
1. Let ABC be a triangle with area 9. Prove that it is possible to subdivide ABC into
nine smaller triangles each with area 1. Then prove that there is a point P on the
interior of ABC such that every line through P divides ABC into two regions each
with area between 4 and 5.

Solution:
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Let D, E, F , G, H, and I trisect sides AB, BC, and CA as in the figure. Observe that
ABC, DBG, and EBF share side-angle-side similarity; thus EF and DG are parallel
to AC. Similarly DI and EH are parallel to BC, and GH and FI are parallel to AB.

Let P be the intersection of EH and DG. We claim that P is the midpoint of both
EH and DG. Observe that DEP is similar to ABC (because of the parallel sides),
and DE = 1

3
AB. Thus EP = 1

3
BC = 1

2
EH, so P is the midpoint of EH. Similarly, it

is the midpoint of DG.

The same argument shows that EH and FI intersect in the midpoint of EH, so we
conclude that EH, DG, and FI all meet at P .

Now triangles ADI, DEP , IPH, EBF , PFG, HGC, PID, FPE, and GHP are all
similar to ABC with length ratio 1

3
. Thus their areas are all equal to 9

32
= 1.

Now suppose ` is any line through P . Suppose ` passes through triangles PID and
PFG (the other cases will be similar). Let J and K be the intersections of ` with DI
and FG, respectively. Then PIJ and PFK are congruent by side-angle-side. Let X
be the part of ABC to the left of `. Then we have

X = EBF ∪ PFE ∪DEP ∪ PJD ∪ PFK ∪ (part of ADI)

area(X) ≥ area(EBF ) + area(PFE) + area(DEP ) + area(PJD) + area(PFK)

≥ 1 + 1 + 1 + (area(PJD) + area(PIJ))

≥ 1 + 1 + 1 + area(PID)

≥ 4.

Similarly, the area to the right of ` is at least 4. Since these add to 9, they must both
be between four and five.



2. Factor the polynomial p(x) = x8 + x4 + 1 as a product of three nontrivial polynomials
with integer coefficients. Describe the roots of p.

Solution: Observe that p(x) = 1 + x4 + x8 is a geometric series with common ratio x4.
Thus p(x) = x12−1

x4−1 .

We factor the numerator

x12 − 1 = (x6 + 1)(x6 − 1)

= (x2 + 1)(x4 − x2 + 1)(x3 + 1)(x3 − 1)

= (x2 + 1)(x4 − x2 + 1)(x+ 1)(x2 − x+ 1)(x− 1)(x2 + x+ 1).

Similarly, we factor the denominator,

x4 − 1 = (x2 + 1)(x2 − 1)

= (x2 + 1)(x+ 1)(x− 1).

Cancelling, we have p(x) = (x4 − x2 + 1)(x2 − x+ 1)(x2 + x+ 1).

The roots of p are the roots of x12−1 which are not roots of x4−1, that is, the complex
numbers other than ±1, ±i which satisfy x12 = 1. They are

{e
πi
6 , e

πi
3 , e

2πi
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7πi
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4πi
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5πi
3 , e

11πi
6 }.



3. Suppose that a polygon P is invariant under the rotation about a given point c by an
angle of 48◦. (This means the polygon obtained after the rotation coincides with P .
For example, a square is invariant under a rotation about its center by 90◦, by not by
45◦.)

(a.) Is P necessarily invariant under a rotation about c by 90◦?

(b.) Is P necessarily invariant under a rotation about c by 72◦?

(c.) Is P necessarily invariant under a rotation about c by 120◦?

Solution: Observe that P is invariant under a rotation about c by 360◦, since this
rotation fixes the entire plane. Also observe that if P is invariant under rotations
about c by angles α and β, then it is invariant under rotations about c by Aα + Bβ,
for any integers A and B.

