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Abstract. Boij-Söderberg theory has had a dramatic impact on commutative algebra. We
determine explicit Boij-Söderberg coefficients for ideals with linear resolutions and illustrate
how these arise from the usual Eliahou-Kervaire computations for Borel ideals. In addition,
we explore a new numerical decomposition for resolutions based on a row-by-row approach;
here, the coefficients of the Betti diagrams are not necessarily positive. Finally, we demon-
strate how the Boij-Söderberg decomposition of an arbitrary homogeneous ideal with a pure
resolution changes when multiplying the ideal by a homogeneous polynomial.

1. Introduction

Boij-Söderberg theory deals with the following question: Given an ideal I, how can one
write the Betti table of I as a positive componentwise linear combination of Betti tables
of Cohen-Macaulay modules? For an introduction to the seminal work in this area of Boij-
Söderberg [BoSö1, BoSö2], Eisenbud-Schreyer [ES], and Eisenbud-Fløystad-Weyman [EFW],
see the survey paper of Fløystad [F]. The purpose of this paper is to study the question from
a more combinatorial perspective. That is, given an ideal, when can we easily (i.e., without
recourse to a recursive algorithm) write down a Boij-Söderberg decomposition of its Betti
table?

In the present paper, we consider the following question: If two modules have essentially
identical Betti tables, how are their Boij-Söderberg decompositions related? For example,
let I be a homogeneous ideal. Then I is the first syzygy module of S/I, so their Betti tables
differ only by the introduction of an extra row on top and column on the left, with a 1 in the
upper left corner and zeroes elsewhere. Similarly, let µ be a homogeneous k-form. Then the
Betti tables of S/I and S/µI differ only by the introduction of k rows of zeroes between the
generator and the other Betti numbers. In both cases, because the content of the Betti tables
is essentially unchanged, we expect that the Boij-Söderberg decomposition should evolve in
a controlled manner. As far as we can tell, the following questions have not been addressed
systematically in the literature:

Question 1.1. Let I be a homogeneous ideal. What is the relationship between the Boij-
Söderberg coefficients of I and S/I?

Question 1.2. Let I be a homogeneous ideal and µ a k-form. How do the Boij-Söderberg
coefficients of S/µI evolve as k changes?

We answer both questions for ideals with pure resolutions. In principle, these answers can
be extended to arbitrary ideals by summing over the pure resolutions in a Boij-Söderberg
decomposition. However, these questions necessarily involve non-Cohen-Macaulay modules,
for which Boij-Söderberg decompositions are not unique, and the decomposition found in this
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manner is different from the canonical one involving an increasing chain of degree-sequences
[BoSö2]. Consequently, we do not generalize our results away from the pure case.

Sections 1 and 2 are devoted to introductory notions and examples of Boij-Söderberg
theory. In Section 3, we determine the Boij-Söderberg coefficients for modules S/I for
monomial ideals I having linear resolutions. Specifically, we focus on the information given
in the minimal generating set of a Borel ideal, which is used to compute the Eliahou-Kervaire
resolution of a Borel ideal. Cook also computes these Boij-Söderberg coefficients in recent
independent work [C], though his framework is very different from ours. While much of our
work in this section is actually a subcase of our work in later sections, we have chosen to
separate it from the more general work (which is necessarily heavier on notation), in the
interest of greater readability. Indeed, the constructions are best understood with basic
examples, which we give in the next section.

In Section 4, we generalize our earlier techniques, describing a numerical decomposition of
the Betti diagram of S/I, where I is an arbitrary homogeneous ideal. This method develops a
row-by-row decomposition of the Betti diagram, using the Betti diagrams of Veronese ideals.
While the coefficients in this decomposition are rarely all nonnegative (while Boij-Söderberg
coefficients, by definition, are nonnegative), we can use this approach to prove the surprising
result that ideals that do not have a linear resolution must contain at least one nonlinear
Betti diagram in their Boij-Söderberg decomposition (Corollary 4.5).

Finally, in Sections 5 and 6, we give our most general results. We determine the Boij-
Söderberg decomposition of S/µM , where M is a Veronese ideal. We then generalize this
result to modules S/I, where I is a Cohen-Macaulay ideal with pure resolution. Finally, we
characterize the Boij-Söderberg coefficients in the case when I has a pure resolution but is
not Cohen-Macaulay.

2. Motivating examples

This section provides two examples that motivate the results presented in the rest of
the paper, and that demonstrate the main ideas. In our examples, we often substitute the
variables {a, b, c, . . .} for {x1, x2, x3, . . .} in the interest of readability.

