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1. Introduction

The authors are writing a book, The hyperbolic metric in complex analysis,
that will include all of the material in this article and much more. The ma-
terial presented here is a selection of topics from the book that relate to the
Schwarz-Pick Lemma. Our goal is to develop the main parts of geometric func-
tion theory by using the hyperbolic metric and other conformal metrics. This
paper is intended to be both an introduction to the hyperbolic metric and a con-
cise treatment of a few recent applications of the hyperbolic metric to geometric
function theory. There is no attempt to present a comprehensive presentation of
the material here; rather we present a selection of several topics and then offer
suggestions for further reading.

The first part of the paper (Sections 2-5) studies holomorphic self-maps of
the unit disk D by using the hyperbolic metric. The unit disk with the hyper-
bolic metric and hyperbolic distance is presented as a model of the hyperbolic
plane. Then Pick’s fundamental invariant formulation of the Schwarz Lemma is
presented. This is followed by various extensions of the Schwarz-Pick Lemma
for holomorphic self-maps of D, including a Schwarz-Pick Lemma for hyperbolic
derivatives. The second part of the paper (Sections 6-9) is concerned with the
investigation of holomorphic maps between simply connected proper subregions
of the complex plane C using the hyperbolic metric, as well as a study of neg-
atively curved metrics on simply connected regions. Here ‘negatively curved’
means metrics with curvature at most −1. The Riemann Mapping Theorem is
used to transfer the hyperbolic metric to any simply connected region that is
conformally equivalent to the unit disk. A version of the Schwarz-Pick Lemma is
valid for holomorphic maps between simply connected proper subregions of the
complex plane C. The hyperbolic metric is explicitly determined for a number
of special simply connected regions and estimates are provided for general sim-
ply connected regions. Then the important Ahlfors Lemma, which asserts the
maximality of the hyperbolic metric among the family of metrics with curvature
at most −1, is established; it provides a vast generalization of the Schwarz-Pick
Lemma. The representation of metrics with constant curvature −1 by bounded
holomorphic functions is briefly mentioned. The third part (Sections 10-13) deals
with holomorphic maps between hyperbolic regions; that is, regions whose com-
plement in the extended complex plane C∞ contains at least three points, and
negatively curved metrics on such regions. The Planar Uniformization Theorem
is utilized to transfer the hyperbolic metric from the unit disk to hyperbolic
regions. The Schwarz-Pick and Ahlfors Lemmas extend to this context. The
hyperbolic metric for punctured disks and annuli are explicitly calculated. A
new phenomenon, rigidity theorems, occurs for multiply connected regions; sev-
eral examples of rigidity theorems are presented. The final section offers some
suggestions for further reading on topics not included in this article.
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2. The unit disk as the hyperbolic plane

We assume that the reader knows that the most general conformal automor-
phism of the unit disk D onto itself is a Möbius map of the form

(2.1) z 7→ az + c̄

cz + ā
, a, c ∈ C, |a|2 − |c|2 = 1,

or of the equivalent form

(2.2) z 7→ eiθ z − a

1 − āz
, θ ∈ R, a ∈ D.

It is well known that these maps form a group A(D) under composition, and that
A(D) acts transitively on D (that is, for all z and w in D there is some g in A(D)
such that g(z) = w). Also, A(D, 0), the subgroup of conformal automorphisms
that fix the origin, is the set of rotations of the complex plane about the origin.

The hyperbolic plane is the unit disk D with the hyperbolic metric

λD(z)|dz| =
2 |dz|

1 − |z|2 .

This metric induces a hyperbolic distance dD(z, w) between two points z and w
in D in the following way. We join z to w by a smooth curve γ in D, and define
the hyperbolic length ℓD(γ) of γ by

ℓD(γ) =

∫

γ

λD(z) |dz|.

Finally, we set
dD(z, w) = inf

γ
ℓD(γ),

where the infimum is taken over all smooth curves γ joining z to w in D.

It is immediate from the construction of dD that it satisfies the requirements
for a distance on D, namely
(a) dD(z, w) ≥ 0 with equality if and only if z = w;
(b) dD(z, w) = dD(w, z);
(c) for all u, v, w in D, dD(u,w) ≤ dD(u, v) + dD(v, w).

The hyperbolic area of a Borel measurable subset of D is

aD(E) =

∫ ∫

E

λ2
D
(z)dxdy.

We need to identify the isometries of both the hyperbolic metric and the
hyperbolic distance. A holomorphic function f : D → D is an isometry of the
metric λD(z) |dz| if for all z in D,

(2.3) λD

(

f(z)
)

|f ′(z)| = λD(z),

and it is an isometry of the distance dD if, for all z and w in D,

(2.4) dD

(

f(z), f(w)
)

= dD(z, w).

In fact, the two classes of isometries coincide, and each isometry is a Möbius
transformation of D onto itself.
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Theorem 2.1. For any holomorphic map f : D → D the following are equivalent:
(a) f is a conformal automorphism of D;
(b) f is an isometry of the metric λD;
(c) f is an isometry of the distance dD.

Proof. First, (a) implies (b). Indeed, if (a) holds, then f is of the form (2.1),
and a calculation shows that

|f ′(z)|
1 − |f(z)|2 =

1

1 − |z|2 ,

so (b) holds. Next, (b) implies (a). Suppose that (b) holds; that is, f is an
isometry of the hyperbolic metric. Then for any conformal automorphism g of
D, h = g ◦f is again an isometry of the hyperbolic metric. If we choose g so that
h(0) = g(f(0)) = 0, then

2|h′(0)| = λD(h(0)|h′(0)| = λD(0) = 2.

Thus, h is a holomorphic self-map of D that fixes the origin and |h′(0)| = 1, so
Schwarz’s Lemma implies h ∈ A(D, 0). Then f = g−1 ◦ h is in A(D). We have
now shown that (a) and (b) are equivalent.

Second, we prove (a) and (c) are equivalent. If f ∈ A(D), then f is an isometry
of the metric λD. Hence, for any smooth curve γ in D,

ℓD

(

f ◦ γ
)

=

∫

f◦γ

λD(w) |dw| =

∫

γ

λD

(

f(z)
)

|f ′(z)| |dz| = ℓD(γ).

This implies that for all z, w ∈ D, dD(f(z), f(w)) ≤ dD(z, w). Because f ∈ A(D),
the same argument applies to f−1, and hence we may conclude that f is a dD–
isometry. Finally, we show that (c) implies (a). Take any f : D → D that is
holomorphic and a dD–isometry. Choose any g of the form (2.1) that maps f(0)
to 0 and put h = g ◦ f . Then h is holomorphic, a dD–isometry, and h(0) = 0.
Thus dD

(

0, h(z)
)

= dD

(

h(0), h(z)
)

= dD(0, z). This implies that |h(z)| = |z| and

hence, that h(z) = eiθz for some θ ∈ R. Thus h ∈ A(D, 0) and, as f = g−1 ◦ h,
f is also in A(D).

In summary, relative to the hyperbolic metric and the hyperbolic distance,
the group A(D) of conformal automorphism of the unit disk becomes a group of
isometries.

Theorem 2.2. The hyperbolic distance dD(z, w) in D is given by

(2.5) dD(z, w) = log
1 + pD(z, w)

1 − pD(z, w)
= 2 tanh−1 pD(z, w),

where the pseudo-hyperbolic distance pD(z, w) is given by

(2.6) pD(z, w) =

∣

∣

∣

∣

z − w

1 − zw̄

∣

∣

∣

∣

.
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Proof. First, we prove that if −1 < x < y < 1 then

(2.7) dD(x, y) = log

(

1 + y−x
1−xy

1 − y−x
1−xy

)

.

Consider a smooth curve γ joining x to y in D, and write γ(t) = u(t) + iv(t),
where 0 ≤ t ≤ 1. Then

ℓD(γ) =

∫ 1

0

2 |γ′(t)| dt

1 − |γ(t)|2 ≥
∫ 1

0

2 u′(t) dt

1 − u(t)2

because |γ(t)|2 ≥ |u(t)|2 = u(t)2 and |γ′(t)| ≥ |u′(t)| ≥ u′(t). The second integral
can be evaluated directly and gives

ℓD(γ) ≥ log

(

1 + y

1 − y

1 − x

1 + x

)

= log

(

1 + y−x
1−xy

1 − y−x
1−xy

)

.

Because equality holds here when γ(t) = x + t(y − x), 0 ≤ t ≤ 1, we see that
(2.7) holds, so (2.5) is valid for −1 < x < y < 1.

Now we have to extend (2.5) to any pair of points z and w in D. Theorem
2.1 shows that each Euclidean rotation about the origin is a hyperbolic isometry
and this implies that, for all z, dD(0, z) = dD(0, |z|). Now take any z and w in
D, and let f(z) = (z −w)/(1− zw̄). Then f is a conformal automorphism of D,
and so is a hyperbolic isometry. Thus

dD(z, w) = dD(w, z)

= dD

(

f(w), f(z)
)

= dD

(

0, f(z)
)

= dD

(

0, |f(z)|
)

= dD

(

0, pD(z, w)
)

,

which, from (2.7) with x = 0 and y = pD(z, w), gives (2.5).

Note that (2.5) produces

dD(0, z) = log
1 + |z|
1 − |z| , dD(0, z) = 2 tanh−1 |z|.

Also,

lim
z→w

dD(z, w)

|z − w| = λD(w) = 2 lim
z→w

pD(z, w)

|z − w| .

A careful examination of the proof of (2.5) shows that if γ is a smooth curve
that joins x to y, where −1 < x < y < 1, then ℓD(γ) = dD(0, x) if and only if γ
is the simple arc from x to y along the real axis. As hyperbolic isometries map
circles into circles, map the unit circle onto itself, and preserve orthogonality, we
can now make the following definition.
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Definition 2.3. Suppose that z and w are in D. Then the (hyperbolic) geodesic
through z and w is C ∩ D, where C is the unique Euclidean circle (or straight
line) that passes through z and w and is orthogonal to the unit circle ∂D. If γ is
any smooth curve joining z to w in D, then the hyperbolic length of γ is dD(z, w)
if and only if γ is the simple arc of C in D that joins z and w.

The unit disk D together with the hyperbolic metric is called the Poincaré
model of the hyperbolic plane. The “lines” in the hyperbolic plane are the hyper-
bolic geodesics and the angle between two intersecting lines is the Euclidean angle
between the Euclidean tangent lines at the point of intersection. The hyperbolic
plane satisfies all of the axioms for Euclidean geometry with the exception of the
Parallel Postulate. It is easy to see that if γ is a hyperbolic geodesic in D and
a ∈ D is a point not on γ, then there are infinitely many geodesics through a
that do not intersect γ and so are parallel to γ.

We shall now show that the hyperbolic distance dD is additive along geodesics.
By contrast, the pseudo-hyperbolic distance pD is never additive along geodesics.

Theorem 2.4. If u, v and w are three distinct points in D that lie, in this order,
along a geodesic, then dD(u,w) = dD(u, v) + dD(v, w). For any three distinct
points u, v and w in D, pD(u,w) < pD(u, v) + pD(v, w).

Proof. Suppose that u, v and w lie in this order, along a geodesic. Then there
is an isometry f that maps this geodesic to the real diameter (−1, 1) of D, with
f(v) = 0. Let x = f(u) and y = f(w), so that −1 < x < 0 < y < 1. It is
sufficient to show that dD(x, 0) + dD(0, y) = dD(x, y); this is a direct consequence
of (2.7).

It is easy to verify that pD a distance function on D, except possibly for the
verification of the triangle inequality. This holds because, for any distinct u, v
and w,

pD(u,w) = tanh
1

2
dD(u,w)

≤ tanh
1

2
[dD(u, v) + dD(v, w)]

=
tanh 1

2
dD(u, v) + tanh 1

2
dD(v, w)

1 + tanh 1
2
dD(u, v) tanh 1

2
dD(v, w)

< tanh
1

2
dD(u, v) + tanh

1

2
dD(v, w)

= pD(u, v) + pD(v, w).

This also shows that there is always a strict inequality in the triangle inequality
for pD for any three distinct points.

The following example illustrates how the hyperbolic distance compares with
the Euclidean distance in D.
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Example 2.5. The Poincaré model of the hyperbolic plane does not accurately
reflect all of the properties of the hyperbolic plane. For example, the hyperbolic
plane is homogeneous; this means that for any pair of points a and b in D there
is an isometry f with f(a) = b. Intuitively this means that the hyperbolic plane
looks the same at each point just as the Euclidean plane does. However, with
our Euclidean eyes, the origin seems to occupy a special place in the hyperbolic
plane. In fact, in the hyperbolic plane the origin is no more special than any
point a 6= 0.

Here is another way in which the Poincaré model deceives our Euclidean eyes.
Let x0, x1, x2, . . . be the sequence 0, 1

2
, 3

4
, 7

8
, . . ., so that xn = (2n − 1)/2n, and

xn+1 is halfway between xn and 1 in the Euclidean sense. A computation using
(2.5) shows that dD(0, xn) = log(2n+1 − 1). We conclude that dD(xn, xn+1) →
log 2 as n → ∞; thus the points xn are, for large n, essentially equally spaced
in the hyperbolic sense along the real diameter of D. Moreover, in any figure
representing the Poincaré model the points xn, for n ≥ 30, are indistinguishable
from the point 1 which does not lie in the hyperbolic plane. In brief, although the
hyperbolic plane contains arbitrarily large hyperbolic disks about the origin, our
Euclidean eyes can only see hyperbolic disks about the origin with a moderate
sized hyperbolic radius.

Let us comment now on the various formulae that are available for dD(z, w).
It is often tempting to use the pseudohyperbolic distance pD rather than the
hyperbolic distance dD (and many authors do) because the expression for pD is
algebraic whereas the expression for dD is not. However, this temptation should
be resisted. The distance pD is not additive along geodesics, and it does not
arise from a Riemannian metric. Usually, the solution is to use the following
functions of dD, for it is these that tend to arise naturally and more frequently
in hyperbolic trigonometry:

(2.8) sinh2 1

2
dD(z, w) =

|z − w|2
(1 − |z|)2(1 − |w|2) =

1

4
|z − w|2λD(z)λD(w),

and

cosh2 1

2
dD(z, w) =

|1 − zw̄|2
(1 − |z|2)(1 − |w|2) =

1

4
|1 − zw̄|2λD(z)λD(w).

These can be proved directly from (2.5), and together they give the familiar
formula

tanh
1

2
dD(z, w) =

∣

∣

∣

∣

z − w

1 − zw̄

∣

∣

∣

∣

= pD(z, w).

