
Visual Exploration of Complex Functions
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Abstract The technique of domain coloring allows one to represent complex
functions as images on their domain. It endows functions with an individual face
and may serve as simple and efficient tool for their visual exploration. The empha-
sis of this paper is on phase plots, a special variant of domain coloring. Though
these images utilize only the argument (phase) of a function and neglect its modulus,
analytic (and meromorphic) functions are uniquely determined by their phase plot
up to a positive constant factor. Following (Wegert in Not AMS 58:78–780, 2011
[49], Wegert in Visual Complex Functions. An Introduction with Phase Portraits,
Springer Basel, 2012 [53]), we introduce phase plots and several of their modifi-
cations and explain how properties of functions can be reconstructed from these
images. After a survey of related results, the main part is devoted to a number of
applications which illustrate the usefulness of phase plots in teaching and research.
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1 Introduction

Graphical representations of functions belong to themost useful tools inmathematics
and its applications. While graphs of (scalar) real-valued functions can be depicted
easily, the situation is quite different for complex functions. Even the graph of a
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Fig. 1 Analytic landscapes of the Gamma function

Fig. 2 Color circle, coded phase, and domain coloring of C

complex analytic function in one variable is a surface in four dimensional space, and
hence not so easily drawn.

The first pictorial representations of complex functions in history are analytic
landscapes, i.e., graphs of | f |; probably introduced by EdmondMaillet [31] in 1903.
The analytic landscape of Euler’sGamma function in the famous book [19] by Jahnke
and Emde achieved an almost iconic status (see Fig. 1, left). Impressive contempo-
rary pictures of analytic landscapes can be seen on “The Wolfram Special Function
Site” [55].

Analytic landscapes involve only the modulus | f | of the function f , its argu-
ment arg f is lost. In the era of black and white illustrations this shortcoming was
often compensated by complementing the analytic landscape with lines of constant
argument. Today we can do this much better using colors.

Since the ambiguous argument arg z of a complex number is only determined
up to an additive multiple of 2π, we prefer to work with the well-defined phase z/|z|
of z. Phase lives on the complex unit circle T and can easily be encoded by colors
using the standard hsv color wheel (Fig. 2, left). The colored analytic landscape is
the graph of | f |, colored according to the phase of f (Fig. 1, right).

2 Domain Coloring

In practice, it is often difficult to generate analytic landscapes which allow one to
read off properties of the function easily and precisely. An alternative approach is
not only simpler but even more general: Instead of drawing a graph, one can depict a
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function directly on its domain by color coding its values completely, as in the image
on the right-hand side of Fig. 2.

Such coloring techniques for complex-valued functions have been in use at least
since the 1980s (Larry Crone [9], see Hans Lundmark [26]), but they became popular
only with Frank Farris’ review [10] of Tristan Needham’s book “Visual Complex
Analysis” and its complement [11]. Farris also coined the name “domain coloring.”

2.1 Phase Plots and Their Modifications

In contrast to “standard” domain coloring, which color codes the complete values of
f by a two dimensional color scheme, phase plots display only the phase ψ( f ) :=
f/| f |, thus requiring just a one dimensional color space with a circular topology. To
also admit zeros and poles, we extend this definition by ψ(0) := 0 and ψ(∞) := ∞,
and associate black to 0 and white to ∞, respectively.

At the first glance it seems to be of no advantage to depict the phase of a function
instead of its modulus. But indeed there is some subtle asymmetry between these two
entities. In fact there are at least three reasons why phase plots outperform analytic
landscapes, as can be seen in Fig. 3. First, phase has a small range (the unit circle),
while the range of the modulus of an analytic function is usually quite large. As a
consequence, the visual resolution is much higher for the phase than for the absolute
value.

Second, reconstruction of (missing) information is simpler and more accurate for
phase plots, as will be shown in the following section. In particular zeros, poles, and
essential singularities can be clearly identified.

Last but not least, the analytic landscape is a three-dimensional object which usu-
ally must be projected for visualization, while the phase plot is a flat color image on
the domain of the function, which allows one to read off information more precisely.

Since phase occupies only one dimension of the color space (which is usually the
three-dimensional RGB space), additional information can be easily incorporated.
If, for example, the modulus of f is encoded by a gray scale, we get standard domain

Fig. 3 Analytic landscape versus phase plot of f (z) = e1/z
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Fig. 4 Color schemes and representations of f (z) = z − 1

z2 + z + 1

coloring. Figure4 illustrates four useful color schemes and the corresponding phase
plots of f (z) = (z − 1)/(z2 + z + 1) in the square |Re z| < 2, |Im z| < 2. The upper
row depicts the color scheme in the w-plane; pulling back the colors to the z-plane
via the mapping w = f (z) yields the images in the lower row.