Example 2.1. To introduce the material in Sections 3 and 4, we begin by investigating an
ideal that one can resolve fairly easily. Let K be a field, and let I ⊆ K[a, b, c, d] be the small-
est Borel ideal containing the monomial ac2d. Thus, the unique minimal monomial generat-
ing set of I is {a4, a3b, a3c, a3d, a2b2, a2bc, a2bd, a2c2, a2cd, ab3, ab2c, ab2d, abc2, abcd, ac3, ac2d}.

Other than a ‘1’ in the upper-left corner, the Betti table of I consists of a single nonzero
row: 16 33 24 6. Our first goal is to write the Betti table of I as a convex combination
of the Betti tables of (a)4, (a, b)4, (a, b, c)4, and (a, b, c, d)4. That is, we want nonnegative
scalars λ1, λ2, λ3, λ4 such that

〈16, 33, 24, 6〉 = λ1〈1, 0, 0, 0〉+ λ2〈5, 4, 0, 0〉+ λ3〈15, 24, 10, 0〉+ λ4〈35, 84, 70, 20〉,

as vectors in R4; note that the above vectors are the nonzero rows of the Betti tables for the
associated ideals. Furthermore, as each of the Betti tables has a ‘1’ in the upper left, we
must further require that λ1 + λ2 + λ3 + λ4 = 1.
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Our first observation is that it is easier to work not with the Betti numbers of the ideal,
but rather a different invariant. For a Borel ideal J , recall that wi(J) counts the number of
monomials in the minimal monomial generating set of J whose largest variable has index i.
For I as above, we have w1(I) = 1, w2(I) = 3, w3(I) = 6, and w4(I) = 6. (Here, for example,
w3(I) is the number of minimal monomial generators of I whose largest variable is c.) We
put these invariants together in a vector: 〈1, 3, 6, 6〉.

With Borel ideals, the invariants wi give rise to the Betti numbers via an invertible linear
transformation (Proposition 3.6). Also, the wi for ideals of the form J = (x1, x2, . . . , xj)

d can
be easily calculated: wi(J) is simply the number of degree-(d−1) monomials in the variables
x1, x2, . . . xi, which is

(
d+i−2
i−1

)
. This simplifies the search for the scalars λi: replacing the

Betti numbers with the wi, we now wish to solve the following with nonnegative λi’s:

〈1, 3, 6, 6〉 = λ1〈1, 0, 0, 0〉+ λ2〈1, 4, 0, 0〉+ λ3〈1, 4, 10, 0〉+ λ4〈1, 4, 10, 20〉.

Because all first components are ‘1,’ any solution to the above will satisfy λ1+λ2+λ3+λ4 =
1. Moreover, since the nonzero entries of the above vectors are identical, we have an easy
solution: We are forced to set λ4 = 6/20, and thus λ3 must equal 6/10 − 6/20, and so on.
Thus we obtain our unique convex combination:

λ1 =
1

4
, λ2 =

3

20
, λ3 =

3

10
, λ4 =

3

10
.

Example 2.2. To motivate the material of Section 5, we consider I = (a, b, c, d)2. The Betti
table of S/I is

0 1 2 3 4
total: 1 10 20 15 4

0: 1 . . . .
1: . 10 20 15 4

Because this is a pure resolution, and S/I is Cohen-Macaulay, its Boij-Söderberg decom-
position is trivial: that is, one times itself.

Continuing with this example, let µ be a linear form and set J = µI. Then the resolution
of S/J is obtained from the resolution of S/I by incrementing the degree of every syzygy, so
the Betti table of S/J is:

0 1 2 3 4
total: 1 10 20 15 4

0: 1 . . . .
1: . . . . .
2: . 10 20 15 4

This is still a pure diagram, but S/J is not Cohen-Macaulay, so its Boij-Söderberg de-
composition is considerably less obvious. In general, non-Cohen-Macaulay modules have
nonunique Boij-Söderberg decompositions, but in this case S/J has pure resolution, so the
decomposition remains unique:
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2

5

 1 . . . .
. . . . .
. 20 45 36 10

+
1

10

 1 . . .
. . . .
. 10 15 6

+
1

6

 1 . .
. . .
. 4 3

+
1

3

 1 .
. .
. 1

 .