We investigate the topology defined on the unit disk by the hyperbolic dis-
tance. For this we study hyperbolic disks since they determine the topology. The
hyperbolic circle Cr given by {z ∈ D : dD(0, z) = r} is a Euclidean circle with
Euclidean center 0 and Euclidean radius tanh 1

2
r. Now let C be any hyperbolic

circle, say of hyperbolic radius r and hyperbolic center w. Then there is a hyper-
bolic isometry f with f(w) = 0, so that f(C) = Cr. As Cr is a Euclidean circle,
so is f−1(Cr), which is C. Conversely, suppose that C is a Euclidean circle in D.
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Then there is a hyperbolic isometry f such that f(C) is a Euclidean circle with
center 0, so that f(C) = Cr for some r. Thus, as f is a hyperbolic isometry,
f−1(Cr) = C, is also a hyperbolic circle. This shows that the set of hyperbolic
circles coincides with the set of Euclidean circles in D. As the same is obviously
true for open disks (providing that the closed disks lie in D), we see that the
topology induced by the hyperbolic distance on D coincides with the Euclidean
topology on the unit disk.

Theorem 2.6. The topology induced by dD on D coincides with the Euclidean
topology. The space D with the distance dD is a complete metric space.

Proof. We have already proved the first statement. Suppose, then, that (zn)
is a Cauchy sequence with respect to the distance dD. Then (zn) is a bounded
sequence with respect to dD and, as we have seen above, this means that the
(zn) lie in a compact disk K that is contained in D. As λD ≥ 2 on D, we
see immediately from (2.8) that (zn) is a Cauchy sequence with respect to the
Euclidean metric, so that zn → z∗, say, where z∗ ∈ K ⊂ D. It is now clear that
dD(zn, z

∗) → 0 so that D with the distance dD is complete.

The Euclidean metric on D arises from the fact that D is embedded in the
larger space C and is not complete on D. By contrast, an important property of
the distance dD is that dD(0, |z|) → +∞ as |z| → 1; informally, the boundary ∂D

of D is ‘infinitely far away’ from each point in D. This is a consequence of the
fact that D equipped with the hyperbolic distance dD is a complete metric space
and is another reason why dD should be preferred to the Euclidean metric on D.

Exercises.

1. Verify that (2.1) and (2.2) determine the same subgroup of Möbius trans-
formations.

2. Suppose equality holds in the triangle inequality for the hyperbolic distance;
that is, suppose u, v, w in D and dD(u,w) = dD(u, v) + dD(v, w). Prove
that u, v and w lie on a hyperbolic geodesic in this order.

3. Verify that the hyperbolic disk DD(a, r) is the Euclidean disk with center
c and radius R, where

c =
a
(

1 − tanh2(r/2)
)

1 − |a|2 tanh2(r/2)
and R =

(1 − |a|2) tanh(r/2)

1 − |a|2 tanh2(r/2)
.

4. (a) Prove that the hyperbolic area of a hyperbolic disk of radius r is
4π sinh2(r/2).
(b) Show that the hyperbolic length of a hyperbolic circle with radius r is
2π sinh r.

3. The Schwarz-Pick Lemma

We begin with a statement of the classical Schwarz Lemma.
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Theorem 3.1 (Schwarz’s Lemma). Suppose that f : D → D is holomorphic and
that f(0) = 0. Then either
(a) |f(z)| < |z| for every non-zero z in D, and |f ′(0)| < 1, or
(b) for some real constant θ, f(z) = eiθz and |f ′(0)| = 1.

The Schwarz Lemma is proved by applying the Maximum Modulus Theorem
to the holomorphic function f(z)/z on the unit disk D. It says that if a holo-
morphic function f : D → D fixes 0 then either (a) f(z) is closer to 0 than z is,
or (b) f is a rotation of the plane about 0. Although both of these assertions are
true in the context of Euclidean geometry, they are only invariant under confor-
mal maps when they are interpreted in terms of hyperbolic geometry. Moreover,
as Pick observed in 1915, in this case the requirement that f has a fixed point
in D is redundant. We can now state Pick’s invariant formulation of Schwarz’s
Lemma [33].

Theorem 3.2 (The Schwarz-Pick Lemma). Suppose that f : D → D is holomor-
phic. Then either
(a) f is a hyperbolic contraction; that is, for all z and w in D,

(3.1) dD

(

f(z), f(w)
)

< dD(z, w), λD

(

f(z)
)

|f ′(z)| < λD(z),

or
(b) f is a hyperbolic isometry; that is, f ∈ A(D) and for all z and w in D,

(3.2) dD

(

f(z), f(w)
)

= dD(z, w), λD

(

f(z)
)

|f ′(z)| = λD(z)

Proof. By Theorem 2.1, f is an isometry if and only if one, and hence both,
of the conditions in (3.2) hold. Suppose now that f : D → D is holomorphic
but not an isometry. Select any two points z1 and z2 in D. Here is the intuitive
idea behind the proof. Because the hyperbolic plane is homogeneous, we may
assume without loss of generality that both z1 and f(z1) are at the origin. In
this special situation (3.1) follows directly from part (b) of Theorem 3.1. Now
we write out a formal argument. Let g and h be conformal automorphisms (and
hence isometries) of D such that g(z1) = 0 and h

(

f(z1)
)

= 0. Let F = hfg−1;
then F is a holomorphic self-map of D that fixes 0. As g and h are isometries,
F is not an isometry or else f would be too. Therefore, by Schwarz’s Lemma,
for all z, dD

(

0, F (z)
)

< dD(0, z) and |F ′(0)| < 1. Thus, as Fg = hf and g, h are
hyperbolic isometries,

dD

(

f(z1), f(z2)
)

= dD

(

hf(z1), hf(z2)
)

= dD

(

Fg(z1), Fg(z2)
)

= dD

(

0, Fg(z2)
)

< dD

(

0, g(z2)
)

= dD

(

g(z1), g(z2)
)

= dD(z1, z2).
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This is the first inequality in (3.1). To obtain the second inequality, we apply
the Chain Rule to each side of Fg = hf and obtain

|F ′(0)| =
|f ′(z1)|(1 − |z1|2)

1 − |f(z1)|2
< 1.

This gives the second inequality in (3.1) at an arbitrary point z1.

Often the Schwarz-Pick Lemma is stated in the following form: Every holo-
morphic self-map of the unit disk is a contraction relative to the hyperbolic
metric. That is, if f is a holomorphic self-map of D, then

(3.3) dD

(

f(z), f(w)
)

≤ dD(z, w), λD

(

f(z)
)

|f ′(z)| ≤ λD(z).

If equality holds in either inequality, then f is a conformal automorphism of D.
One should note that the two inequalities in (3.3) are equivalent. If the first
inequality holds, then

λD

(

f(z)
)

|f ′(z)| = lim
w→z

dD(f(z), f(w))

|f(z) − f(w)|
|f(z) − f(w)|

|z − w| ≤ lim
w→z

dD(z, w)

|z − w| = λD(z).

On the other hand, if the second inequality holds, then integration over any path
γ in D gives ℓD(f ◦ γ) ≤ ℓD(γ). This implies the first inequality in (3.3).

Hyperbolic geometry had been used in complex analysis by Poincaré in his
proof of the Uniformization Theorem for Riemann surfaces. The work of Pick is
a milestone in geometric function theory, it shows that the hyperbolic metric, not
the Euclidean metric, is the natural metric for much of the subject. The definition
of the hyperbolic metric might seem arbitrary. In fact, up to multiplication by a
positive scalar it is the only metric on the unit disk that makes every holomorphic
self-map a contraction, or every conformal automorphism an isometry.

Theorem 3.3. For a metric ρ(z)|dz| on the unit disk the following are equivalent:
(a) For any holomorphic self-map of D and all z ∈ D, ρ(f(z))|f ′(z)| ≤ ρ(z);
(b) For any f ∈ A(D) and all z ∈ D, ρ(f(z))|f ′(z)| = ρ(z);
(c) ρ(z) = cλD for some c > 0.

Proof. (a)⇒(b) Suppose f ∈ A(D). Then the inequality in (a) holds for f . The
inequality in (a) also holds for f−1; this gives ρ(z) ≤ ρ(f(z))|f ′(z)|. Hence, every
conformal automorphism of D is an isometry relative to ρ(z)|dz|.

(b)⇒(c) Define c > 0 by ρ(0) = cλD(0). Now, consider any a ∈ D. Let f be
a conformal automorphism of D with f(0) = a. Then because f is an isometry
relative to both ρ(z)|dz| and the hyperbolic metric,

ρ(a)|f ′(0)| = ρ(0)

= cλD(0)

= cλD(a)|f ′(0)|.
Hence, ρ(a) = cλD(a) for all a ∈ D.

(c)⇒(a) This is an immediate consequence of the Schwarz-Pick Lemma.
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Exercises.

1. Suppose f is a holomorphic self-map of the unit disk. Prove |f ′(0)| ≤ 1.
Determine a necessary and sufficient condition for equality.

2. If a holomorphic self-map of the unit disk fixes two points, prove it is the
identity.

3. Let a and b be distinct points in D.
(a) Show that there exists a conformal automorphism f of D that inter-
changes a and b; that is, f(a) = b and f(b) = a.
(b) Suppose a holomorphic self-map f of D interchanges a and b; that is,
f(a) = b and f(b) = a. Prove f is a conformal automorphism with order
2, or f ◦ f is the identity.

4. An extension of the Schwarz-Pick Lemma

Recently, the authors [8] established a multi-point version of the Schwarz-Pick
Lemma that unified a number of known variations of the Schwarz and Schwarz-
Pick Lemmas and also has many new consequences. A selection of results from
[8] are presented in this and the next section; for more results of this type, consult
the original paper.

We begin with a brief discussion of Blaschke products. A function F : D → D

is a (finite) Blaschke product if it is holomorphic in D, continuous in D (the closed
unit disk), and |F (z)| = 1 when |z| = 1. If F is a Blaschke product then so are
the compositions g(F (z)) and F (g(z)) for any conformal automorphism g of D.
In addition, it is clear that any finite product of conformal automorphisms of D is
a Blaschke product. We shall now show that the converse is true. Suppose that
F is a Blaschke product. If F has no zeros in D then, by the Minimum Modulus
Theorem, F is a constant, which must be of modulus one. Now suppose that F
does have a zero in D. Then it can only have a finite number of zeros in D, say
a1, . . . , ak (which need not be distinct), and

F (z)

/ k
∏

m=1

(

z − am

1 − āmz

)

is a Blaschke product with no zeros in D. This shows that F is a Blaschke
product if and only if it is a finite product of automorphisms of D. We say that
F is of degree k if this product has exactly k non-trivial factors.

We now discuss the complex pseudo-hyperbolic distance in D, and the hyper-
bolic equivalent of the usual Euclidean difference quotient of a function.

Definition 4.1. The complex pseudo-hyperbolic distance [z, w] between z and w
in D is given by

[z, w] =
z − w

1 − wz
.

We recall that the pseudo-hyperbolic distance is |[z, w]|; see (2.6).
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The complex pseudo-hyperbolic distance is an analog for the hyperbolic plane
D of the real directed distance x − y from y to x, for points on the real line R.

Definition 4.2. Suppose that f : D → D is holomorphic, and that z, w ∈ D

with z 6= w. The hyperbolic difference quotient f ∗(z, w) is given by

f ∗(z, w) =
[f(z), f(w)]

[z, w]
. �

If we combine (2.6) with the Schwarz-Pick Lemma we see that

pD

(

f(z1), f(z2)
)

≤ pD(z1, z2),

and that equality holds for one pair z1 and z2 of distinct points if and only if f is
a conformal automorphism of D (in which case, equality holds for all z1 and z2).
It follows that if f : D → D is holomorphic, then either f is a hyperbolic isometry
and |f ∗(z, w)| = 1 for all z and w, or f is not an isometry and |f ∗(z, w)| < 1 for
all z and w.

We shall now discuss the hyperbolic difference quotient f ∗(z, w). This is a
function of two variables but, unless we state explicitly to the contrary, we shall
regard it as a holomorphic function of the single variable z. Note that f ∗(z, w)
is not holomorphic as a function of the second variable w. The basic properties
of f ∗(z, w) are given in our next result.

Theorem 4.3. Suppose that f : D → D is holomorphic, and that w ∈ D.
(a) The function z 7→ f ∗(z, w) is holomorphic in D.
(b) If f is not a conformal automorphism of D, then z 7→ f ∗(z, w) is a holo-
morphic self-map D.
(c) The map z 7→ f ∗(z, w) is a conformal automorphism of D if and only if f
is a Blaschke product of degree two.

Proof. Part (a) is obvious as w is a removable singularity of the function

f ∗(z, w) =

(

f(z) − f(w)

1 − f(w)f(z)

)

(

z − w

1 − wz

)−1

.

Now suppose that f is not a conformal automorphism of D. Then, as we have
seen above, |f ∗(z, w)| < 1 and this proves (b).

To prove (c) we note first that there are conformal automorphisms g and h
(that depend on w) of D such that f ∗(z, w) = g(f(z))/h(z) or, equivalently,
f(z) = g−1

(

f ∗(z, w)h(z)
)

. Clearly, if f ∗(z, w) is an automorphism then f is
a Blaschke product of degree two. Conversely, suppose that f is a Blaschke
product of degree two. Then g

(

f(z)
)

is also a Blaschke product, say B, of
degree two and f ∗(z, w) = B(z)/h(z). As f ∗(z, w) is holomorphic in z, we see
that B(z) = h(z)h1(z) for some automorphism h1. Thus f ∗(z, w) = h1(z) as
required.

We shall now derive a three-point version of the Schwarz-Pick Lemma. Because
it involves three points rather than two points as in the Schwarz-Pick Lemma, the
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following theorem has extra flexibility and it includes all variations and extensions
of the Schwarz-Pick Lemma that are known to the authors. We stress, though,
that this theorem contains much more than simply the union of all such known
results. Although several Euclidean variations of the Schwarz-Pick Lemma are
known, in our view much greater clarity is obtained by a strict adherence to hy-
perbolic geometry. This and other stronger versions of the Schwarz-Pick Lemma
appear in [8].

Theorem 4.4 (Three-point Schwarz-Pick Lemma). Suppose that f is holomor-
phic self-map of D, but not an automorphism of D. Then, for any z, w and v in
D,

(4.1) dD

(

f ∗(z, v), f ∗(w, v)
)

≤ dD(z, w).

Further, equality holds in (4.1) for some choice of z, w and v if and only if f is
a Blaschke product of degree two.