The leftmost column corresponds to the pure (plain) phase plot, while the right-
most images show standard domain coloring, respectively. The second column
involves a gray component which is a sawtooth function of log | f |, like

g = �log | f |� − log | f |.

Here x �→ �x� is the ceiling function, which determines the smallest integer not
less than x . The jumps in the gray component generate contour lines of | f |, i.e., lines
of constant modulus. In between two such lines darker colors correspond to smaller
values of | f |. From one line to the next the modulus of f increases by a constant
factor, which allows one to determine the values much more accurately than from
standard domain coloring. Another advantage is that this coloring is insensitive to
the range of the function. A similar modification was used in the third column, but
here discontinuities of the shading enhance some isochromatic lines (sets of constant
phase). In the fourth column we have applied both shading schemes simultaneously,
which generates a (logarithmically scaled) polar tiling of the range plane. The fre-
quencies of the sawtooth functions encoding modulus and phase are chosen such that
the tiles are “almost square.” Due to the conformality of the mapping, this property
is preserved (for almost all tiles) under pull back. This color scheme resembles a grid
mapping, another common technique for visualizing complex functions. Compared
with the standardmethod of pushing forward amesh from the z-plane to thew-plane,
pulling back has the advantage that there are no problems with functions of valence
greater than one.
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It is worth noticing that the shading method works with almost no additional com-
putational costs, is absolutely stable, and does not require sophisticated numerical
algorithms for computing contour lines.

2.2 How to Read Phase Plots

Which properties of an analytic function are reflected in its phase plot and how can
we extract the information?

First of all it is important to note that meromorphic functions are almost uniquely
determined by their phase plot: if two such functions (in a connected domain D) have
the same phase plot (in an open subset of D), then one is a positive scalar multiple
of the other (see [53]).

2.2.1 Zeros, Poles, and Saddle Points

Many features of a complex function can be read off from the local structure of its
phase plot: not only zeros and poles of f , but also zeros of f ′ (saddle points). A simple
criterion can be derived from the local normal form f (z) = a + (z − z0)mg(z) with
g(z0) �= 0, a ∈ C and m ∈ Z. If z0 is a zero or a pole of f , we have a = 0 (with
m > 0 or m < 0, respectively), otherwise a �= 0 and m − 1 ≥ 0 is the order of the
zero of f ′. The following definition is needed in a more precise local classification
of phase plots given in [48].

Definition 2.1 A phase plot P := ψ ◦ f is said to be (locally) conformally equiva-
lent at a point z0 to the phase plot Q = ψ ◦ g at w0, if there exists a neighborhood
U of z0, a neighborhood V of w0, and a bijective conformal mapping ϕ of U onto
V such that Q

(
ϕ(z)

) = P(z) for all z ∈ U \ {z0}.
In this definition, we admit that P and Q are defined only in punctured neighbor-

hoods of z0 and w0, respectively.

Theorem 2.2 Let f : D → Ĉ be a meromorphic function. Then, for any z0 ∈ D,
the phase plot of f at z0 is conformally equivalent to the phase plot of the following
functions g at 0:

(i) If f (z0) ∈ C \ {0} and f ′(z0) �= 0, then g(z) = ψ( f (z0)) exp z.
(ii) If f (z0) ∈ C \ {0} and f ′ has a zero of order m ≥ 1 at z0, then

g(z) = ψ( f (z0)) exp(zm+1).
(iii) If f has a zero of order m ≥ 1 at z0, then g(z) = zm.
(iv) If f has a pole of order m ≥ 1 at z0, then g(z) = z−m.

It follows from (iii) and (iv) that not only the location z0 but also the multiplicity
m of zeros and poles can easily read off from the phase plot of f : in the vicinity of
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Fig. 5 Local normal forms of (enhanced) phase plots

z0 it looks like a rotated phase plot of zm or z−m , respectively. In particular, zeros
and poles can be distinguished by the different orientations of colors.

In the second case (ii), the point z0 is said to be a saddle of f of order m. A saddle
of order m is the common crossing point of m + 1 isochromatic lines. In the pure
phase plot saddles appear as diffuse spots and it needs some training to detect them.
Using a color scheme with enhanced isochromatic lines makes this much easier.

Figure5 shows the prototypes of (enhanced) phase plots in the four cases with
f (z0) = 1, a saddle of order 2 with f (z0) = 1, a zero of order 3, and a pole of order
2, respectively.

2.2.2 Isolated Singularities

It is clear that removable singularities cannot be seen in the phase plot of a function,
and we already know how poles look like. So what about essential singularities ? Do
they always manifest themselves as in Fig. 3? The answer is basically yes, but the
statement of a strict result needs some terminology.

