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1 Problem

In an Arab manuscript of the 10th century, a mathematician stated that the principal
object of rational right triangles is the following question[2].

Congruent number problem (Original version). Given a positive integer n, find
a rational square a2 (a ∈ Q∗) such that a2 ± n are both rational squares.

Definition 1.1. An integer n is a congruent number if there exists a rational square a2

such that a2 ± n are both rational squares.

Example 1.2. (i) 5 is a congruent number:(
41

12

)2

− 5 =

(
31

12

)2

,

(
41

12

)2

+ 5 =

(
49

12

)2

.

(ii) 6 is a congruent number:(
5

2

)2

− 6 =

(
1

2

)2

,

(
5

2

)2

+ 6 =

(
7

2

)2

.

(iii) 7 is a congruent number:(
337

120

)2

− 7 =

(
113

120

)2

,

(
337

120

)2

+ 7 =

(
463

120

)2

.

Definition 1.3. A right triangle is rational if its legs and hypotenuse are all rational
numbers.

Congruent number problem (Triangular version). Given a positive integer n,
find a right triangle such that its sides are rational and its area equals n.
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Proof of the equivalence of the two versions. (Origional version⇒ Triangular version) Sup-
pose α2, β2, γ2 are arithmetic progression of rational squares with common difference n.
Then the right angled triangle with legs and hypotenuse

a = γ − α, b = γ + α, c = 2β

has an area of n.
(Triangular version ⇒ Origional version) Conversely, suppose we have a rational right

triangle [a, b, c] with area n. Then
(
a−b
2

)2
,
(
c
2

)2
,
(
a+b
2

)2
is an 3-term arithmetic progression

with common difference n.

Example 1.4. (i) 5 is the area of rational right angled triangle [203 ,
3
2 ,

41
6 ].

(ii) 6 is the area of rational right angled triangle [3, 4, 5].
(iii) 7 is the area of rational right angled triangle [245 ,

35
12 ,

337
60 ].

Remark 1.5. We assume n is a square free positive integer, because if [a, b, c] is a right
angled triangle with area n, then [as, bs, cs] is also a right angled triangle with area ns2.

Open Problem:
(i) Give a simple criterion to determine whether or not a number n is congruent.
(ii) When n is congruent, give an effective algorithm to find a rational right triangle whose
area is n.

Theorem 1.6 (Fermat). 1, 2, 3 are not congruent numbers.

Proof. We use Fermat’s Infinite Decent Method to prove 1 is not congruent number. His
argument based on Euclidean formula: Given (a, b, c) positive integers, pairwise coprime,
and a2 + b2 = c2. Then there is a pair of coprime positive integer (p, q) with p + q odd
such that

a = 2pq, b = p2 − q2, c = p2 + q2.

Thus we have a congruent number generating formula:

(1.1) n = pq(p+ q)(p− q)/m2.

Step 1: Suppose 1 is congruent number, then there is an integral right angled triangle
[a, b, c] with minimum area m2 = pq(p+ q)(p− q).

Step 2: Since all 4 factors of m2 are coprime,

p = x2, q = y2, p+ q = u2, p− q = v2.

Step 3: We have an equation

(u+ v)2 + (u− v)2 = (2x)2.

Step 4: (u+ v, u− v, 2x) forms a right angled triangle with a smaller area y2. This is
a contradiction.
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Corollary 1.7 (Fermat’s Right Triangle Theorem). If n is a square, then n is not a
congruent number.

Remark 1.8. Although we have formula (1.1) to generate congruent numbers, this algo-
rithm is far from efficient. For example, n = 157 is the area of the rational right angled
triangle with the following legs and hypotenuse (due to Zagier):

a =
411340519227716149383203

21666555693714761309610
,

b =
6803298487826435051217540

411340519227716149383203
,

c =
224403517704336969924557513090674863160948472041

8912332268928859588025535178967163570016480830
.

Mathematicians can not be replaced by computers!

2 Elliptic Curves

Connection with Elliptic Curves

Theorem 2.1. For n > 0, there is a one-to-one correspondence between the following two
sets:

{(a, b, c) : a2 + b2 = c2,
1

2
ab = n}, {(x, y) : y2 = x3 − n2x, y 6= 0}.

Mutually inverse correspondences between these two sets are

(a, b, c) 7→
(

nb

c− a
,

2n2

c− a

)
, (x, y) 7→

(
x2 − n2

y
,
2nx

y
,
x2 + n2

y

)
.

Fix a real number n 6= 0. The real solutions (a, b, c) to each of the following equations

(2.1) a2 + b2 = c2,
1

2
ab = n,

describe a surface in R3. So it is natural to expect these two surfaces to intersect in a
curve. We want to describe such a curve, which will be y2 = x3 − n2x under the right
choice of coordinates.

Let c = t+ a, substitute it into a2 + b2 = c2, we get b2 = t2 + 2at, or equivalently,

(2.2) 2at = b2 − t2.

Since ab = 2n 6= 0, neither a nor b is 0, so we can write a = 2n
b and substitute it into (2.2):

4nt

b
= b2 − t2.
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Multiplying each side by b, we get

4nt = b3 − t2b.

Dividing by t3 (t 6= 0, otherwise a = c and then b = 0, but ab = 2n 6= 0) yields

4n

t2
=

(
b

t

)3

− b

t
.

Multiplying each side by n3, we get(
2n2

t

)2

=

(
nb

t

)3

− n2
(
nb

t

)
.

Set x = nb
t = nb

c−a and y = 2n2

t = 2n2

c−a 6= 0, so y2 = x3 − n2x.

