Copyright by Neil Reardon Hoffman 2011 The Dissertation Committee for Neil Reardon Hoffman certifies that this is the approved version of the following dissertation:

Properties of commensurability classes of hyperbolic knot complements

Committee:

Alan W Reid, Supervisor

Colin Adams

Cameron Gordon

Daniel Knopf

John Luecke

Properties of commensurability classes of hyperbolic knot complements

by

Neil Reardon Hoffman, B.A.

DISSERTATION

Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2011

To my family.

Acknowledgments

First and foremost, I wish to thank my advisor Alan Reid for his patience and guidance. I also would like to thank the faculty members, both past and present, and visitors who took the time to answer my questions. Colin Adams, Ian Agol, Steve Boyer, Cameron Gordon, and Genevieve Walsh deserve special thanks in this regard. Finally, I am deeply indebted to my fellow graduate students for many invaluable discussions.

Properties of commensurability classes of hyperbolic knot complements

Publication No. _____

Neil Reardon Hoffman, Ph.D. The University of Texas at Austin, 2011

Supervisor: Alan W Reid

This thesis investigates the topology and geometry of hyperbolic knot complements that are commensurable with other knot complements. In chapter 3, we provide an infinite family examples of hyperbolic knot complements commensurable with exactly two other knot complements. In chapter 4, we exhibit an obstruction to knot complements admitting exceptional surgeries in conjunction with hidden symmetries. Finally, in chapter 5, we discuss the role of surfaces embedded in 3-orbifolds as it relates to hidden symmetries.

Table of Contents

Acknowledgments			v		
Abstra	Abstract				
List of Figures					
Chapter 1.		Introduction	1		
Chapter 2.		Background	5		
	2.0.1	Finite subgroups of $SO(2,\mathbb{R})$ and $SO(3,\mathbb{R})$	6		
	2.0.2	Classification of cusps	9		
	2.0.3	Wirtinger presentation	11		
	2.0.4	Incompressible surfaces	14		
2.1	The t	race field and invariant trace field	16		
2.2	Class	number \ldots	17		
2.3	Arith	metic 3-manifolds and 3-orbifolds	18		
2.4	Tetra	hedral orbifolds	19		
2.5	Hidde	en symmetries	20		
2.6	Adam	ns' classification of orbifolds of small volume	23		
2.7	Dehn	filling	26		
	2.7.1	Exceptional Dehn filling	27		
	2.7.2	The Six Theorem	28		
	2.7.3	Finite cyclic fillings and coverings by knot complements	29		
2.8	Notat	ion	32		
Chapter 3.		Commensurability classes containing exactly three hyperbolic knot complements	34		
3.1	Prelir	ninaries	35		
	3.1.1	Special fillings of the Berge manifold	37		

	3.1.2 The commensurability class of the Berge manifold \ldots	38		
3.2	Knot complements covering $\beta_{n,m}$	43		
3.3	Proof of Theorem 1	46		
3.4	Remarks	48		
Chapte	er 4. Hidden symmetries and exceptional surgeries	53		
4.1	Preliminaries	54		
4.2	Representations of knot groups	57		
4.3	Bounding the degree of covering	72		
4.4	Proof of Theorem 1	78		
4.5	Remarks on Theorem 1	82		
Chapter 5. Links in the isotropy graph				
5.1	Graphs and incompressible 2-orbifolds	86		
Bibliography				
Vita				

List of Figures

2.1	The five types of trivalent points that correspond to finite sub- groups of $SO(3,\mathbb{R})$	8
2.2	The angles between axes of fixed points in finite subgroups of $SO(3,\mathbb{R})$	9
2.3	The diagram for the relation $aba^{-1} = c$	13
2.4	The relation $abc = 1$	13
2.5	Each generator has finite order	14
2.6	The angle between to faces of the tetrahedron above is $\frac{2\pi}{n}$ where n is label on their common edge	20
2.7	The dodecahedral knots	22
2.8	Lattice points that are length less than 6 from the origin	30
3.1	The Berge manifold is the complement of this link	35
3.2	The fundamental domain for Γ together with the involution w	41
3.3	The decomposition of a surgered $\beta_{n,m}$ along a torus $\ldots \ldots$	44
3.4	The k(2,2,0,2) knot \ldots	51
4.1	A step by step graphical interpretation of the cusp killing ho- momorphism	56
4.2	A horoball diagram for Q	66
4.3	A horoball diagram for Q with the isometric spheres represented by dotted curves around 0 and D	67
4.4	A fundamental domain for Q lies above $OXDY$	69
4.5	The two possible types of isotropy graphs for the orbifold Q described in Case 1 of Lemma 10 $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	70
4.6	A possible isotropy graph of an orbifold with a $S^2(2,4,4)$ cusp	75
4.7	The possible isotropy graphs Q'	76
4.8	The three cases for an isotropy graph with 2 vertices \ldots .	77
4.9	Application of the cusp killing homomorphism to a graph with a cycle labeled 3 and a vertex labeled D_3	77

4.10	An orbifold Q resulting from $(m, 0)$ -surgery $(m \ge 257)$ along the unknotted cusp of the above link has invariant trace field	
	with class number bigger than $1 \ldots \ldots \ldots \ldots \ldots \ldots$	84
5.1	Two examples of compressing disks outside of S_1	89

Chapter 1

Introduction

Two hyperbolic 3-orbifolds are said to be commensurable if they share a common finite sheeted cover. Commensurability forms an equivalence relation on the set of hyperbolic 3-manifolds and 3-orbifolds. In general, it is difficult to identify a commensurability class by a general element. Therefore, one may be interested in finding elements of a commensurability class that appear quite rare. Conjecturally, knot complements in \mathbb{S}^3 are rare in a commensurability class as articulated in the following conjecture of Reid and Walsh (see [33, Conj 5.2]):

Conjecture. Let $\mathbb{S}^3 - K$ be a hyperbolic knot complement. Then, there are at most two other knot complements in its commensurability class.

It is worth mentioning that not all commensurability classes of hyperbolic orbifolds contain a knot complement. There is only one arithmetic knot complement (see [32] and §2.3). Consequently, $\mathbb{H}^3/PSL(2, O_d)$ where O_d is the ring of integers in $\mathbb{Q}(\sqrt{-d})$ (d is square-free), and $d \neq 3$ will not be commensurable with any knot complement.

However the conjecture is non-trivial, in fact, for special classes of knot complements, eg two bridge knots (see [33]) the conjecture is known to hold.

More generally, Boileau, Boyer, Cebanu, and Walsh have shown that the conjecture holds in the case where any knot complement in a given commensurability class does not admit hidden symmetries (see [8] and $\S2.5$). Furthermore, the conjecture can be shown to be sharp in the sense that there are knot complements commensurable with exactly two other knot complements. For example, Fintushel and Stern's (-2, 3, 7) pretzel knot complement famously admits two non-trivial cyclic fillings (see [14]). Each cyclic filling can be exploited in order to construct a knot complement that covers the (-2,3,7) knot complement (see [15]). Hence, the (-2,3,7) knot complement is commensurable with at least 2 other knot complements. Neumann and Reid showed that the invariant trace field of the (-2, 3, 7) knot complement is a degree 3 extension of \mathbb{Q} (see [28, §10.2]). This is an obstruction to having hidden symmetries (see [28, Prop 2.7]). Hence, by [33, Cor 5.4], these are the only knot complements in its commensurability class. The ideas of the argument above have been exploited to show that certain knot complements do not admit hidden symmetries (see [21]). The theorem below is proven using a new obstruction to having hidden symmetries using the geometric and algebraic convergence coming from a sequence of Dehn surgeries.

Theorem 1. Let $n \ge 1$ and (n, 7) = 1. For all but at most finitely many pairs of integers (n, m), the result of (n, m) Dehn surgery on the unknotted cusp of the Berge manifold is a hyperbolic orbifold with exactly three knot complements in its commensurability classes.

In light of the above theorem and [8], it seems natural to investigate

knot complements admitting hidden symmetries. A knot complement admits hidden symmetries if it covers an orbifold with a rigid cusp (see §2.0.2). Also, Boileau, Boyer, Cebanu, and Walsh outlined a program to find commensurable knot complements provided there is an orbifold with two or three finite cyclic fillings ([8, Prop 4.11]). Consequently, one might ask if both finite fillings and hidden symmetries can occur in conjunction. For certain cases, the answer to that question is no, as expressed by the following theorem, which is a less precise version of the actual Theorem 1:

Theorem 1. Let $\mathbb{S}^3 - K$ be a strongly invertible, non-arithmetic, hyperbolic knot complement that admits integral traces and an invariant trace field of class number 1. Then, $\mathbb{S}^3 - K$ does not admit hidden symmetries and a non-trivial exceptional surgery.

It should be pointed out the theorem can be applied to many knot complements. We remark that all but one hyperbolic knot complement is non-arithmetic (see §2.3 and Thm 2). Additionally, Alan Reid pointed out to the author that all of the hyperbolic knot complements up to 8 crossings have the property that their invariant trace fields are class number 1. If a knot complement admits non-integral traces, then it contains a closed, embedded, essential surface (see [5]). Thus, all small knot complements admit integral traces. Finally, the properties of admitting a non-trivial exceptional surgery and being strongly invertible often occur in conjunction. For instance, all known knot complements exhibiting non-trivial cyclic fillings or special types of toroidal fillings are known to be strongly invertible (see [13] and [17]). Finally, orbifolds with base space D^3 are of particular interest in this work (see Prop 2). If O is an orbifold with a rigid cusp, the branch set of any orbifold is a trivalent graph, G (see §2.0.3 and §2.0.2). The following theorem shows that orbifolds with sufficiently complicated branch set contain a nontrivial two component link in G or they contain an incompressible surface. In particular, if $p: S^3 - K \to O$ is small and G has 8 or more vertices, then Gcontains at least one two component link.

Theorem 1. Let O be an orbifold with a single rigid cusp and base space D^3 that has an isotropy graph with 8 or more vertices. Then either every pair of edge cycles in the isotropy graph of O is linked or O contains a closed, embedded, incompressible 2-orbifold.

This theorem is also of interest because of the hypotheses of Theorem 1. As mentioned above, if if $O = \mathbb{H}^3/\Gamma$ and Γ admits non-integral traces, then O contains a closed embedded essential surface. Therefore, this theorem gives us a window into understanding the complexity of orbifolds with rigid cusps covered by knot complements.

This thesis is organized as follows. The introduction and statements of the main theorems are in chapter 1. Relevant background material can be found in chapter 2. The third chapter contains the proof of Theorem 1. The fourth chapter contains a proof of Theorem 1 and the fifth chapter contains a proof of Theorem 1.

Chapter 2

Background

An orientable hyperbolic 3-manifold M is a manifold homeomorphic to \mathbb{H}^3/Γ where Γ is a torsion-free, discrete subgroup $Isom^+(\mathbb{H}^3)$. We will also require that \mathbb{H}^3/Γ can be associated to a fundamental domain that is finite volume with respect to the hyperbolic metric. If we identify hyperbolic space with the upper half space model, then $Isom^+(\mathbb{H}^3) \cong PSL(2, \mathbb{C})$.

A hyperbolic 3-manifold can be viewed more generally as a special type of 3-orbifold, ie a metrizable space equipped with an atlas of compatible local models that are quotients \mathbb{R}^3 by finite subgroups of $SO(3, \mathbb{R})$. Since we will be interested in 3-orbifolds that admit a geometric structure, we now recall the definition of a geometric 3-orbifold O is a space homeomorphic to X/Γ , where X is a simply connected Riemannian 3-manifold and Γ is a discrete subgroup of $Isom^+(X)$. In particular, since we will be concerned with 3-orbifolds that admit finite volume hyperbolic structures, we recall the following definition for completeness. An orientable hyperbolic 3-orbifold is a space homeomorphic to \mathbb{H}^3/Γ where Γ is discrete subgroup of $Isom^+(\mathbb{H}^3)$ such that \mathbb{H}^3/Γ admits a fundamental domain of finite volume under the hyperbolic metric.

Similarly, we also define an orientable geometric 2-orbifold O as a space

that is homeomorphic to X/Γ , where X is a simply connected Riemannian 2-manifold and Γ is a discrete subgroup of $Isom^+(X)$. In the case where $O = X/\Gamma$, we note that O inherits the Riemannian metric from X and neighborhoods of points in O are isometric to \mathbb{R}^2 or $\mathbb{R}^2/\langle \gamma | \gamma^n \rangle$.

Both of the above definitions are due to Thurston and further background can be found in [38, Chapter 13].

2.0.1 Finite subgroups of $SO(2, \mathbb{R})$ and $SO(3, \mathbb{R})$

The only finite subgroups of $SO(2, \mathbb{R})$ are cyclic. A finite subgroup G of $SO(2, \mathbb{R})$ preserves the unit disk $D \in \mathbb{R}^2$. If G fixes a point on ∂D , then either all of D is fixed or G reverses the orientation on D, which is a contradiction. It follows $p: \partial D \to \partial D/G$ is a covering map where G acts freely on $\partial D \cong \mathbb{S}^1$. Hence, G is finite cyclic.

A disk quotient is the quotient of a disk by a finite cyclic rotation group of order n. We denote this by $D^2(n)$. We also use the notation $\Sigma(n_1, n_2, ..., n_m)$ for a 2-orbifold such that the base space of $\Sigma(n_1, n_2, ..., n_m)$ is a surface Σ and for each n_i we remove a closed neighborhood of a point and glue in $D^2(n_i)$ by a homeomorphism of the boundary circles.

We define the base space of an orbifold O to be the underlying topological space. For convenience, we use |O| to denote the base space of an orbifold O. In dimensions 2 and 3, $|\mathbb{R}^2/\langle \gamma | \gamma^n \rangle| = \mathbb{R}^2$ and $|\mathbb{R}^3/G| = \mathbb{R}^3$. Hence, the base space of a 2-orbifold is a surface and the base space of a 3-orbifold is a 3-manifold. Also, if all neighborhoods of $x \in O$ map to $\mathbb{R}^2/\langle \gamma | \gamma^n \rangle$ or \mathbb{R}^3/G , we call \mathbf{x} a *cone point* of O.

For 2-orbifolds, the Riemann–Hurwitz formula extends the notion of *Euler characteristic* or $\chi(O)$ using the formula:

$$\chi(O) = \chi(|O|) - \sum_{i} (1 - \frac{1}{r_i})$$

where r_i is the order of the cyclic group fixing the a cone point x.

The above definition preserves the property that if $p : S_1 \to S_2$ is a covering map of degree n, then $\chi(S_1) = n \cdot \chi(S_2)$ (see [38, Chapter 13]).

An *elliptic* 2-orbifold is an orientable 2-orbifold that can be covered by \mathbb{S}^2 . The complete list of orientable 2-orbifolds covered by \mathbb{S}^2 is \mathbb{S}^2 , $\mathbb{S}^2(n, n)$, $\mathbb{S}^2(2, 2, n)$, $\mathbb{S}^2(2, 3, 3)$, $\mathbb{S}^2(2, 3, 4)$ and $\mathbb{S}^2(2, 3, 5)$.

Taking the cone over each of these orbifolds produces all of the possibilities for \mathbb{R}^3/G (see Fig 2.1). In particular, G is either trivial, finite cyclic, D_n (a dihedral group of order 2n), A_4 , S_4 , or A_5 . Finally, if $x \in \mathbb{H}^3/\Gamma$ the *isotropy group* of x is $G \subset \Gamma$ such $g \in G$ if and only if g(x) = x.

Using the spherical cosine law (see [35, Lem 3] for application in this context), we can compute the angles between the axes for each type of isotropy group in Figure 2.1. If we consider the three axes fixed by elements of torsion of orders a, b, and c where the angles between these axes are α, β, γ (see in Fig 2.2), then

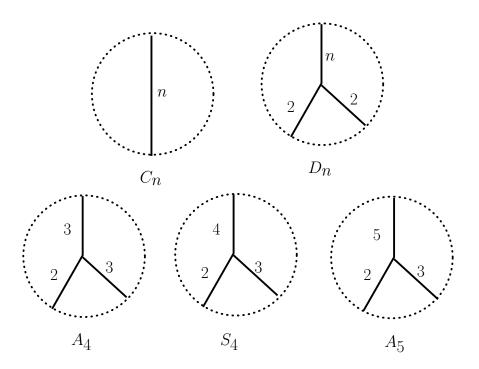


Figure 2.1: The five types of trivalent points that correspond to finite subgroups of $SO(3,\mathbb{R})$

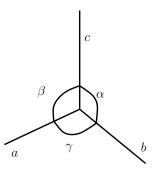


Figure 2.2: The angles between axes of fixed points in finite subgroups of $SO(3,\mathbb{R})$

$$\cos \alpha = \frac{\cos \frac{\pi}{a} + \cos \frac{\pi}{b} \cos \frac{\pi}{c}}{\sin \frac{\pi}{b} \sin \frac{\pi}{c}}$$
$$\cos \beta = \frac{\cos \frac{\pi}{b} + \cos \frac{\pi}{a} \cos \frac{\pi}{c}}{\sin \frac{\pi}{a} \sin \frac{\pi}{c}}$$
$$\cos \gamma = \frac{\cos \frac{\pi}{c} + \cos \frac{\pi}{a} \cos \frac{\pi}{b}}{\sin \frac{\pi}{a} \sin \frac{\pi}{b}}.$$

In particular, if (a, b, c) is (2, 2, n), then (α, β, γ) is $(\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{n})$. If (a, b, c) = (2, 3, 3), then (α, β, γ) is $(\cos^{-1}(\frac{1}{3}), \cos^{-1}(\frac{1}{\sqrt{3}}), \cos^{-1}(\frac{1}{\sqrt{3}}))$. If (a, b, c) = (2, 3, 4), then $(\alpha, \beta, \gamma) = (\cos^{-1}(\frac{1}{\sqrt{3}}), \frac{\pi}{4}, \cos^{-1}(\frac{\sqrt{2}}{\sqrt{3}}))$. If (a, b, c) = (2, 3, 5), then $(\alpha, \beta, \gamma) = (\cos^{-1}(\frac{\cos(\frac{\pi}{5})}{\sqrt{3}\sin(\frac{\pi}{5})}), \cos^{-1}(\frac{1}{2\sin(\frac{\pi}{5})}), \cos^{-1}(\frac{2\cos(\frac{\pi}{5})}{\sqrt{3}}))$. We note that only the dihedral subgroups have the property that there is an axis perpendicular to all other fixed point axes.

2.0.2 Classification of cusps

A finite volume hyperbolic 3-manifold can only have torus cusps. By Selberg's Lemma, any finite volume hyperbolic 3-orbifold O is covered by a 3-manifold, so we see that the cusps of O must be quotients of the torus. In fact, we associate a orientable quotient of the torus to each of the 5 orientation preserving Euclidean wallpaper groups. The five quotients are T^2 , $\mathbb{S}^2(2, 2, 2, 2, 2)$, $\mathbb{S}^2(2, 4, 4)$, $\mathbb{S}^2(3, 3, 3)$ and $\mathbb{S}^2(2, 3, 6)$. If a cusp *C* is of the form $S \times [0, \infty)$ where *S* is one of the last three orbifolds above, then *C* is said to be a *rigid cusp*. We include presentations for fundamental groups of these orbifolds in the following paragraphs.

The torus admits an involution that fixes four points. The quotient of T^2 under this involution is the often called the pillowcase, which we denote by $S^2(2,2,2,2,2)$. By adding an element of order 2 to $\pi_1(T^2)$, we obtain the following presentation:

$$\pi_1^{orb}(S^2(2,2,2,2)) = \langle a,b,c | aba^{-1}b^{-1} = 1, c^2 = 1, cac^{-1} = a^{-1}, cbc^{-1} = b^{-1} \rangle.$$

In particular, $\pi_1^{orb}(S^2(2,2,2,2)) \cong (\mathbb{Z} \times \mathbb{Z}) \rtimes \mathbb{Z}/2\mathbb{Z}$. The following paragraphs will discuss quotients of tori admitting particular Euclidean structures.