Let f : D → Ĉ be a nonconstantmeromorphic function. For any (color) c ∈ T, let

S(c) := {z ∈ D : ψ( f (z)) = c}

be the subset of the domain D where the phase plot of f has color c. After removing
from S(c) all points z where f ′(z) = 0, the remaining set splits into a finite or
countable number of connected components. These are smooth curves which we call
isochromatic lines in the phase plot of f .

Theorem 2.3 An isolated singularity z0 of f is an essential singularity if and only if
for some (and then for any color) c ∈ T any neighborhood of z0 intersects infinitely
many isochromatic lines with color c.

The result follows from Picard’s Great Theorem (see [53]); an elementary proof,
based on the Casorati-Weierstrass Theorem, is in [49], Theorem 4.4.6.

We point out that a corresponding result for the lines of constant argument does
not hold, since the values of arg f (z) on isochromatic lines with the same color may
be different. For example, any continuous branch of arg exp(1/z) in C \ {0} attains
different values on distinct isochromatic lines.
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Fig. 6 Phase plots illustrating the growth of functions

2.2.3 Growth

The Cauchy–Riemann equations for (any continuous branch of) the logarithm
log f = ln | f | + i arg f imply that the isochromatic lines are orthogonal to the con-
tour lines | f | = const. Consequently, the isochromatic lines are the lines of steepest
ascent/descent of | f |. The direction in which | f | increases can easily be determined:
for example, when walking on a yellow line in ascending direction, we have red on
the right and green to the left.

To go a little beyond this qualitative result, let s denote the unit vector parallel
to the gradient of | f | and n := is. Using the Cauchy–Riemann equations for log f
we get

| f ′|/| f | = ∂s ln | f | = ∂n arg f.

The left-hand side is the modulus of the logarithmic derivative f ′/ f ; it measures
the growth of | f | (in the direction of its gradient) relative to the absolute value of f .
The right-hand side is the density of the isochromatic lines. So, at least in principle,
we can read the growth of a function from its (pure) phase plot. In practice it is more
convenient to use the enhanced variant with contour lines of | f |.

Note that (almost) parallel stripes (with constant density of isochromatic lines)
indicate exponential growth. The phase plots in Fig. 6 show an exponential function
(left), a function growing faster than exponentially from left to right (middle), and the
sum of three exponential functions eaz with different complex values of a. Knowing
the size of the depicted domain, an experienced observer can read off the three values
of a.

2.2.4 Periodic Functions

Clearly, the phase of a (doubly) periodic function is (doubly) periodic, but what about
the converse? If, for example, a phase plot is doubly periodic, can we then be sure
that it represents an elliptic function?
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Fig. 7 Three prototypes of periodic phase plots

Though there are only two classes (simply and doubly periodic) of nonconstant
periodic meromorphic functions on C, we can observe three different types of peri-
odic phase plots as shown in Fig. 7 (from left to right: an exponential function, the
cosine function and a Weierstrass ℘-function).

Motivated by these pictures we say that a (nonconstant) phase plot P is

(i) striped if there exists p0 �= 0 such that for all p = αp0 with α ∈ R

P(z + p) = P(z) for all z, (2.1)

(ii) simply periodic if there exists p0 �= 0 such that (2.1) holds if and only if p =
k p0 for all k ∈ Z,

(iii) doubly periodic if there exist p1, p2 �= 0 with p1/p2 /∈ R such that (2.1) holds
if and only if p = k1 p1 + k2 p2 for all k1, k2 ∈ Z.

While it is easy to characterize striped and simply periodic phase plots, the doubly
periodic case is more subtle. In the following theorem σ denotes the Weierstrass
Sigma function:

σ(z) := z
∏

λ∈�\{0}
exp

(
z

λ
+ z2

2λ2

)(
1 − z

λ

)
,

where� := p1Z + p2Z is the grid generated by the primitive periods p1 and p2. We
further define u1, u2 and q1, q2 by

u j :=
∑

λ∈�\{0,p j }

1

λ(λ − p j )2
, q j := p2

j u j − 3/p j . (2.2)

Theorem 2.4 The phase plot of a nonconstant meromorphic function f on C is

(i) striped if and only if there exist a, b ∈ C with a �= 0 such that

f (z) = eaz+b,
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Fig. 8 A Weierstrass Sigma function σ and σ(z)/σ(z − b)

(ii) simplyperiodicwith primitive period p if and only if there exist a simply periodic
function g : C → C with period p and a real number a such that

f (z) = eaz/p g(z),

(iii) doubly periodic with primitive periods p1 and p2 (p1/p2 /∈ R) if and only if f
can be represented as

f (z) = eaz g(z)
σ(z)

σ(z − b)
,

where g is elliptic with periods p1 and p2, and a, b ∈ C satisfy

Im (ap j ) ≡ Im (bq j ) (mod 2π), j = 1, 2,

with q j defined in (2.2).