Since the relationship between the Betti diagrams of S/I and S/J is so simple, we expect
that these coefficients should have some meaning. To find it, we let µ be a k-form, compute
the Boij-Söderberg decomposition of S/µI, and clear denominators to get relationships of
the form:

λ∗B(S/µI) = λ4B(S/(a, b, c, d)k+2)+λ3B(S/(a, b, c)k+2)+λ2B(S/(a, b)k+2)+λ1B(S/(a)k+2),

where B(S/J) is the Betti table of S/J , and the coefficients are as follows:
k λ∗ λ4 λ3 λ2 λ1
0 24 24 0 0 0
1 60 24 6 10 20
2 120 24 12 24 60
3 210 24 18 42 126
k (k + 2)(k + 3)(k + 4) (2)(3)(4) (2)(3)(k) (2)(k)(k + 4) (k)(k + 3)(k + 4)

In Section 5, we prove that what we see in Example 2.2 is a true pattern. Let I be a
Veronese ideal of codimension c and µ a k-form. Then, after clearing denominators, for all
j ≤ c, the coefficient λj on the codimension j term in the Boij-Söderberg decomposition of
S/µI is a degree (c − j) polynomial in k, with simple integer factorization as in the table
above. We also show how these coefficients arise from standard combinatorial invariants of
S and I.

Additionally, we prove that, if I is an arbitrary Cohen-Macaulay ideal with pure reso-
lution and µ is a k-form, then the Boij-Söderberg decomposition of S/µI obeys a similar
pattern. Namely, if I has codimension c, then the coefficient on the codimension j term is
a polynomial of degree c− j, with integer factorization involving the degrees of the syzygies
as in Example 2.2. Unlike in the Veronese case, our proof of this more general theorem is
purely arithmetic. We hope that these coefficients will turn out to measure some important
invariant of the ideal.

3. Boij-Söderberg decompositions of equigenerated Borel ideals

For the duration of this section, let I ⊆ K[x1, x2, . . . , xn] be an ideal with linear resolution,
generated in degree d. Let m = (x1, . . . , xn). The results in Sections 5 and 6 subsume the
material in this section. However, we include this section to demonstrate the motivation for
Sections 5 and 6, which would not be clear without this treatment. In recent independent
work [C], Cook obtains results very similar to those in this section but with a much different
approach and perspective, and Nagel-Sturgeon prove related theorems in [NS].

Let BI(t) be the generating function of the Betti numbers of I. That is,

BI(t) = β0 + β1t+ β2t
2 + · · ·+ βn−1t

n−1.

Initially, we restrict to Borel ideals. If m is a monomial, write max(m) for the largest
index of a variable dividing m. For each i, let wi(I) be the number of minimal generators m
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of a Borel ideal I with max(m) = i. When I is clear from context, we will sometimes write
wi(I) as wi. Let WI(t) denote the generating function for the wi(I):

WI(t) = w1 + w2t+ w3t
2 + · · ·+ wnt

n−1.

Borel ideals are one of the few classes of ideals for which an explicit minimal free resolution
is known, and the wi determine the Betti numbers.

Theorem 3.1. [EK, PS] Let I be a Borel ideal. Then

(i) The minimal resolution of I (viewed as a module) has basis consisting of Eliahou-
Kervaire symbols, which are pairs (m,α) such that m is a minimal monomial genera-
tor of I and α is a squarefree monomial with max(α) < max(m). The symbol (m,α)
has homological degree deg(α) and internal degree deg(mα).

(ii) The minimal resolution of the quotient S/I has basis consisting of 1 and the Eliahou-
Kervaire symbols. 1 has both homological and internal degree zero, while the Eliahou-
Kervaire symbol (m,α) has homological degree 1+deg(α) and internal degree deg(mα).

If we view the Borel ideal I as a module, Theorem 3.1 (i) is the key to its Boij-Söderberg
decomposition. If we sort the basis elements (m,α) by the generating monomial m, we see
that, if max(m) = i, m appears in exactly

(
i
j

)
Eliahou-Kervaire symbols of homological

degree j. Now recall that the (Cohen-Macaulay) Koszul complex resolving S/(x1, . . . , xi)
also has Betti number

(
i
j

)
in homological degree j. Thus each generator contributes a copy

of the appropriate Koszul complex to the Betti table of I, and the ith Koszul complex appears
wi times. This proves the following:

Theorem 3.2. Let I be a Borel ideal. Then the Boij-Söderberg decomposition of the I
(viewed as a module) is given by WI .