If T^2 admits a Euclidean structure such that the *a* and *b* are translations of the same length and the angle between the two vectors is $\frac{\pi}{2}$, then T^2 will admit a symmetry of order 4. The quotient of T^2 by this symmetry is an orbifold with two cone points of order 4 and one cone point of order 2. We use the notation $S^2(2, 4, 4)$ to denote such a quotient. As the symmetry of order 4 sends *a* to *b* and *b* to a^{-1} , we obtain the following presentation:

$$\pi_1^{orb}(S^2(2,4,4)) = \langle a, b, c | aba^{-1}b^{-1} = 1, c^4 = 1, cac^{-1} = b, cbc^{-1} = a^{-1} \rangle.$$

Hence, $\pi_1^{orb}(S^2(2,4,4)) = (\mathbb{Z} \times \mathbb{Z}) \rtimes \mathbb{Z}/4\mathbb{Z}.$

If T^2 admits a Euclidean structure such that the *a* and *b* are translations of the same length and the angle between the two vectors is $\frac{\pi}{3}$, then the torus will admit a symmetry of order 3 and a symmetry of order 6. If we consider the quotient of T^2 under the symmetry of order 3, we will use $S^2(3,3,3)$ to denote the quotient. This symmetry of order 3, sends *a* to ba^{-1} and *b* to a^{-1} , we obtain the following presentation

$$\pi_1^{orb}(S^2(3,3,3)) = \langle a, b, c | aba^{-1}b^{-1} = 1, c^3 = 1, cac^{-1} = ba^{-1}, cbc^{-1} = a^{-1} \rangle.$$

In particular, this group is isomorphic to $(\mathbb{Z} \times \mathbb{Z}) \rtimes \mathbb{Z}/3\mathbb{Z}$.

If we take the quotient of T^2 by the symmetry of order 6, we will obtain the orbifold $S^2(2,3,6)$. The symmetry of order 6 sends a to b and b to ba^{-1} , therefore we record the following presentation for

$$\pi_1^{orb}(S^2(2,3,6)) = \langle a, b, c | aba^{-1}b^{-1} = 1, c^6 = 1, cac^{-1} = b, cbc^{-1} = ba^{-1} \rangle.$$

Finally, this group is isomorphic to $(\mathbb{Z} \times \mathbb{Z}) \rtimes \mathbb{Z}/6\mathbb{Z}$.

2.0.3 Wirtinger presentation

Let $O = X/\Gamma$ be a geometric 3-orbifold where X is the universal cover of O. Denote by $F = \{x \in X | \gamma(x) = x, \gamma \in \Gamma - \{1\}\}$. The *isotropy graph*, IG, of an orbifold O is the set of points in O that are in the image p(F), where $p: X \to O$ is a covering map. For any closed O, the set IG forms a trivalent graph. In the cusped case, it will prove convenient to consider the cusp as a vertex of the graph. Thus, we still have that IG is trivalent except O where *O* has $S^2(2,2,2,2)$ cusps. At such points, we see a valence 4 vertex in *IG* corresponding to each $S^2(2,2,2,2)$ cusp. Finally, if *O* has a torus cusp *C* then *IG* will be disjoint from C.

For a 3-orbifold O, we defined Γ above as the group of deck transformations on its universal cover X. Alternatively, we can construct a presentation for Γ using the isotopy graph of O using the Wirtinger presentation. A more general proceedure exists; however, we will restrict to the case where |O| is simply connected. The Wirtinger presentation is derived from a well known algorithm for producing a fundamental group of a knot complement in \mathbb{S}^3 from a knot projection. A similar formulation exists for exhibiting the fundamental group of a trivalent graph complement, and a third generalization allows us to construct a presentation for the fundamental group of an orbifold in \mathbb{S}^3 . We will describe this process below.

Consider an orbifold O with base space \mathbb{S}^3 and isotropy graph G. We will assume that the projection of G into the plane is in general position, ie there are finitely many edges, crossings, and vertices in the projection and each crossing and vertex is in a neighborhood that does not contain other vertices or crossings. We add a generator for each over strand of an edge in G. At each crossing, we introduce the same relation that occurs in the Wirtinger presentation for a knot complement (see Fig 2.3). At each vertex, we introduce the relation abc = 1 (see Fig 2.4). Finally, each generator bounds a disk that intersects the graph along an edge in one point. The element of order n associated to this edge induces the relation $a^n = 1$ (see Fig 2.5).

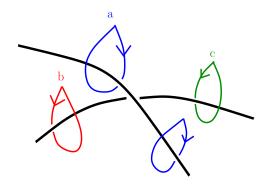


Figure 2.3: The diagram for the relation $aba^{-1} = c$

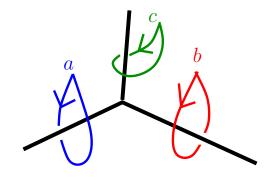


Figure 2.4: The relation abc = 1

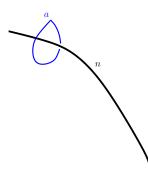


Figure 2.5: Each generator has finite order

If a vertex corresponds to a cusp, then the same algorithm applies. In the case where the base space of O is not simply connected, we must consider how the graph is embedded with respect to |O|. However, we will only need to use the Wirtinger presentation for orbifolds with base space \mathbb{S}^3 or D^3 in the arguments that follow.

2.0.4 Incompressible surfaces

The study of incompressible surfaces in 3-manifold topology is of great interest. Recall that M is an *irreducible* 3-manifold if every properly embedded S^2 bounds a 3-ball. A compact, orientable surface Σ properly embedded in an orientable manifold M is said to be *incompressible* if $\Sigma \ncong S^2$ and every curve $\gamma \in \Sigma$ that bounds a disk in M also bounds a disk in Σ .

Thurston extended this definition to consider incompressible 2-orbifolds in a closed 3-orbifold (see [38], Chapter 13). To extend this notion to orbifolds, we first introduce a *good* orbifold. An orbifold is said to be good if it has a manifold cover. Not all orbifolds are good, for example a 2-sphere with 1 cone point is not covered by any manifolds. If an orbifold is not good, it is *bad*. We define an *elliptic* 2-orbifold to be an orbifold finitely covered by the 2-sphere. We define an *irreducible* 3-orbifold to be an orbifold that does not contain any bad 2-suborbifolds and where every elliptic 2-orbifold bounds the quotient of a 3-ball.

Let O be a 3-orbifold with orientable base space. If O' is a compact, orientable 2-orbifold and properly embedded in O with $\chi(O') \leq 0$, then O'is an *incompressible suborbifold* of O if for every $O'' \cong S^1$, which bounds a disk quotient in O - O', O'' bounds a disk quotient in O'. O is *Haken* if it is irreducible and contains an incompressible suborbifold. Finally, we define an *atoroidal* 3-orbifold to be an orbifold that does not contain any incompressible 2-orbifolds that are quotients of Euclidean tori.

The following theorem originally announced by Thurston and published by Boileau, Leeb, and Porti is known as the Orbifold Theorem (see [38, Chap 13], [9, Cor 1.2]).

Theorem 2.1 (Boileau, Leeb, and Porti, 2005). Let Q be a compact, connected, orientable, irreducible 3-orbifold with non-empty isotropy graph. If Q is atoroidal, then Q is geometric.

2.1 The trace field and invariant trace field

Mostow-Prasad Rigidity shows that if two finite volume hyperbolic orbifolds, \mathbb{H}^3/Γ_1 and \mathbb{H}^3/Γ_2 , are homeomorphic then the two groups Γ_1 and Γ_2 are conjugate in $Isom(\mathbb{H}^3)$ (see [27], [30], [38]).

If $O = \mathbb{H}^3/\Gamma$ is a finite volume hyperbolic 3-orbifold, a direct consequence of the Mostow-Prasad Rigidity is that the field, $\mathbb{Q}(tr\Gamma) = \mathbb{Q}(tr(\gamma)|\gamma \in \Gamma)$ is a homeomorphism invariant. This field is known to be a finite extension of \mathbb{Q} (see [38, Prop 6.7.4]). Here, we are slightly abusing notation, an element $\gamma \in \Gamma_i$ is of the form

$$\gamma = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \begin{pmatrix} -a & -b \\ -c & -d \end{pmatrix} \middle| ad - bc = 1, a, b, c, d \in \mathbb{C} \right\}.$$

Hence, $tr(\gamma)$ will refer to the trace of one of the elements in the coset that defines γ .

Let $O = \mathbb{H}^3/\Gamma$, we say O or Γ admits an integral representation if for all $\gamma \in \Gamma$, a, b, c, and d as defined above are algebraic integers. Also if for all γ in Γ , $tr(\gamma)$ is an algebraic integer, we say Γ has *integral traces*. In fact, Γ admits an integral representation if and only if it admits integral traces (see [22, Lem 5.2.4]).

As noted in the introduction, two hyperbolic 3-orbifolds, \mathbb{H}^3/Γ_1 and \mathbb{H}^3/Γ_2 , are said to be *commensurable* if they share a common finite sheeted cover. In terms of their groups, this means that $\exists g \in PSL(2,\mathbb{C})$ such that Γ_1 and $g\Gamma_2g^{-1}$ share a subgroup of finite index. In this case, we say that that Γ_1 and Γ_2 are *commensurable*.

As noted above, the trace field of a finite volume hyperbolic orbifold O is a homeomorphism invariant for O. However, in general, it is not an invariant of the commensurability class. The *invariant trace field* of a hyperbolic 3orbifold $O = \mathbb{H}^3/\Gamma$ is $k\Gamma = \mathbb{Q}(tr(\gamma^2)|\gamma \in \Gamma)$. This field is known to be both a finite extension of \mathbb{Q} and an invariant of the commensurability class (see [31]). For knot groups, the invariant trace field is equal to the trace field (see [28, Cor 2.3]).

In addition, the property of having integral traces is a commensurability class invariant (see [22, Cor 3.1.4]), so the property of admitting integral representations is a commensurability class invariant.

2.2 Class number

Let k be number field and \mathcal{O}_k the ring of integers in k. A fractional ideal J of \mathcal{O}_k is an \mathcal{O}_k -submodule of k such that there exists $\alpha \in \mathcal{O}_k$ with the property that $\alpha J \subset \mathcal{O}_k$.

In the setting of number fields (or more generally Dedekind domains), the set of fractional ideals is well known to form an abelian group under multiplication of ideals. We will call this group the *ideal group of* k and denote it by I_k .

We say a fractional ideal I is principal if $I = \langle d \rangle$ for some d in \mathcal{O}_k , ie every element of I is of the form $d \cdot r$ for some $r \in \mathcal{O}_k$. Clearly, the set of principal fractional ideals forms a subgroup P_k of I_k . Since I_k is abelian, P_k is a normal subgroup. We define the *class group* as I_k/P_k and the *class number* h_k as the order of the class group. We will focus on the case where the class number is 1. Hence, \mathcal{O}_k is a principal ideal domain, ie all ideals are generated by one element.

2.3 Arithmetic 3-manifolds and 3-orbifolds

If $O \cong \mathbb{H}^3/\Gamma_O$ is a finite volume, cusped hyperbolic 3-orbifold O, then Γ_O is *arithmetic* if $k\Gamma_O = \mathbb{Q}(\sqrt{-d})$ (for d a square-free integer) and Γ_O admits integral traces. Also, if Γ_O is arithmetic, then O is *arithmetic*. Otherwise, the orbifold is non-arithmetic and the corresponding group is non-arithmetic.

Let \mathcal{O}_d be the ring of integers in $\mathbb{Q}(\sqrt{-d})$. Then an orbifold of the form $\mathbb{H}^3/PSL(2, \mathcal{O}_d)$ is an arithmetic orbifold, since its invariant trace field is quadratic imaginary and $PSL(2, \mathcal{O}_d)$ has integral traces.

Riley showed that if K is the figure 8 knot then $\pi_1(\mathbb{S}^3 - K) \subset PSL(2, \mathcal{O}_3)$ (see [34]). Reid completely classifies arithmetic knot complements by the following theorem:

Theorem 2.2 (Reid, 1991). The figure 8 knot complement is the only arithmetic knot complement.

Since the invariant trace field and the property of having integral traces are commensurability class invariants, arithmeticity is a commensurability class invariant. Therefore, there are no other knot complements commensurable with the figure 8 knot complement. Being commensurable with $PSL(2, \mathcal{O}_d)$ (where d is a negative squarefree integer) is equivalent to be being arithmetic. Furthermore, if $k = \mathbb{Q}(\sqrt{d})$, It follows from work of Hurwitz that the number of cusps of $\mathbb{H}^3/PSL(2, \mathcal{O}_d)$ is h_k (see [22]). We define a maximal (non-cocompact) arithmetic group Γ to be an arithmetic group that is not contained in any other discrete arithmetic group. For \mathcal{O}_3 , we restate the following special case of [11].

Theorem 2.3 (Chinburg, Long, and Reid, 2008). All maximal arithmetic subgroups of $PSL(2, \mathbb{C})$ commensurable with $PSL(2, \mathbb{O}_3)$ have one cusp.

2.4 Tetrahedral orbifolds

We will call a hyperbolic 3-orbifold \mathbb{H}^3/Γ *tetrahedral* if \mathbb{H}^3/Γ is the orientation double cover of a quotient of a group generated by reflections in the faces of a hyperbolic tetrahedron. We will call a group *tetrahedral* if it is the orbifold fundamental group of a tetrahedral orbifold.

The orbifold fundamental groups of tetrahedral orbifolds are computed by determining the angles between the faces of the tetrahedron. Each angle is a submultiple of 2π . Therefore, we will parametrize tetrahedral groups by six integers. If we have the tetrahedron T in Figure 2.6, as described in [22, Chap 4.7], we denote by

$$\Gamma(m, n, p, r, s, t) = \langle x, y, z | x^m = y^n = z^p = (yz^{-1})^r = (zx^{-1})^s = (xy^{-1})^t = 1 \rangle$$

(the tetrahedral group associated to T). Since we are considering our tetrahedral groups to be orientable, $\mathbb{H}^3/\Gamma(m, n, p, r, s, t)$ is homeomorphic to two

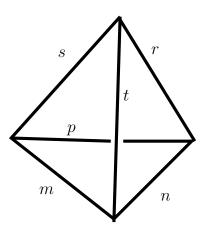


Figure 2.6: The angle between to faces of the tetrahedron above is $\frac{2\pi}{n}$ where n is label on their common edge

copies of the tetrahedron in Figure 2.6 glued together by a set of face pairings.

2.5 Hidden symmetries

An important commensurability class invariant of Γ or \mathbb{H}^3/Γ is the commensurator, denoted by

$$Comm^+(\Gamma) = \{g \in PSL(2,\mathbb{C}) | [\Gamma \colon \Gamma \cap g\Gamma g^{-1}] < \infty, [g\Gamma g^{-1} \colon \Gamma \cap g\Gamma g^{-1}] < \infty \}.$$

Denote by $N^+(\Gamma)$ the normalizer of Γ in $PSL(2,\mathbb{C})$. We say that a group Γ has hidden symmetries if $[Comm^+(\Gamma) : N^+(\Gamma)] > 1$. A hyperbolic orbifold, $Q = \mathbb{H}^3/\Gamma_Q$, has hidden symmetries if Γ_Q has hidden symmetries.

Margulis showed that if Γ is non-arithmetic then $Comm^+(\Gamma)$ is discrete (see [23]). Therefore, if Γ is non-arithmetic, we define the *commensurator quotient* to be $\mathbb{H}^3/Comm^+(\Gamma)$. In this case, $\mathbb{H}^3/Comm^+(\Gamma)$ is the minimum volume orbifold in the commensurability class and it is covered by all orbifolds commensurable with \mathbb{H}^3/Γ .

We defined hidden symmetries in terms of elements of the commensurator above. However, in [28], it has been shown that this algebraic condition is equivalent to an topological condition for knot complements.

Theorem 2.4 (Neumann and Reid, 1991). Let $\mathbb{S}^3 - K \cong \mathbb{H}^3/\Gamma$ be a nonarithmetic knot complement. Then the following are equivalent:

- 1. $\mathbb{S}^3 K$ admits hidden symmetries.
- 2. $\mathbb{H}^3/Comm^+(\Gamma)$ has a rigid cusp.
- 3. $\mathbb{S}^3 K$ non-normally covers some orbifold.

A key element of the proof of this theorem, which will also be relevant to the following arguments, states that if $p: \mathbb{S}^3 - K \to O$ where O does not have a rigid cusp, then p is regular (see [32, Lem 4]). If, as above, we have $\mathbb{S}^3 - K \cong \mathbb{H}^3/\Gamma$, then $N^+(\Gamma)/\Gamma \cong Isom^+(\mathbb{S}^3 - K)$, by Mostow-Prasad Rigidity. Therefore, $N^+(\Gamma)$ is generated by Γ and possibly parabolic elements that act on the complement by translation along the longitude and *strong inversions*, ie order 2 elliptic elements that reverse the orientation on the cusp of the knot complement. In \mathbb{S}^3 , a strong inversion of a knot is realized by an order 2 symmetry of \mathbb{S}^3 that sends the knot to itself as an embedded curve in \mathbb{S}^3 and fixes two points on the knot. Finally, if a knot complement admits a strong inversion, we say it is *strongly invertible*.

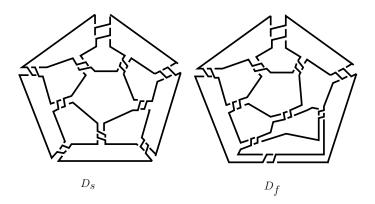


Figure 2.7: The dodecahedral knots

Also, by [28, Prop 2.7], the cusp field of a hyperbolic orbifold is a subfield of the invariant trace field. Thus, if a hyperbolic orbifold has a $S^2(3,3,3)$ or $S^2(2,3,6)$ cusp, $\mathbb{Q}(\sqrt{-3})$ must be a subfield of the orbifold's invariant trace field and if the cusp is $S^2(2,4,4)$, $\mathbb{Q}(i)$ must be a subfield of the orbifold's invariant trace field (see [28, Proof of Thm 5.1(iv)]).

At present, there are only three knot complements known to admit hidden symmetries. The first is the figure 8 knot complement. As noted above, the figure 8 knot complement is arithmetic and so it has a non-discrete commensurator and therefore it has hidden symmetries. In this case, having hidden symmetries can be seen an accident of arithmeticity.

The other examples are the dodecahedral knots of Aitchison and Rubinstein (see [4] and Fig 2.7). These knot complements are constructed by identifying the faces of two regular ideal dodecahedra. Therefore, each knot complement covers a small volume orbifold \mathbb{H}^3/D where D is the group of orientation preserving isometries of T, a tessellation of \mathbb{H}^3 by regular ideal dodecahedra. Each dodecahedral knot group is index 120 in D. Furthermore, D is tetrahedral, $D = \Gamma(5, 2, 2, 6, 2, 3)$, and \mathbb{H}^3/D has volume approximately .3430.. (see [28] and [29]). Since \mathbb{H}^3/D has a rigid cusp, the dodecahedral knot complements admit hidden symmetries. Finally, we remark that the dodecahedral knot complements admit integral traces and have an invariant trace field that is class number 1. Therefore, we will be able to apply Theorem 1 to these knot complements.

2.6 Adams' classification of orbifolds of small volume

For the remainder of the thesis, we will observe the convention that the volume of a regular ideal tetrahedron in hyperbolic space is denoted by $v_0 \approx 1.01494160$. Also, the volume of an ideal tetrahedron with dihedral angles of $\frac{\pi}{2}$, $\frac{\pi}{4}$, and $\frac{\pi}{4}$ is denoted by $v_1 \approx .9159655941$.