Proof. As f is holomorphic in D, but not an automorphism, Theorem 4.3(b)
shows that the left-hand side of (4.1) is defined. The inequality (4.1) now follows
by applying the Schwarz-Pick Lemma to the holomorphic self-map z 7→ f ∗(z, v)
of D. The Schwarz-Pick Lemma also implies that equality holds in (4.1) if and
only if f ∗(z, w) is a conformal automorphism of D and, by Theorem 4.3(c), this
is so if and only if f is a Blaschke product of degree two.

Theorem 4.4 is a genuine improvement of the Schwarz-Pick Lemma. Suppose,
for example that f : D → D is holomorphic, but not an automorphism, and that
f(0) = 0. Then the Schwarz-Pick Lemma tells us only that f(z)/z lies in the
hyperbolic plane D, and that |f ′(0)| < 1. However, it we put w = 0 in (4.1),
and then let v → 0, we obtain the stronger conclusion that f(z)/z lies in the
hyperbolic disk with center f ′(0) and hyperbolic radius dD(0, z).

Exercises.

1. If f(z) is a Blaschke product of degree k, prove that f ∗(z, w) is a Blaschke
product of degree k − 1.

2. Verify the following Chain Rule for the ∗-operator: For all z and w in D,
and all holomorphic maps f and g of D into itself,

(f ◦ g)∗(z, w) = f ∗
(

g(z), g(w)
)

g∗(z, w).

5. Hyperbolic derivatives

Since the hyperbolic metric is the natural metric to study holomorphic self-
maps of the unit disk, one should also use derivatives that are compatible with
this metric. We begin with the definition of a hyperbolic derivative; just as
the Euclidean difference quotient leads to the usual Euclidean derivative, the
hyperbolic difference quotient results in the hyperbolic derivative.
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Definition 5.1. Suppose that f : D → D is holomorphic, but not an isometry
of D. The hyperbolic derivative fh(w) of f at w in D is

fh(w) = lim
z→w

[f(z), f(w)]

[z, w]
=

(1 − |w|2)f ′(w)

1 − |f(w)|2 .

The hyperbolic distortion of f at w is

|fh(w)| = lim
z→w

dD(f(z), f(w))

dD(z, w)
.

By Theorem 4.3, |fh(z)| ≤ 1, and equality holds for some z if and only if
equality holds for all z, and then f is a conformal automorphism of D. Theorem
4.4 leads to the following upper bound on the magnitude of the hyperbolic dif-
ference quotient in terms of dD(z, w) and the derivative at any point v between
z and w.

Theorem 5.2. Suppose that f : D → D is holomorphic. Then, for all z and w
in D, and for all v on the closed geodesic arc joining z and w,

(5.1) dD

(

0, f ∗(z, w)
)

≤ dD

(

0, fh(v)
)

+ dD(z, w).

Proof. First, it is clear that for any z and w, |f ∗(z, w)| = |f ∗(w, z)|. Thus

dD

(

0, f ∗(z, w)
)

= dD

(

0, f ∗(w, z)
)

.

Next, Theorem 4.4 (applied twice) gives

dD

(

0, f ∗(z, w)
)

≤ dD

(

0, f ∗(v, w)
)

+ dD

(

f ∗(v, w), f ∗(z, w)
)

≤ dD

(

0, f ∗(v, w)
)

+ dD(z, v)

= dD

(

0, f ∗(w, v)
)

+ dD(z, v)

≤ dD

(

0, f ∗(u, v)
)

+ dD(w, u) + dD(z, v).

We now let u → v, where v lies on the geodesic between z and w, and as
dD(z, v) + dD(v, w) = dD(z, w), we obtain (5.1).

Our next task is to transform (5.1) into a more transparent inequality about
f . This is the next result which we may interpret as a Hyperbolic Mean Value
Inequality, a result from [7].

Theorem 5.3 (Hyperbolic Mean Value Inequality). Suppose that f : D → D is
holomorphic. Then, for all z and w in D, and for all v on the closed geodesic
arc joining z and w,

(5.2) dD

(

f(z), f(w)
)

≤ log
(

cosh dD(z, w) + |fh(v)| sinh dD(z, w)
)

.

This inequality is sharper than the Schwarz-Pick inequality for if we use
|fh(v)| ≤ 1 and the identity cosh t + sinh t = et, we recapture the Schwarz-
Pick inequality. It is known that equality holds in (5.2) if and only if f is a
Blaschke product of degree two and has a unique critical point c, such that ei-
ther c, z = v, w, or c, w = v, z, lie in this order along a geodesic. We refer
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the reader to [8] for a proof of this, and for the fact that a Blaschke product of
degree two has exactly one critical point in D.

Proof. First, we note that, for all u and v,

tanh
1

2
dD(0, u) = |u|,

tanh
1

2
dD(u, v) = pD(u, v) = tanh

1

2
dD(0, [u, v]).

Next, using the definition of f ∗(z, w), the inequality in Theorem 5.2, and the
addition formula for tanh(s + t), we have

tanh
1

2
dD(f(z), f(w)) = pD(f(z), f(w))

= pD(z, w)|f ∗(z, w)|

= pD(z, w) tanh
1

2
dD

(

0, f ∗(z, w)
)

≤ pD(z, w) tanh
[1

2
dD

(

0, fh(v)
)

+
1

2
dD(z, w)

]

= pD(z, w)

(

pD(z, w) + |fh(v)|
1 + pD(z, w)|fh(v)|

)

.

Now the increasing function x 7→ tanh(1
2
x) has inverse x 7→ log(1 + x)/(1 − x),

so we conclude that, with p = pD(z, w) and d = |fh(v)|,

dD(f(z), f(w)) ≤ log

(

1 + pd + p(d + p)

1 + pd − p(d + p)

)

= log

(

1 + p2

1 − p2
+ d

2p

1 − p2

)

,

which is (5.2).

Next, we provide a Schwarz-Pick type of inequality for hyperbolic derivatives;
recall that the hyperbolic derivative is not holomorphic. This result is based
on the observation that if f : D → D is holomorphic, but not a conformal
automorphism of D, then fh(z) and fh(w) lie in D so that we can measure the
hyperbolic distance between these two hyperbolic derivatives.

Theorem 5.4. Suppose that f : D → D is holomorphic but not a conformal
automorphism of D. Then, for all z and w in D,

(5.3) dD

(

fh(z), fh(w)
)

≤ 2dD(z, w) + dD

(

f ∗(z, w), f ∗(w, z)
)

.

Proof. Theorem 4.4 implies that for all z, w and v,

dD

(

f ∗(z, w), f ∗(v, w)
)

≤ dD(z, v).

We let v → w and obtain

dD

(

f ∗(z, w), fh(w)
)

≤ dD(z, w)

and (by interchanging z and w),

dD

(

f ∗(w, z), fh(z)
)

≤ dD(z, w).

These last two inequalities and the triangle inequality yields (5.3).
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It is easy to see that if f(0) = 0 then f ∗(z, 0) = f ∗(0, z) = f(z)/z. Thus we
have the following corollary originally established in [6].

Corollary 5.5. Suppose that f : D → D is holomorphic but not a conformal
automorphism of D, and that f(0) = 0. Then, for all z,

(5.4) dD

(

fh(0), fh(z)
)

≤ 2dD(0, z),

and the constant 2 is best possible.

Example 5.6. The preceding corollary is sharp for f(z) = z2. Note that
fh(z) = 2z/(1 + |z|2) and dD(fh(z), fh(w)) = 2dD(z, w) whenever z, w lie on
the same hyperbolic geodesic through the origin. Thus, z 7→ fh(z) doubles all
hyperbolic distances along geodesics through the origin; this doubling is not
valid in general because in hyperbolic geometry there are no similarities except
isometries. Moreover, it is possible to verify that there is no finite K such that
dD(fh(z), fh(w)) ≤ KdD(z, w) for all z, w ∈ D, so z 7→ fh(z) does not even sat-
isfy a hyperbolic Lipschitz condition, so (5.4) is no longer valid when the origin
is replaced by an arbitrary point of the unit disk.

In spite of Example 5.6 a full-fledged result of Schwarz-Pick type is valid for
the hyperbolic distortion.

Corollary 5.7 (Schwarz-Pick Lemma for Hyperbolic Distortion). Suppose that
f : D → D is holomorphic but not a conformal automorphism of D. Then for all
z, w ∈ D, dD

(

|fh(z)|, |fh(w)|
)

≤ 2dD(z, w).

Proof. Note that, from the proof of Theorem 5.4,

dD

(

|f ∗(z, w)|, |fh(w)|
)

≤ dD

(

f ∗(z, w), fh(w)
)

≤ dD(z, w),

and, similarly, dD

(

|f ∗(w, z)|, |fh(z)|
)

≤ dD(z, w). As |f ∗(w, z)| = |f ∗(z, w)|, the
desired inequality follows.

Exercises.

1. Verify the claims in Example 5.6.
2. Suppose that f : D → D is holomorphic but not a conformal automorphism

of D. Prove that for all conformal automorphisms S and T of D, and all z
and w in D,

|(S ◦ f ◦ T )∗(z, w)| = |f ∗(T (z), T (w))|.
In particular, deduce that the hyperbolic derivative is invariant in the sense
that

|(S ◦ f ◦ T )h(z)| = |fh(T (z))|.

6. The hyperbolic metric on simply connected regions

There are several equivalent definitions of what it means for a region in the
complex plane to be simply connected. A region Ω in C is simply connected if
and only if any one of the following (equivalent) conditions hold:
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(a) the set C∞\Ω is connected;
(b) if f is holomorphic and never zero in Ω, then there is a single-valued holo-

morphic choice of log f in Ω;
(c) each closed curve in Ω can be continuously deformed within Ω to a point

of Ω.

A region in C∞ is simply connected if (a) or (c) holds. The regions D, C and
C∞ are all simply connected; an annulus is not.

Two subregions regions of C are conformally equivalent if there is a holomor-
phic bijection of one onto the other. This is an equivalence relation on the class
of subregions of C, and the fundamental result about simply connected regions
is the Riemann Mapping Theorem.

Theorem 6.1 (The Riemann Mapping Theorem). A subregion of C is confor-
mally equivalent to D if and only if Ω is a simply connected proper subregion of
C. Moreover, given a ∈ Ω there is a unique conformal mapping f : Ω → D such
that f(a) = 0 and f ′(a) > 0.

The Riemann Mapping Theorem enables us to transfer the hyperbolic metric
from D to any simply connected proper subregion Ω of C.

Definition 6.2. Suppose that f is a conformal map of a simply connected plane
region Ω onto D. Then the hyperbolic metric λΩ(z)|dz| of Ω is defined by

(6.1) λΩ(z) = λD

(

f(z)
)

|f ′(z)|.
The hyperbolic distance dΩ is the distance function on Ω derived from the hy-
perbolic metric.

We need to show λΩ is independent of the choice of the conformal map f that
is used in (6.1), for this will imply that λΩ is determined by Ω alone. Suppose,
then, that f is a conformal map of Ω onto D. Then the set of all conformal
maps of Ω onto D is given by h ◦ f , where h ranges over A(D). Any conformal
automorphism h of D is a hyperbolic isometry, so that for all w in D,

λD(w) = λD

(

h(w)
)

|h′(w)|.
If we now let g = h ◦ f , w = f(z) and use the Chain Rule we find that

λD

(

g(z)
)

|g′(z)| = λD

(

h(f(z)
)

|h′(f(z))||f ′(z)|
= λD(f(z))|f ′(z)|

so that λΩ as defined in (6.1) is independent of the choice of the conformal map
f .

Thus, Definition 6.2 converts every conformal map of a simply connected
proper subregion of C onto the unit disk into an isometry of the hyperbolic
metric. The hyperbolic distance dΩ on a simply connected proper subregion Ω of
C can be defined in two equivalent ways. First, one can pull-back the hyperbolic
distance on D to Ω by setting dΩ(z, w) = dD(f(z), f(w)) for any conformal map
f : Ω → D and verifying that this is independent of the choice of the conformal
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mapping onto the unit disk. Alternatively, the hyperbolic length of a path γ in
Ω is

ℓΩ(γ) =

∫

γ

λΩ(z)|dz|,

and one can define

dΩ(z, w) = inf ℓΩ(γ),

where the infimum is taken over all piecewise smooth curves γ in Ω that join
z and w. These two definitions of the hyperbolic distance are equivalent. The
hyperbolic distance dΩ on Ω is complete. Moreover, a path γ in Ω connecting z
and w is a hyperbolic geodesic in Ω if and only if f ◦ γ is a hyperbolic geodesic
in D. Also, for any a ∈ Ω and r > 0, f(DΩ(a, r)) = DD(f(a), r).

In fact, the essence of Definition 6.2 is that the entire body of geometric
facts about the Poincaré model D of the hyperbolic plane transfers, without any
essential change, to an arbitrary simply connected proper subregion of C with
its own hyperbolic metric. If f : Ω → D is any conformal mapping, then f is an
isometry relative to the hyperbolic metrics and hyperbolic distances on Ω and
D. The next result is an immediate consequence of Definition 6.2 and we omit
its proof; it asserts that all conformal maps of simply connected proper regions
are isometries relative to the hyperbolic metrics and hyperbolic distances of the
regions.

Theorem 6.3 (Conformal Invariance). Suppose that Ω1 and Ω2 are simply con-
nected proper subregions of C, and that f is a conformal map of Ω1 onto Ω2.
Then f is a hyperbolic isometry, so that for any z in Ω1,

(6.2) λΩ2

(

f(z)
)

|f ′(z)| = λΩ1
(z),

and for all z, w ∈ Ω1

dΩ2
(f(z), f(w)) = dΩ1

(z, w).

Note that if γ is a smooth curve in Ω1, then (6.2) implies

ℓΩ2
(f ◦ γ) = ℓΩ1

(γ).

Theorem 6.3 implies that each element of A(Ω), the group of conformal auto-
morphisms of Ω, is a hyperbolic isometry.

Theorem 6.4 (Schwarz-Pick Lemma for Simply Connected Regions). Suppose
that Ω1 and Ω2 are simply connected proper subregions of C, and that f is a
holomorphic map of Ω1 into Ω2. Then either
(a) f is a hyperbolic contraction; that is, for all z and w in Ω1,

dΩ2

(

f(z), f(w)
)

< dΩ1
(z, w), λΩ2

(

f(z)
)

|f ′(z)| < λΩ1
(z),

or
(b) f is a hyperbolic isometry; that is, f is a conformal map of Ω1 onto Ω2 and
for all z and w in Ω1,

dΩ2

(

f(z), f(w)
)

= dΩ1
(z, w), λΩ2

(

f(z)
)

|f ′(z)| = λΩ1
(z).
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Proof. Because of Theorem 6.3 we only need verify (a) when the holomorphic
map f : Ω1 → Ω2 is not a holomorphic bijection. Choose any point z0 in
Ω1, and let w0 = f(z0). Next, construct a holomorphic bijection h of D, and a
holomorphic bijection g of Ω1 onto Ω2; these can be constructed so that h(0) = z0

and g(z0) = w0 = f(z0). Now let k = (gh)−1fh. Then k is a holomorphic map
of D into itself and k(0) = 0. Moreover, k is not a conformal automorphism of
D or else f would be a holomorphic bijection. Thus |k′(0)| < 1 and, using the
Chain Rule, this gives |f ′(z0)| < |g′(z0)|. With this,

λΩ2

(

f(z0)
)

|f ′(z0)| < λΩ1
(z0)

follows as (6.2) holds (with f replaced by g).