More precisely, for each i and d, let Ki(−d) be the Betti table of the ith Koszul complex,
generated in degree d. Then:

(i) If I is equigenerated in degree d, the Boij-Söderberg decomposition of I is given by
the wi(I):

BI =
∑
i

wi(I)Ki(−d).

(ii) In general, let wi,d(I) count the number of minimal generators m of I with max(m) =
i and deg(m) = d. Then a Boij-Söderberg decomposition of I is given by the wi,d(I):

BI =
∑
i,d

wi,d(I)Ki(−d).

Remark 3.3. We note that the usual proof of the Eliahou-Kervaire resolution (see, for
example, [Pe, Chapter 28]) involves a mapping cone argument that yields precisely the
Koszul complexes discussed above. Thus in this case the Boij-Söderberg coefficients are
actually counting something intrinsic to the resolution.

Remark 3.4. The Eliahou-Kervaire resolution and the statistics wi apply to a somewhat
larger class of ideals called stable ideals, which are defined by a slightly weaker combinatorial
condition. Thus all our results involving Borel ideals, and their proofs, hold verbatim for
stable ideals as well.
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With the situation for Borel-fixed ideals (viewed as modules) well understood, we move
on to study the quotient S/I for Borel ideals I. Here, the situation is considerably more
murky, but we will show that the wi(I) continue to play a key role. The Koszul complexes,
however, are replaced by Veronese ideals.

Notation 3.5. For i ≤ n, let Vi,d = (x1, x2, . . . , xi)
d. In this section, d is fixed and thus

redundant in the notation, but later we will allow d to vary.

First, let I be a Borel ideal with all generators in degree d. Since S/Vi,d is Cohen-Macaulay
and S/I has a pure d-linear resolution, the Boij-Söderberg decomposition of S/I is the linear
combination

BI(t) = λ1BV1,d(t) + λ2BV2,d(t) + · · ·+ λnBVn,d
(t),(1)

where each λi ≥ 0.

The Eliahou-Kervaire resolution of Borel ideals immediately implies the following.

Proposition 3.6. If I is a Borel ideal generated in degree d, we have WI(t+ 1) = BI(t).

Proposition 3.6 is key to the calculation of the Boij-Söderberg decomposition of a Borel
ideal: Because each Vi,d is a Borel ideal generated in a single degree, Equation 1 is equivalent
to

WI(t) = λ1WV1,d(t) + λ2WV2,d(t) + · · ·+ λnWVn,d
(t).(2)

To calculate the polynomials WVi,d , observe that the number of monomials in Vi,d whose
largest variable is xj is simply the number of (d − 1)-degree monomials in {x1, x2, . . . , xj},
which is

((
j

d−1

))
=
(
(d−1)+j−1

d−1

)
=
(
d+j−2
j−1

)
. Writing wj(Vi,d) for this count, we have

WVi,d(t) =
i∑

j=1

wj(Vi,d)t
j−1 =

i∑
j=1

(
d+ j − 2

j − 1

)
tj−1.

If i < j, we say wj(Vi,d) = 0.

Proposition 3.7. Let I be a Borel ideal generated in degree d, and define wi as above. Then
the Boij-Söderberg decomposition of I has coefficients {λi} given by

λn =
wn(I)

wn(md)
and λi =

wi(I)

wi(md)
− wi+1(I)

wi+1(md)
for i < n.

Equivalently,

λn =
wn(I)(
d+n−2
n−1

) and λi =
wi(I)(
d+i−2
i−1

) − wi+1(
d+i−1
i

) for i < n.

Proof. Fix j − 1. By definition, tj−1 only appears in WVi,d(t) for i ≥ j, since the coefficient

of tj−1 counts the number of monomials in Vi,d whose largest variable is xj. Moreover, in

each such WVi,d , the coefficient of tj−1 is
(
d+j−2
j−1

)
= wj(Vi,d) = wj(m

d). Substituting our
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expressions for each λi into Equation 2 shows that the coefficient of tj−1 on the right-hand
side is

wj(m
d)

[(
wj(I)

wj(md)
− wj+1(I)

wj+1(md)

)
+

(
wj+1(I)

wj+1(md)
− wj+2(I)

wj+2(md)

)
+ · · ·+ wn(I)

wn(md)

]
= wj(m

d)

[
wj(I)

wj(md)

]
= wj(I),

which is the coefficient of tj−1 on the left-hand side. �

Example 3.8. Let I be the smallest Borel ideal containing the monomial x1x2 · · ·xn. Then
each wi(I) is given as the ith entry of the nth row of Catalan’s Triangle (where we begin
counting rows and entries at 1 rather than 0):

wi(I) =
(n+ i− 2)!(n− i+ 1)

(i− 1)!n!
.