Let $O = \mathbb{H}^3/\Gamma_O$ be a 1-cusped hyperbolic orbifold. We will consider the action of Γ_O on upper half space.

Assume that Γ_O has an upper triangular parabolic element. Hence, ∞ is a parabolic fixed point. Choose another parabolic fixed point $y \in \mathbb{C}$. We will say a Euclidean ball B_y is based at y if the ball is tangent to \mathbb{C} at y. We call the set $\{g(B_y)|g \in \Gamma_O\}$ the *horoballs* associated to Γ_O . If we grow B_y equivariantly with respect to Γ_O , eventually a ball B_x (based at x) will be tangent to the image of $g(B_y)$ where $g \in \Gamma_O$ sends y to ∞ . In this case, we call the set $\{g(B_y)|g \in \Gamma_O\}$ a set of *maximal horoballs*. For further background on horoballs, see [1]. Given any fundamental domain D for \mathbb{H}^3/Γ_O , we partition D into two sets: D_c the set of points in D inside maximal horoballs; and D_o the set of points outside the maximal horoballs. We call the volume D_c the cusp volume of O.

Meyerhoff used such a sphere packing to classify the hyperbolic 3orbifold of least volume (see [25]). In particular, Meyerhoff showed that the densest sphere packing implies the that the *cusp density*, ie ratio of cusp volume to total volume, is at most $\frac{2}{v_0\sqrt{3}}$. Using this bound on cusp density and other techniques, Adams improved upon this classification and exhibited the six hyperbolic (orientable) 3-orbifolds of least volume (see [2]). In addition, Adams classified maximal horoball arrangements corresponding to low cusp volume.

The following theorem summarizes Meyerhoff's result and Adams' classification of small cusp volume hyperbolic orbifolds (see [25], [2, Thm 3.2, Cor 4.1, Thm 5.2]).

Theorem 2.5 (Adams, 1991). Let O be a 1-cusped hyperbolic 3-orbifold.

- 1. A maximal $S^2(2,3,6)$ cusp in O has volume either $\frac{\sqrt{3}}{24}$, $\frac{\sqrt{3}}{12}$, $\frac{1}{8}$, $\frac{\sqrt{3}(3+\sqrt{5})}{48}$, $\frac{\sqrt{21}}{24}$ or at least $\frac{\sqrt{3}}{8}$.
- 2. A maximal $S^2(3,3,3)$ cusp in O has volume either $\frac{\sqrt{3}}{12}$, $\frac{\sqrt{3}}{6}$, $\frac{1}{4}$, $\frac{\sqrt{3}(3+\sqrt{5})}{24}$, $\frac{\sqrt{21}}{12}$ or at least $\frac{\sqrt{3}}{4}$.
- 3. A maximal $S^2(2,4,4)$ cusp in O has volume either $\frac{1}{8}$, $\frac{\sqrt{2}}{8}$, or at least $\frac{1}{4}$.

Adams points out that for an orbifold O with a $S^2(2,3,6)$ cusp described in 1) above and each cusp volume in 2), there is a unique orbifold with a $S^2(3,3,3)$ cusp that is the double cover of O.

Neumann and Reid provided explicit descriptions of many of the orbifolds corresponding to the cusp volumes in these theorems (see [29]). Many of the orbifolds they describe are arithmetic. More specifically, their notes together with some notes by Adams on the volume of the orbifolds can be summarized in the following proposition (see [2]):

Proposition 2.6 (Adams 1991, Neumann and Reid 1991). Let O be a 1-cusped hyperbolic 3-orbifold.

- 1. If O has a maximal $S^2(2,3,6)$ cusp of volume either $\frac{\sqrt{3}}{24}$, $\frac{\sqrt{3}}{12}$, or $\frac{1}{8}$, it is arithmetic. Furthermore, these orbifolds have volumes $\frac{v_0}{12}$, $\frac{v_0}{6}$, and $\frac{5v_0}{24}$, respectively.
- 2. If O has a maximal $S^2(3,3,3)$ cusp of volume either $\frac{\sqrt{3}}{12}$, $\frac{\sqrt{3}}{6}$, or $\frac{1}{4}$, it is arithmetic. Furthermore, these orbifolds have volumes $\frac{v_0}{6}$, $\frac{v_0}{3}$, and $\frac{5v_0}{12}$, respectively.
- 3. If O has a maximal $S^2(2, 4, 4)$ cusp of volume either $\frac{1}{8}$ or $\frac{\sqrt{2}}{8}$, it is arithmetic. Furthermore, these orbifolds have volumes $\frac{v_1}{6}$ and $\frac{v_1}{4}$, respectively.

Adams also notes that the orbifold with a $S^2(2,3,6)$ and cusp volume $\frac{\sqrt{3}(3+\sqrt{5})}{48}$ and the orbifold with a $S^2(3,3,3)$ and cusp volume $\frac{\sqrt{3}(3+\sqrt{5})}{24}$ are both

tetrahedral. Their volumes are $v \approx .3430$.. and $v' \approx .6860$.., respectively. We remark that the orbifold of volume v is homeomorphic to \mathbb{H}^3/D from the previous section (see [28, §9]).

Following Theorem 3.2 in Adams' paper, there is a conjectural picture of the orbifold with $S^2(2,3,6)$ and cusp volume $\frac{\sqrt{21}}{24}$. Together with the Corollary 4.1 we obtain a conjectural picture of the orbifold with a $S^2(3,3,3)$ cusp and cusp volume $\frac{\sqrt{21}}{12}$. However, a computation of the orbifold fundamental groups shows that these orbifolds turn out to have invariant trace fields that differ from this conjectural picture. The argument is outside of the scope of this background section, so we will delay the computation and discussion of these orbifolds until §4.2.

2.7 Dehn filling

Given a 3-orbifold M with a single torus boundary, the result of γ -Dehn filling on M is the space $M \cup_{\gamma} T = M(\gamma)$ where T is a solid torus, ∂M is a single torus, γ is a curve in ∂M and the ∂T and ∂M are identified by a homeomorphism that identifies γ with a curve $\mu \in \partial T$ bounding a disk in T. If γ is a simple curve and M is a manifold then $M(\gamma)$ is a manifold. Here, $\pi_1(M(\gamma)) = \pi_1(M)/\langle\langle\gamma\rangle\rangle_{\pi_1(M)}$ where $\langle\langle\gamma\rangle\rangle_{\pi_1(M)}$ denotes the normal closure of γ in $\pi_1(M)$. If $\gamma = \alpha^n$ with $n \geq 2$ ie not a simple curve, then $M(\gamma)$ is an orbifold with base space $M(\alpha)$ and a simple closed curve labeled by n torsion along the core of the torus glued in under the surgery. Here, $\pi_1(M(\gamma)) = \pi_1(M)/\langle\langle\alpha^n\rangle\rangle_{\pi_1(M)}$. If M has more than one torus boundary, we can define Dehn filling as above by restricting to a particular torus boundary.

For knot exteriors M, we can construct canonical coordinates to parametrize the curves we fill along. We define the longitude to be the curve on the boundary torus of M that is homologically trivial. In addition, there is a curve μ which intersects the longitude in one point and has the property that $M(\mu) = \mathbb{S}^3$. We call such a curve the meridian and the corresponding filling the *trivial filling*. By [18], this filling is unique and so we call any other filling a *non-trivial* filling.

We also define *Dehn surgery* on M if M has a torus cusp. In this case, the cusp is homeomorphic to $T^2 \times [0, \infty)$ and we remove $N = T^2 \times [a, \infty)$ (here a > 0) from this cusp. Then we attach a solid torus to the newly created torus boundary via the Dehn filling procedure described above.

2.7.1 Exceptional Dehn filling

A Dehn filling is *exceptional* if it does not admit a finite volume hyperbolic structure. It is in general rare for surgery on a hyperbolic 3-manifold or 3-orbifold to be exceptional. The following theorem appears as Theorem 5.8.2 in Thurston's notes (see [38]). A statement is included below for completeness.

Theorem 2.7 (Thurston's Hyperbolic Dehn Surgery Theorem). Let *M* be an *n*-cusped hyperbolic 3-manifold. If we restrict to Dehn filling along a particular cusp, all but at most finitely many Dehn fillings will admit a hyperbolic structure.

Thus, if M is hyperbolic with many torus boundary components, then Dehn filling along just one boundary component will result in a hyperbolic manifold for all but at most finitely many curves. Dehn fillings.

2.7.2 The Six Theorem

We can define length for a parabolic element γ for a one-cusp hyperbolic 3-manifold M in the following manner. Considering the upper half space model, conjugate γ so it is a parabolic fixing ∞ . Let B_{∞} be the maximal horoball that is based at ∞ . The length of the translation by γ in $g(B_{\infty})$ will be the distance between x and $\gamma(x)$ as measured in the boundary of B_{∞} . We will denote this length by $len(\gamma)$.

Agol and Lackenby (see [3], [19]) both independently proved the "Six Theorem" namely:

Theorem 2.8 (Agol 2000, Lackenby 2000). If M is a hyperbolic manifold and $M(\gamma)$ is not hyperbolic, then $len(\gamma) \leq 6$.

This result improved the bound of the 2π -Theorem attributed to Gromov and Thurston which bounded the length of γ by 2π .

As noted in §2.0.2, a rigid cusped orbifold O admit one geometric structure up to Euclidean similarity. If we fix a structure, such that the shortest translation in $\pi_1^{orb}(O)$ is of length 1, the maximal abelian subgroup of $\pi_1^{orb}(O)$ can be identified with a fixed \mathbb{Z} -lattice in the complex plane. Specifically, if O is either $S^2(2,3,6)$ or $S^2(3,3,3)$, this lattice L_{ω} has 1 and ω as its basis vectors, where $\omega^2 + \omega + 1 = 0$. Note that vectors in L_{ω} are of the form $n + m\omega$, $n, m \in \mathbb{Z}$. Vectors of length less than 6 will be of particular interest and so are noted in Figure 2.8(a). Specifically, if a sublattice is generated by 1 and $n + m\omega$ and the lattice has a non-trivial vector v of length less than 6 with $v \neq \pm 1$, then $|m| \leq 6$. If O is $S^2(2, 4, 4)$, the \mathbb{Z} -lattice L_i that corresponds translations in $\pi_1^{orb}(O)$ is of the form $n + m \cdot i$. In this case, we can make the same observation. Namely, if a sublattice is generated by 1 and $n + m \cdot i$ and the lattice has a non-trivial vector v of length less than 6 with $v \neq \pm 1$, then $|m| \leq 6$ (see Fig 2.8(b)).

2.7.3 Finite cyclic fillings and coverings by knot complements

Given a hyperbolic knot complement $\mathbb{S}^3 - K$, we can bound the number of possible finite cyclic fillings it can admit.

Theorem 2.9 (Culler, Gordon, Luecke, and Shalen, 1987). Let M be a hyperbolic 3-manifold with one boundary component. If α is slope in ∂M , then $\pi_1(M(\alpha))$ is finite cyclic group for at most three α .

In fact, finite cyclic fillings of hyperbolic knot exteriors correspond to finite coverings by other knot exteriors. More precisely,

Theorem 2.10 (González-Acuña and Witten, 1992). If M is a hyperbolic knot exterior, we can construct a covering of M by a knot exterior for each finite cyclic filling of M.

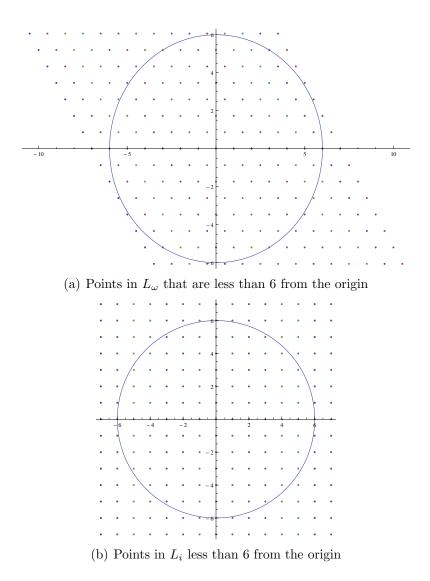


Figure 2.8: Lattice points that are length less than 6 from the origin.

Combining these two results we see that a knot complement can be covered by at most two other knot complements.

The result of Boileau, Boyer, Cebanu and Walsh (see [8]) mentioned earlier generalizes this construction to orbifolds that admit cyclic fillings. They show that a hyperbolic orbifold admits at most three cyclic fillings and that each time a knot complement $\mathbb{S}^3 - K$ covers a torus-cusped orbifold O, Oadmits a cyclic filling. Furthermore they show that if $\mathbb{S}^3 - K$ does not admit hidden symmetries, this completely characterizes the knot complements in a commensurability class. For future reference, we state their results in the following theorem:

Theorem 2.11 (Boileau, Boyer, Cebanu and Walsh, 2010). If $\mathbb{S}^3 - K$ is hyperbolic and does not admit hidden symmetries, it is commensurable with at most two other knot complements.

An important element in the proof the above theorem is a classification of *orbi-lens spaces*, ie orbifolds with finite cyclic fundamental group. This classification is listed below and originally appears as Lemma 3.1 in [8]. Furthermore, this argument generalizes the classification of *lens spaces*, which are manifolds with finite cyclic fundamental group. These manifolds all admit a genus one Heegaard splitting, ie they are the union of two solid tori glued together via a boundary identification. As a result of the Orbifold Theorem (see Thm 1) and the positive solution to the Geometrization conjecture (see [26]), we know that all orbi-lens spaces are quotients of \mathbb{S}^3 . **Theorem 2.12** (Boileau, Boyer, Cebanu, Walsh, 2010). Let Z be a finite cyclic subgroup of SO(4) of order n and fix a generator ψ of Z. There are a genus one Heegaard splitting $\mathbb{S}^3 = V_1 \cup V_2$, cores C_1, C_2 of V_1, V_2 , and integers $a_1, a_2 \geq 1$ such that

- 1. both V_1 and V_2 are Z-invariant.
- 2. ψ acts by rotation of order a_1 on C_1 and order a_2 on C_2 . Moreover, the Z-isotropy subgroup of a point in
 - (a) \mathbb{S}^3 ($C_1 \cup C_2$) is trivial.
 - (b) C_1 is generated by ψ^{a_1} and has order $\bar{a}_2 = n/a_1$,
 - (c) C_2 is generated by ψ^{a_2} and has order $\bar{a}_1 = n/a_2$.

Thus, $n = lcm(a_1, a_2)$, $\bar{a}_1 = a_1/gcd(a_1, a_2)$, $\bar{a}_2 = a_2/gcd(a_1, a_2)$, so $gcd(\bar{a}_1, \bar{a}_2) = 1$.

 S³/Z is the lens space with fundamental group Z/gcd(a₁, a₂) and genus one Heegaard splitting (V₁/Z) ∪ (V₂/Z).

2.8 Notation

We now establish the notation that will be used throughout the thesis.

First,

$$\Gamma_K = \pi_1(\mathbb{S}^3 - K)$$

where K is an embedded knot in \mathbb{S}^3 .

If $O \cong \mathbb{H}^3/\Gamma$ or $O \cong \mathbb{S}^3/\Gamma$, we say that

$$\Gamma = \Gamma_O.$$

Also, we use P to denote the peripheral subgroup of a 1-cusped orbifold O. In arguments where multiple 1-cusped orbifolds are being discussed, we denote the peripheral subgroup of O by P_O for clarity. Similarly, if P is the peripheral subgroup of a knot complement, we will simply use P_K .

Chapter 3

Commensurability classes containing exactly three hyperbolic knot complements

In this chapter, we exhibit infinitely many commensurability classes containing exactly three hyperbolic knot complements. Each commensurability class can be identified by an orbifold that is the result of surgery on the *Berge manifold*, which is the complement of the two-component link shown in Figure 3.1. In particular, we prove the following theorem:

Theorem 3.1. Let $n \ge 1$ and (n,7) = 1. For all but at most finitely many pairs of integers (n,m), the result of (n,m) Dehn surgery on the unknotted cusp of the Berge manifold is a hyperbolic orbifold with exactly three knot complements in its commensurability classes.

An important ingredient of the proof is an orbifold coming from (n, m)surgery on the unknotted cusp of the Berge manifold, which we denote by $\beta_{n,m}$. Each of these orbifolds admits three finite cyclic fillings (see §3.1.1). For each one of these fillings we can construct a covering by a knot complement (see Lem 5). In general, classifying manifolds three cyclic fillings remains an open problem, however in the case where $\beta_{n,m}$ has non-empty branch set more is known. We finish the chapter with a complete classification of orbifolds that

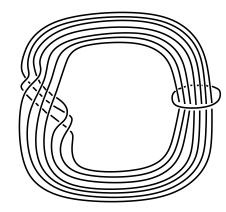


Figure 3.1: The Berge manifold is the complement of this link.

admit three cyclic fillings, are covered by three hyperbolic knot complements, and have non-empty branch set (see Thm 6).

3.1 Preliminaries

If a knot complement admits hidden symmetries, it covers an orbifold with a rigid cusp (see Thm 4). In the arguments that follow, we will show that certain manifolds and orbifolds do not cover rigid cusped orbifolds as an obstruction to having hidden symmetries.

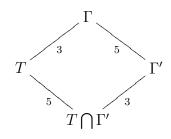
First, we investigate some self-covers of Euclidean 2-orbifolds. Like the torus, the orbifolds $S^2(3,3,3)$, $S^2(2,4,4)$, and $S^2(2,3,6)$, can admit selfcovers. As noted in the previous chapter, the groups of deck transformations for the above orbifolds are of the form $(\mathbb{Z} \times \mathbb{Z}) \rtimes_f \mathbb{Z}/n\mathbb{Z}$ (where n is 3, 4, or 6 respectively), there exists a degree m self-cover of one of these orbifolds for each index m subgroup of $\mathbb{Z} \times \mathbb{Z}$ preserved by f, an outer automorphism of $\mathbb{Z} \times \mathbb{Z}$. The following proposition shows that there are certain degrees such that $S^2(3,3,3)$ does not admit a self-cover.

Proposition 3.2. Let $p: O' \to O$ be a covering map. If $O \cong S^2(3,3,3)$, then degree of p is not 2 or 5.

Proof. Denote by $\Gamma = \pi_1^{orb}(O)$ and note that the abelianization of Γ is $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ (see §2.0.2). In particular, Γ has no index 2 subgroups.

Assume that $\Gamma' \subset \Gamma$ has index 5. The abelianization of Γ excludes the case that $\Gamma' \lhd \Gamma$.

Notice, Γ has a torsion-free subgroup $T \cong \mathbb{Z} \times \mathbb{Z}$ of index 3. Also, $[\Gamma : \Gamma' \cdot T][\Gamma' \cdot T : T] = 3$ and since Γ' has torsion elements, $[\Gamma : \Gamma' \cdot T] = 1$. Thus, we get the following lattice of subgroups:



Note that $T \triangleleft \Gamma$. Hence, we have that $T \bigcap \Gamma' \triangleleft \Gamma'$ by the Second Isomorphism Theorem. Also, $T \bigcap \Gamma' \triangleleft T$ since T is abelian. Using $\Gamma = \Gamma' \cdot T$, we obtain that $T \bigcap \Gamma' \triangleleft \Gamma$. Thus, $\Gamma/T \bigcap \Gamma'$ is isomorphic to a cyclic group of order 15, which is a contradiction to abelianization of Γ being $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$. This completes the proof.

3.1.1 Special fillings of the Berge manifold

In the explanation below, we assume that the (n, m) surgery on the Berge manifold comes from a standard framing on the cusps of this link complement as in §2.7.