This establishes the second strict inequality in (a); the first strict inequality
for hyperbolic distances follows by integrating the strict inequality for hyperbolic
metrics.

This version of the Schwarz-Pick Lemma can be stated in the following equiv-
alent form. If f : Ω1 → Ω2 is holomorphic, then for all z and w in Ω1,

(6.3) dΩ2
(f(z), f(w)) ≤ dΩ1

(z, w),

and

(6.4) λΩ2

(

f(z)
)

|f ′(z)| ≤ λΩ1
(z).

Further, if either equality holds in (6.3) for a pair of distinct points or at one
point z in (6.4) , then f is a conformal bijection of Ω1 onto Ω2.

Corollary 6.5 (Schwarz’s Lemma for Simply Connected Regions). Suppose Ω
is a simply connected proper subregion of Ω and a ∈ Ω. If f is a holomorphic
self-map of Ω that fixes a, then |f ′(a)| ≤ 1 and equality holds if and only if
f ∈ A(Ω, a), the group of conformal automorphisms of Ω that fix a. Moreover,
f ′(a) = 1 if and only if f is the identity.

Theorem 6.4 is the fundamental reason for the existence of many distortion
theorems in complex analysis. Consider the class of holomorphic maps of Ω1 into
Ω2. Then any such map f will have to satisfy the universal constraints (6.3) and
(6.4) where the metrics λΩ1

and λΩ2
are uniquely determined (albeit implicitly)

by the regions Ω1 and Ω2. Thus (6.3) and (6.4) are, in some sense, the generic
distortion theorems for holomorphic maps.

This is the appropriate place to point out that neither the complex plane C

nor the extended complex plane C∞ has a metric analogous to the hyperbolic
metric in the sense that the metric is invariant under the group of conformal
automorphisms. Recall that A(C) is the set of all maps z 7→ az + b, a, b ∈ C and
a 6= 0, and A(C∞) is the group M of Möbius transformations. The group A(C)
acts doubly transitively on C; that is, given two pairs z1, z2 and w1, w2 of distinct
points in C there is a conformal automorphism f of C with f(zj) = wj, j = 1, 2.
Similarly, M acts triply transitively on C∞. If there were a conformal metric
on either C or C∞ invariant under the full conformal automorphism group, then
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the distance function induced from this metric would also be invariant under the
action of the full group of conformal automorphisms. The following result shows
that only trivial distance functions are invariant under A(C) or A(C∞).

Theorem 6.6. If d is a distance function on C or C∞ that is invariant under
the full group of conformal automorphisms, then there exists t > 0 such that
d(z, w) = 0 if z = w and d(z, w) = t otherwise.

Proof. Let d be a distance function on C that is invariant under A(C). Set t =
d(0, 1). Consider any distinct z, w ∈ C. Because A(C) acts doubly transitively
on C, there exists f ∈ A(C) with f(0) = z and f(1) = w. The invariance of d
under A(C) implies d(z, w) = d(f(0), f(1)) = d(0, 1) = t. The same argument
applies to C∞.

The Euclidean metric |dz| on C is invariant under the proper subgroup of
A(C) given by z 7→ az + b, where |a| = 1 and b ∈ C. The spherical metric
2|dz|/(1 + |z|2) on C∞ is invariant under the group of rotations of C∞, that is,
Möbius maps of the form

z 7→ az − c̄

cz + ā
, a, c ∈ C, |a|2 + |c|2 = 1,

or of the equivalent form

z 7→ eiθ z − a

1 + āz
, θ ∈ R, a ∈ C∞.

The group of rotations of C∞ is a proper subgroup of M.

Exercises.

1. Suppose Ω is a simply connected proper subregion of C and a ∈ Ω. Let
F denote the family of all holomorphic functions f defined on D such that
f(D) ⊆ Ω and f(0) = a. Set M = sup{|f ′(0)| : f ∈ F}. Prove M < +∞
and that |f ′(0)| = M if and only if f is a conformal map of D onto Ω with
f(0) = a. Show M = 2/λΩ(a).

2. Suppose Ω is a simply connected proper subregion of C and a ∈ Ω. Let
G denote the family of all holomorphic functions f defined on Ω such that
f(Ω) ⊆ D. Set N = sup{|f ′(a)| : f ∈ G}. Prove N < +∞ and that
|f ′(a)| = N if and only if f is a conformal map of Ω onto D with f(a) = 0.
Show N = λΩ(a)/2.

3. Suppose Ω is a simply connected proper subregion of C and a ∈ Ω. Let
H(Ω, a) denote the family of all holomorphic self-maps of Ω that fix a.
Prove that {f ′(a) : f ∈ H(Ω, a)} equals the closed unit disk.

7. Examples of the hyperbolic metric

We give examples of simply connected regions and their hyperbolic metrics.
These metrics are computed by using (6.2) in the following way: one finds an
explicit conformal map f from the region Ω1 whose metric is sought onto a region
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Ω2 whose metric is known. Then (6.2) enables one to find an explicit expression
for λΩ1

(z) for z in Ω1. We omit almost all of the computations.

The simplest instance of the Riemann Mapping Theorem is the fact that
any disk or half-plane is Möbius equivalent to the unit disk. Because hyperbolic
circles (disks) in D are Euclidean circle (disks) in D, we deduce that an analogous
result holds for any disk or half-plane. Also, in any disk or half-plane hyperbolic
geodesics are arcs of circles orthogonal to the boundary; in the case of a half-
planes we allow half-lines orthogonal to the edge of the half-plane.

Example 7.1 (disk). As f(z) = (z − z0)/R is a conformal map of the disk
D = {z : |z − z0| < R} onto D, we find

λD(z)|dz| =
2R |dz|

R2 − |z − z0|2
. �

In particular,

λD(z0) =
2

R
.

Example 7.2 (half-plane). Let H be the upper half-plane {x+iy : y > 0}. Then
g(H) = D, where g(z) = (z − i)/(z + i), so H = {x + iy : y > 0} has hyperbolic
metric

λH(z)|dz| =
|dz|
y

=
|dz|
Im z

.

Similarly, the hyperbolic metric of the right half-plane K = {x + iy : x > 0} is
|dz|/x. More generally, if H is any open half-plane, then

λH(z)|dz| =
|dz|

d(z, ∂H)
,

where d(z, ∂H) denotes the Euclidean distance from z to ∂H.

Theorem 7.3. If f : D → K is holomorphic and f(0) = 1, then

(7.1)
1 − |z|
1 + |z| ≤ Re f(z) ≤ 1 + |z|

1 − |z|
and

(7.2) |Im f(z)| ≤ 2|z|
1 − |z|2

Proof. This is an immediate consequence of the Schwarz-Pick Lemma after con-
verting the conclusion into weaker Euclidean terms. Fix z ∈ D and set

r = dD(0, z) = 2 tanh−1 |z| = log
1 + |z|
1 − |z| .

The Schwarz-Pick Lemma implies that f(z) lies in the closed hyperbolic disk
D̄K(1, r). The closed hyperbolic disk D̄K(1, r) has Euclidean center cosh r, Eu-
clidean radius sinh r and the bounding circle meets the real axis at e−r and er;



30 Beardon and Minda IWQCMA05

see the exercises. Therefore, f(z) lies in the closed Euclidean square {z = x+iy :
e−r ≤ x ≤ er, |y| ≤ sinh r}. Since

e−r =
1 − |z|
1 + |z| and er =

1 + |z|
1 − |z| ,

(7.1) is established. Finally,

sinh r =
2|z|

1 − |z|2
demonstrates (7.2).

Theorem 7.4. Suppose that H is any disk or half-plane. Then for all z and w
in H,

sinh2 1

2
dH(z, w) = 1

4
|z − w|2λH(z)λH(w).

Proof. It is easy to verify that for any Möbius map g we have

(7.3)
(

g(z) − g(w)
)2

= (z − w)2 g′(z) g′(w).

Now take any Möbius map g that maps H onto D, and recall that g is an isometry
from H to D if both are given their hyperbolic metrics. Then, using (2.8) and
(7.3)

1
4
|z − w|2λH

(

z
)

λH

(

w
)

= 1
4
|z − w|2λD

(

g(z)
)

λD

(

g(w)
)

|g′(z)| |g′(w)|
= 1

4
|g(z) − g(w)|2λD(g(z))λD(g(w))

= sinh2 1

2
dD(g(z), g(w))

= sinh2 1

2
dH

(

z, w
)

There is another, less well known, version of the Schwarz-Pick Theorem avail-
able which is an immediate consequence of Theorem 7.4, and which we state in
a form that is valid for all disks and half-planes.

Theorem 7.5 (Modified Schwarz-Pick Lemma for Disks and Half-Planes). Sup-
pose that Hj is any disk or half-plane, j = 1, 2, and that f : H1 → H2 is
holomorphic. Then, for all z and w in H1,

|f(z) − f(w)|2
|z − w|2 ≤ λH1

(z)λH1
(w)

λH2

(

f(z)
)

λH2

(

f(w)
) .

Proof. By Theorem 7.4 and the Schwarz-Pick Lemma

1
4
|f(z) − f(w)|2λH2

(f(z))λH2
(f(w)) = sinh2 1

2
dH2

(f(z), f(w))

≤ sinh2 1

2
dH1

(z, w)

= 1
4
|z − w)|2λH1

(

z
)

λH1

(

w
)

.
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Observe that if w → z in Theorem 7.5, then we obtain (6.4) in the special case
of disks and half-planes. We give an application of Theorem 7.5 to holomorphic
functions.

Example 7.6. Suppose that f is holomorphic in the open unit disk and that f
has positive real part. Then f maps D into K, and we have

|f(z) − f(w)|2
|z − w|2 ≤ 4 Re [f(z)] Re [f(w)]

(1 − |z|2)(1 − |w|2) .

This implies, for example, that if we also have f(0) = 1 then |f ′(0)| ≤ 2.

Example 7.7 (slit plane). Since f(z) =
√

z maps P = C\{x ∈ R : x ≤ 0} onto
K = {x + iy : x > 0}, the hyperbolic metric on P is

λP (z) |dz| =
|dz|

2|√z|Re [
√

z]
.

This gives

λP (z) =
1

2r cos(θ/2)
≥ 1

2|z| ,

where z = reiθ.

Example 7.8 (sector). Let S(α) = {z : 0 < arg(z) < απ}, where 0 < α ≤ 2.
Here, f(z) = z1/α = exp

(

α−1 log z
)

is a conformal map of S(α) onto H, so S(α)
has hyperbolic metric

λS(α)(z) |dz| =
|z|1/α

α|z| Im[z1/α]
|dz|.

Note that this formula for the hyperbolic metric agrees (as it must) with the
formula for λH in Example 7.2 (which is the case α = 1). The special case α = 2
is the preceding example.

Example 7.9 (doubly infinite strip). S = {x + iy : |y| < π/2} has hyperbolic
metric

λS(z) |dz| =
|dz|
cos y

.

In this case we use the fact that ez maps S conformally onto K = {x + iy : x >
0}. Notice that λS(z) ≥ 1 with equality if and only if z lies on the real axis.
In particular, the hyperbolic distance between points on R is the same as the
Euclidean distance between the points.

Theorem 7.10. Let S = {z : |Im(z)| < π/2}. Then for any a ∈ R and any
holomorphic self-map f of S, |f ′(a)| ≤ 1. Moreover, f ′(a) = 1 if and only if
f(z) = z + c for some c ∈ R and f ′(a) = −1 if and only if f(z) = −z + c for
some c ∈ R. In particular, for any interval [a, b] in R, the Euclidean length of
the image f([a, b]) is at most b − a.
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Proof. From Example 7.9 for z ∈ S

λS(z) =
1

cos y
≥ 1

and equality holds if and only if Im(z) = 0. This observation together with the
Schwarz-Pick Lemma gives

|f ′(a)| ≤ λS(f(a))|f ′(a)| ≤ λS(a) = 1

and equality implies f(a) ∈ R. In this case, f−f(a)+a is a holomorphic self-map
of S that fixes a and has derivative 1 at a, so it is the identity by the general form
of Schwarz’s Lemma. Thus, from Corollary 6.5 f ′(a) = 1 implies f(z) = z + c
for some c ∈ R; the converse is trivial. If f ′(a) = −1, then −f is a holomorphic
self-map of S with derivative 1 at a, and so f(z) = −z − c for some c ∈ R.

For a simply connected proper subregion Ω of C and a ∈ Ω, each hyperbolic
disk DΩ(a, r) = {z ∈ Ω : dΩ(a, z) < r} is simply connected and the closed
disk D̄Ω(a, r) is compact. When Ω is a disk or half-plane, hyperbolic disks are
Euclidean disks since any conformal map of the unit disk onto a disk or half-plane
is a Möbius transformation. Of course, this is no longer true when Ω is simply
connected and not a disk or half-plane. For particular types of simply connected
regions, more can be said about hyperbolic disks than just the fact that they are
simply connected.

Theorem 7.11. Suppose Ω is a convex hyperbolic region. Then for any a ∈ Ω
and all r > 0 the hyperbolic disc DΩ(a, r) is Euclidean convex.

Proof. Fix a ∈ Ω. Let h : D → Ω be a conformal mapping with h(0) = a. Since
h(DD(0, r)) = DΩ(a, r), it suffices to show that h maps each disc DD(0, r) =
D(0, tanh(r/2)) onto a convex set. Set R = tanh(r/2). Given b, c ∈ D(0, R)
we must show (1 − t)h(b) + th(c) lies in h(D(0, R)) for t ∈ I. Choose S so that
|b|, |c| < S < R and fix t ∈ I. The function

g(z) = (1 − t)h

(

bz

S

)

+ th
(cz

S

)

is holomorphic in D, g(0) = a and maps into Ω because Ω is convex. There-
fore, f = h−1 ◦ g is a holomorphic self-map of D that fixes the origin and so
f(D(0, R)) ⊆ D(0, R). Then (1 − t)h(b) + th(c) = g(S) = h(f(S)) lies in
h(D(0, S)) because f(S) ∈ D(0, S). Therefore, h(D(0, S)) = DΩ(a, r) is Eu-
clidean convex.