Then d = n, and a straightforward calculation shows that λi = 1/n for all i.

Remark 3.9. Example 3.8 shows that there are ideals at the orthocenters of at least some of
the Boij-Söderberg surfaces. We speculate that the ideals of Example 3.8 may be central to
the theory in other ways as well. However, these ideals have received little attention until very
recently. In [FMS], we prove that their Betti numbers have a combinatorial interpretation,
counting objects in rigid geometry called pointed pseudotriangulations.

We can also adapt Proposition 3.7 to give a formula for the coefficients {λi} in the case
when a Borel ideal is multiplied by a k-form µ.

Proposition 3.10. Let I be as in Proposition 3.7, and let µ be a k-form. Then the Boij-
Söderberg coefficients of µI are:

λn =
wn(I)(
d+n+k−2
n+k−1

) and λi =
wi(I)(
d+i+k−2
i+k−1

) − wi+1(
d+i+k−1
i+k

) for i < n.

Proof. The only difference between this proposition and Proposition 3.7 is that the con-
stituent ideals are Vi,d+k = (x1, x2, . . . , xi)

d+k. The rest of the proof is analogous to that of
Proposition 3.7. �

The following observation plays an important role in the rest of the paper.

Remark 3.11. The computation of the coefficients λi still works for any ideal I with a linear
resolution, where we define the constants wi by the relation WI(t) = BI(t − 1). Note that
there exists a Borel ideal B with the same graded Betti numbers as I. For example, take B
to be the reverse-lex gin of I. Because B and I have the same Hilbert function, the lowest
degree of a generator is the same for each, and by [BaSt, Theorem 2.4] , the regularity of B
and I are the same.



8 CHRISTOPHER A. FRANCISCO, JEFFREY MERMIN, AND JAY SCHWEIG

4. Veronese decompositions

We generalize our results for ideals with a linear resolution to any homogeneous ideal,
decomposing the Betti diagram using the Betti diagrams of powers of monomial prime ideals.
We can no longer expect the λi to be positive and yield a Boij-Söderberg decomposition.
However, we can give a new decomposition that has some interesting properties, and we
derive a corollary about Boij-Söderberg decompositions of ideals that do not have a linear
resolution.

Let I be a homogeneous ideal. We decompose the Betti diagram of S/I row-by-row as
a Q-linear combination of the Betti diagrams of ideals of the form Vi,j+1 = (x1, . . . , xi)

j+1,
allowing negative coefficients. For each row j of the Betti diagram of S/I, we define constants
wi,j(I) by the formula WI(t) = BI(t− 1) as in Remark 3.11, using the Betti numbers in row
j to form the polynomial BI(t) for row j. As in Proposition 3.7, for each row j of the Betti
diagram of S/I (in which any minimal generators are of degree j + 1), we define

λi,j =
wi,j(I)(
j+1+i−2
i−1

) − wi+1,j(I)(
j+1+i−1

i

) =
wi,j(I)(
j+i−1
i−1

) − wi+1,j(I)(
j+i
i

)
for 1 ≤ i ≤ n (noting that wn+1,j(I) is always zero).

Example 4.1. Let I ⊂ S be the monomial ideal (a2, b2, abc). The Betti diagram of S/I is:

0 1 2 3
total: 1 3 3 1

0: 1 . . .
1: . 2 . .
2: . 1 3 1

For row 1, we have w1,1 = 2 = λ1,1. The w-values in row 2 are obtained from the
polynomial 1 + 3(t − 1) + (t − 1)2 = −1 + t + t2, giving w1,2 = −1, w2,2 = 1, and w3,2 = 1.
Consequently, λ1,2 = −4

3
, λ2,2 = 1

6
, and λ3,2 = 1

6
.

Note that the Betti diagram of S/I is

B(S/I) = 2 ·B(S/(x1)
2)︸ ︷︷ ︸

row 1

−4

3
·B(S/(x1)

3) +
1

6
·B(S/(x1, x2)

3) +
1

6
·B(S/(x1, x2, x3)

3)︸ ︷︷ ︸
row 2

.