For a proof of (i) and (ii) see [53], assertion (iii) is due to Marius Stefan [40].
Figure8 shows aWeierstrass Sigma function and a quotient σ(z)/σ(z − b)which

has a doubly periodic phase plot (middle), but is not an elliptic function (right).

3 Phase Diagrams

The phase plot of a function contains information which is nonlocal. As an example,
we consider the argument principle: Let f : D → Ĉ be meromorphic in the domain
D and assume that D contains the closure of the interior of a (positively oriented)
Jordan curve J . If f has neither zeros nor poles on J , then the winding number
windJ Pf (about the origin) of the phase Pf := ψ ◦ f along J is the difference of
the number n( f, J ) of zeros and the number p( f, J ) of poles of f inside J (counted
according to their multiplicity),

n( f, J ) − p( f, J ) = windJ Pf .
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This number can easily be read off from the phase plot of f , and we call it the
chromatic winding number of f along J . In the image on the left-hand side of Fig. 9
we have windJ Pf = 4. The phase plot in the middle reveals that the interior of J
indeed contains four zeros (one is double) and no poles of f .

But this is not yet the end of the story, one can discover even more. In the next
section we follow [48].

3.1 The Phase Flow

The isochromatic lines in the phase plot of f are the flow lines of the vector field

V f : D → C, z �→ − f (z) f ′(z)
| f (z)|2 + | f ′(z)|2

(see Fig. 9, middle and right). With an appropriate definition at zeros and poles of f
the vector field V f is smooth and vanishes exactly at the zeros and poles of f and
f ′, which we call singular points of V f .
The flow generated by the vector field V f is said to be the phase flow of f . Endow-

ing the phase plot with the orbits of this flow yields the phase diagram of f . Using
standard techniques from the theory of dynamical systems, one can characterize the
orbits of V f and describe the basins of attraction of zeros (for details see [48]).

3.2 The Extended Argument Principle

If J is a Jordan curve in D whichdoes not contain singular points ofV f , thedirectional
winding number windJ V f of f along J is the winding number (about the origin) of
V f along J . In the rightmost image of Fig. 9 we have

Fig. 9 Argument principle, phase flow and winding numbers
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windJ Pf = 1, windJ V f = 2.

Analyzing the phase diagram using index theory reveals a relation between the two
winding numbers of f along J and the numbers n( f ′, J ) and p( f ′, J ) of zeros and
poles of f ′ inside J , respectively.

Theorem 3.1 ([48]) Let f be meromorphic in D and assume that the positively
oriented Jordan curve J and its interior are contained in D. If neither f nor f ′ have
zeros or poles on J , then

n( f ′, J ) − p( f ′, J ) = windJ Pf − windJ V f

Note that (at least in principle, but not always in practice) both winding numbers
can be read off from the phase plot of f in an arbitrarily small neighborhood of J .

If f is holomorphic, the argument principle and Theorem 3.1 allow one to deter-
mine the number of zeros of f and f ′ inside J from the phase plot of f near J .
In Fig. 9 (left) we have windJ Pf = 4 and windJ V f = 1, so that n( f, J ) = 4 and
n( f ′, J ) = 3.

An important special case pertains to the situation when f is holomorphic and
the isochromatic lines of f are nowhere tangent to J . Since the latter implies
windJ V f =1, Theorem 3.1 tells us that then n( f ′, J ) = n( f, J ) − 1. This yields
a short proof of Walsh’s theorem on the location of critical points of Blaschke prod-
ucts [46–48].

4 Applications

In this section we discuss applications of phase plots which we believe to be useful—
though in some examples the mathematical background is rather trivial.

4.1 Software Implementation

When one needs to compute special functions numerically, it is tempting to download
code which is freely available on the internet. In many cases this may be an easy and
efficient way to solve the problem, but one should be aware that there is no guarantee
that software does what it claims to do.

An example is shown in Fig. 10. The image on the left is a phase plot of the
complex Gamma function, computed with a certified Matlab routine. The picture
in the middle displays the phase plot of a want-to-be Gamma function in the same
domain, computed with code from a dubious source. Though the overall impression
is almost the same, a closer look reveals that somethingmust bewrong on the negative
real axis near the left boundary of the domain. Zooming in a little closer, we discover
a beautiful bug sitting at the end of an artificial branch cut.



264 E. Wegert

Fig. 10 A bug in software for evaluating the Gamma function

Fig. 11 Implementations of the logarithmic Gamma Function

Since this is not the only incidentwhich can be reported, one should be very careful
when using software without knowing what it really computes. Though looking at
phase plots can by no means ensure correctness of computations, it may help to
discover some inconsistencies quite easily.