This result is effectively due to Study who proved that if f is convex univalent
in D, then for any Euclidean disk D contained in D, f(D) is Euclidean convex,
see [13]. The converse of Theorem 7.11 is elementary: If Ω is a simply connected
proper subregion of C and there exists a ∈ Ω such that every hyperbolic disk
DΩ(a, r) is Euclidean convex, then Ω is Euclidean convex since Ω = ∪{DΩ(a, r) :
r > 0}, an increasing union of Euclidean convex sets. The radius of convexity
for a univalent function on D is 2−

√
3; see [13]. This implies that if Ω is simply
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connected, then for each a ∈ Ω and 0 < r < (1/2) log 3 the hyperbolic disk
DΩ(a, r) is Euclidean convex.

In a general simply connected region hyperbolic geodesics are no longer arcs
of circles or segments of lines. It is possible to give a simple geometric property
of hyperbolic geodesics in Euclidean convex regions that characterize convex
regions, see [19] and [20].

Exercises.

1. Let K = {z = x + iy : x > 0}. For a > 0 and r > 0 verify that the
closed hyperbolic disk D̄K(1, r) is the Euclidean disk with Euclidean center
c = cosh r and Euclidean radius R = sinh r. This Euclidean disk meets the
real axis at e−r and er.

2. Suppose f : D → K is holomorphic. Prove that

(1 − |z|2)|f ′(z)| ≤ 2 Re f(z)

for all z ∈ D. When does equality hold?
3. Suppose f : K → D is holomorphic. Prove that

2|f ′(z)|Re z ≤ 1 − |f(z)|2

for all z ∈ K. When does equality hold?
4. Suppose Ω is a simply connected proper subregion of C that is (Euclidean)

starlike with respect to a ∈ Ω. This means that for each z ∈ Ω the
Euclidean segment [a, z] is contained in Ω. For any r > 0 prove that the
hyperbolic disk DΩ(a, r) is starlike with respect to a.

8. The Comparison Principle

There is a powerful, and very general, Comparison Principle for hyperbolic
metrics, which we state here only for simply connected plane regions. This
Principle allows us to estimate the hyperbolic metric of a region in terms of other
hyperbolic metrics which are known, or which can be more easily estimated. In
general it is not possible to explicitly calculate the density of the hyperbolic
metric, so estimates are useful.

Theorem 8.1 (Comparison Principle). Suppose that Ω1 and Ω2 are simply con-
nected proper subregions of C. If Ω1 ⊆ Ω2 then λΩ2

≤ λΩ1
on Ω1. Further, if

λΩ1
(z) = λΩ2

(z) at any point z of Ω2, then Ω1 = Ω2 and λΩ1
= λΩ2

.

Proof. Let f(z) = z be the inclusion map of Ω1 into Ω2. Then the Schwarz-Pick
Lemma gives λΩ2

(z) ≤ λΩ1
(z). If equality holds at a point, then f is a conformal

bijection of Ω1 onto Ω2, that is, Ω1 = Ω2.

In other words, the Comparison Principle asserts that the hyperbolic metric
on a simply connected region decreases as the region increases. The hyperbolic
metric on the disk Dr = {z : |z| < r} is 2r|dz|/(r2−|z|2) which decreases to zero
as r increases to +∞.
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The Comparison Principle is used in the following way. Suppose that we want
to estimate the hyperbolic metric λΩ of a region Ω. We attempt to find regions
Ωj with known hyperbolic metrics (or metrics that can be easily estimated) such
that Ω1 ⊆ Ω ⊆ Ω2; then λΩ2

≤ λΩ ≤ λΩ1
. The next result is probably the

simplest application of the Comparison Principle, and it gives an upper bound
of the hyperbolic metric λΩ of a region Ω in terms of the Euclidean distance

d(z, ∂Ω) = inf{|z − w| : w ∈ ∂Ω}
of z to the boundary of Ω. The geometric significance of this quantity is that
d(z, ∂Ω) is the radius of the largest open disk with center z that lies in Ω. Note,
however, that d(z, ∂Ω) (which is sometimes denoted by δΩ(z) in the literature)
is not conformally invariant. The metric

|dz|
d(z, ∂Ω)

=
|dz|

δΩ(z)

is called the quasihyperbolic metric on Ω. Example 7.2 shows that the quasihy-
perbolic metric for a half-plane is the hyperbolic metric.

Theorem 8.2. Suppose that Ω is a simply connected proper subregion of C.
Then for all z ∈ Ω

(8.1) λΩ(z) ≤ 2

d(z, ∂Ω)
,

and equality holds if and only if Ω is a disk with center z.

Proof. Take any z0 in Ω, and let R = d(z0, ∂Ω) and D = {z : |z − z0| < R}. As
D ⊆ Ω the Comparison Principle and Example 7.1 yield

λΩ(z0) ≤ λD(z0) =
2

R
=

2

d(z0, ∂Ω)
,

which is (8.1). If λΩ(z0) = 2/d(z0, ∂Ω) then λΩ(z0) = λD(z0) so, by the Compar-
ison Principle, Ω = D. The converse is trivial.

Theorem 8.2 gives an upper bound on the hyperbolic metric of Ω in terms of
the Euclidean quantity d(z, ∂Ω). It is usually more difficult to obtain a lower
bound on the hyperbolic metric. For convex regions it is easy to use geometric
methods to obtain a good lower bound on the hyperbolic metric.

Theorem 8.3. Suppose that Ω is convex proper subregion of C. Then for all
z ∈ Ω

(8.2)
1

d(z, ∂Ω)
≤ λΩ(z)

and equality holds if and only if Ω is a half-plane.

Proof. We suppose that Ω is convex. Take any z in Ω and let ζ be one of the
points on ∂Ω that is nearest to z. Let H be the supporting half-plane of Ω at ζ;
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thus Ω ⊆ H, and the Euclidean line that bounds H is orthogonal to the segment
from z to ζ. Thus, from the Comparison Principle, for any z ∈ Ω

λΩ(z) ≥ λH(z) =
1

|z − ζ| =
1

d(z, ∂Ω)

which is (8.2). The equality statement follows from the Comparison Principle
and Example 7.2.

Theorems 8.2 and 8.3 show that the hyperbolic and quasihyperbolic metrics
are bi-Lipschitz equivalent on convex regions:

1

d(z, ∂Ω)
≤ λΩ(z) ≤ 2

d(z, ∂Ω)
.

Lower bounds for the hyperbolic metric in terms of the quasihyperbolic metric
are equivalent to covering theorems for univalent functions.

Theorem 8.4. Suppose that f is holomorphic and univalent in D, and that f(D)
is a convex region. Then f(D) contains the Euclidean disk with center f(0) and
radius |f ′(0)|/2.

Proof. From Theorem 8.3 we have

2 = λD(0)

= λf(D)

(

f(0)
)

|f ′(0)|

≥ |f ′(0)|
d
(

f(0), ∂f(D)
) .

We deduce that
d
(

f(0), ∂f(D)
)

≥ |f ′(0)|/2,
so that f(D) contains the Euclidean disk with center f(0) and radius |f ′(0)|/2.

There is an analogous covering theorem for general univalent functions on the
unit disk, see [13].

Theorem 8.5 (Koebe 1/4–Theorem). Suppose that f is holomorphic and uni-
valent in D. Then the region f(D) contains the open Euclidean disk with center
f(0) and radius |f ′(0)|/4.

The Koebe 1/4–Theorem gives a lower bound on the hyperbolic metric in
terms of the quasihyperbolic metric on a simply connected proper subregion of
C.

Theorem 8.6. Suppose that Ω is a simply connected proper subregion of C.
Then for all z ∈ Ω

(8.3)
1

2d(z, ∂Ω)
≤ λΩ(z)

and equality holds if and only if Ω is a slit-plane.
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Proof. Fix z ∈ Ω and let f : D → Ω be a conformal map with f(0) = z. Koebe’s
1/4–Theorem implies d(z, ∂Ω) ≥ |f ′(0)|/4. Now

2 = λΩ(f(0))|f ′(0)|
≤ 4λΩ(z)d(z, ∂Ω)

which establishes (8.3). Sharpness follows from the sharp form of the Koebe
1/4–Theorem and Example 7.7.

Theorems 8.2 and 8.6 show that the hyperbolic and quasihyperbolic metrics
are bi-Lipschitz equivalent on simply connected regions:

(8.4)
1

2d(z, ∂Ω)
≤ λΩ(z) ≤ 2

d(z, ∂Ω)
.

Exercises.

1. (a) Suppose Ω is a simply connected proper subregion of C. Prove that
limz→ζ λΩ(z) = +∞ for each boundary point ζ of Ω that lies in C.
(b) Given an example of a simply connected proper subregion Ω of C that
has ∞ as a boundary point and λΩ(z) does not tend to infinity as z → ∞.

2. Suppose Ω is starlike with respect to the origin; that is, for each z ∈ Ω the
Euclidean segment [0, z] is contained in Ω. Use the Comparison Theorem
to prove that (8.3) holds; do not use Theorem 8.6.

9. Curvature and the Ahlfors Lemma

A conformal semimetric on a region Ω in C is ρ(z)|dz|, where ρ : Ω → [0, +∞)
is a continuous function and {z : ρ(z) = 0} is a discrete subset of Ω. A conformal
semimetric ρ(z)|dz| is a conformal metric if ρ(z) > 0 for all z ∈ Ω. The curvature
of a conformal semimetric ρ(z)|dz| can be defined at any point where ρ is positive
and of class C2.

Definition 9.1. Suppose ρ(z)|dz| is a conformal metric on a region Ω. If a ∈ Ω,
ρ(a) > 0 and ρ(z) is of class C2 at a, then the Gaussian curvature of ρ(z)|dz| at
a is

Kρ(a) = −△ log ρ(a)

ρ2(a)
,

where △ is the usual (Euclidean) Laplacian,

△ =
∂2

∂x2
+

∂2

∂y2
.

Typically, we shall speak of the curvature of a conformal metric rather than
Gaussian curvature. In computing the Laplacian it is often convenient to use

△ = 4
∂2

∂z∂z̄
= 4

∂2

∂z̄∂z
,
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where the complex partial derivatives are defined by

∂ =
∂

∂z
=

1

2

(

∂

∂x
− i

∂

∂y

)

,

∂̄ =
∂

∂z̄
=

1

2

(

∂

∂x
+ i

∂

∂y

)

.

Alternatively the Laplacian expressed can be expressed in terms of polar coordi-
nates, namely

△ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
.

One reason semimetrics play an important role in complex analysis is that
they transform simply under holomorphic functions.

Definition 9.2. Suppose ρ(w)|dw| is a semimetric on a region Ω and f : ∆ → Ω
is a holomorphic function. The pull-back of ρ(w)|dw| by f is

(9.1) f ∗(ρ(w)|dw|) = ρ(f(z))|f ′(z)||dz|.

Since (ρ ◦ f)|f ′| is a continuous nonnegative function defined on ∆, the pull-
back f ∗(ρ(w)|dw|) of ρ(w)|dw| is a semimetric on ∆ provided f is nonconstant.
Sometimes we write simply f ∗(ρ) to denote the pull-back. However, the nota-
tion (9.1) is precise and indicates that the formal substitution w = f(z) converts
ρ(w)|dw| into f ∗(ρ(w)|dw|). The pull-back operation has several useful proper-
ties:

(f ◦ g)∗(ρ(w)|dw|) = g∗ (f ∗(ρ(w)|dw|))
and

(f−1)∗ = (f ∗)−1,

when f is a conformal mapping. If f : Ω1 → Ω2 is a conformal mapping of
simply connected proper subregions of C, then the conclusion of Theorem 6.3 in
the pull-back notation is: f ∗(λΩ2

) = λΩ1
.

In the context of complex analysis, a fundamental property of the curvature
is its conformal invariance. More generally, curvature is invariant under the
pull-back operation.

Theorem 9.3. Suppose Ω and ∆ are regions in C, ρ(w)|dw| is a metric on Ω and
f : ∆ → Ω is a holomorphic function. Suppose a ∈ ∆, f ′(a) 6= 0, ρ(f(a)) > 0
and ρ is of class C2 at f(a). Then Kf∗(ρ)(a) = Kρ(f(a)).

Proof. Recall that f ∗(ρ(w)|dw|) = ρ(f(z))|f ′(z)||dz|. Now,

log (ρ(f(z))|f ′(z)|) = log ρ(f(z)) + log |f ′(z)|

= log ρ(f(z)) +
1

2
log f ′(z) +

1

2
log f ′(z),

so that
∂

∂z
log (ρ(f(z))|f ′(z)|) =

∂ log ρ

∂w
(f(z))f ′(z) +

1

2

f ′′(z)

f ′(z)
.
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Then

∂2

∂z̄∂z
log (ρ(f(z))|f ′(z)|) =

∂2 log ρ

∂w̄∂w
(f(z))f ′(z)f ′(z)

=
∂2 log ρ

∂w̄∂w
(f(z))|f ′(z)|2

gives

△z[log (ρ(f(z))|f ′(z)|)] = (△w log ρ) (f(z))|f ′(z)|2.
This is the transformation law for the Laplacian under a holomorphic function.
Consequently,

Kf∗(ρ)(a) = −△z log(ρ(f(a))|f ′(a)|)
ρ2(f(a))|f ′(a)|2

= −(△w log ρ) (f(a))|f ′(a)|2
ρ2(f(a))|f ′(a)|2

= Kρ(f(a)).

Theorem 9.4. The hyperbolic metric on a simply connected proper subregion of
C has constant curvature −1.

Proof. First, we establish the result for the unit disk. From

λD(z) =
2

1 − |z|2 =
2

1 − zz̄

we obtain

∂2

∂z̄∂z
log

2

1 − zz̄
= − ∂2

∂z̄∂z
log(1 − zz̄)

=
∂

∂z̄

z̄

1 − zz̄

=
1

(1 − zz̄)2
.

Consequently, KλD
(z) = −1.

The general case of the hyperbolic metric on a simply connected proper sub-
region Ω of C follows from Theorem 9.3 since f ∗(λD(w)|dw|) = λΩ(z)|dz| for any
conformal map f : Ω → D.

Ahlfors recognized that the Schwarz-Pick Lemma was a consequence of an
extremely important maximality property of the hyperbolic metric in D.

Theorem 9.5 (Maximality of the hyperbolic metric). Suppose ρ(z)|dz| is a C2

semimetric on a simply connected proper subregion Ω of C such that Kρ(z) ≤ −1
whenever ρ(z) > 0. Then ρ ≤ λΩ on Ω.
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Proof. First, we assume Ω = D. Given z0 in D choose any r satisfying |z0| <
r < 1. The hyperbolic metric on the disk Dr = {z : |z| < r} is

λr(z) =
2r

r2 − |z|2 .