Theorem 4.2. The process described above gives a Q-linear decomposition of the Betti di-
agram of S/I in terms of the Betti diagrams of the Veronese quotients S/Vi,s (possibly with
negative coefficients),

B(S/I) =
∑
i,s

λi,sB(S/Vi,s)

Proof. It is immediate that each row j > 0 of the Betti diagram of S/I can be constructed
in this way. Note that for each i, the projective dimension of S/(x1, . . . , xi)

j+1 is i, meaning
finding the λi,j amounts to solving a triangular system of linear equations in which the
coefficient matrix has all nonzero entries on the diagonal. The formulas for the λi,j are as in
the Borel case, as noted in Remark 3.11.
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The only question is whether these values of λi,j yield a 1 in the upper-left corner of the
Betti diagram; that is, do the λi,j sum to 1? For each row j, the sum λ1,j + · · · + λn,j
telescopes to w1,j. Each w1,j is the alternating sum of the Betti numbers in row j of the
Betti diagram of S/I. Thus if βi is the ith total Betti number of S/I, then∑

i,j≥1

λi,j =
∑
i≥1

(−1)i+1βi = 1

because the alternating sum of all total Betti numbers of S/I is 1. �

Definition 4.3. We call the decomposition of Theorem 4.2 the Veronese decomposition of
the Betti diagram of S/I since each of the ideals Vi,s = (x1, . . . , xi)

s are Veronese ideals.

The following is a consequence of the proof of Theorem 4.2, following from the telescoping
sum λ1,j + · · ·+ λn,j.

Corollary 4.4. For each row j, the sum of the λi,j is an integer.

We conclude by using Veronese decompositions to prove a result about Boij-Söderberg
decompositions.

Corollary 4.5. If I does not have a linear resolution (in particular, if I is not equigenerated),
then any Boij-Söderberg decomposition of the Betti diagram of S/I contains at least one
nonlinear diagram.

Proof. By Corollary 4.4, for a fixed row j, the sum of the λi,j is an integer, and the sum of all
λ is one. Thus if S/I does not have a linear resolution, there must be at least one negative
λi,j because S/I has multiple nonzero rows (in addition to row 0) in its Betti diagram. �

5. Boij-Söderberg decompositions and multiplication by homogeneous forms

This section will address the question, “What happens to the Boij-Söderberg decompo-
sition of S/I when I is multiplied by a homogeneous form?” In particular, we prove the
pattern observed in Example 2.2. Our primary tools are the Veronese decomposition and
the W -polynomial of I. In order to allow readers to skip earlier sections, we provide proofs
of some results from Section 3 in the new notation.

We begin by focusing on one of the few classes of modules whose Boij-Söderberg decom-
positions can be described explicitly, namely the Borel ideals.

Notation 5.1. From this point forward, we treat Betti tables as bigraded Poincaré series;
for a module M , the series is PM(t, u) =

∑
i,j Bi,j(M)tiuj. In particular, the variable t counts

homological degree, and the variable u counts internal degree. For example, the quotient
S/(a2, b2, ab), which has Betti table

0 1 2
total: 1 3 2

0: 1 . .
1: . 3 2

,

has Poincaré series 1 + 3tu2 + 2t2u3. In particular, moving one column to the right in a
Betti diagram corresponds to multiplication by t, while moving one row down corresponds
to multiplication not by u but by tu.
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Notation 5.2. Fix an increasing degree sequence d = (d0, d1, . . . , dn). Then the (nor-
malized) pure Betti diagram associated to d is the diagram arising from the Herzog-Kühl
relations,

Pd(t, u) =
d∑
i=0

∏
`6=0 |d` − d0|∏
`6=i |d` − di|

tiudi .

We set Vr,d equal to the Betti diagram of the Veronese quotient S/(x1, . . . , xr)
d, namely

Vr,d = P(0,d,d+1,...,d+r−1).

Initially, we restrict our attention to the resolution of the ideal rather than the quotient.
Let I be a Borel ideal. The basis Eliahou-Kervaire symbols may be sorted by their monomial
generators; we see that a generator m with degree d and max(m) = r contributes

(
r−1
i

)
basis

elements of homological degree i and internal degree d+ i for every i, and no basis elements
of any other degree. Thus the Poincaré series of I is

PI(t, u) =
∑
m

max(m)−1∑
i=0

(
max(m)− 1

i

)
tiui+deg(m)


=
∑
m

udeg(m)(1 + tu)max(m)−1

=
∞∑
r=1

∑
max(m)=r

udeg(m)(1 + tu)r−1

=
∞∑
r=1

∞∑
d=0

∑
max(m)=r,deg(m)=d

ud(1 + tu)r−1

=
∞∑
r=1

∞∑
d=0

|{m : max(m) = r, deg(m) = d}|ud(1 + tu)r−1

=
∞∑
r=1

∞∑
d=0

wr,d(I)ud(1 + tu)r−1.