4.2 Multivalued Functions

Computations involvingmultivalued functions, like complexnth roots or the complex
logarithm, are often challenging because usually only their main branch is imple-
mented in standard software. In particular, composing such functions without taking
care for choosing the appropriate branches may lead to fallacious results.

Let us consider the logarithmic Gamma function GammaLog(z) as an example.
The three images of Fig. 11 show log�(z) (left), another implementation from the
web which claims to be GammaLog(z) (middle), and a version having a branch cut
along the negative real line (which is the standard definition). After some training,
phase plots make it quite easy to understand the structure of spurious branch cuts,
but removing them can be very tedious.
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4.3 Riemann Surfaces

Phase plots may serve as convenient tool for constructing Riemann surfaces. We
demonstrate this for the Riemann surface of the inverse of the sine function f (z) =
sin z. Basically this procedure involves three steps:
Step 1. Look at the phase plot of f in the z-plane and determine the basins of
attraction of the zeros (first row of Fig. 12). In the case at hand the basins are vertical
stripes kπ < Re z < (k + 1)π, k ∈ Z. Every such basin is mapped onto a copy of
the complex w-plane, slit along the rays [−∞,−1] and [1,+∞] (second row).
Step 2. Change the coloring of the z-plane to the standard color scheme (phase plot
of the identity, see first row of Fig. 13).
Step 3. Push the colors forward from the fundamental domains to the w-plane by
w = f (z). This generates phase plots of f −1 on the different sheets of its Riemann
surface (second row of Fig. 13).

Gluing the rims of branch cuts according to their neighboring relations (which
usually, but not always, can be seen from the phase plots), yields the Riemann surface
on which the phase plot of g can be displayed (see Fig. 14).

Thomas Banchoff [5] and Michael Trott [43, 44] described techniques for visual-
izing complex functions ondomain-coloredRiemann surfaces. This topicwas studied
in more detail by Konrad Poehlke and Konstantin Polthier [33]. In two subsequent
papers [34] and [32] (with M.Niesen) they propose algorithms for the automatic
construction of Riemann surfaces with prescribed branch points and branch indices.

Fig. 12 The sine function mapping strips to C
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Fig. 13 Three branches of the inverse sine function

Fig. 14 The inverse sine function on its Riemann surface

The image on the left of Fig. 15 (reproduced from [32] with permission) shows such
a surface composed of five sheets.

Another (more specialized) approach to automated computation of Riemann sur-
faces of algebraic curves is described in Stefan Kranich’s PhD thesis [24]. The image
on the right of Fig. 15 is the Riemann surface of the folium of Descartes, defined
implicitly by the equation z3 + w3 − 3zw = 0 (reprinted in scaled form with per-
mission).
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Fig. 15 Automatically generated Riemann surfaces

Fig. 16 Canonical embedding of planar graphs via Belyi functions

A general point-based algorithm for rendering implicit surfaces inR4 using inter-
val arithmetic for topological robustness and (phase) coloring as substitute for the
fourth dimension is described by Bordignon et al. [7].

4.4 Belyi Functions

A planar graph can be embedded in the (complex) plane in many different ways.
Given one such embedding (like the one on the left-hand side of Fig. 16), one may
askwhether it can be continuously deformed into a “canonical shape”without chang-
ing the vertex–edge relation and with no crossings throughout this whole process.
Surprisingly, such a representation exists (depicted on the right of Fig. 16). A theo-
rem due to Gennadii Belyi [6] tells us that every planar graph G can be represented
by a rational function R (in the special class of so-called Belyi functions) with the
following properties: The zeroes of R are exactly the vertices of G (red points) and
the edges of G (black lines) are the preimages of the interval [0, 1] under R. In every
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face of G there is exactly one pole of R (white points) and the preimages of [1,+∞]
(white lines) connect the poles to one point (gray) on each of the edges bounding the
face containing that pole. (The area outside the graph is considered to be a face with
its pole at infinity.) Moreover, all edges run into a vertex with equal angles between
neighboring edges and the (white) lines originating at the poles intersect the edges
perpendicularly. Last but not least, every face is the basin of attraction (see Sect. 3
and [48]) of the associated pole (with respect to the reverse phase flow).

The actual computation of the Belyi function associated with a given graph is a
challenging problem. Donald Marshall developed an approach via conformal weld-
ing [27, 28] and implemented it using his software Zipper [29, 30]. I am grateful to
him for providing the coefficients of the Belyi function shown in Fig. 16.

4.5 Filters and Controllers

In signal and control theory (linear, causal, time invariant, and stable) systems are
described by transfer functions, which are analytic in the right half plane. In practice,
most transfer functions are rational functions with poles in the left half plane. In the
frequency domain the system acts on an input as multiplication operator with its
transfer function T . In particular, the frequency response T (iω) tells one what the
system does with harmonic input signals eiωt : The values |T (iω)| and arg T (iω) are
the gain and the phase shift induced by the system operating at frequency ω.