Each $\beta_{n,m}$ admits several surgery slopes of interest. These surgeries can be explained by understanding surgeries on the Berge manifold. First, if we perform Dehn surgery along the (1,0) slope of the unknotted cusp of the Berge manifold, we will obtain the (-2, 3, 7) pretzel knot (see [14]). Also, if we drill out a solid torus along the unknotted cusp of the manifold we would obtain the one knot in the solid torus (defined up to homeomorphism of the solid torus) that admits three $D^2 \times S^1$ fillings (see [6, Cor 2.9]). Furthermore, if we perform Dehn surgery along the (1, r) slope and then drill along the core of the surgered torus, we would also obtain a knot complement in $D^2 \times S^1$ that admits three $D^2 \times S^1$ surgeries. In fact, by the above mentioned corollary, these are the only knots in solid tori with this property.

The above construction shows that Dehn surgery along a (1, r) slope of the unknotted cusp of the Berge manifold produces knot complements that produce three lens space surgeries. In fact, it is well known that the (1,0), (18,1) and (19,1) surgery slopes on the (-2,3,7) pretzel knot admit lens space surgeries (see [14]). By drilling out the unknotted cusp of the Berge manifold, these are also the surgery slopes that produce a solid torus filling. Since the linking number of the knotted cusp and the unknotted cusp is 7, the longitude gets sent to the curve (49r, 1) after (1, r) Dehn surgery on the unknotted cusp while the meridian (1, 0) remains fixed (for further background see [36, Sect 9.H]). So the (1, 0), (18, 1), and (19, 1) surgery parameters get sent to (1, 0), (49r + 18, 1), and (49r + 19, 1) respectively after (1, r) Dehn surgery on the unknotted cusp. Therefore, these fillings produce solid tori in the new coordinates. Furthermore, we can use the surgery parameters to compute the homology of the manifolds resulting from lens space surgeries on the knot complements. In fact, we see that for these knots we obtain S^3 and two lens spaces - one with fundamental group of order |49r + 18| and another of order |49r + 19|.

More generally, if we allow Dehn surgery along any (p,q) slope of the unknotted cusp of the Berge manifold where (p,q)=1, and either (1,0), (18,1), or (19,1) Dehn surgery on the knotted cusp, we will also get lens spaces. Again, we see that the (1,0) surgery slope corresponds to a lens space of order |p|, (18,1) surgery slope corresponds to a lens space of order |49q+18p|, and (19,1) surgery slope corresponds to a lens space of order |49q+19p|.

3.1.2 The commensurability class of the Berge manifold

As defined in §2.3, $v_0 \approx 1.01494146$ as the volume of the regular ideal tetrahedron. The Berge manifold is comprised of four such tetrahedra and therefore its volume is $4v_0$. Denote by Ω_L the fundamental group of the Berge manifold.

We saw that the figure 8 knot complement is the only arithmetic knot complement (see Thm 2). However, there are two component link complements that are arithmetic. In particular the Berge manifold is the complement of the link in Figure 3.1 and is arithmetic.

Proposition 3.3. The Berge manifold is arithmetic. Furthermore, the invariant trace field of the Berge manifold is $\mathbb{Q}(\sqrt{-3})$.

Proof. As stated above the Berge manifold is a link complement made up of four regular ideal tetrahedra. Let Γ be the group generated by the order 24 group of symmetries of the ideal tetrahedron. Then \mathbb{H}^3/Γ is the smallest volume non-orientable hyperbolic 3-orbifold (see [25]). Let Γ^+ be the orientation preserving subgroup of Γ . Then, $\Gamma^+ = PGL(2, \mathcal{O}_3)$ which can be identified with the group of isometries that preserve the tessellation of \mathbb{H}^3 by regular ideal tetrahedra (see [29]). Since the Berge manifold is comprised of regular ideal tetrahedra, $[\Gamma^+: \Omega_L] = 48$. We make the observation that arithmeticity is preserved by passing to finite index subgroups to complete the first part of the proof. We finish the proof by noting that the invariant trace field of $PGL(2, \mathcal{O}_3)$ is $\mathbb{Q}(\sqrt{-3})$.

The proof of the following lemma takes advantage of the fact that the Berge manifold has relatively low volume in order to show that it cannot cover an orbifold with a torus cusp and a rigid cusp. It is worth mentioning that $PGL(2, \mathcal{O}_3)$ is the orbifold fundamental group of hyperbolic orbifold with a single $S^2(2, 3, 6)$ cusp. Additionally, the following proof will consider $PSL(2, \mathcal{O}_3)$, which is an index 2 subgroup of $PGL(2, \mathcal{O}_3)$, and so $\mathbb{H}^3/PSL(2, \mathcal{O}_3)$ is a twofold cover of the orbifold $\mathbb{H}^3/PSL(2, \mathcal{O}_3)$ (see §2.6). Hence for this paper, we consider $PGL(2, \mathcal{O}_3)$ under the image of its representation into $PSL(2, \mathbb{C})$. Also, we will consider all other groups as subgroups of $PSL(2, \mathbb{C})$ where necessary.

Lemma 3.4. The Berge manifold does not cover an orbifold with a torus cusp and a rigid cusp.

Proof of 4. Assume Q_T is an orbifold with a torus cusp and a rigid cusp covered by the Berge manifold. Since the invariant trace field of the Berge manifold is $\mathbb{Q}(\sqrt{-3})$, the rigid cusp of Q_T must be either $S^2(3,3,3)$ or $S^2(2,3,6)$. In either case, consideration of the unknotted torus cusp of the Berge manifold covering the rigid cusp shows the degree of such a cover is 3k for some integer $k \ge 1$. Also, since the Berge manifold is arithmetic and the class number of $\mathbb{Q}(\sqrt{-3})$ is 1 (see Prop 3 and §2.2), it follows from Theorem 3 that any maximal group commensurable with the Berge manifold has exactly one cusp. Thus, there exists a one-cusped orbifold Q_M covered by Q_T .

Denote the Berge manifold by B. By consideration of a torus cusp of B covering the rigid cusp of Q_T , we see that $p_1: B \to Q_T$ is a covering map of degree $3k \ (k \ge 1)$. Also, by consideration of the torus cusp of Q_T covering the rigid cusp of $Q_M, p_2: Q_T \to Q_M$ is a covering map of degree at least 3. If Q_M has a $S^2(3,3,3)$ cusp, we use the fact that $vol(Q_M) \le \frac{4v_0}{9}$ to show that it must be one of the orbifolds classified by Adams (see Thm 5 and Prop 6). However, as pointed out in the comment after the theorem, each of the orbifolds is a double cover of an orbifold with a $S^2(2,3,6)$ cusp. Since we may assume Q_M is corresponds to a maximal subgroup of $PSL(2, \mathbb{C})$, and is therefore not a cover of any smaller volume orbifold, we only have to consider to the case that Q_M has a $S^2(2,3,6)$ cusp. In this case, Q_M has a $S^2(2,3,6)$ cusp and the degree of p_2 is at least 7. Since the torus cusp of Q_T is at least a six fold-cover of the rigid cusp of Q_M and the rigid cusp of Q_T is at least a one-fold cover of the rigid cusp of Q_M . Hence, $vol(Q_M) \leq \frac{2v_0}{9}$ and Q_M is described by Adams (see §2.6). Furthermore, since $vol(B) = 4v_0$, $vol(Q_M)$ is either $\frac{v_0}{6}$ or $\frac{v_0}{12}$. Thus, the covering of Q_M by the Berge manifold is of order 24 or 48, respectively. We will consider these two cases separately by further analyzing the possible covering maps p_1 and p_2 .

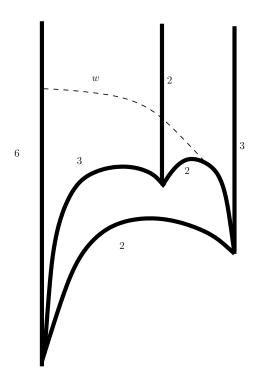


Figure 3.2: The fundamental domain for Γ together with the involution w

Case 1: Q_M has volume $v_0/6$ and the degree of the cover $p_1: B \to Q_M$ is 24.

By noting that Γ_{Q_M} has an index 2 subgroup:

 $\Gamma = \langle x, y, z | x^2, y^2, z^3, (yz^{-1})^2, (zx^{-1})^6, (xy^{-1})^3 \rangle$ and $\Gamma_{Q_M} = \langle \Gamma, w \rangle$ where w is the order 2 rotation on the fundamental domain of Γ , we obtain a presentation for Γ_{Q_M} (see §2.4 and Fig 3.2).

Thus, we obtain the following presentation:

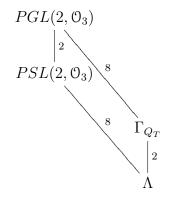
$$\Gamma_{Q_M} = \langle w, x, y, z | x^2, y^2, z^3, w^2, (yz^{-1})^2, (zx^{-1})^6, (xy^{-1})^3, (wx)^2, wywyz^{-1} \rangle.$$

By the constraints mentioned above, the degree $p_1: B \to Q_T$ must be 3 and the degree of $p_2: Q_T \to Q_M$ must be 8. However, using GAP, the above group Γ_{Q_M} does not have any index 8 subgroups. Thus, there can be no orbifold Q_T .

Case 2: Q_M has volume $v_0/12$ and the degree of the cover $p_2: B \to Q_M$ is 48.

In this case, $Q_M \cong \mathbb{H}^3/PGL(2, \mathcal{O}_3)$ and so we will consider the group picture. Here, $[PGL(2, \mathcal{O}_3) : \Gamma_{Q_T}] = 8$ or 16, since degree of $p_2 \ge 7$ and the degree of $p_1 = 3k$ $(k \ge 1)$.

First, assume $[PGL(2, \mathcal{O}_3) : \Gamma_{Q_T}] = 8$. If $\Gamma_{Q_T} \subset PSL(2, \mathcal{O}_3)$, $[PSL(2, \mathcal{O}_3) : \Gamma_{Q_T}] = 4$. Using GAP, there is a unique index 4 subgroup G of $PSL(2, \mathcal{O}_3)$. However, G has finite abelianization, and therefore cannot be the orbifold group of Q_T . Thus, we may assume that $\Gamma_{Q_T} \not\subset PSL(2, \mathcal{O}_3)$ and deduce that there is a unique subgroup Λ of index 2 in Γ_{Q_T} such that $\Lambda \subset PSL(2, \mathcal{O}_3)$. By covolume considerations Λ has index 8 in $PSL(2, \mathcal{O}_3)$. Also, \mathbb{H}^3/Λ has a torus cusp and a $S^2(3,3,3)$ cusp. Since $\mathbb{H}^3/PSL(2, \mathcal{O}_3)$ has a $S^2(3,3,3)$ cusp, the degree of the covering $p: \mathbb{H}^3/\Lambda \to \mathbb{H}^3/PSL(2, \mathcal{O}_3)$ has to be 3l + m. However, $m \neq 2, 5$ (see Prop 2), a contradiction.



Now, assume that $[PGL(2, \mathcal{O}_3) : \Gamma_{Q_T}] = 16$. We know that $p_1 \colon B \to Q_T$ is of degree 3 and therefore, Q_T has a $S^2(3, 3, 3)$ cusp and a torus cusp. Thus, $\Gamma_{Q_T} \subset PSL(2, \mathcal{O}_3)$ and $[PSL(2, \mathcal{O}_3) : \Gamma_{Q_T}] = 8$, giving us the same contradiction as in above paragraph.

This completes the proof.

3.2 Knot complements covering $\beta_{n,m}$

In this section, we show that for fixed n and m, $\beta_{n,m}$ admits three finite cyclic surgeries. We also show directly it is covered by three knot complements

if $n \neq 7$.

Lemma 3.5. The orbifolds $\beta_{n,m}$ are covered by three knot complements. Furthermore, the degrees of the corresponding covering maps are distinct.

Proof. For a fixed $\beta_{n,m}$, let r = (n, m) and consider $\beta_{n,m}$ as the union of the complement of a knot in a solid torus, T_1 and a solid torus with core a singular locus of order r, T_2 (see Fig 3.3).

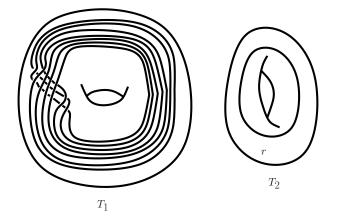


Figure 3.3: The decomposition of a surgered $\beta_{n,m}$ along a torus

By [6, Cor 2.9], T_1 admits three Dehn surgeries that result in a solid torus. Thus, $\beta_{n,m}$ admits three Dehn surgeries that are homeomorphic to T_2 and a solid torus glued together along their boundaries. Each orbifold O_j $(j \in \{1, 2, 3\})$ resulting from one of these Dehn surgeries has underlying space a lens space with Γ_{O_j} finite cyclic.

In fact, $|\Gamma_{O_j}|$ is distinct for each choice of j. To see this, we observe, as noted above, that O_j is an orbifold with underlying space a lens space. Moreover, this underlying space is a lens space with fundamental group of order either $\frac{n}{r}$, $|49\frac{m}{r} + 18\frac{n}{r}|$, or $|49\frac{m}{r} + 19\frac{n}{r}|$ depending on the choice of surgery on T_1 (see §3.1). Splitting O_j into a solid torus coming from the Dehn surgery on T_1 and T_2 the solid torus core a singular curve, we can compute Γ_{O_j} using van Kampen's theorem. Thus, the orders of the each fundamental group increase by a factor of r and $|\Gamma_{O_j}|$ is either $n, r \cdot |49\frac{m}{r} + 18\frac{n}{r}|$, or $r \cdot |49\frac{m}{r} + 19\frac{n}{r}|$ which take on three distinct values for fixed n, m, and r.

In addition, by the Orbifold Theorem (see [10, Thm 2]) and the above argument that Γ_{O_j} is finite cyclic, each O_j has S^3 as its universal cover. Denote this covering map by $\phi_j \colon S^3 \to O_j$. We may view O_j as the union of the solid torus coming from the cusp Dehn filling of $\beta_{n,m}$ and the complement of this solid torus, which we denote by B. Hence, $\phi_j^{-1}(B)$ is a knot or link exterior in \mathbb{S}^3 . Since (n,7) = 1 and the singular set of T_2 has linking number 7 with the knotted cusp of $\beta_{n,m}$, the boundary of $\phi_j^{-1}(B)$ is connected. Hence, if (n,7) = 1, $\beta_{n,m}$ will be covered by three knot complements in \mathbb{S}^3 . Also, since the orders of $|\Gamma_{O_j}|$ are distinct, the covering degree of ϕ_j will take on a distinct value for each j.

Remark 3.2.1. When n = 1, the classification of exceptional Dehn surgeries in [24, Table A.1, Rem A.3] shows that $\beta_{n,m}$ is hyperbolic. Hence, $\beta_{1,m}$ is a hyperbolic knot complement that admits three cyclic surgeries. In addition, Eudave-Muñoz realized these these knot complements from tangle filling in [13]. Therefore, the $\beta_{1,m}$ are strongly invertible.

3.3 Proof of Theorem 1

In this section, we prove Theorem 1. Also for this section, we consider $\Omega_{n,m}$, $\Delta_{n,m}$, and Ω_L as subgroups of $PSL(2, \mathbb{C})$.

Proof of Theorem 1. Using Lemma 5, each $\beta_{n,m}$ is covered by three knot complements such that the covers are of distinct degrees. Also, Thurston's Hyperbolic Dehn Surgery Theorem (see Thm 7) shows that all but at most finitely many of the $\beta_{n,m}$ are hyperbolic. For the rest of the proof we only consider those $\beta_{n,m}$ that are hyperbolic. Given this condition, each $\beta_{n,m}$ we consider is covered by three distinct knot complements. By Theorem 11, to prove Theorem 1 it suffices to show that the knot complements covering $\beta_{n,m}$ do not have hidden symmetries.

Suppose an infinite number of the hyperbolic knot complements that cover $\beta_{n,m}$ admit hidden symmetries. By the discussion in §2.5, every such knot complement will non-normally cover an orbifold $Q_{n,m}$ with a rigid cusp. Furthermore, on passage to a subset of the $\beta_{n,m}$, we can assume that the orbifolds $Q_{n,m}$ have the same type of rigid cusp, C. Let $\Omega_{n,m} = \Gamma_{\beta_{n,m}}, \Delta_{n,m} =$ $\Gamma_{Q_{n,m}}$ and let $P \subset PSL(2, \mathbb{C})$ be the peripheral subgroup of $\Delta_{n,m}$. We may assume that each $\Omega_{n,m}$ is conjugated so that P has a fixed representation in $PSL(2, \mathbb{C})$. Since $\beta_{n,m}$ has one cusp, notice that $\Delta_{n,m} = P \cdot \Omega_{n,m}$.

By Thurston's Hyperbolic Dehn Surgery Theorem (see Thm 7), the volumes of the $\beta_{n,m}$ are bounded from above by the volume of the Berge manifold. In addition, the minimum volume of a non-compact oriented hyperbolic 3-orbifold is $\frac{v_0}{12}$ (see §2.6). Hence, $vol(Q_{n,m}) \ge \frac{v_0}{12}$. Thus, we can further subsequence to arrange that $\beta_{n,m}$ covers $Q_{n,m}$, that the $Q_{n,m}$'s have the same type of rigid cusp, and that the covering degree is fixed, say d.

Since $\beta_{n,m}$ is obtained by Dehn surgery on the Berge manifold, the $\Omega_{n,m}$ will converge geometrically to Ω_L , the fundamental group of the Berge manifold (see [38, Thm 5.8.2]). As P is a fixed group in our construction, $\Delta_{n,r}$ also converges algebraically and geometrically to $P \cdot \Omega_L$.

We have the following diagram:

$$\begin{array}{c} \Delta_{n,m} \xrightarrow{(n,m) \to \infty} P \cdot \Omega_L \\ \uparrow^d & \uparrow^d \\ \Omega_{n,m} \xrightarrow{(n,m) \to \infty} \Omega_L \end{array}$$

Note, $[P \cdot \Omega_L : \Omega_L] = d < \infty$. Let $Q_T = \mathbb{H}^3 / P \cdot \Omega_L$. Q_T has two cusps: a torus cusp, corresponding to the cusp created by geometric convergence from Dehn surgery, and a rigid cusp, corresponding to the cusp with peripheral group P.

However by Lemma 4, such a limiting Q_L cannot exist. Hence, at most finitely many of the $\beta_{n,m}$ have hidden symmetries.

Remark 3.3.1. To find explicit examples of hyperbolic knot complements with three knot complements in the commensurability class, we can use the computer program snap (see [16]) to show directly that there are no hidden symmetries. Specifically, for m=0 and n=1,2,3,4,5,6,7, $\beta_{n,m}$ is hyperbolic and snap shows us that $\beta_{n,m}$ has an invariant trace field with real embeddings. These fields cannot contain $\mathbb{Q}(i)$ or $\mathbb{Q}(\sqrt{-3})$ as subfields. Thus, the knot complements covering such $\beta_{n,m}$ do not have hidden symmetries (recall §2.5) and there are exactly three knot complements in each of these commensurability classes.

3.4 Remarks

The following theorem provides a partial classification of hyperbolic orbifolds covered by three knot complements. It can be seen as a direct corollary to a result of [8], however we provide a proof for completeness.

Theorem 3.6. Let O be a closed 3-orbifold and let K be a knot in O that is disjoint from the singular locus of O. If O - K is:

- 1. hyperbolic,
- 2. covered by 3 knot complements,
- 3. does not admit hidden symmetries, and
- 4. O has non-empty singular locus,

then $O - K \cong \beta_{n,m}$ for some pair (n, m).