The Boij-Söderberg decomposition of a Borel ideal is now almost immediate.

Theorem 5.3. Let I be a Borel ideal. Then the Boij-Söderberg decomposition of I is given
by its W -polynomial. That is,

PI(t, u) =
∑
r,d

wr,d(I)P(d,d+1,...,d+r−1)(t, u).

Proof. We need only observe that P(d,d+1,...,d+r−1)(t, u) = ud(1 + tu)r−1. �

The Boij-Söderberg decomposition of the quotient S/I is more interesting, but since the
Betti numbers are closely related, we expect that this should also have something to do with
the W -polynomial of I. Indeed, we have the following generalization of Proposition 3.7:
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Theorem 5.4. Let I be a Borel ideal, and let PS/I =
∑

r,d νr,dVr,d be the Veronese decomposi-

tion of its quotient. Then we have νr,d =
wr,d(I)

wr,d(md)
− wr+1,d(I)

wr+1,d(md)
. (Note that wr,d(m

d) =
(
r+d−2
d−1

)
.)

If I is equigenerated, this is also its Boij-Söderberg decomposition.

Expanding to the case of arbitrary homogeneous ideals, we note that the relationship
between the Poincaré series and W -polynomial is invertible. We take this as the definition.

Definition 5.5. Let I be a homogeneous ideal, with Betti table PI(t, u). Then the W -
polynomial of I is WI(t, u) =

∑
wr,d(I)trud = PI(

t−1
u
, u).

Now, let M = Mr,d = (x1, . . . , xr)
d be a Veronese ideal and µ a homogeneous k-form. We

compute the Boij-Söderberg decomposition of S/µM .
Observe that PµM = ukPM , so Wr,d(µM) = ukWr,d(M). Since we know the W -polynomial

of µM , we can compute its Veronese decomposition as above. We obtain the following:

Theorem 5.6. Let M = Mn,d be a Veronese ideal, and µ an k-form. Then the Boij-Söderberg
decomposition of S/µM is

PµM =
n∑
i=1

νi,d+kVi,d+k,

where

νn,d+k =
(d)(d+ 1) . . . (d+ n− 2)

(k + d)(k + d+ 1) . . . (k + d+ n− 2)

νi,d+k =
(d)(d+ 1) . . . (d+ i− 2)(k)

(k + d)(k + d+ 1) . . . (k + d+ i− 1)
for i 6= n.

Our proof of Theorem 5.6 is an unenlightening computation, so we delay for some remarks
and speculation.

Remark 5.7. If we clear the denominators, we obtain

(k + d)(k + d+ 1) . . . (k + d+ n− 2)PµM =
n∑
i=1

ν̃i,d+kVi,d+k,

where

ν̃n,d+k = (d)(d+ 1) . . . (d+ n− 2)

ν̃i,d+k = (d)(d+ 1) . . . (d+ i− 2)(k)(k + d+ i)(k + d+ i+ 1) . . . (k + d+ n− 2) for i 6= n.

Here the coefficient on PµM is a degree n − 1 polynomial in k, and the coefficient ν̃i,d+k
on the codimension-i diagram is a degree (n − i) − 1 polynomial in k. (In particular, the
coefficient on the top-dimension diagram Vn,k+d does not depend on k.)

Remark 5.8. The factors in the various coefficients are so simple, and so strongly reminis-
cent of the factors in the Herzog-Kühl relationships, that we struggle to believe this is a mere
numerical miracle. We speculate that there is some hidden structure underlying everything.
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Remark 5.9. As k tends to infinity, the coefficient ν1,k+d approaches 1 and all other co-
efficients approach zero. This appears to correspond to the fact that, as k grows, S/µM
looks more and more like the quotient by an (unmixed, height one) k-form, and less and less
like the (unmixed, height n) Veronese S/M . We propose that the vector (ν1,k+d, . . . , νn,k+d)
might serve to simultaneously refine the ideas of height and codimension, and we wonder if
there is some related algebraic structure whose components are in the same proportion as
the entries of this vector.