The phase plot on the left of Fig. 17 is the transfer function of a Butterworth
filter—a low pass filter, which damps high frequency signals. This can be seen from
its frequency response on the imaginary axis: the white segment is the passband
where |T (iω)| ≈ 1, in the stopband (black) |T (iω)| decays for increasing values of
ω. Using the contour lines and the phase coloring one can read off the frequency
response directly from the phase plot of T and, for instance, construct Bode and
Nyquist plots.

Santiago Garrido and Luis Moreno [15] developed more elaborate techniques
involving phase plots for designing controllers. The two images in the middle and

Fig. 17 Design of filters and controllers
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on the right of Fig. 17 show some screenshots from their software (I am grateful to
the authors for providing these images).

4.6 Numerical Algorithms

In recent years, domain coloring techniques have proven useful tools in analyzing
numerical algorithms. Compared with numerical values, like the norm of the error
(function) of an approximate solution, images deliver much more structural infor-
mation. This may, for instance, improve the understanding of the method’s global
behavior. A further advantage of phase plots is the high sensitivity of the phase ψ(z)
for small values of z, which lets them act as a looking glass focused at the origin.

4.6.1 Iterative Methods

Numerical methods often use iterative procedures to find successively better approx-
imations to solutions of a problem. There are many options to display relevant infor-
mation about the global behavior of these methods. In order to demonstrate how
coloring techniques can be used in this context, we consider zero finding for a com-
plex function f (for a more detailed exposition see Varona [45]).

Most iterative methods start with an initial value z0 and calculate z1, z2, . . . recur-
sively by

zk+1 = zk − λk f (zk), (4.1)

where λk is a parameter which may be constant (Whittaker’s method) or depend-
ing on zk . For λk := 1/ f ′(zk) we get the popular Newton method which converges
(locally) quadratically. A skillful choice of λk leads to an accelerated convergence
of the approximating sequence. For example, the “double convex acceleration of
Whittaker’s method” (DCAW method) uses the iteration formula (see [18, 45])

zk+1 = zk − f (zk)

2 f ′(zk)

[

1 − g(zk) + 1 + g(zk)

1 − g(zk)
(
1 − g(zk)

)

]

,

where g(z) = f (z) f ′′(z)/
(
2 f ′(z)2

)
. This method has convergence order 3.

Figure18 displays the results of some experiments for solving f (z) := z5 − 1 = 0
by the recursion (4.1). We see the fourth iterate z4 (upper row) and the residue f (z4)
(lower row) as functions of the initial point z0 for different methods, namely (from
left to right) Whittaker’s method with λ = 0.15, Newton’s method, an accelerated
Whittaker method (see [45]), and the DCAW method.

The pictures in the upper row are plain phase plots, showing the emanating basins
of attraction of the zeros; the five dominating colors correspond to the phase of these
zeros. In the lower row we used domain coloring, encoding the modulus by a gray
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Fig. 18 Iterates and residues for several zero-finding methods

scale, to get a better feeling for the magnitude of the residue. In the (almost) black
regions the absolute value of f (z4) is in the range of 10−15, in the bright domains
the iterates converge to the point at infinity.

4.6.2 Numerical Differentiation

As another simple example, we consider approximations of the first derivative of a
function f by the difference quotients

f1(z) := f (z + h) − f (z)

h
, f2(z) := f (z + h) − f (z − h)

2h
,

f3(z) := f (z + ih) − f (z − ih)

2ih
, f4(z) := f2(z) + f3(z)

2
.

Figure19 shows phase plots of the error functions f ′ − fk (k = 1, 2, 3, 4) for
f (z) = 1/z with h = 10−3 (first row) and h = 10−5 (second row). What do we see
here?

The difference quotients fk approximate f ′ with order hn , where n = 1, 2, 2, 4
for k = 1, 2, 3, 4, respectively. A straightforward computation using Taylor series
then shows that the error function satisfies

ek(z) := fk(z) − f ′(z) = ck hn f (n+1)(z) + O(hn+1)

so that we basically should see a phase plot of ck f (n+1)(z) = ck(−z)−n−2. This is
indeed the case in the first three pictures for h = 10−3. For f4 the error is already
so small, that rounding effects (cancelation of digits) manifest themselves near the
boundary. For h = 10−5, similar effects can also be observed for e2 and e3, while
in the fourth picture the error function e4 is completely dominated by noise (for a
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Fig. 19 Error functions for numerical differentiation

Fig. 20 Evaluation of Cauchy integrals

computer expert the emerging structure may reveal information about the imple-
mented arithmetic).