Consider the function

v(z) =
ρ(z)

λr(z)

which is defined on the disk Dr. Then v(z) ≥ 0 when |z| < r, and v(z) → 0 as
|z| → r, so that v attains its maximum at some point a in Dr. It suffices to show
that v(a) ≤ 1 for then v(z) ≤ 1 on Dr and we have

ρ(z0) ≤
2r

r2 − |z0|2
.

By letting r → 1 we find that ρ(z0) ≤ λD(z0).

We now show that v(a) ≤ 1. If ρ(a) = 0, then v(a) = 0 < 1. Otherwise,
ρ(a) > 0 and Kρ(a) ≤ −1. As a is a local maximum of v, it is also a local
maximum of log v so that

∂2 log v

∂x2
(a) ≤ 0,

∂2 log v

∂y2
(a) ≤ 0.

We deduce that

0 ≥
(

△ log v
)

(a)

=
(

△ log ρ
)

(a) −
(

△ log λr

)

(a)

= −Kρ(a)ρ(a)2 + Kλr
(a)λr(a)2

≥ ρ(a)2 − λr(a)2.(9.2)

This implies that v(a) ≤ 1, and completes the proof in the special case Ω = D.

We now turn to the general case. Let h : D → Ω be a conformal mapping.
Then h∗(ρ(w)|dw|) := τ(z)|dz| is a C2 semimetric on D such that Kτ (z) ≤ −1
whenever τ(z) > 0. Hence,

ρ(h(z))|h′(z)| ≤ λD(z) = λΩ(h(z))|h′(z)|,
and so ρ ≤ λΩ on Ω.

In fact, Ahlfors actually established a more general result (see [1] and [2]). The
stronger conclusion that either ρ < λΩ or else ρ = λΩ is valid but less elementary.
This sharp result was established by Heins [15]. Simpler proofs of the stronger
conclusion are due to Chen [12], Minda [28] and Royden [32].

The Schwarz-Pick Lemma is a special case of Theorem 9.5. If f : Ω1 → Ω2

is a nonconstant holomorphic function, then f ∗(λΩ2
(w)|dw|) is a semimetric on

Ω1 with curvature −1 at each point where f ′ is nonvanishing, so is dominated
by the hyperbolic metric λΩ1

(z)|dz|, or equivalently, (6.4) holds. The equality
statement associated with (6.4) follows from the sharp version of Theorem 9.5.
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Theorem 9.6. There does not exist a C2 semimetric ρ(z)|dz| on C such that
Kρ(z) ≤ −1 whenever ρ(z) > 0.

Proof. Suppose there existed a semimetric ρ(z)|dz| on C such that Kρ(z) ≤ −1
whenever ρ(z) > 0. Theorem 9.5 applied to the restriction of this metric to the
disk {z : |z| < r} gives

(9.3) ρ(z) ≤ λr(z) =
2r

r2 − |z|2
for |z| < r. If we fix z and let r → +∞, (9.3) gives ρ(z) = 0 for all z ∈ C. This
contradicts the fact that a semimetric vanishes only on a discrete set.

Corollary 9.7 (Liouville’s Theorem). A bounded entire function is constant.

Proof. Suppose f is a bounded entire function. There is no harm in assuming
that |f(z)| < 1 for all z ∈ C. If f were nonconstant, then f ∗(λD(z)|dz|) would
be a semimetric on C with curvature at most −1, a contradiction.

Theorem 9.3 provides a method to produce metrics with constant curvature
−1. Loosely speaking, bounded holomorphic functions correspond to metrics
with curvature −1. If f : Ω → D is holomorphic and locally univalent (f ′ does
not vanish), then f ∗(λD(z)|dz|) has curvature −1 on Ω. In fact, on a simply
connected proper subregion of C every metric with curvature −1 has this form;
see [36]. This reference also contains a stronger result that represents certain
semimetrics with curvature −1 at points where the semimetric is nonvanishing
by holomorphic (not necessarily locally univalent) maps of Ω into D.

Theorem 9.8 (Representation of Negatively Curved Metrics). Let ρ(z)|dz| be a
C3 conformal metric on a simply connected proper subregion Ω of C with constant
curvature −1. Then ρ(z)|dz| = f ∗(λD(w)|dw|) for some locally univalent holo-
morphic function f : Ω → D. The function f is unique up to post-composition
with an isometry of the hyperbolic metric. Given a ∈ Ω the function f represent-
ing the metric is unique if f is normalized by f(a) = 0 and f ′(a) > 0.

Moreover, ρ(z)|dz| = f ∗(λD(w)|dw|) is complete if and only if f is a conformal
bijection; that is, the hyperbolic metric is the only conformal metric on Ω that
has curvature −1 and is complete.

Exercises.

1. Determine the curvature of the Euclidean metric |dz| and of the spherical
metric σ(z)|dz| = 2|dz|/(1 + |z|2).

2. Show that (1 + |z|2)|dz| has negative curvature on C.
3. Determine the curvature of ex|dz| on C.
4. Determine the curvature of |dz|/|z| on C \ {0}.
5. Prove there does not exist a semimetric on C \ {0} with curvature at most

−1.
6. Prove the following extension of Liouville’s Theorem: If f is an entire

function and f(C) ⊆ Ω, where Ω is a simply connected proper subregion
of C, then f is constant.
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10. The hyperbolic metric on a hyperbolic region

In order to transfer the hyperbolic metric from the unit disk to nonsimply
connected regions, a substitute for the Riemann Mapping Theorem is needed. For
this reason we must understand holomorphic coverings. For the general theory
of topological covering spaces the reader should consult [22]. A holomorphic
function f : ∆ → Ω is called a covering if each point b ∈ Ω has an open
neighborhood V such that f−1(V ) = ∪{Uα : α ∈ A} is a disjoint union of open
sets Uα such that f |Uα, the restriction of f to Uα, is a conformal map of Uα onto
V . Trivially, a conformal mapping f : ∆ → Ω is a holomorphic covering. If Ω is
simply connected, then the only holomorphic coverings f : ∆ → Ω are conformal
maps of a simply connected region ∆ onto Ω.

Example 10.1. The complex exponential function exp : C → C \ {0} is a
holomorphic covering. Consider any w ∈ C \ {0} and let θ = arg w be any
argument for w. Let V = C \ {−reiθ : r ≥ 0} be the complex plane slit from the
origin along the ray opposite from w. Then exp−1(V ) =

⋃{Sn : n ∈ Z}, where
Sn = {z : θ − nπ < Im z < θ + nπ}. Note that exp maps each horizontal strip
Sn of width 2π conformally onto V .

A region Ω is called hyperbolic provided C∞ \Ω contains at least three points.
The unit disk covers every hyperbolic plane region; that is, there is a holomorphic
covering h : D → Ω for any hyperbolic region Ω. As a consequence we demon-
strate that every hyperbolic region has a hyperbolic metric that is real-analytic
with constant curvature −1.

Theorem 10.2 (Planar Uniformization Theorem). Suppose Ω is a region in C.
There exists a holomorphic covering f : D → Ω if and only if Ω is a hyperbolic
region. Moreover, if a ∈ Ω, then there is a unique holomorphic universal covering
h : D → Ω with h(0) = a and h′(0) > 0.

For a proof of the Planar Uniformization see [14] or [34]. If Ω is a simply
connected hyperbolic region, then any holomorphic universal covering h : D →
Ω is a conformal mapping. Therefore, the Riemann Mapping Theorem is a
consequence of the Planar Uniformization Theorem. When Ω is a nonsimply
connected hyperbolic region, then a holomorphic covering h : D → Ω is never
injective. In fact, for each a ∈ Ω, h−1(a) is an infinite discrete subset of D. If
h : D → Ω is one holomorphic universal covering, then {h◦g : g ∈ A(D)} is the set
of all holomorphic universal coverings of D onto Ω. The Planar Uniformization
Theorem enables us to project the hyperbolic metric from the unit disk to any
hyperbolic region.

Theorem 10.3. Given a hyperbolic region Ω there is a unique metric λΩ(w)|dw|
on Ω such that h∗(λΩ(w)|dw|) = λD(z)|dz| for any holomorphic universal cover-
ing h : D → Ω. The metric λΩ(w)|dw| is real-analytic with curvature −1.

Proof. We construct a metric with curvature −1 on any hyperbolic region. First
we define the metric locally. For a hyperbolic region Ω, let h : D → Ω be
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a holomorphic covering. A metric is defined on Ω as follows. For any simply
connected subregion U of Ω let H = h−1 denote a branch of the inverse that
is holomorphic on U . Set λΩ(z) = λD(H(z))|H ′(z)|. This defines a metric with
curvature −1 on U . In fact, this defines a metric on Ω. Suppose U1 and U2 are
simply connected subregions of Ω and U1 ∩ U2 is nonempty. Let Hj be a single-
valued holomorphic branch of h−1 defined on Uj. Then there is a g ∈ A(D) such
that H2 = g ◦ H1 locally on U1 ∩ U2. Hence,

H∗
2 (λD(z)|dz|) = (g ◦ H1)

∗(λD(z)|dz|)
= H∗

1 (g∗(λD(z)|dz|))
= H∗

1 (λD(z)|dz|)
since each conformal automorphism of D is an isometry of the hyperbolic metric
λD(z)|dz|. Therefore, λΩ(z) is defined independently of the branch of h−1 that
is used and h∗(λΩ) = λD.

Moreover, this metric is independent of the covering. Suppose k : D → Ω is
another covering. Then k = h ◦ g for some g ∈ A(D), and so

k∗(λΩ) = (h ◦ g)∗(λΩ)

= g∗(h∗(λΩ))

= g∗(λD)

= λD.

That λΩ is real-analytic is clear from its construction. That the curvature is −1
follows from h∗(λΩ) = λD and Theorems 9.3 and 9.4.

The unique metric λΩ(w)|dw| on a hyperbolic region Ω given by Theorem 10.3
is called the hyperbolic metric on Ω. The hyperbolic distance on a hyperbolic
region is complete. The hyperbolic distance dΩ is defined by

dΩ(z, w) = inf ℓΩ(γ),

where the infimum is taken over all piecewise smooth paths γ in Ω that joining
z and w. Unlike the case of simply connected regions, a holomorphic covering
f : D → Ω onto a multiply connected hyperbolic region is not an isometry, but
only a local isometry. That is, each point a ∈ Ω has a neighborhood U such that
f |U is an isometry. In general, one can only assert that dΩ(f(z), f(w)) ≤ dD(z, w)
for z, w ∈ D. When Ω is multiply connected, then f is not injective, so there
exist distinct z, w ∈ D with f(z) = f(w). In this situation, dΩ(f(z), f(w)) = 0 <
dD(z, w).

In general, the hyperbolic metric is not just invariant under conformal map-
pings, but is invariant under holomorphic coverings.

Theorem 10.4 (Covering Invariance). If f : ∆ → Ω is a holomorphic covering
of hyperbolic regions, then f ∗(λΩ(w)|dw|) = λ∆(z)|dz|. In other words, every
holomorphic covering of hyperbolic regions is a local isometry.
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Proof. Let h : D → ∆ be a holomorphic covering. Then k = f ◦ h : D → Ω is
also a holomorphic covering, so

λD = k∗(λΩ)

= h∗(f ∗(λΩ)).

Thus, f ∗(λΩ) is a conformal metric on ∆ whose pull-back to the unit disk by a
covering projection is λD, so f ∗(λΩ) is the hyperbolic metric on ∆ by Theorem
10.3.

Theorem 10.4 implies that every h ∈ A(Ω) is an isometry of the hyperbolic
metric, and more generally, each holomorphic self-covering h of Ω is a local
isometry of the hyperbolic metric. A hyperbolic region can have self-coverings
that are not conformal automorphisms, see Section 12.

The maximality property of the hyperbolic metric given in Theorem 9.5 re-
mains valid for hyperbolic regions. As noted after the proof of Theorem 9.5 this
means that a version of the Schwarz-Pick Lemma holds for holomorphic maps
between hyperbolic regions. In order to establish a sharp result, we provide an
independent proof.

Theorem 10.5 (Schwarz-Pick Lemma - general version). Suppose ∆ and Ω are
hyperbolic regions and f : ∆ → Ω is holomorphic. Then for all z ∈ ∆,

(10.1) λΩ(f(z))|f ′(z)| ≤ λ∆(z).

If f : ∆ → Ω is a covering projection, then λΩ(f(z))|f ′(z)| = λ∆(z) for all
z ∈ ∆. If there exists a point in ∆ such that equality holds in (10.1), then f is
a covering.

Proof. Let k : D → ∆ and h : D → Ω be holomorphic coverings. The function
f ◦ k : D → Ω lifts relative to h to a holomorphic function F : D → D. Then
f ◦ k = h ◦ F and the Schwarz-Pick Lemma for the unit disk give

k∗(f ∗(λΩ)) = (f ◦ k)∗(λΩ)

= (h ◦ F )(λΩ)

= F ∗(h∗(λΩ))

= F ∗(λD)

≤ λD

= k∗(λ∆).

Because k is a surjective local homeomorphism, the inequality k∗(f ∗(λΩ)) ≤
k∗(λ∆) gives the inequality (10.1). Because h and k are coverings, f is a covering
if and only if F is a covering. This observation establishes the sharpness.

We need to establish a result about holomorphic self-coverings of a hyperbolic
region that have a fixed point in order to obtain a good analog of Schwarz’s
Lemma for hyperbolic regions.
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Theorem 10.6. A self-covering of a hyperbolic region that fixes a point is a
conformal automorphism. In particular, if a hyperbolic region Ω is not simply
connected and a ∈ Ω, then A(Ω, a) is isomorphic to the group of nth roots of
unity for some positive integer n.

Proof. Suppose Ω is a hyperbolic region, a ∈ Ω and f is a self-covering of Ω
that fixes a. We prove f is a conformal automorphism. The result is trivial
if Ω is simply connected since every covering of a simply connected region is
a homeomorphism. Let h : D → Ω be a holomorphic universal covering with
h(0) = a and h′(0) > 0. Because a covering is surjective, it suffices to prove

f is injective. Let f̃ be the lift of f ◦ h relative to h that satisfies f̃(0) = 0.

Since h and f ◦ h are coverings, so is f̃ . Because D is simply connected, f̃ is a
conformal automorphism of D. Then f̃(z) = eiθz for some θ ∈ R. Because Ω
is not simply connected, the fiber h−1(a) contains infinitely many points besides
0. As this fiber is a discrete subset of D, the nonzero elements of h−1(a) have a
minimum positive modulus r; say h−1(a) ∩ {z : |z| = r} = {aj : j = 1, . . . ,m}.
From f̃(h−1(a)) = h−1(a), we conclude that f̃ induces a permutation of the set

{aj : j = 1, . . . ,m}. Therefore, there exists n ≤ m! such that f̃n is the identity.