Proof. Let γ be the singular locus of O. Denote |O| the underlying space of O. By [8, Thm 1.2] and the assumptions above, we know that |O| is a lens space, γ is a non-empty subset of the cores of a genus 1 Heegaard splitting of

|O|, and if $S^3 - K$ covers O - K, then it does so cyclically and corresponds to a finite cyclic filling of O - K. Finally, denote $M = O - \gamma - K$.

First assume γ has one component. Each of the three knot complements covering O - K corresponds to M admitting a $S^1 \times D^2$ filling along its knotted cusp. Again, we appeal to the fact that there is a unique family of knots in solid tori that admits 3 non-trivial $S^1 \times D^2$ fillings (see [6, Cor 9.1]). Hence, M is obtained by performing (1, m) surgery on the unknotted cusp of the Berge manifold then drilling out the core of the surgered torus. Gluing back in the neighborhood of the fixed point set of $\langle \gamma \rangle$ gives us $\beta_{n,m}$ for some n, m.

Now, assume that γ has two components γ_1 and γ_2 . $M = T^2 \times I - K'$, where K' is a knot. Each cyclic filling on O - K corresponds to M admitting a $T^2 \times I$ filling. Hence, Dehn filling along the cusp corresponding to γ_1 will produce a knot complement in $D^2 \times S^1$ with three $D^2 \times S^1$ fillings.

Denote l_1 to be the linking number of γ_1 and K' and l_2 to be the linking number of γ_2 and K'. If l_1 is zero, K' would be a knot in a solid torus that is not a 1-braid after (1,0) on γ_2 but has two non-trivial $S^1 \times D^2$ fillings. This contradicts [6, Cor 9.1]. Hence, we may assume $l_1 \neq 0$ and $l_2 \neq 0$.

Also, (1, n) surgery on γ_2 will produce a knot K'' in a solid torus that has linking number $l_2 + n \cdot l_1$ with γ_2 . In particular for large enough n, $l_2 + n \cdot l_1 \neq$ 7. Hence, it cannot be in the family of knots that admit two non-trivial $S^1 \times D^2$ fillings.

One might hope to relax condition (4) above. However, Brandy Guntel

pointed out to the author that the k(2, 2, 0, 2) knot complement (see Fig 3.4) is hyperbolic and admits two non-trivial cyclic surgeries. In fact, John Berge first showed that this knot complement produced two lens space surgeries in unpublished work. Additionally, Mario Eudave-Muñoz gave a construction of the two non-trivial lens space surgeries of this knot complement (see [13]). Let M(r) denote Dehn filling the torus cusp with respect to the slope r on the cusp torus. Furthermore, we will observe the convention that $\frac{1}{0}$ is the meridian and $\frac{0}{1}$ the homologically determined longitude. From the discussion following [13, Prop 5.4], we obtain that $k(2,2,0,2)(\frac{32}{1})$ and $k(2,2,0,2)(\frac{31}{1})$ are lens space surgeries where the fundamental groups of these lens spaces are of orders 32 and 31 respectively (see [13, Prop 5.3]). By our original discussion in §3.1.1, knot complements obtained by Dehn surgery on the unknotted cusp of the Berge manifold have lens spaces of order |49r - 18| and |49r - 19|, none of which can be 32. Hence, the k(2, 2, 0, 2) complement is not one of the $\beta_{n,m}$. However, since the invariant trace field of the k(2, 2, 0, 2) is an odd degree extension of \mathbb{Q} , we see that this knot complement does not admit hidden symmetries and the k(2,2,0,2) has exactly three knot complements in its commensurability class (see [33, Cor 5.4]).

Ken Baker pointed out to the author that the (-2, 3, 7) pretzel knot and the K(7, 5, 2, -1) knot complement both come from (p'', 1) surgery on the unknotted cusp of the Whitehead sister link. Although perhaps known to others (see [24], [7]), this leads to the following conjecture (which is a subcase of the generalized Berge conjecture):

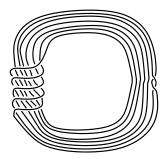


Figure 3.4: The k(2,2,0,2) knot

Conjecture. Let L(p,q) - K be a knot in a lens space that admits 3 cyclic fillings. If L(p,q) - K is covered by a knot complement, then L(p,q) - K is either the result of (p',q') surgery on the Berge manifold (p',7) = 1 or the result of (p'',1) surgery on the Whitehead sister link (p'',5) = 1.

The restrictions that (p', 7) = 1 and (p'', 5) = 1 are imposed in order to ensure that L(p,q) - K is covered by a knot complement.

As mentioned above (1, m) surgery on the unknotted cusp of the Berge manifold produces Berge knots. It seems natural to ask if any hyperbolic Berge knots can have hidden symmetries. More generally, we might ask if any hyperbolic knot complements can have hidden symmetries and admit nontrivial lens space surgeries. As discussed in §2.5, there are three hyperbolic knot complements known to have hidden symmetries: the complements of the two dodecahedral knots of Aitchison and Rubinstein, and the figure 8 knot complement. Using SnapPea [39], one can see that both dodecahedral knots are amphichiral. Thus, by [12, Cor 4] they cannot admit a lens space surgery. Additionally, it is well known that the figure 8 knot complement does not admit a lens space surgery (see [37] for example).

Chapter 4

Hidden symmetries and exceptional surgeries

In this chapter, we prove Theorem 1, which was stated in the introduction. As seen in the previous chapter, a knot complement $S^3 - K$ can be commensurable with another knot complement if it admits a finite cyclic surgery. However, the dodecahedral knot complements are commensurable because they cover a common orbifold with a rigid cusp. Motivated by the desire to understand hidden symmetries, a natural question to ask is "Can a knot complement admit a non-trivial exceptional surgery (eg a finite cyclic surgery) and hidden symmetries?" The theorem below provides a negative answer for certain knot complements.

Theorem 4.1. Let $\mathbb{S}^3 - K$ be a non-arithmetic hyperbolic knot complement that covers an orbifold O with a rigid cusp such that Γ_K admits integral traces and the invariant trace field of $\mathbb{S}^3 - K$ has class number 1.

- If S³ − K covers an orbifold with a S²(3,3,3) cusp or a S²(2,4,4) cusp, then S³ − K does not admit a non-trivial exceptional filling.
- 2. If $\mathbb{S}^3 K$ is strongly invertible and covers an orbifold with a $S^2(2,3,6)$ cusp, then $\mathbb{S}^3 K$ does not admit a non-trivial exceptional filling.

Note that this theorem is slightly stronger than the theorem stated in the introduction.

This chapter is broken up into five sections. The first section establishes some preliminaries. The second section uses the assumptions of Theorem 1 to construct an integral representation of a knot group for which the meridian is a particular parabolic element. The third section establishes lower bounds for the minimum degree of a covering $p : \mathbb{S}^3 - K \to Q$, where Q is an orbifold with a rigid cusp. The proof of Theorem 1 is contained in section 4. Finally, in section 5, we discuss the hypotheses of Theorem 1 in greater detail and some consequences of the lemmas and propositions of this chapter.

4.1 Preliminaries

Let $Q = \mathbb{H}^3/\Gamma_Q$ be a 1-cusped hyperbolic 3-orbifold. Denote by $|\gamma|$ the order of an element in Γ_Q and denote by $R = \{\gamma | \gamma \in P_Q, |\gamma| < \infty\}$. We define the *cusp killing homomorphism* to be

$$f: \ \Gamma_Q \to \Gamma_Q / \langle \langle R \rangle \rangle_{\Gamma_Q}.$$

We will make use of the following proposition, which was also noticed by M. Kapovich.

Proposition 4.2. Let $\mathbb{S}^3 - K$ be a hyperbolic knot complement. Suppose $\mathbb{S}^3 - K$ covers an orientable orbifold Q with a non-torus cusp. Denote the cusp killing homomorphism by f. Then, $f(\Gamma_Q)$ is trivial. Furthermore, $|Q| \cong D^3$ and each component of the isotropy graph of Q is connected to the cusp.

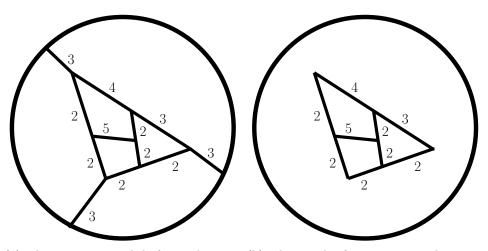
Proof. First note that $\Gamma_Q = P_Q \cdot \Gamma_K$.

Since a meridian μ of Γ_K is contained in P_Q and P_Q is generated by torsion elements on the cusp (we recall §2.0.2) killing these torsion elements kills $\langle \langle \mu \rangle \rangle_{\Gamma_Q}$ as well as killing P_Q . However, $\Gamma_K = \langle \langle \mu \rangle \rangle_{\Gamma_K}$ and $\langle \langle \mu \rangle \rangle_{\Gamma_K} \subset$ $\langle \langle \mu \rangle \rangle_{\Gamma_Q}$. Hence, the cusp killing homomorphism kills the whole group Γ_Q .

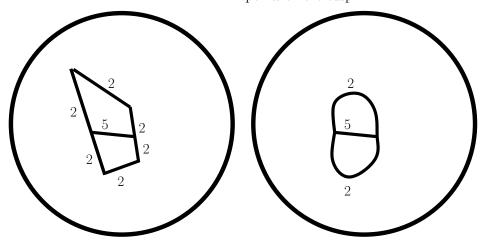
Thus, |Q| is a simply connected space with S^2 boundary. Therefore, $|Q| \cong D^3$ by the solution to the Geometrization Conjecture (see [26]).

If there were any pieces of the isotropy graph not connected to the cusp, then there would be elements of finite order that are non-trivial under the cusp killing homomorphism. Hence, the isotropy graph is connected. \Box

Remark 4.1.1. We can also interpret the effects of the cusp killing homomorphism on the isotropy graph of Q when |Q| is simply connected. Viewing the isotopy graph as a weighted graph that generates the fundamental group of Q via the Wirtinger presentation (see §2.0.3), killing elements of torsion on the cusp corresponds to erasing edges of the graph. For each endpoint x of an erased edge corresponding an elliptic element γ , we introduce the relation $\gamma = 1$ in the local isotropy group at x. If x corresponds to a $S^2(2, 2, 2, 2)$ cusp, then the new isotropy group at x is a quotient of the Klein 4 group. If not, then x corresponds to a trivalent vertex of the isotropy graph, say each edge corresponds to torsion elements γ , a, and b. Introducing the relation that $\gamma = 1$, to $ab\gamma = 1$ (see Fig 2.4) yields $a = b^{-1}$. In particular a and b have the same order. Therefore, in the image $f(\Gamma_Q)$, $f(a) = f(b^{-1})$ and graphically we



(a) The isotropy graph before reduction (b) The graph after removing edges corresponding to torsion elements fixing points on the cusp



(c) The graph after resolving the degree (d) The result of cusp killing is a graph 2 vertices corresponding to a dihedral group

Figure 4.1: A step by step graphical interpretation of the cusp killing homo- $\operatorname{morphism}$

can relabel the weights corresponding to a and b with gcd(|a|, |b|) (see §2.0.3 and Fig 4.1). Relabeling the edges could introduce further reductions to the graph, however since the isotropy graph has a finite number of vertices and edges and each edge is weighted by a finite integer, this process will terminate in a finite number of steps.

4.2 Representations of knot groups

In this section, we begin by constructing a particularly useful representation of a knot group using the assumptions of Theorem 1. We then show that no orbifold with cusp volume $\frac{\sqrt{21}}{12}$ or $\frac{\sqrt{21}}{24}$ can be covered by a knot complement. We conclude this section by showing that no 1-cusped orbifold admitting integral traces with cusp volume $\frac{\sqrt{3}}{4}$ can be covered by a knot complement and no 1-cusped orbifold admitting integral traces with cusp volume $\frac{\sqrt{3}}{8}$ can be covered by a knot complement.

For the rest of the chapter, we will use the notation that if k is a number field, then \mathcal{O}_k is the ring of integers in k. Also, we will use \mathbb{A} to denote the ring of algebraic integers in \mathbb{C} .

A subgroup of $PSL(2, \mathbb{C})$ is *elementary* if there is a finite orbit in its action on $\mathbb{H}^3 \cup \partial \mathbb{H}^3$. Otherwise, it is *non-elementary*.

Recall that a quaternion algebra over a field L is a four dimensional L-space and with basis vectors 1,i,j,k such that 1 is the multiplicative identity, $i^2 = a1, j^2 = b1, ij = -ji = k$ for some $a, b \in L$, and multiplication is extended linearly so A is an associative algebra over L (for further background see [22, Chapter 2]).

The proof of the following proposition exploits the fact that if $\langle g, h \rangle$ is a non-elementary subgroup of Γ_Q for some finite volume hyperbolic 3-orbifold Q, then $\mathbb{Q}(\mathrm{tr}\Gamma_Q)[I, g, h, gh]$ is a quaternion algebra over $\mathbb{Q}(\mathrm{tr}\Gamma_Q)$ (see [22, Cor 3.2.3]). Here, we again abuse notation and consider g, h as elements of $SL(2, \mathbb{C})$. Also, denote by

$$A_0\Gamma_Q = \{\sum_{finite} a_i\gamma_i | a_i \in \mathbb{Q}(\mathrm{tr}\Gamma_Q), \gamma_i \in \Gamma_Q\}.$$

The key facts for us is

$$A_0\Gamma_Q = \mathbb{Q}(\mathrm{tr}\Gamma_Q)[I,g,h,gh]$$

(see [22, § 3.2]). Also, by construction $\Gamma_Q \subset A_0 \Gamma_Q$, so $\Gamma_Q \subset \mathbb{Q}(\mathrm{tr}\Gamma_Q)[I, g, h, gh]$.

Proposition 4.3. Let Q_1 , Q_2 be 1-cusped hyperbolic 3-orbifolds so that $p: Q_1 \rightarrow Q_2$. Denote by $k_1 = \mathbb{Q}(tr\Gamma_{Q_1})$ and $k_2 = \mathbb{Q}(tr\Gamma_{Q_2})$. Then, we may conjugate Γ_{Q_1} and Γ_{Q_2} so that

- 1. $\Gamma_2 \subset PSL(2, k_2)$ and
- 2. $\Gamma_1 \subset PSL(2, k_1) \cap \Gamma_2$.

Proof. Let $g, h \in \Gamma_{Q_1}$ be non-commuting parabolic elements. Then $\langle g, h \rangle$ is non-elementary subgroup of $PSL(2, \mathbb{C})$ and $A_0\Gamma_{Q_1} = \mathbb{Q}(\mathrm{tr}\Gamma_{Q_1})[I, g, h, gh]$ and $A_0\Gamma_{Q_2} = \mathbb{Q}(\mathrm{tr}\Gamma_{Q_2})[I, g, h, gh]$ from above. Since g, h are non-commuting parabolic elements, we can conjugate Γ_{Q_1} by $\gamma \in PSL(2, \mathbb{C})$ such that

$$\gamma g \gamma^{-1} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 and $\gamma h \gamma^{-1} = \begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix} \in \gamma \Gamma_{Q_1} \gamma^{-1}$

Also, $\gamma \Gamma_{Q_1} \gamma^{-1} \subset \gamma \Gamma_{Q_2} \gamma^{-1}$. For the remainder of the proof, we will suppress this conjugation for ease of notation.

Note that $\mathbb{Q}(\mathrm{tr}\Gamma_{Q_1})[I, g, h, gh] \subset M_2(k_1)$ and $\mathbb{Q}(\mathrm{tr}\Gamma_{Q_2})[I, g, h, gh] \subset M_2(k_2)$. Furthermore, we have equality for both because both algebras are 4dimensional over their respective fields. Hence, $A_0\Gamma_{Q_1} = M_2(k_1)$ and $A_0\Gamma_{Q_2} = M_2(k_2)$. Also, $\Gamma_{Q_2} \subset PSL(2, k_2)$ and by this construction $\Gamma_{Q_1} \subset PSL(2, k_1) \cap \Gamma_{Q_2}$.

We now refine the above proposition to show that if Q admits integral traces and a trace field k that is class number 1, then we can get an integral representation of Γ_Q into $PSL(2, \mathcal{O}_k)$.

Proposition 4.4. Let $Q = \mathbb{H}^3/\Gamma_Q$ be a cusped hyperbolic 3-orbifold with integral traces. If $k = \mathbb{Q}(tr\Gamma_Q)$ is class number 1, then Γ_Q is conjugate into $PSL(2, \mathcal{O}_k)$.

Proof. We begin by choosing two non-commuting parabolic elements g, h as in Proposition 3. As above, we can conjugate Γ_Q so that

$$g = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 and $h = \begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix}$.

Thereby identifying $A_0\Gamma_Q = M_2(k)$ and so $\Gamma_Q \subset M_2(k)$.

Define $\mathfrak{O}\Gamma_Q = \{\sum \alpha_i \gamma_i | \alpha_i \in \mathfrak{O}_k, \gamma_i \in \Gamma_Q\}$ where each sum is finite. Then, $\mathfrak{O}\Gamma_Q$ is an order of $M_2(k)$ [22, Lem 2.2.7]. Let \mathfrak{O} be a maximal order of $M_2(k)$ containing $\mathfrak{O}\Gamma_Q$.

Now $M_2(\mathcal{O}_k)$ is a maximal order (see [22, Example 2.2.6.3]) and since k is class number 1, all maximal orders of $M_2(k)$ are conjugate to $M_2(\mathcal{O}_k)$ (see [22, Cor 2.2.10]). Hence, \mathcal{O} is conjugate to $M_2(\mathcal{O}_k)$, and so we have Γ_Q is conjugate to a subgroup of $PSL(2, \mathcal{O}_k)$.

Finally, we are ready to prove the key lemma of this section.

Lemma 4.5. Let $S^3 - K$ be a hyperbolic knot complement that covers an orbifold Q with a rigid cusp. Let k be the trace field of Γ_K and let L be the trace field field of Γ_Q . If k is class number 1 and Γ_K admits integral traces, then

- 1. Γ_Q is conjugate into $PSL(2, \mathcal{O}_L)$,
- 2. Γ_K is conjugate into $\Gamma_Q \cap PSL(2, \mathcal{O}_k)$,
- 3. A meridian of the above representation of Γ_K is of the form $\mu = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$.

Proof. First, we may assume that Γ_K and Γ_Q are conjugate in $PSL(2, \mathbb{C})$ to subgroups of PSL(2, k) and PSL(2, L), respectively (see Prop 3). Furthermore, by the same argument, we may assume $\Gamma_K \subset PSL(2, k) \cap \Gamma_Q$. Since Γ_K admits integral traces, Γ_Q admits integral traces as well (see §2.1). Hence, $\mathcal{O}\Gamma_K$ and $\mathcal{O}\Gamma_Q$ are orders in $M_2(k)$ and $M_2(L)$ respectively. As in Proposition 4, k is class number 1, so $\mathcal{O}\Gamma_K$ is conjugate into $M_2(\mathcal{O}_k)$ by $\gamma \in PSL(2,k)$. Conjugating $\mathcal{O}\Gamma_Q$ by γ , defines a maximal order \mathcal{O} of $A_0\Gamma_Q$ with $\Gamma_Q \subset \mathcal{O}$ and $M_2(\mathcal{O}_k) \subset \mathcal{O}$.

Here, we have shown that $\Gamma_K \subset PSL(2, \mathcal{O}_k)$. to show that $M_2(\mathcal{O}_L) \subset \mathcal{O}$ for some maximal order. Therefore, $\mathcal{O} = M_2(\mathcal{O}_L)$ and $\Gamma_Q \subset PSL(2, \mathcal{O}_L)$.

We observe that $e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $e_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, and $e_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ is an \mathcal{O}_k -basis for $M_2(\mathcal{O}_k)$ and an \mathcal{O}_L -basis for $M_2(\mathcal{O}_L)$.