The most interesting observation is that one can read off the approximation order
n directly: applying the method to f (z) = z−1, the resulting phase plot shows a pole
of order n + 2 at the origin. Similar types of experiments can be designed for other
approximation methods.

4.6.3 Numerical Integration

Evaluation of integrals is another topic which can nicely be illustrated and studied
using phase plots. In Fig. 20, we demonstrate this for a Cauchy integral of an analytic
function f . The exact values of the integral are displayed in the figure on the left-hand
side. Outside the contour of integration the integral vanishes, at points z surrounded
by the contour its values are equal to k f (z), where k is the winding number of the
contour about z (here k is either 1 or 2).
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The other two figures show approximations of the integral, evaluated by the trape-
zoidal rule with 200 and 1200 nodes, respectively.We see poles, sitting at the contour
of integration, induced by the pole of the Cauchy kernel. The gear-like pattern in the
exterior domain has almost parallel isochromatic lines, indicating rapid decay of the
function (in the direction perpendicular to the contour); it is bounded by a chain of
zeros aligned along the contour of integration. This chainmay be related to Jentzsch’s
theorem and its generalizations ([8, 20, 46]).

Austin, Kravanja and Trefethen [1] used phase plots in order to compare different
methods (Cauchy integrals, polynomial and rational interpolation) for computing val-
ues f (z) and f (m)(z) of analytic and meromorphic functions in a disk from samples
at the boundary of that disk.

4.6.4 Padé Approximation

Phase plots of rational functions can “visually approximate” any image, drawn solely
with saturated colors from the hsv color wheel (for a precise statement see [50]).
Particularly nice images arise from rational functions with zeros and poles forming
special patterns, as it happens, for instance, in Padé approximation. In turn, these
images may help to understand special aspects of these approximations.

The first row of Fig. 21 shows the function f (z) = tan z4 to be approximated
(left), and two Padé approximants of order [100, 100]. The function depicted in the
middle is computed by a standard method, the function on the right is the output
of a stabilized (“robust”) algorithm developed by Gonnet et al. [17]. Though the
pictures can barely be distinguished, the structural differences become obvious in
the next two rows, depicting phase plots of the numerator polynomial p (left) and
the denominator polynomial q (middle), as well as the error function f − f[100,100]
(right). The upper row corresponds to the standard algorithm, while the lower row
visualizes the output of the stabilized algorithm. Apparently the first one produces
a lot of spurious zeros in both polynomials p and q, which are (almost) canceled in
the quotient p/q.

The black line in the error plots on the right-hand side is the unit circle. The
almost(!) unstructured part in the middle (the influence of the zero-pole-cancelation
is seen here) is due to small fluctuations about zero.

The computations are performed with the Matlab routine padeapprox of the
Chebfun toolbox (for details see [17]).

4.6.5 Differential Equations

Numerous classes of special functions (Bessel, Airy, hypergeometric, etc.) arise as
solutions of second order ordinary differential equations (ODEs). Computing these
functions often requires elaborate numerical methods. A particularly hard case is
given by the six Painlevé equations, which are prototypes of equations
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Fig. 21 Padé approximation of f (z) = tan z4

u′′ = F
(
z, u, u′) ,

where F is a rational function of its arguments, and have single-valued solutions u
for all choices of their two initial conditions.

Solutions of Painlevé equations often have widely scattered poles, which were for
a long time perceived as “numerical mine fields.” Only in 2011, the first effective
numerical algorithm for calculating their solutions was described by Bengt Fornberg
and Andre Weideman [14].

Figure22 shows special solutions of the Painlevé I (left) and Painlevé II equation
(right), computed by Fornberg and Weideman (I am grateful to the authors for pro-
viding the data). The phase plot does not only deliver much more information than
the plain zero-pole-pattern usually displayed in texts about Painlevé equations—one
does not even need compute the zeros and poles, they show up automatically.
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Fig. 22 Solutions of the Painlevé I and II equations

Fig. 23 Rational harmonic functions in gravitational lensing

4.7 Gravitational Lensing

Though phase plots allow one only to reconstruct meromorphic functions (almost)
uniquely, they may nevertheless help to explore more general classes of functions.
As an example we consider a problem involving rational harmonic functions which
arises in gravitational lensing.

In 2006, Dmitri Khavinson and Genevra Neumann [22] proved that functions of
the form f (z) = r(z) − z, where r is a rational function of degree n ≥ 2, can have
at most 5n − 5 zeros. That this bound is sharp follows from an example given by the
astrophysicist Sun Hong Rhie in 2003. In the context of her paper [35], the zeros of
f represent the images produced from a single light source by a gravitational lens
formed by n point masses, located at the n poles of r(z).