Then fn◦h = h◦ f̃n = h and so fn is the identity. If n = 1, then f is the identity.
If n ≥ 2, then fn = I, the identity, implies f is a conformal automorphism of Ω
with inverse fn−1.

This argument shows that if Ω is not simply connected, then there is a non-
negative integer m such that for all f ∈ A(Ω, a), fm is the identity. Therefore,
f ′(a)m = 1, or f ′(a) is an mth root of unity. Thus, f 7→ f ′(a) defines a homo-
morphism of A(Ω, a) into the unit circle T and the image is a subgroup of the
mth roots of unity. Hence, A(Ω, a) is a finite group isomorphic to the group of
nth roots of unity for some positive integer n.

Example 10.7. Let AR = {z : 1/R < |z| < R}, where R > 1. The group
A(AR, 1) has order two; the only conformal automorphisms of AR that fix 1 are
the identity map and f(z) = 1/z.

Corollary 10.8 (Schwarz’s Lemma - General Version). Suppose Ω is a hyper-
bolic region, a ∈ Ω and f is a holomorphic self-map of Ω that fixes a. Then
|f ′(a)| ≤ 1 and equality holds if and only if f ∈ A(Ω, a), the group of confor-
mal automorphisms of Ω that fix a. Moreover, f ′(a) = 1 if and only if f is the
identity.

Proof. The Schwarz-Pick Lemma implies |f ′(a)| ≤ 1 with equality if and only if
f is a self-covering of Ω that fixes a. Each f ∈ A(Ω, a) is a covering, so |f ′(a)| = 1.
If f is a self-covering of Ω that fixes a, then f ∈ A(Ω, a) by Theorem 10.6. We
use the proof of Theorem 10.6 to verify that f ′(a) = 1 implies f is the identity.

Let f̃ be the lift of f ◦ h as in the proof of Theorem 10.6. Then h ◦ f = f ◦ h
gives 1 = f ′(a) = f̃ ′(0), so f̃ is the identity. This implies f is the identity.

Picard established a vast generalization of Liouville’s Theorem.
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Theorem 10.9 (Picard’s Small Theorem). If an entire function omits two finite
complex values, then f is constant.

Proof. Suppose f is an entire function and f(C) ⊆ C\{a, b} := Ca,b, where a and
b are distinct complex numbers. We derive a contradiction if f were nonconstant.
The region Ca,b is hyperbolic; let λa,b(z)|dz| denote the hyperbolic metric on Ca,b.
If f were nonconstant, then f ∗(λa,b(z)|dz|) would be a semi-metric on C with
curvature at most −1; this contradicts Theorem 9.6.

Exercises.

1. Verify that f(z) = exp(iz) is a covering of the upper half-plane H onto the
punctured disk D \ {0}.

2. Verify that for each nonzero integer n the function pn(z) = zn defines a
holomorphic covering of the punctured plane C \ {0} onto itself.

3. Verify that for each positive integer n the function pn(z) = zn defines a
holomorphic covering of the punctured disk D \ {0} onto itself.

4. Suppose Ω is a hyperbolic region and a ∈ Ω. Let F denote the family of
all holomorphic functions f : D → Ω such that f(0) = a and set M =
sup{|f ′(0)| : f ∈ F}. Prove M is finite and for f ∈ F , |f ′(0)| = M
if and only if f is a holomorphic covering of D onto Ω. Conclude that
M = 2/λΩ(a).

5. Suppose Ω is a hyperbolic region in C and a, b ∈ Ω are distinct points. If
f is a holomorphic self-map of Ω that fixes a and b, prove f is a conformal
automorphism of Ω with finite order. Give an example to show that f need
not be the identity when Ω is not simply connected.

11. Hyperbolic distortion

In Section 5 the hyperbolic distortion of a holomorphic self-map of the unit
disk was introduced. We now define an analogous concept for holomorphic maps
of hyperbolic regions.

Definition 11.1. Suppose Ω and ∆ are hyperbolic regions and f : ∆ → Ω is
holomorphic. The (local) hyperbolic distortion factor for f at z is

f∆,Ω(z) :=
λΩ(f(z))|f ′(z)|

λ∆(z)
= lim

w→z

dΩ(f(z), f(w))

d∆(z, w)
.

If Ω = ∆, write f∆ in place of f∆,Ω.

The hyperbolic distortion factor defines a mapping of ∆ into the closed unit
disk by the Schwarz-Pick Lemma. If f is not a covering, then the hyperbolic
distortion factor gives a map of ∆ into the unit disk. There is a Schwarz-Pick
type of result for the hyperbolic distortion factor which extends Corollary 5.7 to
holomorphic maps between hyperbolic regions.
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Theorem 11.2 (Schwarz-Pick Lemma for Hyperbolic Distortion). Suppose ∆
and Ω are hyperbolic regions and f : ∆ → Ω is holomorphic. If f is not a
covering, then

(11.1) dD(f∆,Ω(z), f∆,Ω(w)) ≤ 2d∆(z, w)

for all z, w ∈ ∆.

Proof. Fix w ∈ Ω. Let h : D → ∆ and k : D → Ω be holomorphic coverings
with h(0) = w and k(0) = f(w). Then there is a lift of f to a self-map f̃ of D

such that k ◦ f̃ = f ◦ h. f̃ is not a conformal automorphism of D because f is
not a covering of ∆ onto Ω. We begin by showing that f̃D(z̃) = f∆,Ω(h(z̃)) for

all z̃ in D. From k ◦ f̃ = f ◦ h and λD(z̃) = λ∆(h(z̃))|h′(z̃)| we obtain

f∆,Ω(h(z̃)) =
λΩ(f(h(z̃)))|f ′(h(z̃))|

λ∆(h(z̃))

=
λΩ(k(f̃(z̃)))|k′(f̃(z̃))||f̃ ′(z̃)|

λ∆(h(z̃))|h′(z̃)|

=
λD(f̃(z̃))|f̃ ′(z̃)|

λD(z)

= f̃D(z̃).

Now we establish (11.1). For z ∈ Ω there exists z̃ ∈ h−1(z) with dD(0, z̃) =
dΩ(w, z). Then

dD(f∆,Ω(z), f∆,Ω(w)) = dD(f∆,Ω(h(z̃)), f∆,Ω(h(0)))

= dD(f̃D(z̃), f̃D(0))

≤ 2dD(z̃, 0)

= 2d∆(z, w).

Corollary 11.3. Suppose ∆ and Ω are hyperbolic regions. Then for any holo-
morphic function f : ∆ → Ω,

(11.2) f∆,Ω(z) ≤ f∆,Ω(w) + tanh d∆(z, w)

1 + f∆,Ω(w) tanh d∆(z, w)
.

for all z, w ∈ ∆.

Proof. Inequality (11.2) is trivial when f is a covering since both sides are
identically one, Thus, it suffices to establish the inequality when f is not a
covering of ∆ onto Ω. Then

dD(0, f∆,Ω(z)) ≤ dD(0, f∆,Ω(w)) + dD(f∆,Ω(z), f∆,Ω(w))

≤ dD(0, f∆,Ω(w)) + 2d∆(z, w)
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gives

f∆,Ω(z) = tanh

(

1

2
dD(0, f∆,Ω(z))

)

≤ tanh

(

1

2
dD(0, f∆,Ω(w)) + d∆(z, w)

)

=
f∆,Ω(w) + tanh d∆(z, w)

1 + f∆,Ω(w) tanh d∆(z, w)
.

Exercises.

1. For a holomorphic function f : D → K, explicitly calculate fD,K(z).
2. Suppose Ω is a simply connected proper subregion of C and a ∈ Ω. Let

H(Ω, a) denote the set of holomorphic self-maps of Ω that fix a. Prove that
{fΩ(a) : f ∈ H(Ω, a)} is the closed unit interval [0, 1].

12. The hyperbolic metric on a doubly connected region

There is a simple conformal classification of doubly connected regions in C∞.
If Ω is a doubly connected region in C∞, then Ω is conformally equivalent to
exactly one of:

(a) C
∗ = C \ {0},

(b) D
∗ = D \ {0}, or

(c) an annulus A(r, R) = {z : r < |z| < R}, where 0 < r < R.

In the first case Ω itself is the extended plane C∞ punctured at two points and
so is not hyperbolic. In this section we calculate the hyperbolic metric for the
punctured unit disk D

∗ and for the annulus AR = {z : 1/R < |z| < R}, where
R > 1.

12.1. Hyperbolic metric on the punctured unit disk. To determine the
hyperbolic metric on D

∗ we make use of a holomorphic covering from H onto D
∗

and Theorem 10.4. The function h(z) = exp(iz) is a holomorphic covering from
H onto D

∗. Therefore, the density of the hyperbolic metric on D
∗ is

λD∗(z) =
1

|z| log(1/|z|) .

For simply connected hyperbolic regions the only hyperbolic isometries of the
hyperbolic metric are conformal automorphisms. For multiply connected re-
gions there can be self-coverings that leave the hyperbolic metric invariant. For
instance, the maps z 7→ zn, n = 2, 3, . . ., are self-coverings of D

∗ that leave
λD∗(z)|dz| invariant. Up to composition with a rotation about the origin these
are the only self-coverings of D

∗ that are not automorphisms.

Because each hyperbolic geodesic in D
∗ is the image of a hyperbolic geodesic

in H under h, every radial segment [reiθ, Reiθ], where 0 < r < R < 1, is part of
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a hyperbolic geodesic. Since the density λD∗ is independent of θ, the hyperbolic
length of a geodesic segment σr,R = [reiθ, Reiθ] is independent of θ. Direct
calculation gives

ℓD∗(σr,R) =

∫

[r,R]

λD∗(z)|dz| =

∫ R

r

dt

t log t
= log

∣

∣

∣

∣

log R

log r

∣

∣

∣

∣

.

As the formula shows, this length tends to infinity if either r → 0 or R → 1
which also follows from the completeness of the hyperbolic metric. The Euclidean
circle Cr = {z : |z| = r}, where 0 < r < 1, is not a hyperbolic geodesic; it has
hyperbolic length

ℓD∗(Cr) =

∫

|z|=r

|dz|
|z| log(1/|z|) =

2π

log(1/r)
.

The hyperbolic length of Cr approaches 0 when r → 0 and ∞ when r → 1. The
hyperbolic area of the annulus A(r, R) = {z : r < |z| < R} ⊂ D

∗ is

aD∗(A(r, R)) =

∫ ∫

A(r,R)

1

|z|2 log2 |z|
dx dy

= 2π

∫ R

r

dt

t log2 t

= 2π

(

1

log(1/R)
− 1

log(1/r)

)

.

The hyperbolic area of A(r, R) tends to infinity when R → 1 and has the finite
limit 2π/ log(1/R) when r → 0.

There is a Euclidean surface in R
3 that is isometric to {z : 0 < |z| < 1/e}

with the restriction of the hyperbolic metric on D
∗ and makes it easy to see

these curious results about length and area in a neighborhood of the puncture.
If a tractrix is rotated about the y-axis and the resulting surface is given the
geometry induced from the Euclidean metric on R

3, then this surface has constant
curvature −1 and is isometric to {z : 0 < |z| < 1/e} with the restriction of the
hyperbolic metric on D

∗. This picture provides a simple isometric embedding of
a portion of D

∗ into R
3. Radial segments correspond to rotated copies of the

tractrix and these have infinite Euclidean length. At the same time the surface
has finite Euclidean area.

Recall that for a simply connected region Ω, the hyperbolic density λΩ and
the quasihyperbolic density 1/δΩ are bi-Lipschitz equivalent; see (8.4). These
two metrics are not bi-Lipschitz equivalent on D

∗ because the behavior of λD∗

near the unit circle differs from its behavior near the origin. For 1/2 < |z| < 1,
δD∗(z) = 1 − |z| and so

lim
|z|→1

δD∗(z)λD∗(z) = 1.

For 0 < |z| < 1/2, δ(z) = |z| and so

lim
|z|→1

δD∗(z)λD∗(z) = 0.
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12.2. Hyperbolic metric on an annulus. Now we determine the hyperbolic
metric on an annulus by using a holomorphic covering from a strip onto an
annulus. In each conformal equivalence class of annuli we choose the unique
representative that is symmetric about the unit circle.

For 0 < r < R let A(r, R) = {z : r < |z| < R}. The number mod(A(r, R)) =
log(R/r) is called the modulus of A(r, R). Two annuli A(rj, Rj), j = 1, 2, are
conformally (actually Möbius) equivalent if and only if R1/r1 = R2/r2; that is, if

and only if they have equal moduli. If S =
√

(R/r), then AS = {z : 1/S < |z| <
S} is the unique annulus conformally equivalent to A(r, R) that is symmetric
about the unit circle. Here symmetry means AS is invariant under z 7→ 1/z̄,
reflection about the unit circle. Note that mod(AS) = 2 log S.

The function k(z) = exp(z) is a holomorphic universal covering from the
vertical strip Sb = {z : |Im z| < b}, where b = log R, onto the annulus AR = {z :
1/R < |z| < R}. Therefore, the density of the hyperbolic metric of the annulus
AR is

λR(z) =
π

2 log R

1

|z| cos
(

π log |z|
2 log R

) .

Example 12.1. We investigate the hyperbolic lengths of the Euclidean circles
Cr = {z : |z| = r} in AR. The hyperbolic length of Cr is

ℓR(Cr) =

∫

|z|=r

π

2 log R

|dz|
|z| cos

(

π log |z|
2 log R

) =
π2

(log R) cos
(

π log r
2 log R

) .

The symmetry of AR about the unit circle is reflected by the fact that two
circles symmetric about the unit circle have the same hyperbolic length. Also,
the hyperbolic length of Cr increases from π2/ log R = 2π2/mod AR to ∞ as r
increases from 1 to R. Hence, the hyperbolic lengths of the Euclidean circles Cr

in AR have a positive minimum hyperbolic length. The Euclidean circle C1 is a
hyperbolic geodesic; Cr is not a hyperbolic geodesic when r 6= 1.

If γn(t) = exp(2πint), then I(γn, 0) = n, where I(δ, 0) denotes the index or
winding number of a closed path δ about the origin, and

ℓR(γn) =
2π2|n|

mod A(R)
.

We now show that γn has minimal hyperbolic length among all closed paths in
AR that wind n times about the origin.