Since \mathfrak{O} is an order $\mathfrak{O} = \sum_{i=1}^{n} a_i e_i$ for $a_i \in \mathfrak{O}_L$, $M_2(\mathfrak{O}_L) \subset \mathfrak{O}$. However, $M_2(\mathfrak{O}_L)$ is a maximal order. Therefore $M_2(\mathfrak{O}_L) = \mathfrak{O}$.

We claim that conjugating Γ_K by some element of $PSL(2, \mathcal{O}_k)$ sends a meridian μ to an upper triangular parabolic element, while preserving the property $\Gamma_Q \subset \mathcal{O}$. This follows from work of Hurwitz, however, we provide an explicit computation. Let λ be a parabolic element $\lambda = \begin{pmatrix} 1 + \beta \alpha & -\beta^2 \\ \alpha^2 & 1 - \beta \alpha \end{pmatrix}$. Then λ fixes $\frac{\beta}{\alpha} \in k$. Since \mathcal{O}_k is a principal ideal domain, $\frac{\beta}{\alpha} = \frac{r}{s}$ such that $r, s \in$ \mathcal{O}_k and pr+qs = 1 for some $p, q \in \mathcal{O}_k$. Thus, $h_0 = \begin{pmatrix} p & q \\ -s & r \end{pmatrix} \in PSL(2, \mathcal{O}_k)$ and $h_0(\frac{\beta}{\alpha}) = \infty$. Therefore $h_0\lambda h_0^{-1}$ is an upper triangular parabolic, as desired. \Box

We further refine the representation above such that the upper right entry of μ is a unit.

Lemma 4.6. Assuming the representations $\Gamma_K \subset PSL(2, \mathcal{O}_k)$ and $\Gamma_Q \subset$

 $PSL(2, \mathcal{O}_L)$ as in Lemma 5 where k is class number 1, then x is a unit in \mathcal{O}_k . Furthermore, by conjugation in $PSL(2, \mathbb{A})$, we may assume that $\mu = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

Proof. Given these assumptions, we have $\Gamma_K \subset PSL(2, \mathcal{O}_k)$, and Γ_K has an upper triangular meridian, $\mu = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$.

We claim that x is a unit in \mathcal{O}_k . For if not, then $x \in I$ for some maximal ideal $I \subset \mathcal{O}_k$. Since Γ_K is normally generated by μ , Γ_K is trivial under the homomorphism $f \colon \Gamma_K \to PSL(2, \mathcal{O}_k/I)$ induced from reduction mod I. Hence, for any $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_K$ a = i + 1, d = j + 1 where $i, j \in I$ and $b, c \in I$.

If we assume that $I = \langle \delta \rangle \subset \mathcal{O}_k$, we conjugate Γ_K by $h_1 = \begin{pmatrix} \sqrt{\delta} & 0 \\ 0 & \frac{1}{\sqrt{\delta}} \end{pmatrix}$, then $h_1 \cdot g \cdot h_1^{-1} = \begin{pmatrix} a & \delta \cdot b \\ \frac{c}{\delta} & d \end{pmatrix}$.

Under this conjugation, $h_1\Gamma_K h_1^{-1}$ remains a subgroup of $PSL(2, \mathcal{O}_k)$ since $c \in I$ and therefore $\frac{c}{\delta} \in \mathcal{O}_k$. Also, the upper right entry of $h_1\mu h_1^{-1}$ is $x \cdot \delta$ and so $f(h_1\Gamma_K h_1^{-1})$ is trivial.

Let $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_K$. We know from above that $c \in I$. In fact, for some $m, c = r \cdot \delta^m$ with $r \notin I$. We may assume that γ is an element of Γ_K with lowest such m. Hence, conjugation of γ by h_1^m is a matrix where the lower right entry is not in I. However, under this conjugation Γ_K remains a subgroup of $PSL(2, \mathcal{O}_k)$. Thus, the reduction homomorphism f is still well defined and $h_1^m \gamma h_1^{-m}$ would be non-trivial under f. However, $h_1^m \mu h_1^{-m}$ remains trivial, which is a contradiction. Hence, x is a unit. Finally, since x is a unit, \sqrt{x} and $\frac{1}{\sqrt{x}}$ are also units (possibly in $\mathcal{O}_{k'}$ where [k': k] = 2). Therefore, if we conjugate Γ_Q by $h_2 = \begin{pmatrix} \frac{1}{\sqrt{x}} & 0\\ 0 & \sqrt{x} \end{pmatrix}$, we still have integral representations for Γ_K and Γ_Q where $\mu = \begin{pmatrix} 1 & 1\\ 0 & 1 \end{pmatrix}$, as desired. \Box

Note that this final conjugation may move Γ_K out of $PSL(2, \mathcal{O}_k)$ (and Γ_Q out of $PSL(2, \mathcal{O}_L)$), since $k(\sqrt{x})$ can be a quadratic extension of k. In this case, $k(\sqrt{x})$ could have class number strictly bigger than 1. However, as noted above, we still have that Γ_K and Γ_Q are an integral representations with the above meridian $\mu = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

Also, we call attention to the fact that because of the form of μ , we can identify the possible meridians of knot complements in P_Q . If the cusp of \mathbb{H}^3/Γ_Q is $S^2(3,3,3) \times [0,\infty)$, the integral representation for Γ_Q defined above is of the form where $P_Q = \left\langle \begin{pmatrix} \omega & r \\ 0 & \omega^{-1} \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right\rangle$ where $\omega^2 + \omega + 1 = 0$ and r an algebraic integer. We may conjugate Γ_Q by $\begin{pmatrix} 1 & r \\ 0 & 1 \end{pmatrix}$. Thus, we may assume that $\Gamma_Q \subset PSL(2,\mathbb{A})$ and $P_Q = \left\langle \begin{pmatrix} \omega & 0 \\ 0 & \omega^{-1} \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right\rangle$

Therefore, all parabolic elements in P_Q have $y = n + m\omega$ in their upper right entries. Hence, if y is a unit, $y = (-\omega)^i$ where $i \in \{0, ..., 5\}$. A nearly identical argument shows that if the cusp of \mathbb{H}^3/Γ_Q is $S^2(2,3,6) \times [0,\infty)$, y is of the same form. However, if the cusp of \mathbb{H}^3/Γ_Q is $S^2(2,4,4) \times [0,\infty)$, then $P_Q = \left\langle \begin{pmatrix} \ell & 0 \\ 0 & \ell^{-1} \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right\rangle$ where $\ell = e^{\frac{i\pi}{4}}$. Therefore, all parabolic elements in P_Q have $y = n + m \cdot i$ in their upper right entries. And if y is a unit, then $y = \pm 1$ or $y = \pm i$. Lemmas 8 and 10 use similar ideas to those above in order to show that certain orbifolds described in §2.6 cannot be covered by a knot complement. We begin with a proposition that also exhibits a correspondence between units in \mathcal{O}_k and meridians in Γ_K .

Proposition 4.7. Let k be a number field and \mathcal{O}_k the ring of integers in k. If Γ_K be a knot group such that $\Gamma_K \subset PSL(2, \mathcal{O}_k)$ and

$$\Gamma_K = \left\langle \mu_1 = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}, \mu_2 = \begin{pmatrix} 1 & 0 \\ y & 1 \end{pmatrix}, \mu_3, \dots, \mu_n \right\rangle$$

where μ_i are meridians, then x and y are units in \mathcal{O}_k .

Proof. Assume that x is not a unit in \mathcal{O}_k . Then there is a prime ideal $I \subset \mathcal{O}_k$ such that $x \in I$. Just as in the proof of Lemma 6, we may define a homomorphism $f : PSL(2, \mathcal{O}_k) \to PSL(2, \mathcal{O}_k/I)$. Under f, μ_1 is trivial and since Γ_K is normally generated by $\mu_1, f(\Gamma_K)$ is trivial. But there is an element $g \in \Gamma$ such that $g\mu_1g^{-1} = \mu_2$. Such an element has a 0 in the 1,1 entry and hence, Γ_K cannot be trivial under f. This is a contradiction and so x is a unit.

The same argument carries through if we assume y is not a unit. \Box

We use this observation to prove the following lemma. Also, in the following proofs, we will identify \mathbb{H}^3 with $\{z + tj \in \mathbb{H} | z \in \mathbb{C}, t > 0, j^2 = -1\}$ (upper-half space) and $\partial \mathbb{H}^3$ with $\mathbb{C} \cup \{\infty\}$. We also denote by B_x the horoball that is tangent to $\partial \mathbb{H}^3$ at x.

Lemma 4.8. 1. Any orbifold with a $S^2(3,3,3)$ cusp and cusp volume $\frac{\sqrt{21}}{12}$ cannot be covered by a knot complement.

2. Any orbifold with a $S^2(2,3,6)$ cusp and cusp volume $\frac{\sqrt{21}}{24}$ cannot be covered by a knot complement.

Proof. First, we appeal to Adams' characterization of orbifolds of small cusp volume (see §2.6) to reduce to case (2) as any orbifold with a $S^2(3,3,3)$ cusp and cusp volume $\frac{\sqrt{21}}{12}$ covers an orbifold with $S^2(2,3,6)$ cusp and cusp volume $\frac{\sqrt{21}}{24}$.

Hence, let Q be a 3-orbifold with a $S^2(2,3,6)$ cusp and cusp volume $\frac{\sqrt{21}}{24}$. A diagram of the horoballs associated to Q first appeared in Adams' paper (see [2, Fig 5]), however we include it here as Figure 4.2 for the sake of completeness. Furthermore, following the discussion of this horoball diagram in [2], we use the following notation: O = 0, $D = \sqrt[4]{7}$, $X = \frac{5+i\sqrt{3}}{2\sqrt{7}}$, and $Y = \frac{\sqrt[4]{7}}{2} + i\frac{\sqrt[4]{7}}{2\sqrt{3}}$.

In this figure, there are four horoballs pictured. Following the description of this diagram from Adams' work, the horoballs B_O and B_D are of Euclidean diameter 1 and maximal in the sense that they are tangent to the horoball based at ∞ . The horoball B_X has Euclidean diameter $\frac{1}{\sqrt{7}}$ and the horoball B_Y has Euclidean diameter $\frac{3}{7}$. The line segment \overline{OY} is length $w = \frac{\sqrt[4]{7}}{\sqrt{3}}$ while the line segment \overline{OX} is length $\frac{1}{\sqrt[4]{7}}$. In particular, $\frac{\sqrt[4]{7}}{\sqrt{3}} \approx 0.939104416 < 1$.

Under Adams' description of Q, we see that Γ_Q contains a parabolic element T such that $T(\infty) = \infty$ and $T(0) = \sqrt[4]{7}$. In addition, Γ_Q contains an order 6 rotation R that fixes 0 and ∞ . Finally, as Adams notes, all horoballs of Euclidean diameter 1 are equivalent under the action of P_Q . Therefore, there

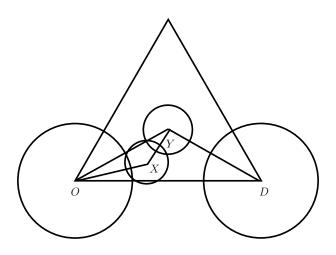


Figure 4.2: A horoball diagram for Q

is an element γ that exchanges 0 and ∞ while sending $\sqrt[4]{7}$ to $\frac{5+\sqrt{-3}}{2\sqrt[6]{47^3}}$ (see [2, Lem 1.2]). Hence,

$$T = \begin{pmatrix} 1 & \sqrt[4]{7} \\ 0 & 1 \end{pmatrix}, \ R = \begin{pmatrix} \ell & 0 \\ 0 & \ell^{-1} \end{pmatrix}, \text{ and } \gamma = \begin{pmatrix} 0 & i \cdot b \\ \frac{i}{b} & 0 \end{pmatrix}$$

where $\ell = \frac{\sqrt{3}+i}{2}$ and $b = \frac{\sqrt{5+i\sqrt{3}}}{\sqrt{2\sqrt{7}}}$.

The isometric sphere of γ is of radius 1 and centered at 0 (see Fig 4.3). Hence, the isometric sphere for $T \cdot \gamma \cdot T^{-1}$ is radius 1 and centered at $\sqrt[4]{7}$. Let $\Gamma = \langle T, R, \gamma \rangle$. Since these two isometric spheres bound a fundamental domain for Γ away from \mathbb{C} , Γ has finite co-volume. Also, since the cusp co-volume of Γ is $\frac{\sqrt{21}}{24}$, $[\Gamma_Q : \Gamma] = 1$.

Let
$$\lambda = \frac{1}{\sqrt{b}}$$
 and $c = \begin{pmatrix} \lambda & 0\\ 0 & \lambda^{-1} \end{pmatrix}$.

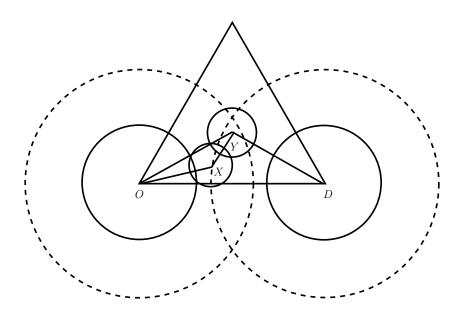


Figure 4.3: A horoball diagram for Q with the isometric spheres represented by dotted curves around 0 and D

Then,

$$c \cdot \Gamma \cdot c^{-1} = \left\langle T' = \begin{pmatrix} 1 & \alpha \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} \ell & 0 \\ 0 & \ell^{-1} \end{pmatrix}, \gamma' = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \right\rangle$$

where $\alpha = \sqrt{\frac{14}{5+i\sqrt{3}}}$. Note the minimal polynomial for α is $q^4 - 5q^2 + 7 = 0$. Thus, α is an algebraic integer, but not a unit since the constant term of this polynomial is not 1.

Under this integral representation of Γ_Q , there are upper and lower triangular parabolic elements (T and $\gamma' \cdot T \cdot \gamma'^{-1}$, respectively). Hence, a knot complement covering Q would contradict Proposition 7.

The following proposition discusses which finite groups can act on a point of tangency between two horoballs.

Proposition 4.9. Consider a maximal horoball packing corresponding to an orbifold with a rigid cusp. Denote by B_x the horoball centered x and denote by B_∞ the horoball at ∞ . If y is the point of tangency of B_x and B_∞ and y fixed by an element $\gamma \in Stab_\infty$, then the isotropy group of y is C_n or D_n where n = 2, 3, 4, 6.

Proof. First γ is order 2,3,4, or 6 because it fixes ∞ . If $Stab_y$ is cyclic or dihedral, we are done.

Denote by γ' be an element of the isotropy group of y such that axis fixed by γ' intersects the axis fixed γ at the smallest angle possible. Deont this angle by α . If $\alpha = \frac{\pi}{2}$, then, $\langle \gamma, \gamma' \rangle$ is dihedral (see §2.0.1). Hence, we may assume that $\alpha < \frac{\pi}{2}$. Therefore, γ' fixes points inside of B_{∞} . However, $\gamma'(B_{\infty}) \cap B_{\infty} = \emptyset$ and γ' does not fix ∞ , which is a contradiction.

We are now ready to prove the following lemma.

- **Lemma 4.10.** 1. Any orbifold Q with a $S^2(3,3,3)$ cusp and cusp volume $\frac{\sqrt{3}}{4}$ such that Γ_Q admits integral traces cannot be covered by a knot complement.
 - 2. Any orbifold Q with a $S^2(2,3,6)$ cusp and cusp volume $\frac{\sqrt{3}}{8}$ such that Γ_Q admits integral traces cannot be covered by a knot complement.

Proof. We begin by assuming that Q has a $S^2(3,3,3)$ cusp and has cusp volume $\frac{\sqrt{3}}{4}$, and Γ_Q admits integral traces. Consider a horoball diagram for the fundamental domain of Q viewed from the point at ∞ (see Fig 4.4). In this

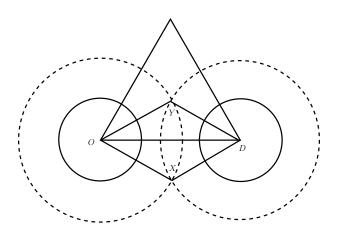


Figure 4.4: A fundamental domain for Q lies above OXDY

figure, O = 0, $Y = \frac{\sqrt{3}+i}{2}$, $X = \frac{\sqrt{3}-i}{2}$, and $D = \sqrt{3}$ and there are horoballs that are tangent to the horoball at ∞ , which are of Euclidean diameter 1 tangent and to $\partial \mathbb{H}^3$ at 0 and D. Also, there are elliptic elements of order 3 in Γ_Q fixing 0 and ∞ , X and ∞ , Y and ∞ , and D and ∞ .

We know that the point stabilizer of 0 + j is D_3 or C_3 (see Prop 9).

Case 1: Assume the point stabilizer of 0 + j is D_3 .

Then, there is an element $\gamma = \begin{pmatrix} 0 & ie^{i\theta} \\ ie^{-i\theta} & 0 \end{pmatrix}$, which fixes $e^{i\theta}$ and $-e^{i\theta}$. Therefore, the isometric sphere corresponding to γ has radius 1 and is centered at 0. Also, let R be the element of order 3 fixing Y and ∞ . Then, $R = \begin{pmatrix} \omega & \frac{\sqrt{3}+i}{2} \\ 0 & \omega^{-1} \end{pmatrix}$ and $R\gamma R^{-1}$ admits an isometric sphere of radius 1 centered at $\sqrt{3}$. The boundaries of these isometric spheres in \mathbb{C} are depicted by dotted lines in Figure 4.4. Finally, let $T = \begin{pmatrix} 1 & \sqrt{3} \\ 0 & 1 \end{pmatrix}$.

Since $\Gamma' = \langle \gamma, R, T \rangle$ is a subgroup with covolume $\leq v_0$ (see Fig 4.4), it must be finite index in Γ_Q . Also, by combining the assumption that cusp

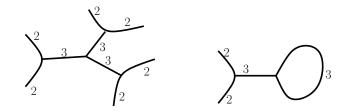


Figure 4.5: The two possible types of isotropy graphs for the orbifold Q described in Case 1 of Lemma 10

volume is $\frac{\sqrt{3}}{4}$ with the upper bound on the cusp density of $\frac{2}{v_0\sqrt{3}}$ (see §2.6), we know that $covolume(\Gamma_Q) \geq \frac{v_0}{2}$. Hence, $[\Gamma_Q : \Gamma'] = 1, 2$.

If $[\Gamma_Q : \Gamma'] = 2$, then $covolume(\Gamma_Q) = \frac{v_0}{2}$ and there are horoballs based at $\frac{\sqrt{3}+i}{2}$ and $\frac{\sqrt{3}-i}{2}$ of Euclidean diameter 1. Thus, by Proposition 9, the point stabilizers above these points are either both D_3 or both C_3 . Hence, the cusp corresponds to a vertex in the isotropy graph that is either 1) connected to three vertices labeled by D_3 isotropy groups or 2) there is a loop labeled by 3-torsion and the cusp connects to one vertex labeled by a D_3 isotropy group (see Fig 4.5). In either case, Γ_Q cannot be trivial under the cusp killing homomorphism.