Remark 2.2. (i) The equation y2 = x3 − n2x has three trivial rational solutions with
y = 0: (0, 0), (n, 0), (−n, 0).

(ii) The correspondence preserves positivity.
(iii) The equation y2 = x3 − n2x is an elliptic curve!

Congruent number problem (Elliptic Curve version). For a positive number
n, find a rational point with y 6= 0 on the elliptic curve En : y2 = x3 − n2x.

The viewpoint of the equation y2 = x3 − n2x allows one to do something striking:
produce a new rational right angled triangle with area n from two known triangles (by the
group law of points on elliptic curves).

Theorem 2.3 (Mordell, 1922). E(Q) ∼= Zr ⊕ E(Q)tors.

Theorem 2.4 (Lutz-Nagell Theorem, 1937, 1935). For an elliptic curve E : y2 = x3 +
Ax+B over Q with A,B ∈ Z and let D = −(4A3 +27B2) 6= 0. If (x, y) is a torsion point,
then x, y ∈ Z and either y = 0 or y2|D.

In the case of En : y2 = x3 − n2x, D = 4n6. So the torsion points are either y = 0 or
y2|4n6. But y2 = x3 − n2x has no solution with y 6= 0, x, y ∈ Z, and y2|4n6. Hence, we
have the following theorem.

Theorem 2.5.
En(Q)tors = {O, (0, 0), (n, 0), (−n, 0)}.

Remark 2.6. If there is one nontrivial rational point on the elliptic curve En : y2 = x3−
n2x, then there are infinitely many rational points on the elliptic curve En : y2 = x3−n2x.
The argument is as following. Suppose P = (x, y) with y 6= 0 is a rational point on the
elliptic curve. Then P can not be a torsion, so nP 6= O if n ∈ Z and n 6= 0. This
means that P, 2P, 3P, · · · are all distinct. If not, then nP = mP for some n < m and then
O = mP − nP = (m− n)P , contradiction.
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Theorem 2.7. A positive integer n is a congruent number if and only if the elliptic curve
En : y2 = x3 − n2x over Q has rank greater than 0.

Remark 2.8. Any point with y 6= 0 gives rank > 0.

Theorem 2.9. A positive integer n is a congruent number if and only if there exists a
point of infinite order on the elliptic curve En : y2 = x3 − n2x.

Criterions for Non-Congruent Numbers and Conditions for Congruent
Numbers

Moreover, the viewpoint of thinking about congruent numbers in terms of the elliptic
curve y2 = x3−n2x goes far beyond the construction of new rational right angled triangle
with area n. This viewpoint leads to a tentative solution to the whole congruent number
problem! In 1983, Tunnell used arithmetic property of the elliptic curve En : y2 = x3−n2x
to discover a previously unknown elementary necessary condition on congruent numbers
and he was able to prove the condition is also sufficient if the weak Birch and Swinnerton-
Dyer conjecture is true.

Theorem 2.10 (Tunnell, 1983). Let n be an squarefree positive integer. Set

a(n) = #{(x, y, z) ∈ Z3 : 2x2 + y2 + 8z2 = n},

b(n) = #{(x, y, z) ∈ Z3 : 2x2 + y2 + 32z2 = n},

a′(n) = #{(x, y, z) ∈ Z3 : 8x2 + 2y2 + 16z2 = n},

b′(n) = #{(x, y, z) ∈ Z3 : 8x2 + 2y2 + 64z2 = n}.

For odd n, if n is a congruent number, then a(n) = 2b(n); for even n, if if n is a congruent
number, then a′(n) = 2b′(n). Moreover, if the weak Birch and Swinnerton-Dyer conjecture
is true for the elliptic curve En : y2 = x3 − n2x, then the conditions are also sufficient.

Remark 2.11. Tunnell’s theorem provides an unconditional method of proving a square-
free integer n is not congruent, and a conditional method of proving a squarefree integer
n is congruent.

(i) If n is odd, and a(n) 6= 2b(n), then n is not a congruent number. If n is even, and
a′(n) 6= 2b′(n), then n is not a congruent number.

(ii) Suppose the weak BSD conjecture is true for the elliptic curve En : y2 = x3−n2x. If
n is odd and a(n) = 2b(n), then n is a congruent number. If n is even and a′(n) = 2b′(n),
then n is a congruent number.

Example 2.12. (i) a(1) = b(1) = 2, a(3) = b(3) = 4 Hence, a(1) 6= 2b(1), a(3) 6= 2b(3).
Hence 1,3 are not congruent numbers.

(ii) a′(2) = b′(2) = 2. Hence 2 is not a congruent number.
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Theorem 2.13. If the weak Birch and Swinnerton-Dyer conjecture is true, then any
positive integer n ≡ 5, 6, 7 (mod 8) is a congruent number.

Proof. Suppose n ≡ 5, 6, 7 (mod 8) is a positive integer. Writing n = a2b with b squarefree.
Then a is odd, otherwise 4 would be a factor of n. Therefore, n ≡ b (mod 8). Thus we
may assume n is squarefree.

If n ≡ 5, 7 (mod 8) is odd, since there is no integral solution to 2x2+y2 ≡ 5, 7 (mod 8),
we have a(n) = b(n) = 0. Hence, a(n) = 2b(n). If the weak BSD conjecture is true, then
Tunnell’s Theorem implies that n is a congruent number.

If n ≡ 6 (mod 8) is even, then 2y2 ≡ 6 (mod 8) has no integral solution, and so
a′(n) = b′(n) = 0. Hence, a′(n) = 2b′(n). If the weak BSD conjecture is true, then
Tunnell’s Theorem implies that n is a congruent number.
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