2. The Riemann Sphere and Linear-Fractional Transformations

Math 5283, Spring 2021 Oklahoma State University

Roadmap

1 The Complex Plane

2 The Riemann Sphere & LFTs

- 3 Complex Differentiation
- 4 Conformal Mapping
- 5 Power Series
- 6 Analytic Functions
- 7 Contour Integrals

The Riemann Sphere

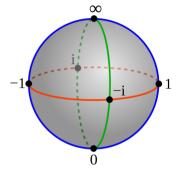
As a set the *Riemann sphere* is

 $\mathbb{C}_{\infty} = \mathbb{C} \cup \{\infty\},\$

but we want to think of $\{\infty\}$ as being on the same footing as the other points.

Define $g:\mathbb{C}_\infty o\mathbb{C}_\infty$ by

$$g(z) = \left\{ egin{array}{ll} rac{1}{z} & ext{if } z
eq 0 ext{ and } z
eq \infty
ight. \ \infty & ext{if } z = 0, \ 0 & ext{if } z = \infty. \end{array}
ight.$$



wikipedia.org/wiki/Riemann_sphere

The Riemann Sphere (Topology)

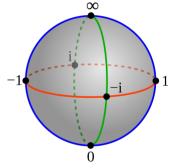
Using the bijetion

 $g: \mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$ we can define a *neighborhood* of ∞ to be the image of a neighborhood of 0.

But we really want to think of the Riemann sphere has having local complex coordinates:

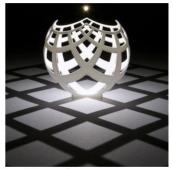
z works away from ∞ ;

w = g(z) works away from 0.



wikipedia.org/wiki/Riemann_sphere

Sterographic Projection



https://twitter.com/henryseg

This gives \mathbb{C}_∞ a metric space structure.

Limits Involving ∞

Definition

If z_0 is a limit point of $U \subseteq \mathbb{C}_{\infty}$ and $f : U \to \mathbb{C}_{\infty}$, then we define

 $\lim_{z\to z_0}f(z)$

using the topology/metric space structure of \mathbb{C}_{∞} .

In Practical Terms

$$\begin{split} \lim_{z \to z_0} f(z) &= \infty \quad \Leftrightarrow \quad \lim_{z \to z_0} \frac{1}{f(z)} = 0; \\ \lim_{z \to \infty} f(z) &= L \quad \Leftrightarrow \quad \lim_{z \to 0} f\left(\frac{1}{z}\right) = L; \\ \lim_{z \to \infty} f(z) &= \infty \quad \Leftrightarrow \quad \lim_{z \to 0} \frac{1}{f\left(\frac{1}{z}\right)} = 0. \end{split}$$

Limits Involving ∞ (Examples)

\mathbb{C}_∞ as a Riemann Surface

The Riemann Sphere as \mathbb{CP}^1

Linear-Fractional Transformations

Linear-Fractional Transformations Definition A Linear-Fractional Transformation is a map $f: \mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$ given by

$$f(z) = \frac{az+b}{cz+d}$$

when $z \in \mathbb{C}$, where $a, b, c, d \in \mathbb{C}$ are constants with $ad - bc \neq 0$.

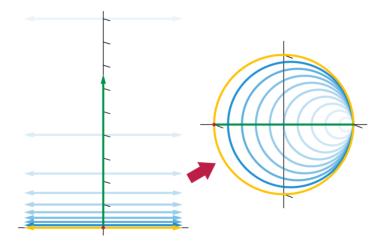
See Complex Variables Notes: 30 Linear Transformations and Inversions (Link) 31 Linear-Fractional Transformations (Link)

The Cayley Map

The LFT $f(z) = \frac{z-i}{z+i}$ maps the upper half plane \mathbb{H} to the unit disc \mathbb{D} and is known as the *Cayley map*.

Why?

```
The Cayley Map...
```



wikipedia.org/wiki/Cayley_transform