The picture on the left of Fig. 23 is a phase plot of Rhie’s example for n = 8,
having 35 zeros. Due to the term z, the function f is not meromorphic, and hence
a pure phase plot does not depict all properties one is interested in. The modified
color scheme of the image allows one to read off where the mapping z �→ f (z)
is orientation preserving (brighter colors) or orientation reserving (darker colors).
This is important to distinguish between zeros and poles: in the brighter regions the
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orientation of colors near a zero of f is the same as in the color wheel; in the darker
regions the orientation is reversed.

Rhie’s example was highly symmetric, and it is very unlikely that heavy cosmic
objects (galaxies) form such a pattern. So it was greatly appreciated by the com-
munity of astrophysicists when Robert Luce, Olivier Sète and Jörg Liesen [37, 38]
found a more general recursive construction of maximal gravitational lenses with-
out symmetry. Phase plots played a prominent role in their investigations see [25].
The two images on the right of Fig. 23 (provided by the authors) illustrate how five
zeros emerge from introducing an additional pole near a former zero located in the
orientation preserving region of f .

4.8 The Riemann Zeta Function

Without doubt theRiemannZeta function is one of themost fascinatingmathematical
objects. A reformulation of Bagchi’s general universality theorem ([2, 21]) implies
that its phase plot in the right half 1/2 < Re z < 1 of the critical strip is incredibly
colorful (see [53]). Figure24 displays a collection of phase plots of Zeta in the critical
strip. Each rectangle has width 1 and covers about 20 units in the direction of the
imaginary axis, with some overlap between neighboring rectangles. Since our visual
system is trained in pattern detection, it usually does not take long until one discovers
a diagonal structure. This observation inspired Jörn Steuding and me to study mean
values of the Zeta function on (vertical) arithmetic progressions. Sampling ζ at points
with fixed distance d, we expected that the asymptotic behavior of the mean values
should be nontrivial if d is in resonance with the observed stochastic period. This
could be confirmed by the following result from our paper [41].

Theorem 4.1 Fix s ∈ C \ {1} with 0 < σ := Re s ≤ 1, t := Im s ≥ 0, and let d =
2π/ logm, where m ≥ 2 is an integer. Then, for M → +∞,

1

M

∑

0≤k<M

ζ(s + ik d) = 1

1 − m−s
+ O(M−σ log M).

Fig. 24 The Riemann Zeta function in the critical strip
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Fig. 25 A color scheme for generating stream lines

We point out that this result does not really explain the observed stripes (which
correspond to d = 2). To do this, one should consider mean values of the phase of
Zeta instead of Zeta itself—another challenging problem ….

5 Concluding Remarks

Visualization of complex functions may facilitate new views on known results, raise
interesting questions at all levels of difficulty, and, as the last example has shown,
may inspire research.

Besides phase plots and standard domain coloring many other color schemes may
be useful to illustrate and investigate special features of a function. So the striped
patterns in Fig. 25 are convenient to display flow lines, while the chess-board-like
structures in Fig. 26 are more appropriate to visualize conformal mappings. In this
figure, the domain of the mapping is displayed in the upper row, while the lower row
shows the corresponding image domains.

Cristina Ballantine and Dorin Ghisa [3, 4] used very beautiful color schemes
to visualize Blaschke products, and Ghisa [16] analyzes several special functions
(including the Gamma function and Riemann’s Zeta function) using their coloring
techniques.

Going a step further, one can put any image in the range plane of a complex
function and pull it back to the domain, which may have fascinating and appealing
results. For some masterpieces (and the theoretical background) we refer to Frank
Farris work [12, 13].

Applications of phase plots in teaching comprise the visualization of converging
power series, Weierstrass’ disk chain method, Riemann surfaces, and other topics of
standard lectures on complex functions. With dynamic phase plots one can interac-
tively study the dependence of functions on parameters—such hands-on approaches
allow students to become familiar with abstract concepts by doing their own exper-
iments.



Visual Exploration of Complex Functions 277

Fig. 26 Color schemes for visualizing conformal mappings

A comprehensive teaching-oriented introduction to complex functions and phase
plots is given in the author’s textbook [49]. A mathematical calendar featuring this
theme can be downloaded at [54].

Matlab software for generating phase plots and colored analytic landscapes on
plain domains and the Riemann sphere with various color schemes is available at the
Matlab exchange platform [51, 52]. For implementations in Mathematica, we refer
to Thaller [42], Trott [44], Sandoval-Romero and Hernández-Garduño [36], and
Shaw [39]. Visual Basic code can be downloaded from Larry Crone’s website [9]. A
stand-alone Java implementationof phase plots of elementary functions is available as
part of the Cinderella project by Ulrich Kortenkamp and Jürgen Richter-Gebert [23].
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