Therefore, we consider the case that $[\Gamma_Q : \Gamma'] = 1$. Here, $\operatorname{tr}(\gamma \cdot R) = -i(\frac{\sqrt{3}+i}{2})e^{-i\theta}$. Since, $-i(\frac{\sqrt{3}+i}{2})$ is a unit and we are assuming integral traces, $e^{-i\theta}$ is an algebraic integer. Hence,

$$\left\langle \begin{pmatrix} 0 & ie^{i\theta} \\ ie^{-i\theta} & 0 \end{pmatrix}, \begin{pmatrix} 1 & \sqrt{3} \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} \omega & \frac{\sqrt{3}+i}{2} \\ 0 & \omega^{-1} \end{pmatrix} \right\rangle$$

is a representation of Γ_Q with parabolic elements fixing 0 and ∞ where all entries of the generators are algebraic integers. If $\Gamma_K \subset \Gamma_Q$, then Γ_K admits integral representation. However, the maximal abelian subgroup A_Q of P_Q is of the form:

$$\left\langle \begin{pmatrix} 1 & \sqrt{3} \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & \omega\sqrt{3} \\ 0 & 1 \end{pmatrix} \right\rangle$$

In particular, A_Q vanishes under reduction modulo the prime ideal I, if $\sqrt{3} \in I$. Also, Γ_Q contains the upper triangular parabolic element T and lower triangular parabolic element $\gamma \cdot T \cdot \gamma^{-1}$. Hence, Γ_K contains upper and lower triangular parabolics as well. Therefore, no knot group Γ_K is a subgroup by Proposition 7.

Case 2: The point stabilizer of 0 + j is C_3 .

In this case, there is a group element γ' that identifies 0 + j with a point above either $\frac{\sqrt{3}+i}{2}$ or $\frac{\sqrt{3}-i}{2}$. We may assume that 0 + j is identified with $\frac{\sqrt{3}+i}{2} + tj$. Since γ' can be decomposed into reflections in the plane defined by hemisphere of radius 1 centered at 0 and vertical planes, 0 + j and $\frac{\sqrt{3}+i}{2} + tj$ are the same Euclidean distance above \mathbb{C} and t = 1.

Hence, under $\gamma', \infty \mapsto 0, \frac{\sqrt{3}+i}{2} \mapsto \infty$, and $\frac{\sqrt{3}+i}{2} + j \mapsto j$. Here, $\gamma' = \begin{pmatrix} 0 & \frac{\sqrt{3}+i}{2} \\ \frac{-\sqrt{3}+i}{2} & 1 \end{pmatrix}$.

Let $R' = \begin{pmatrix} \omega & \frac{-\sqrt{3}-3i}{2} \\ 0 & \omega^{-1} \end{pmatrix}$. Since γ' admits an isometric sphere of radius 1 at $\frac{\sqrt{3}+i}{2}$, γ'^{-1} admits an isometric sphere of radius 1 at 0, and $R' \cdot \gamma'^{-1} \cdot R'^{-1}$ admits an isometric sphere of radius 1 at $\sqrt{3}$.

Hence, $\Gamma_3 = \langle \gamma', R', T \rangle$ is a subgroup of finite covolume (here T is defined in Case 1) and Γ_3 is finite index in Γ_Q . However, $k\Gamma_3 = \mathbb{Q}(\sqrt{-3})$ and

 Γ_3 has integral traces. Thus, Γ_3 is arithmetic and therefore, Γ_Q is arithmetic. However, the only knot complement that can cover Q is the figure 8 knot complement (see Thm 2). Cusp volume considerations would force the figure 8 knot complement to be a 4-fold cover of Q. However, Q has 3 torsion on the cusp. Hence in this case, Q is not covered by a hyperbolic knot complement.

Finally, if Q has a $S^2(2,3,6)$ cusp and cusp volume $\frac{\sqrt{3}}{8}$ and Γ_Q admits integral traces. Then, the point stabilizer of 0 + j is D_6 . Hence, an identical argument to Case 1 shows Q is not covered by a knot complement.

4.3 Bounding the degree of covering

In this section, we establish bounds on the minimum degree of covering form $p: S^3 - K \to Q$ where Q is a rigid cusped orbifold. We achieve these bounds by analyzing the isotropy graph associated to Q. A *loop* in a graph is a edge in a graph that connects a vertex to itself.

We begin by classifying the possible abelian quotients of Γ_Q . We denote the abelianization of Γ_Q by Γ_Q^{ab} .

Proposition 4.11. Let $\mathbb{S}^3 - K$ be a hyperbolic knot complement that covers an orbifold Q.

- 1. If Q has a $S^2(2,3,6)$ cusp, then $\mathbb{Z}/2\mathbb{Z}$ surjects Γ_Q^{ab} .
- 2. If Q has a $S^2(3,3,3)$ cusp, then $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ surjects Γ_O^{ab} .
- 3. If Q has a $S^2(2,4,4)$ cusp, Γ_Q^{ab} is trivial, $\mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, or $\mathbb{Z}/4\mathbb{Z}$.

Furthermore, $\Gamma_Q^{ab} \cong \mathbb{Z}/4Z$ if and only if the isotropy graph of Q has a loop.

Proof. We first note that $\Gamma_Q = P_Q \cdot \Gamma_K$. Therefore, we claim that

$$\Gamma_Q = \left\langle \left\langle t = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, r = \begin{pmatrix} \ell & 0 \\ 0 & \ell^{-1} \end{pmatrix} \right\rangle \right\rangle_{P_Q \cdot \Gamma_K},$$

where r is an elliptic element of order 3, 4, or 6 depending on the cusp type. The claim follows from the fact that r and t are generators for P_Q and P_Q contains a meridian of Γ_K .

First assume Q has a $S^2(2,3,6)$ cusp, then $\ell = e^{\frac{i\pi}{6}}$. Since P_Q abelianizes to $\mathbb{Z}/6\mathbb{Z}$ (see 2.0.2), we know Γ_Q^{ab} is a quotient of $\mathbb{Z}/6\mathbb{Z}$. Also, the torsion element of order 6 is connected to an interior vertex with the isotropy group a D_6 , (dihedral group of order 12). Under the abelianization of this isotropy group, the element of order 6 maps to an element of order 2. Thus, Γ_Q^{ab} is a quotient of $\mathbb{Z}/2\mathbb{Z}$, as desired.

Next assume Q has a $S^2(3,3,3)$ cusp. In this case, $\ell = e^{\frac{2i\pi}{3}}$. Then Γ_Q^{ab} is a quotient of $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$, the abelianization of the peripheral subgroup (see 2.0.2).

Finally assume Q has a $S^2(2, 4, 4)$ cusp, then $\ell = e^{\frac{i\pi}{4}}$. Hence, Γ_Q^{ab} is a quotient of the abelianization of P_Q , which is $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ (see 2.0.2).

Consider an edge e labeled by 4-torsion that connects the cusp c to another vertex x. Then x is either the cusp itself, or it corresponds to an isotropy group, D_4 or S_4 (see §2.0.1). **Case 1:** e is a loop. In this case, e connects the cusp back to itself. Then, considering a Wirtinger presentation for Γ_Q coming from the isotropy graph. Γ_Q^{ab} is either $\mathbb{Z}/4\mathbb{Z}$ or $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. However, the second case cannot occur since this would imply the existence of a cycle labeled by only even numbers that starts and ends at the cusp (by the cusp killing homomorphism) and includes the 2 torsion on the cusp. Such a cycle would kill the 4 torsion on the cusp and the maximal abelian quotient would be $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Case 2: x corresponds to D_4 or S_4 . Under the abelianizations of these groups, elements of order 4 are mapped to elements of order 2. Under the abelianization of the cusp, the peripheral elements of order 4 all have the same order in Γ_Q^{ab} . Therefore, $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ surjects Γ_Q^{ab} . In this case, the isotropy graph of Q does not contain a loop. This completes the proof. \Box

We now establish lower bounds on the degree of the cover

$$p: \, \mathbb{S}^3 - K \to Q$$

using the following proposition and lemma. We establish the following notation for the remainder of the chapter.

Proposition 4.12. If $p: \mathbb{S}^3 - K \to Q$ with a $S^2(2, 4, 4)$ cusp and the isotropy graph for Q has a loop labeled 4, then $deg(p) \ge 24$.

Proof. Assume that Q is covered by a knot complement and has an edge labeled 4 in its isotropy graph (see Fig 4.6 for a possible example). Then

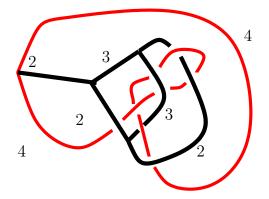
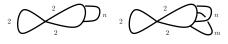


Figure 4.6: A possible isotropy graph of an orbifold with a $S^2(2, 4, 4)$ cusp Γ_Q^{ab} is $\mathbb{Z}/4\mathbb{Z}$ (see Prop 11). Hence, there is a unique orbifold Q' which has a $S^2(2, 2, 2, 2, 2)$ cusp and is 2-fold cover of Q.

Since $P_{Q'}$ and P_Q have the same parabolic subgroup, $P_{Q'}$ contains a meridian μ of Γ_K . The abelianization of Γ_Q is $\mathbb{Z}/4\mathbb{Z}$ so $\Gamma_{Q'}$ is characteristic in Γ_Q . In particular, $\langle \langle \mu \rangle \rangle_{\Gamma_K} \subset \Gamma_{Q'}$. Therefore, $\mathbb{S}^3 - K$ covers Q'. Also, Q'has $S^2(2,2,2,2,2)$ cusp and the cover $p' : \mathbb{S}^3 - K \to Q'$ is a regular covering (see §2.5). Furthermore, there is a unique 2-fold cover of Q' that has a torus cusp. We denote this orbifold by Q_T . We know that $\mathbb{S}^3 - K$ covers Q_T by an identical argument to that above.

Since $Q_T \cong (\mathbb{S}^3 - K)/Z$ for some cyclic group Z (see §2.5), we see that Q_T is the complement of a knot in an orbi-lens space (see §2.7.3). The isotropy graph for Q_T is either 0, 1, or 2 unknotted circles (see Thm 12). Therefore, the isotropy graph for Q' contains 0, 2, or 4 internal vertices.

The isotropy graph for Q' cannot contain 0 vertices because that would imply that the isotropy graph for Q only had vertices labeled by Klein 4 groups.



(a) 2 vertex graph (b) 4 vertex graph

Figure 4.7: The possible isotropy graphs Q'

Such a graph would be non-trivial under the cusp killing homomorphism. Since the 2-fold of the loop labeled by 4 is a loop labeled by 2, the possible graphs as defined up to graph isomorphism type can be see Figure 4.7.

We claim that the isotropy graph for Q' cannot contain 2 internal vertices as well. First, notice that the isotropy graph for Q' has an edge e labeled by 2-torsion with both endpoints on the cusp. Thus, the isotropy graph Qtakes the form of Figures 4.8(a), 4.8(b), and 4.8(c). In the latter two cases, the orbifold is non-trivial under the cusp killing homomorphism and therefore cannot be covered by a knot complement. In the first case, we cannot close up the isotropy graph. Therefore, no such orbifold Q can be covered by a knot complement.

Finally, if Q' contains 4 internal vertices, then Q_T is the complement of a knot in an orbi-lens space with an isotropy graph consisting of two unknotted circles. Since the circles are labeled by *n*-torsion and *m*-torsion with $n, m \ge 2$ and (n,m) = 1, $\mathbb{S}^3 - K$ is at least a 6-fold cover of Q_T and therefore at least a 24-fold cover of Q. This completes the proof. \Box

Lemma 4.13. 1. If Q has a $S^2(3,3,3)$ cusp, then $deg(p) = 12n \ n \ge 1$.

2. If Q has a $S^2(2,4,4)$ cusp, then the $deg(p) \ge 24$.

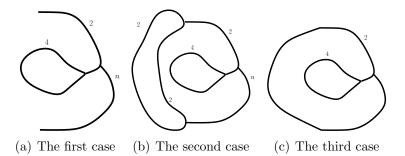


Figure 4.8: The three cases for an isotropy graph with 2 vertices

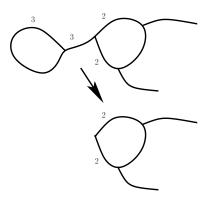


Figure 4.9: Application of the cusp killing homomorphism to a graph with a cycle labeled 3 and a vertex labeled D_3

Proof. 1) Assume that Q has a $S^2(3,3,3)$ cusp. First, consider the isotropy graph of Q. If there is an edge of the graph with two endpoints on the cusp, then the third edge cannot connect the cusp to a point with isotropy group D_3 . For this case, Γ_Q would be non-trivial under the cusp killing homomorphism (see Fig 4.9).

Therefore, this vertex is fixed by a group G where G is either A_4 , S_4 or A_5 and to lift to a torsion-free group deg(p) must be a multiple of the order of G. Hence, deg(p) = 12n $(n \in \mathbb{Z})$.

If we assume that there is no edge in the isotropy graph with both endpoints on the cusp, then there must be at least one vertex adjacent to the cusp labeled with a A_4 , S_4 or A_5 subgroup. Otherwise, all vertices are labeled with D_3 and just as above Γ_Q would be non-trivial under the cusp killing homomorphism. Thus, deg(p) = 12n.

2) Assume that Q has a $S^2(2, 4, 4)$ cusp. Since $\mathbb{S}^3 - K$ is a manifold, all isotropy subgroups of Γ_Q must vanish in the lift. Either, the order 4 elements in the cusp are part of the same fixed axis (see Fig 4.6) or the four torsion on the cusp connects to a pair of distinct vertices in the isotropy graph.

In the first case, $deg(p) \ge 24$ (see Prop 12). In the second case, the vertices are either of type D_4 or S_4 isotropy subgroup. If there is a vertex of type S_4 , then $deg(p) \ge 24$. If we have a vertex of type D_4 . There must be some edges in the isotropy graph labeled with odd integers otherwise the graph would be non-trivial under the cusp killing homomorphism. Thus, deg(p) = 8(2k+1)n for some $n, k \ge 1$ and $deg(p) \ge 24$.

4.4 Proof of Theorem 1

In this section, we prove Theorem 1. The proof relies on accounting for short curves in the peripheral subgroups of our knot complements. We defined the length of a parabolic element in §2.7.2. We discuss discuss length for peripheral elements fixing ∞ below. Let Q be a 1-cusped hyperbolic 3orbifold and fix a representation for Γ_Q in $PSL(2, \mathbb{C})$ such that P_Q is upper triangular and we consider Γ_Q acting on upper half space. Denote by $\frac{1}{c}$ the height of a maximal horoball tangent to ∞ and denote by S_c the horosphere centered at ∞ of Euclidean height $\frac{1}{c}$. If $\gamma \in \Gamma_Q$ is a parabolic element fixing ∞ , we measure the $len(\gamma)$ by its translation length in S_c . If $\gamma = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$, then $len(\gamma) = c \cdot |x|$. Therefore, if γ corresponds to an exceptional slope, then by the Six Theorem $c \cdot |x| \leq 6$ (see Thm 8). Finally, by Lemma 6, we will only consider representation of Γ_Q such that $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in \Gamma_Q$. Since the interiors of maximal horoballs are disjoint, we know that $c \geq 1$. Also, $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 1 & -x \\ 0 & 1 \end{pmatrix}$ correspond to the same slopes in terms of Dehn surgery parameters, so for convenience we consider them as one curve in our accounting of short parabolic elements.

With Γ_Q , P_Q as above, recall that if A is the area of the the fundamental domain for P_Q in the horosphere of Euclidean height 1, the cusp volume of Qis

$$\int_{\frac{1}{c}}^{\infty} \frac{A}{z} dz = \frac{c^2 \cdot A}{2}.$$

Proof of Theorem 1. Assume $\mathbb{S}^3 - K$ admits a non-trivial exceptional surgery, Γ_K has integral traces, and $k\Gamma_K$ is class number 1. Also, assume $p: \mathbb{S}^3 - K \to Q$, where Q has a rigid cusp (see §2.0.2). We break the proof into three cases, one for each cusp type of Q.

Case 1: Q has a $S^2(2,4,4)$ cusp. We know $deg(p) \ge 24$ (see Lemma 13). By Lemma 6 and the Six Theorem (see §8), P_K is of the form: $\left\langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 6i \\ 0 & 1 \end{pmatrix} \right\rangle$ and c = 1 (with c defined above). In this case, the cusp volume of Q is $\frac{3}{24}$. By §2.6, there is one such orbifold, which is arithmetic with

invariant trace field $\mathbb{Q}(i)$. However, no knot complement can cover such an orbifold (see Thm 2).

Case 2: Q has a $S^2(3,3,3)$ cusp. By Lemma 6, we can find a representation for Γ_K where the P_K is of the form: $\left\langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & n\omega \\ 0 & 1 \end{pmatrix} \right\rangle$, such that $\omega^2 + \omega + 1 = 0$. By the Six Theorem (see §2.7), $n \leq 6$. However, 3n must be a multiple of 12. Hence, n = 4 and deg(p) = 12 (see Lemma 13). Here, the two shortest parabolic elements (excluding inverses) are $\mu = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $\lambda = \begin{pmatrix} 1 & 2+4\omega \\ 0 & 1 \end{pmatrix}$, $(|2+4\omega| = 2\sqrt{3})$. In order to have two curves $\gamma_1, \gamma_2 \in P_K$ with $len(\gamma_i) \leq 6$, the horoballs tangent to B_{∞} have Euclidean height greater than $\frac{1}{\sqrt{3}}$ and so $c \leq \sqrt{3}$. (Note if λ is a longer element ,say $\lambda = \begin{pmatrix} 1 & 3+4\omega \\ 0 & 1 \end{pmatrix}$, then we must have $c \leq \frac{6}{\sqrt{13}} < \sqrt{3}$). Thus, the cusp volume of $\mathbb{S}^3 - K$ is in the range $[\sqrt{3}, 3\sqrt{3}]$ $(1 \leq |c| \leq \sqrt{3})$ and the cusp volume of Q is in the range $[\frac{\sqrt{3}}{4}]$.

Since any orbifold Q with $S^2(3,3,3)$ cusp and cusp volume $\frac{\sqrt{3}}{12}$, $\frac{\sqrt{3}}{6}$, or $\frac{1}{4}$ is arithmetic (see §2.6), the only knot complement that can cover Q is the figure 8 knot (see Thm 2), which is excluded by the hypothesis that $\mathbb{S}^3 - K$ is non-arithmetic. Hence, we only have to consider orbifolds with possible cusp volume, $\frac{3\sqrt{3}+\sqrt{15}}{24}$, $\frac{\sqrt{21}}{12}$, or $\frac{\sqrt{3}}{4}$ (see §2.6). The first case, implies that Q is $\mathbb{H}^3/\Gamma(5,2,2,3,3,3)$ which has an order 60 isotropy group. Thus, it cannot have a 12-fold manifold cover. In the second case, we know no such orbifold can be covered by a knot complement by Lemma 8. Finally, we show the third case cannot occur by appealing to Lemma 10.

Case 3: Q has $S^2(2,3,6)$ and $\mathbb{S}^3 - K$ admits a strong inversion Since the element of 6 torsion is part of a dihedral group of order 12, we know deg(p) = 12n.

If deg(p) > 24, we claim $\mathbb{S}^3 - K$ cannot admit two exceptional surgeries. In this case, $P_K = \left\langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2n\omega \\ 0 & 1 \end{pmatrix} \right\rangle$ with n > 3 and $\omega^2 + \omega + 1 = 0$. Since $|c| \ge 1$, if $\gamma \in P_K$ with $len(\gamma) \le 6$, then $\gamma = \begin{pmatrix} 1 & \pm 1 \\ 0 & 1 \end{pmatrix}$ (see §2.7.2). However, these curves both correspond to surgery along the meridian.

If deg(p) = 24, then P_K is same as in Case 2 above. Therefore, $\mathbb{S}^3 - K$ has cusp volume in $[\sqrt{3}, 3\sqrt{3}]$ and Q has cusp volume in $[\frac{\sqrt{3}}{24}, \frac{\sqrt{3}}{8}]$. For cusp volume in $[\frac{\sqrt{3}}{24}, \frac{\sqrt{3}}{8}]$, these orbifolds fit Adams' list and only the figure 8 knot complement can cover Q as shown in Case 2. If the cusp volume is exactly $\frac{\sqrt{3}}{8}$, we appeal to Lemma 10.