Proof of Theorem 5.6. We observe that wi,k+d(µM) = wi,d(M) =
(
i+d−2
d−1

)
. This allows us to

compute the Veronese decomposition of S/µM using Theorem 5.4. We get

νn,d =
wn,d(M)(
k+n+d−2
k+d−1

)
=

(
n+d−2
d−1

)(
k+n+d−2
k+d−1

)
=

(d)(d+ 1) . . . (d+ n− 2)

(k + d)(k + d+ 1) . . . (k + d+ n− 2)
,

and, for i 6= n,

νi,d =
wi,d(M)(
k+i+d−2
k+d−1

) − wi+1,d(M)(
k+i+d−1
k+d

)
=

(
i+d−2
d−1

)(
k+i+d−2
k+d−1

) − (
i+d−1
d

)(
k+i+d−1
k+d

)
=

(d)(d+ 1)(d+ 2) . . . (d+ i− 2)k

(k + d)(k + d+ 1) . . . (k + d+ i− 1)
.

Since these coefficients are all nonnegative, the Veronese decomposition is the Boij-Söderberg
decomposition. �

6. Pure resolutions

In this section, we extend Theorem 5.6 to arbitrary Cohen-Macaulay ideals with pure
resolution. Theorem 6.1 below generalizes Theorem 5.6, though its proof is less transparent.

Suppose throughout the section that I is a Cohen-Macaulay ideal with pure resolution in
degrees (d0 = 0, d1, . . . , dn). Then PI = P(0,d1,...,dn); we describe the Boij-Söderberg decom-
position of S/µI.

Theorem 6.1. Let µ be an k-form and I a Cohen-Macaulay ideal with pure resolution
supported in degrees (0, d1, . . . , dn). Then the Boij-Söderberg decomposition of S/µI is

PS/µI =
n∑
i=1

λiP(0,d1+k,...,di+k),
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where the coefficients λi are given by

λn =
(d1) . . . (dn−1)

(d1 + k) . . . (dn−1 + k)
,

λi =
(d1) . . . (di−1) (k)

(d1 + k) . . . (di + k)
for i 6= n.

Remark 6.2. All the same remarks as in the Veronese case apply. In particular, the coeffi-
cient λi is a degree (1− i) rational function in k, and λ1 approaches 1 as k grows large.

Corollary 6.3. Let J be an arbitrary ideal with pure resolution supported in degrees (0, d1, . . . , dn),
and let µ be an k-form. Then, after clearing denominators, the Boij-Söderberg decomposition
of S/µJ satisfies

λ̃∗PS/µJ =
n∑
i=1

λ̃iP(0,d1+k,...,di+k),

where λ̃∗ is a degree n− 1 polynomial in k, and λ̃i is a degree n− i polynomial in k for all i.

Proof. Apply Theorem 6.1 to each of the summands in the Boij-Söderberg decomposition of
S/J , and add. �

Proof of Theorem 6.1. Since both Betti tables are pure, it suffices to compute the total Betti
numbers of each directly.

Fix a homological degree i. Then, from the Herzog-Kühl relations, we have

βi,di+k(PS/µI) = βi,di(PS/I) =
(d1) . . . (dn)

di [(di − d1) . . . (di − di−1)] [(di+1 − di) . . . (dn − di)]
.

Meanwhile, the same Betti number of the right-hand side is given by

βi,di+k(
n∑
j=1

λjP(0,d1+k,...,dj+k)) =
n−1∑
j=i

(d1) . . . (dj−1) (k)

(di + k) [(di − d1) . . . (di − di−1)] [(di+1 − di) . . . (dj − di)]

+
(d1) . . . (dn−1) (dn + k)

(di + k) [(di − d1) . . . (di − di−1)] [(di+1 − di) . . . (dn − di)]
.

After clearing denominators, we need to prove the arithmetic identity

[(d1) . . . (dn)] (di + k) =
n−1∑
j=i

Aj +Bn,

where

Aj = [(d1) . . . (dj−1)] [(dj+1 − di) . . . (dn − di)] (di)(k)

Bn = [(d1) . . . (dn−1)] (dn + k)(di).

Now set Cj = [(d1) . . . (dj)] [(dj+1 − di) . . . (dn − di)] (k), and observe that Ai = Ci, and

Cj + Aj+1 = Cj+1, so (inductively)
n−1∑
j=i

Aj = Cn−1. Finally, observe that Bn + Cn−1 =

[(d1) . . . (dn−1)] [(dn)(di + k)], as desired. �
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[BoSö1] M. Boij and J. Söderberg, Graded Betti numbers of Cohen-Macaulay modules and the multiplicity

conjecture. J. Lond. Math. Soc. (2) 78 (2008), no. 1, 85–106.
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