Theorem 12.2. Suppose γ is a piecewise smooth closed path in AR and I(γ, 0) =
n 6= 0. Then

(12.1)
2π2|n|

mod A(R)
≤ ℓR(γ),

where ℓR(γ) denotes the hyperbolic length of γ. Equality holds in (12.1) if and
only if γ is a monotonic parametrization of the unit circle traversed n times.
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Proof. Suppose γ : [0, 1] → AR is a closed path with I(γ, 0) = n 6= 0. Then

ℓR(γ) =

∫

γ

λR(z) |dz|

=
π

2 log R

∫ 1

0

|γ′(t)| dt

|γ(t)| cos
(

π log |γ(t)|
2 log R

)

≥ π

2 log R

∫ 1

0

|γ′(t)|
|γ(t)|

since

(12.2) 0 < cos

(

π log |γ(t)|
2 log R

)

≤ 1

and equality holds if and only if |γ(t)| = 1 for t ∈ [0, 1]. Next,
∫ 1

0

|γ′(t)|
|γ(t)| ≥

∣

∣

∣

∣

∫ 1

0

γ′(t)

γ(t)
dt

∣

∣

∣

∣

(12.3)

=

∣

∣

∣

∣

∫

γ

dz

z

∣

∣

∣

∣

= |2πiI(γ, 0)|
= 2π|n|.

Hence,

ℓR(γ) ≥ π2|n|
log R

=
2π2|n|

mod AR

.

It is straightforward to verify that if γn(t) = exp(2πint), t ∈ [0, 1], then equality
holds in (12.1). Conversely, suppose γ is a path for which equality holds. Then
equality holds in (12.2), so |γ(t)| = 1 for t ∈ [0, 1]. Let δ : [0, 1] → C be a
lift of γ relative to the covering exp : C → C

∗. From I(γ, 0) = n, we obtain
δ(1) − δ(0) = 2πni. The condition |γ(t)| = 1 implies δ(t) ∈ iR for t ∈ [0, 1].
The function h(t) = (δ(t) − δ(0))/2πi is real-valued, h(0) = 0 and h(1) = n.
Also, γ(t) = exp(2πih(t) + δ(0)). Equality must hold in (12.3) and this means
γ′(t)/γ(t) = 2πih′(t) has constant argument. Hence, h′(t) is either positive
or negative, so t 7→ exp(2πih(t) + δ(0) is a parametrization of the unit circle
starting at γ(0) = exp δ(0) and the unit circle is traversed either clockwise or
counterclockwise.

Exercises.

1. Consider the metric |dz|/|z| on C \ {0} := C
∗ and let ℓC∗(γ) denote the

length of a path γ in C
∗ relative to this metric. If γ is a closed path in C

∗,
prove

ℓC∗(γ) ≥ 2π|I(γ, 0)|.
When does equality hold?

2. Suppose f is holomorphic on D and f(D) ⊆ D \ {0}. Prove that |f ′(0)| ≤
2/e. Determine when equality holds.
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13. Rigidity theorems

If a holomorphic mapping of hyperbolic regions is not a covering, then strict
inequality holds in the general version of the Schwarz-Pick Lemma. It is often
possible to provide a quantitative version of this strict inequality that is inde-
pendent of the holomorphic mapping for multiply connected regions. We begin
by establishing a refinement of Schwarz’s Lemma.

Lemma 13.1. Suppose 0 6= a ∈ D and 0 < t < 1. If f is a holomorphic self-map
of D, f(0) = 0 and |f(a)| ≤ t|a|, then

(13.1) |f ′(0)| ≤ t + |a|
1 + t|a| < 1.

Proof. The Three-point Schwarz-Pick Lemma (Theorem 4.4) with z = 0 = v
and w = a gives

dD(f ′(0), f(a)/a) = dD(f ∗(0, 0), f ∗(a, 0))

≤ dD(0, a).

Hence,

dD(0, |f ′(0)|) = dD(0, f ′(0))

≤ dD(0.f(a)/a) + dD(0, a)

≤ dD(0, t) + dD(0,−|a|)
= d(−|a|, t),

which is equivalent to (13.1).

Theorem 13.2. Suppose ∆ and Ω are hyperbolic regions with a ∈ ∆, b ∈ Ω
and ∆ is not simply connected. There is a constant α = α(a, ∆; b, Ω) ∈ [0, 1)
such that if f : ∆ → Ω is any holomorphic mapping with f(a) = b that is not a
covering, then

(13.2) λΩ(f(a))|f ′(a)| ≤ αλ∆(a);

or equivalently, f∆,Ω(a) ≤ α. Moreover, for all z ∈ ∆

(13.3) f∆,Ω(z) ≤ α + tanh d∆(a, z)

1 + α tanh d∆(a, z)
< 1.

Proof. Let h : D → ∆ and k : D → Ω be holomorphic coverings with h(0) = a
and k(0) = b. Because ∆ is not simply connected, the fiber h−1(a) is a discrete
subset of D and contains infinitely many points in addition to 0. Let 0 < r =
min{|z| : z ∈ h−1(a), z 6= 0} < 1. The set h−1(a) ∩ {z : |z| = r} is finite, say
ãj, 1 ≤ j ≤ m. Next, {|z| : z ∈ k−1(b)} is a discrete subset of [0, 1), so this set
contains finitely many values in the interval [0, r). Let s be the maximum value
of the finite set {|z| : z ∈ k−1(b)}∩ [0, r). Suppose f : ∆ → Ω is any holomorphic

mapping with f(a) = b and f is not a covering. Let f̃ be the unique lift of f ◦ h

relative to k that satisfies f̃(0) = 0. Then |f̃ ′(0)| = f∆,Ω(a). Because f is not

a covering, f̃ is not a rotation about the origin. From f ◦ h = k ◦ f̃ we deduce
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that f̃ maps h−1(a) into k−1(b). In particular, |f̃(ã)| ≤ s = t|ã|, where ã = ã1

and t = s/r < 1. Lemma 13.1 gives

|f̃ ′(0)| ≤ (s/r) + |ã|
1 + (s/r)|ã| =

(s/r) + r

1 + s
= α < 1.

Since |f̃ ′(0)| = f∆,Ω(a), this establishes (13.2). Inequality (13.3) follows imme-
diately from Corollary 11.3.

The pointwise result (13.2) is due to Minda [24] and was motivated by the
Aumann-Carathéodory Rigidity Theorem [4] which is the special case when
Ω = ∆ and a = b. The global result (13.3) is due to the authors [9]. The Aumann-
Carathéodory Rigidity Theorem asserts there is a constant α = α(a, Ω) ∈ [0, 1)
such that |f ′(a)| ≤ α for all holomorphic self-maps of Ω that fix a and are not
conformal automorphisms. The exact value of the Aumann-Carathéodory rigid-
ity constant for an annulus was determined in [23]. The following extension of
the Aumann-Carathéodory Rigidity Theorem to a local result is due to the au-
thors [9]. The corollary is given in Euclidean terms and asserts that holomorphic
self-maps with a fixed point are locally strict Euclidean contractions if they are
not conformal automorphisms.

Corollary 13.3 (Aumann-Carathéodory Rigidity Theorem - Local Version).
Suppose Ω is a hyperbolic region, a ∈ Ω and Ω is not simply connected. There
is a constant β = β(a, Ω) ∈ [0, 1) and a neighborhood N of a such that if f is a
holomorphic self-map of Ω that fixes a and is not a conformal automorphism of
Ω, then |f ′(z)| ≤ β for all z ∈ N .

Proof. From the theorem

|f ′(z)| ≤ λΩ(z)

λΩ(f(z))

α + tanh dΩ(a, z)

1 + α tanh dΩ(a, z)
.

Set M(r) = max{λΩ(z) : dΩ(a, z) ≤ r} and m(r) = min{λΩ(z) : dΩ(a, z) ≤ r}.
Since f(DΩ(a, r)) ⊆ DΩ(a, r), we have

|f ′(z)| ≤ M(r)

m(r)

α + tanh dΩ(a, z)

1 + α tanh dΩ(a, z)
.

The right-hand side of the preceding equality is independent of f and tends to
α as r → 1. Therefore, for α < β < 1 there exists r > 0 such that

M(r)

m(r)

α + tanh dΩ(a, z)

1 + α tanh dΩ(a, z)
≤ β

for dΩ(a, z) ≤ r. Then |f ′(a)| ≤ β holds in DΩ(a, r).

Our final topic is a rigidity theorem for holomorphic maps between annuli.
The original results of this type are due to Huber [17]. Marden, Richards and
Rodin [21] presented an extensive generalization of Huber’s work to holomorphic
self-maps of hyperbolic Riemann surfaces.
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Definition 13.4. Suppose 1 < R,S ≤ +∞ and f : AR → AS is a continuous
function. The degree of f is the integer deg f := I(f ◦ γ, 0), where γ(t) =
exp(2πit).

The positively oriented unit circle γ generates the fundamental group of both
AR and AS. Therefore, for any continuous map f : AR → AS, f ◦ γ ≈ γn for
the unique integer n = deg f , where ≈ denotes free homotopy. Algebraically,
f induces a homomorphism f∗ from π(AR, a) ∼= Z to π(AS, f(a)) ∼= Z and the
image of 1 is an integer n; here π(AR, a) denotes the fundamental group of AR

with base point a. The reader should verify that

deg(f ◦ g) = (deg f) (deg g).

Since the degree of the identity map is one, this implies that deg f = ±1 for any
homeomorphism f . If f is holomorphic, then

deg f =
1

2πi

∫

γ

f ′(z)

f(z)
dz.

Suppose f, g : AR → AS are continuous functions. Then deg f = deg g if and
only if f and g are homotopic maps of AR into AS.

Example 13.5. For any integer n the holomorphic self-map pn(z) = zn of C
∗

has degree n. Given annuli AR and AS with 1 < R,S < +∞, it is easy to
construct a continuous map of AR into AS with degree n; for example, the
function z 7→ (z/|z|)n has degree n. For R = S each conformal automorphism
has degree ±1. In fact, the rotations z 7→ eiθz have degree 1 and the maps
z 7→ eiθ/z have degree −1. Constant self-maps of AR have degree 0. Can you find
a holomorphic self-map of AR with degree n 6= 0,±1? Surprisingly, the answer
is negative! Holomorphic mappings of proper annuli are very rigid. The moduli
of the annuli provide sharp bounds for the possible degrees of a holomorphic
mapping of one annulus into another.

Theorem 13.6. If f : AR → AS is a holomorphic mapping, then

(13.4) | deg f | ≤ mod AS

mod AR

.

For n = deg f 6= 0 equality holds if and only if S = R|n| and f(z) = eiθzn for
some θ ∈ R.

Proof. Let γ(t) = exp(2πit) for t ∈ [0, 1]. If n = deg f , then I(f ◦ γ, 0) = n, so
Theorem 12.2 gives

2π2|n|
mod AS

≤ ℓS(f ◦ γ).

Since holomorphic functions are distance decreasing relative to the hyperbolic
metric,

ℓS(f ◦ γ) ≤ ℓR(γ) =
2π2

mod AR

.

The preceding two inequalities imply (13.4). Suppose equality holds. Then f is a
covering of AR onto AS that maps the unit circle onto itself. By post-composing
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f with a rotation about the origin, we may assume that f fixes 1. Equality
in (13.4) implies S = R|n|, where n = deg f . The covering f lifts relative to

pn(z) = zn to a holomorphic self-covering f̃ of AR that fixes 1. Theorem 10.6

implies that f̃ is the identity and so f(z) = zn.

Corollary 13.7 (Annulus Theorem). Suppose f is a holomorphic self-map of
AR. Then | deg f | ≤ 1 and equality holds if and only if f ∈ A(AR).

Proof. The inequality follows immediately from Theorem 13.6. If f ∈ A(AR),
then | deg f | = 1 since this holds for any homeomorphism. It remains to show
that if | deg f | = 1, then f ∈ A(AR). Equality implies f maps the unit circle into
itself. By post-composing f with a rotation about the origin, we may assume
f fixes 1. By Theorem 10.6 if a self-covering of a hyperbolic region has a fixed
point, it is a conformal automorphism.

Note that if f is any holomorphic self-map of AR that is not a conformal
automorphism, then deg f = 0. A result analogous to Corollary 13.7 is not
valid for a punctured disk. For each integer n ≥ 0 the function z 7→ zn is a
holomoprhic self-map of D

∗ with degree n.

Exercises.

1. Show that Theorem 13.2 is false when ∆ is simply connected. Hint : Sup-
pose ∆ = D and a = 0. For any number r ∈ [0, 1) show there exists a
holomorphic function f : D → Ω that is not a covering and fD,Ω(0) = r.

2. Suppose f is a holomorphic self-map of C \ {0}. Prove that deg f = 0 if
and only if f = exp ◦g for some holomorphic function g defined on C \ {0}.

14. Further reading

There are numerous topics involving the hyperbolic metric and geometric func-
tion theory that are not discussed in these notes. The subject is too extensive to
include even a reasonably complete bibliography. We mention selected books and
papers that the reader might find interesting. Anderson [3] gives an elementary
introduction to hyperbolic geometry in two dimensions. Krantz [18] provides an
elementary introduction to certain aspects of the hyperbolic metric in complex
analysis.

Ahlfors introduced the powerful method of ultrahyperbolic metrics [1]. A
discussion of this method and several applications to geometric function theory,
including a lower bound for the Bloch constant, can be found in [2]. Ahlfors’
method can be used to estimate various types of Bloch constants, see [25], [26],
[27]. In a long paper Heins [15] treates the general topic of conformal metrics on
Riemann surfaces. He gives a detailed treatment of SK-metrics, a generalization
of ultrahyperbolic metrics. Roughly speaking, SK-metrics are to metrics with
curvature −1 as subharmonic functions are to harmonic functions.

The circle of ideas surrounding the theorems of Picard, Landau and Schottky
and Montel’s normality criterion all involve three omitted values. Theorems of
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this type follow immediately from the existence of the hyperbolic metric on C∞

punctured at three points. Interestingly, only a metric with curvature at most −1
on a thrice punctured sphere is needed to establish these results. An elementary
construction of such a metric, based on earlier work of R. M. Robinson [31], is
given in [30].

Hejhal [16] obtained a Carathéodory kernel-type of theorem for coverings of
the unit disk onto hyperbolic regions. This result implies that the hyperbolic
metric depends continuously on the region.

The method of polarization was extended by Solynin to apply to the hyperbolic
metric, see [10]. It include earlier work of Weitsman [35] on symmetrization and
Minda [29] on a reflection principle for the hyperbolic metric.

For the role of hyperbolic geometry in the study of discrete groups of Möbius
transformations, see [5]. This reference includes a brief treatment of hyperbolic
trigonometry.
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