If deg(p) = 12, we may consider $\Gamma_Q = P_Q \cdot \Gamma_K$. In this case,

$$P_Q = \left\langle r = \begin{pmatrix} \ell & 0 \\ 0 & \ell^{-1} \end{pmatrix}, t = \begin{pmatrix} 1 & \omega \\ 0 & 1 \end{pmatrix} \right\rangle$$

where $\ell = e^{\frac{i\pi}{6}}$.

Since $\mathbb{S}^3 - K$ admits a strong inversion $N^+(\Gamma_K) = \langle r^3, \Gamma_K \rangle$ or $\langle r^3, t, \Gamma_K \rangle$. In the second case, we may consider Γ_Q acting on Γ_K by conjugation. Since $r^3, t \in N^+(\Gamma_K)$, the distinct conjugates of Γ_K are $\Gamma_K, r \cdot \Gamma_K \cdot r^{-1}$ and $r^2 \cdot \Gamma_K \cdot r^{-2}$. Since $\Gamma_Q = P_Q \cdot \Gamma_K$, if $\gamma \in \Gamma_Q$, then $\gamma = p \cdot g$ with $p \in P_Q$ and $g \in \Gamma_K$. Therefore, $\Gamma_Q = \langle r, \mu_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \mu_2, \dots, \mu_n \rangle$, where r defined above and μ_i is a meridian of Γ_K . Conjugation of $r \cdot \Gamma_K \cdot r^{-1}$ and $r^2 \cdot \Gamma_K \cdot r^{-2}$ by Γ_Q produces a homomorphism onto S_3 . Here, μ_1 maps trivially and r maps to an element of order 3. Hence, Γ_Q admits a $\mathbb{Z}/3\mathbb{Z}$ quotient by the action of Γ_Q on Γ_K . However, since Q has a $S^2(2,3,6)$ cusp, this is not a valid abelian quotient for Γ_Q (see Prop 11).

Thus, we may assume $N^+(\Gamma_K) = \langle r^3, \Gamma_K \rangle$. Then the conjugates of Γ_K in $P \cdot \Gamma_K$ are Γ_K , $r \cdot \Gamma_K \cdot r^{-1}, r^2 \cdot \Gamma_K \cdot r^{-2}, t \cdot \Gamma_K \cdot t^{-1}, rt \cdot \Gamma_K \cdot (rt)^{-1}$ and $r^2t \cdot \Gamma_K \cdot t^{-1}r^{-2}$. In this case, t maps to product of three 2-cycles in S_6 . Hence, $P_Q \cdot \Gamma_K$ has a $\mathbb{Z}/2\mathbb{Z}$ quotient. Therefore, Q is covered by an orbifold Q' with a $S^2(3,3,3)$ cusp with $[P_Q : P_{Q'}] = 2$ and $\Gamma_{Q'} = P_{Q'} \cdot \Gamma_K$. However, $\mathbb{S}^3 - K$ would be a 6-fold cover of Q', which is a contraction to the minimum degree cover of $p: \mathbb{S}^3 - K \to Q'$ (see Lem 13).

4.5 Remarks on Theorem 1

First, we remark that for small volume manifolds we may use the lower bounds on the degree of the covering $p: \mathbb{S}^3 - K \to Q$ to our advantage. Let $\mathbb{S}^3 - K$ be a knot complement arising from $\frac{1}{m}$ surgery on the unknotted cusp of the Berge manifold (see Chapter 3). We observe that $\mathbb{S}^3 - K$ is hyperbolic (see Rem 3.2.1). Notice the volume of $\mathbb{S}^3 - K$ is bounded from above by the volume of the Berge manifold, $4v_0$. If $\mathbb{S}^3 - K$ admits hidden symmetries, $\mathbb{S}^3 - K$ would cover an orbifold with a rigid cusp (see Thm 4). If Q has $S^2(3,3,3)$ cusp, then the $deg(p) \geq 12$ and so the volume of Q would be less than $\frac{v_0}{3} \approx 0.3383138$ (see Lemma 13). In particular, this volume forces Q to be arithmetic (see Prop 6 and §2.6). Now consider Q with a $S^2(2,3,6)$ cusp. Since $\mathbb{S}^3 - K$ is strongly invertible (see Rem 3.2.1), $deg(p) \geq 24$ by Case 3 of the above proof. Here volume of Q would be less than $\frac{v_0}{6} \approx 0.1691569$. Again, this volume forces Qto be arithmetic (see Prop 6 and §2.6). For either cusp, this would imply that $\mathbb{S}^3 - K$ is the figure 8 knot (see Thm 2), but the figure 8 knot does not admit finite cyclic fillings (see [37]). Therefore, it cannot be of the form $\beta_{1,m}$.

If Q has a $S^2(2, 4, 4)$ cusp, then $deg(p) \ge 24$ and volume of Q is less than $\frac{v_0}{6} \approx 0.1691569344$, no non-arithmetic orbifolds with $S^2(2, 4, 4)$ cusps exists at such low volume (see Thm 5 and Prop 6). Therefore, $\mathbb{S}^3 - K$ does not admit hidden symmetries. This is a slight improvement from the results of the previous chapter because it exhibits an infinite family of knot complements such that all of the members do not admit hidden symmetries and are commensurable with exactly two other knot complements (see Lem 5).

Also, Long and Reid recently produced knot complements with invariant trace fields with class number > 1 (see [20, §7]). However, these knot complements admit a high degree of symmetry (of order ≥ 257) and the quotient Q_T of these knot complements under this symmetry is homeomorphic to orbifold Dehn surgery on the link in Figure 4.10. This link complement has volume $4v_0$. If any knot complement covering Q_T admits hidden symmetries, then Q_T would have to cover an orbifold Q_r with a rigid cusp. However, the degree of such a cover would put Q_r on Adams' list of small volume orbifolds (see §2.6). In fact, just as above such an orbifold Q_r would be arithmetic, but the figure 8 knot complement is the only arithmetic knot complement and it

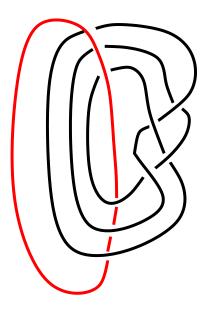


Figure 4.10: An orbifold Q resulting from $(m,0)\text{-surgery}~(m\geq 257)$ along the unknotted cusp of the above link has invariant trace field with class number bigger than 1

does not admit a symmetry of such high order.

Chapter 5

Links in the isotropy graph

In this chapter, we establish a relationship between the complexity of the isotropy graph of an orbifold and the existence of an incompressible surface in the orbifold. Specifically, we prove the following theorem.

Theorem 5.1. Let O be an orbifold with a single rigid cusp and base space D^3 that has an isotropy graph with 8 or more vertices. Then either every pair of edge cycles in the isotropy graph of O is linked or O contains a closed, embedded, incompressible 2-orbifold.

For this theorem, we have the immediate corollary regarding knot complements with hidden symmetries.

Corollary 5.2. Let O be an orbifold covered by a small hyperbolic knot complement $S^3 - K$. Then, either the isotropy for O has fewer than 8 vertices or every pair of disjoint cycles of the isotropy graph is an embedded, non-split, two-component link.

In some sense, the above theorem can be viewed as an analog to the proposition in Thurston's notes that shows that a non-orientable orbifold Nwith base space D^3 is either \mathbb{H}^3/T where T is the group of reflections in some tetrahedron or N contains a closed, incompressible 2-orbifold (see [38, Prop 13.5.2] and §2.4). In the later case, the orientable double cover of N is Haken (see §2.0.4).

5.1 Graphs and incompressible 2-orbifolds

In this section, we use properties of the isotropy graph G associated to an orbifold O (see § 4.1) in order to find cases where O contains an incompressible 2-orbifold.

Proposition 5.3. If a trivalent graph G has eight or more vertices, then it contains at least two disjoint cycles.

Proof. Throughout the proof we will assume that G has n vertices with $n \ge 8$. Since G is trivalent, this implies that G has $\frac{3n}{2}$ edges.

First, we claim that G has one cycle. If G has no cycles, then $\frac{3n}{2} \le n-1$ since a tree has n-1 edges and the disjoint union of m trees has n-m edges. However, this implies $n \le -2$, which is a contradiction.

Thus, G has at least one cycle. Assume that C is a smallest cycle in G, in the sense that C has the fewest edges of any cycle. Denote by k the number of edges in C and denote by G - C the graph obtained by removing vertices in C and all edges incident to these vertices.

Case 1: Assume $k \leq 4$. Then G - C has at least $\frac{3n}{2} - k - k$ edges since there are k edges in C and at most k edges connecting to the vertices of C.

To be a tree or the disjoint union of trees G - C would have at most n - k - 1 edges. If $\frac{3n}{2} - 2k \le n - k - 1$. However, this contradicts $n \ge 8$.

Case 2: Assume k > 4. C has more than 4 vertices. Then, all edges that connect to vertices of C but are not a part of C, connect to vertices outside of C. Otherwise, C would not be a smallest cycle. Also, there are no vertices of G - C that have degree 1 because this would also contradict the minimality of C.

Hence,
$$G - C$$
 cannot be a tree and must contain a cycle.

Let O be an orbifold such that |O| is simply connected and denote by G the isotropy graph of O. Consider G as an embedded graph in |O|. We say that G has a pair of *split cycles*, C_1 and C_2 if there exist two 3-balls B_1 and B_2 embedded in |O| such that B_1 and B_2 are disjoint and $C_1 \subset B_1$ and $C_2 \subset B_2$. If G does not contain a pair of split cycles, then any pair of two disjoint cycles in G from a non-split 2-component link.

We now prove Theorem 1.

Proof of Theorem 1. Denote by G the isotropy graph of O. Assume that G has a least 8 vertices. There exist at least two disjoint cycles in G (see Prop 3). Assume that G contains a pair of split cycles.

Pick two such split cycles C_1, C_2 . We may isotope G in O such that 1) there exists an embedded ball B_1 containing C_1 , 2) there exists an embedded ball B_2 containing C_2 , 3) G intersects the Seifert surface F_1 bounding C_1 minimally, and 4) $B_1 \cap G$ is the cycle C_1 , untwisted, unknotted parts of the edges incident to C_1 and a set of untwisted, unknotted arcs that transversely intersect F_1 . Denote the boundary of B_1 by S_1 and the boundary of B_2 by S_2 . We say the inside of B_i is the side of S_i that contains the cycle C_i . (Hence, the outside S_1 contains part of the outside of S_2 and all of the inside of S_2).

Assume B_1 contains an arc α which connects two vertices of C_1 (likewise, for B_2 and C_2) that can be isotoped inside B_1 without forcing any other pieces of G into B_1 . Then, assume α is isotoped inside B_1 to reduce intersection number of G and S_1 . This isotopy prevents the existence of a disk quotient that is boundary compressibling on two sides. Note, such an arc α is part of a cycle and therefore will not affect the incompressibility of S_1 the inside of B_1 .

Notice S_1 and S_2 are separating and incompressible on the side containing the cycle since any embedded disk is either boundary parallel or intersects G in two places along the cycle contained in the sphere. Assume that that there exists a compressing disk D for S_1 . Then D is contained in the outside of S_1 and intersects S_1 circle which divides S_1 into two pieces D' and D''. Either $D \cup D'$ or $D \cup D''$ is a sphere that encloses C_1 and contains the union a set of knotted arcs and vertices of G. Otherwise, D would be boundary parallel to S_1 and not a compressing disk. Call this sphere S'.

Also, S' is incompressible on the inside because a compressing disk would lead a sphere hitting G in 2 points which would contradict the irreducibility of O.

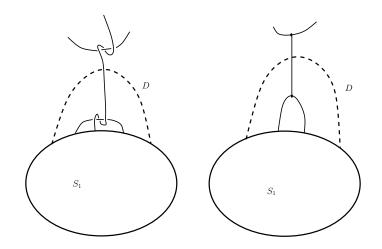


Figure 5.1: Two examples of compressing disks outside of S_1

We may repeat this process for each compressing disk. Since this process will put a new vertex or crossing of G inside S', (see Fig 5.1) it must terminate by the fact that Γ_O has finite Wirtinger presentation. Furthermore, no disks can intersect the inside of S_2 and the surface constructed here is incompressible on both sides.

It is worth mentioning that we cannot relax the condition on the number of vertices in G. Since we are interested in hyperbolic 3-orbifolds with a rigid cusp, the isotropy graphs we are interested in are all trivalent. Therefore, they all have an even number of vertices. The K(3,3,3) has six vertices but does not contain two disjoint cycles. Thus, we cannot improve on the hypothesis of the above theorem.

Bibliography

- Colin Adams, Martin Hildebrand, and Jeffrey Weeks. Hyperbolic invariants of knots and links. *Trans. Amer. Math. Soc.*, 326(1):1–56, 1991.
- [2] Colin C. Adams. Noncompact hyperbolic 3-orbifolds of small volume. In Topology '90 (Columbus, OH, 1990), volume 1 of Ohio State Univ. Math. Res. Inst. Publ., pages 1–15. de Gruyter, Berlin, 1992.
- [3] Ian Agol. Bounds on exceptional Dehn filling. *Geom. Topol.*, 4:431–449 (electronic), 2000.
- [4] I. R. Aitchison and J. H. Rubinstein. Combinatorial cubings, cusps, and the dodecahedral knots. In *Topology '90 (Columbus, OH, 1990)*, volume 1 of *Ohio State Univ. Math. Res. Inst. Publ.*, pages 17–26. de Gruyter, Berlin, 1992.
- [5] Hyman Bass. Groups of integral representation type. Pacific J. Math., 86(1):15–51, 1980.
- [6] John Berge. The knots in $D^2 \times S^1$ which have nontrivial Dehn surgeries that yield $D^2 \times S^1$. Topology Appl., 38(1):1–19, 1991.
- [7] Steven A. Bleiler and Craig D. Hodgson. Spherical space forms and Dehn filling. *Topology*, 35(3):809–833, 1996.

- [8] Michel Boileau, Steven Boyer, Radu Cebanu, and Genevieve Walsh. Knot commensurability and the berge conjecture. preprint arXiv:1008.1034v2, 2010.
- [9] Michel Boileau, Bernhard Leeb, and Joan Porti. Geometrization of 3dimensional orbifolds. Ann. of Math. (2), 162(1):195–290, 2005.
- [10] Michel Boileau and Joan Porti. Geometrization of 3-orbifolds of cyclic type. Astérisque, (272):208, 2001. Appendix A by Michael Heusener and Porti.
- [11] Ted Chinburg, Darren Long, and Alan W. Reid. Cusps of minimal noncompact arithmetic hyperbolic 3-orbifolds. *Pure Appl. Math. Q.*, 4(4, part 1):1013–1031, 2008.
- [12] Marc Culler, C. McA. Gordon, J. Luecke, and Peter B. Shalen. Dehn surgery on knots. Ann. of Math. (2), 125(2):237–300, 1987.
- [13] Mario Eudave-Muñoz. On hyperbolic knots with Seifert fibered Dehn surgeries. In Proceedings of the First Joint Japan-Mexico Meeting in Topology (Morelia, 1999), volume 121 1-2, pages 119–141, 2002.
- [14] Ronald Fintushel and Ronald J. Stern. Constructing lens spaces by surgery on knots. Math. Z., 175(1):33–51, 1980.
- [15] Francisco González-Acuña and Wilbur C. Whitten. Imbeddings of threemanifold groups. Mem. Amer. Math. Soc., 99(474):viii+55, 1992.

- [16] Oliver Goodman. Snap. based on the SnapPea kernel of Jeff Weeks and the Pari software, 2000.
- [17] C. McA. Gordon. Dehn filling: a survey. In Knot theory (Warsaw, 1995), volume 42 of Banach Center Publ., pages 129–144. Polish Acad. Sci., Warsaw, 1998.
- [18] C. McA. Gordon and J. Luecke. Knots are determined by their complements. J. Amer. Math. Soc., 2(2):371–415, 1989.
- [19] Marc Lackenby. Word hyperbolic Dehn surgery. Invent. Math., 140(2):243–282, 2000.
- [20] Darren Long and Alan Reid. Fields of definition of canonical curves. To appear in *Cont. Math.*, 541(474):247-257,2011.
- [21] Melissa L. Macasieb and Thomas W. Mattman. Commensurability classes of (-2, 3, n) pretzel knot complements. Algebr. Geom. Topol., 8(3):1833–1853, 2008.
- [22] Colin Maclachlan and Alan W. Reid. The arithmetic of hyperbolic 3manifolds, volume 219 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2003.
- [23] G. A. Margulis. Discrete subgroups of semisimple Lie groups, volume 17 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1991.

- [24] Bruno Martelli and Carlo Petronio. Dehn filling of the "magic" 3manifold. Comm. Anal. Geom., 14(5):969–1026, 2006.
- [25] Robert Meyerhoff. The cusped hyperbolic 3-orbifold of minimum volume. Bull. Amer. Math. Soc. (N.S.), 13(2):154–156, 1985.
- [26] John Morgan and Gang Tian. Ricci flow and the Poincaré conjecture, volume 3 of Clay Mathematics Monographs. American Mathematical Society, Providence, RI, 2007.
- [27] G. D. Mostow. Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms. Inst. Hautes Études Sci. Publ. Math., (34):53– 104, 1968.
- [28] Walter D. Neumann and Alan W. Reid. Arithmetic of hyperbolic manifolds. In *Topology '90 (Columbus, OH, 1990)*, volume 1 of *Ohio State Univ. Math. Res. Inst. Publ.*, pages 273–310. de Gruyter, Berlin, 1992.
- [29] Walter D. Neumann and Alan W. Reid. Notes on Adams' small volume orbifolds. In *Topology '90 (Columbus, OH, 1990)*, volume 1 of *Ohio State Univ. Math. Res. Inst. Publ.*, pages 311–314. de Gruyter, Berlin, 1992.
- [30] Gopal Prasad. Strong rigidity of Q-rank 1 lattices. Invent. Math., 21:255–286, 1973.
- [31] Alan W. Reid. A note on trace-fields of Kleinian groups. Bull. London Math. Soc., 22(4):349–352, 1990.

- [32] Alan W. Reid. Arithmeticity of knot complements. J. London Math. Soc. (2), 43(1):171–184, 1991.
- [33] Alan W. Reid and Genevieve S. Walsh. Commensurability classes of 2bridge knot complements. *Algebr. Geom. Topol.*, 8(2):1031–1057, 2008.
- [34] Robert Riley. Parabolic representations of knot groups. I. Proc. London Math. Soc. (3), 24:217–242, 1972.
- [35] Roland K. W. Roeder. Compact hyperbolic tetrahedra with non-obtuse dihedral angles. *Publ. Mat.*, 50(1):211–227, 2006.
- [36] Dale Rolfsen. Knots and links, volume 7 of Mathematics Lecture Series. Publish or Perish Inc., Houston, TX, 1990. Corrected reprint of the 1976 original.
- [37] Moto-o Takahashi. Two-Bridge Knots Have Property P, volume 239 of Memiors of the American Mathematics Society. American Mathematical Society, Providence, RI, 1981.
- [38] William Thurston. The geometry and topology of 3-manifolds. Princeton University, Mimeographed lecture notes, 1977.
- [39] Jeff Weeks. Snappea. SnapPea kernel, 2004.

Vita

Neil Hoffman was born in New York City, New York. He graduated from Morristown High School in 2000 and attended Williams College in the fall of that year. He graduated with a Bachelor of Arts in Mathematics in 2004 and entered graduate school at the University of Texas at Austin in the fall of that year.

Permanent address: 627 Amesbury Lane Austin, Texas 78752

This dissertation was types et with ${\mathbb I}^{\!\!\!A} T_{\!E} X^{\dagger}$ by the author.

[†]L^AT_EX is a document preparation system developed by Leslie Lamport as a special version of Donald Knuth's T_EX Program.