -invariant, that is,

(rp)∗VL = VL for all p ∈ P

where rp : G → G denotes the right action of p ∈ P . Moreover, the Cartan
connection gives a 1-1 correspondence between P -equivariant functions L̃ : G → g
and P -invariant vector fields on G. Combining this with the previous observation
we see that one may naturally identify Γ(A) with the space X(G)P of P -invariant
vector fields on G.

The observations of the preceding paragraph allow us to define a new canonical
differential operator acting on sections of any vector bundle V associated to the
conformal Cartan bundle G. Fix L ∈ Γ(A) and let v ∈ Γ(V) = Γ(G ×P V), then
VLṽ = dṽ(VL) is again a P -equivariant function from G to V and thus defines a
section DLv of V . Thus for each section L ∈ Γ(A) we have a first order differential
operator DL : V → V . It is easy to see that DfL = fDL for any f ∈ C∞(M)
so that we really have a (first order) differential operator taking sections of V to
sections of A∗ ⊗ V . The operator

D : V → A∗ ⊗ V

defined in this way is referred to as the fundamental derivative (or fundamental D
operator). This operator was introduced by Čap and Gover in [9].

Now if k is a conformal Killing vector field on (M, c) and v is a section of
V = G ×P V then we may talk about the Lie derivative of v with respect to k;
since V → M is a natural bundle in the category of conformal manifolds (with
diffeomorphisms as maps) one may pull the section v of V back by the (local) flow
of k and define the Lie derivative by

Lkv =
d

dt

∣∣∣∣
t=0

(Flkt )
∗(v).

Notice that if L is an section of the adjoint tractor bundle then VLṽ (which gives the
P -equivariant function corresponding to DLv) may be written as the Lie derivative
LVL ṽ, it should not come as a total surprise then that the Lie derivative and the
fundamental derivative are connected. In fact, one has that

Lkv = DL(k)v

for any conformal Killing vector field k on (M, c) and any section v of a natural
bundle V = G ×P V (this is proven in [14]).

Using the results of [9] (and carefully comparing sign conventions) we have that

(64) DLτ
g
= ∇lτ + wντ

for sections τ of the density bundle E [w] (which can be thought of as an associated
bundle to G0 and hence to G), where L is given in the scale g by (61). We also
have that

DLV = ∇TΠ(L)V − L(V )
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for all L ∈ Γ(A) and V ∈ Γ(T ). The operator DL is easily seen to satisfy the
Leibniz property and hence for any tractor field TA···BC···D we have

DLT
A···B

C···D = ∇TΠ(L)T
A···B

C···D − LAA′TA
′···B

C···D − · · · − LBB′TA···B
′
C···D

+LC′CTA···BC′···D + · · ·+ LD′DTA···BC···D′ .

From all of this we can finally write down an explicit formula for the Lie deriv-
ative of a standard tractor field V A in terms of “slots”: if k is a conformal Killing

vector field on (M, c) and V A g
= (σ, µa, ρ) then

LkV A = kb∇bV
B + KA

BV
B

g
= kb

 ∇bσ − µb
∇bµ

a + ρδab + σPab
∇bρ− Pabµ

a

+

 −ν kb 0
−ρa µab −ka

0 ρb ν

 σ
µb

ρ


g
=

 kb∇bσ − νσ
kb∇bµ

a + µabµ
b − σ∇aν

kb∇bρ+ νρ+ µa∇aν

 =

 Lkσ
Lkµa − σ∇aν
Lkρ+ µa∇aν


where K = L(−k) and we have used that ρa = ∇aν + Pabk

b and that Lk = D−K
on densities so that by (64) we have Lkσ = ∇kσ − νσ, Lkρ = ∇kρ+ νρ, and

Lkµa = (kb∇bµ
a − µb∇bk

a) + νµa

= kb∇bµ
a − µb(µba + νδab ) + νµa

= kb∇bµ
a + µabµ

b

since µa has conformal weight −1.

Note that one can also, of course, calculate the expression for Lk on densities and
on standard tractor fields directly from the definition (which was done in [14]) by
looking at what you get when you pull back densities and standard tractors by the
local flow of k. As a check of our above formula for LkV A we observe that in the
case where k is a Killing vector field for g then the flow of k preserves g and hence
also preserves the splitting tractors XA, ZA

a and Y A so that LkXA = 0, LkZA
a = 0,

and LkY A = 0; thus by the Leibniz property and linearity one immediately has that
if V A = σXA+µaZA

a +ρY A then LkV A = (Lkσ)XA+ (Lkµa)ZA
a + (Lkρ)Y A which

is consistent with our above formula for LkV A since Lkg = 0 forces ν = 1
d
∇g
ak

a to
be zero.

Remark A.1. On vector fields the fundamental derivative acts according to

DLv
b = la∇av

b + (µa
b + νδba)v

a

where L is given in the scale g by 61 and ∇ = ∇g. Thus if k is a conformal Killing
vector field then applying Lk = DL(k) on vector fields simply returns the usual
formula for the Lie derivative in terms of a torsion free (in this case Levi-Civita)
connection:

Lkvb = ka∇av
b − (∇ak

b)va.
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Similarly, using the Leibniz property of the fundamental derivative, we have that

DLT
b···c

d···e = la∇aT
b···c

d···e − (µa
b + νδba)T

a···c
d···e − · · · − (µa

c + νδca)T
b···a

d···e

+(µd
a + νδad)T

b···c
a···e + · · ·+ (µe

a + νδae )T
b···c

d···a,

and again applying Lk = DL(k) for a conformal killing vector field k simply yields
the standard formula for the Lie derivative. These observations further demon-
strate the consistency of our claims. What’s more, we may now calculate the
fundamental derivative of any weighted tensor-tractor field T b···cd···e

B···C
D···E. For

instance, by writing gab as σ2gab and using the Leibniz property one may easily
show that

DLgab = 0

for all L ∈ Γ(A).

A.3.1. Static and stationary spacetimes. As an application of the above, we ob-
serve that if g ∈ c is an Einstein metric with corresponding scale tractor I and k
is a Killing vector field for g with K = L(−k) then K(I) = 0. This follows from
the fact LkI = 0 since the flow of k preserves g (and hence also I), and from the
above formula for the Lie derivative of I,

LkIA = ∇kI
A + KA

BI
B = KA

BI
B,

since I is parallel. Moreover, if k is hypersurface orthogonal (i.e. its orthogonal
distribution is integrable) then it is easy to see that K[ABKC]DX

D = 0 so that KAB

is simple and can be written as 2v[AKB] where KB = XAKAB and vAK
A = 0; on

top of this, from KABI
B = 0 we obtain KAI

A = 0 and hence also vAI
A = 0. These

observations form the starting point for the development of conformal tractor
calculus adapted to static and stationary spacetimes. In particular, we note that
in the case where (M, g, k) is a static spacetime then KA = uNA where NA is
the normal tractor to each of the spacelike hypersurfaces in the foliation given
by k⊥ ⊂ TM and u is the so called static potential (if we trivialise the density
bundles using g); thus KAI

A = 0 and KAv
A = 0 imply that both IA and vA lie

in the intrinsic tractor bundle of the foliating spacelike hypersurfaces and one can
carry out dimensional reduction using tractors. One can in fact still carry out
dimensional reduction in the stationary case by identifying tractors which are Lie
dragged by k and orthogonal to KB = XAKAB with conformal tractors on the
manifold of integral curves of k (see [14] for further details in both cases).
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[6] A. Čap, Infinitesimal automorphisms and deformations of parabolic geometries, J. Eur.
Math. Soc., 10 (2008), 415–437.
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