Since 24◦ = 360◦−7 ·48◦, it follows that P is invariant under a rotation about c by 24◦

and by any multiple of 24◦. Thus in particular it is invariant under a rotation about c
by 72◦, and under a rotation about c by 120◦.

However, 90 is not a multiple of 24, so part (a) is still open. Observe that a regular
15-gon is invariant under rotation about its center by 360◦

15
= 24◦ and hence under a

rotation about its center by 48◦. However, the 15-gon is not invariant under rotation
by 90◦ about its center. Thus, P is not necessarily invariant under a rotation about c
by 90◦.



4. The Fibonacci sequence is defined by F0 = F1 = 1 and Fn+1 = Fn+Fn−1 for all positive
integers n. Prove that Fn+10 − Fn is divisible by 11 for all positive n.

Solution: We have:

Fn+10 = Fn+9 + Fn+8 = Fn+9 + Fn+8

= Fn+8 + Fn+7 + Fn+8 = 2Fn+8 + Fn+7

= 2Fn+7 + 2Fn+6 + Fn+7 = 3Fn+7 + 2Fn+6

= 3Fn+6 + 3Fn+5 + 2Fn+6 = 5Fn+6 + 3Fn+5

= . . . = 55Fn+1 + 34Fn.

(One can brute-force this, or prove inductively that FaFb + Fa−1Fb−1 = Fa+b.)

Thus Fn+10 − Fn = 55Fn+1 + 33Fn+1 = 11(5Fn+1 + 3Fn) is divisible by 11.

Alternative Solution: Observe that F10 = 89 and F11 = 144. Thus F10 − F0 = 88 and
F11 − F1 = 143. In particular, these are both divisible by 11.

Inductively, suppose Fk+9 +Fk−1 = 11a and Fk+10 +Fk = 11b are both divisible by 11.
Then

Fk+11 − Fk+1 = Fk+10 + Fk+9 − (Fk + Fk−1)

= (Fk+10 − Fk) + (Fk+9 − Fk−1)

= 11(a+ b)

is also divisible by 11. Thus Fn+10 − Fn is divisible by 11 for all n.



5. Find all real numbers a such that the polynomial x2011− ax2010 + ax− 1 is divisible by
(x− 1)2.

Solution: Set y = x− 1; then we are looking for the set of all a such that

p(y) = (y + 1)2011 − a(y + 1)2010 + a(y + 1)− 1

is divisible by y2.

Expanding with the binomial theorem, we have

p(y) = 1 + 2011y + terms divisible by y2

− a
(
1 + 2010y + terms divisible by y2

)
+ ay + a− 1,

that is,

p(y) = (1− a+ a− 1) + (2011− 2010a+ a)y + terms divisible by y2.

This is divisible by y2 if and only if 2011− 2010a+ a = 0.

The only solution is a = 2011
2009

.

Alternate solution: Let f(x) = x2011 − ax2010 + ax− 1. We have

f(x) = (x2011 − 1)− ax(x2009 − 1)

= (x− 1)(x2010 + (1− a)x2009 + (1− a)x2008 + · · ·+ (1− a)x+ 1).

Set g(x) = x2010 + (1−a)x2009 + (1−a)x2008 + · · ·+ (1−a)x+ 1. Then f(x) is divisible
by (x− 1)2 if and only if g(x) is divisible by (x− 1). By the Remainder Theorem, g(x)
is divisible by (x−1) if and only if g(1) = 0. We compute g(1) = 1 + 2009(1−a) + 1 =
2011− 2009a. This is equal to zero if and only if a = 2011

2009
.

Solution using calculus: In general, a polynomial p(x) is divisible by (x−c)2 if and only
both p(x) and p′(x) are divisible by (x− c). Here, p′(x) = 2011x2010 − 2010ax2009 + a.
By the remainder test, p(x) is always divisible by x−1, and p′(x) is divisible by (x−1)
if and only if 2011− 2010a+ a = 0, i.e., a = 2011

2009
.


