1. Let $A B C$ be a triangle with area 9. Prove that it is possible to subdivide $A B C$ into nine smaller triangles each with area 1 . Then prove that there is a point P on the interior of $A B C$ such that every line through P divides $A B C$ into two regions each with area between 4 and 5 .

Solution:

Let D, E, F, G, H, and I trisect sides $A B, B C$, and $C A$ as in the figure. Observe that $A B C, D B G$, and $E B F$ share side-angle-side similarity; thus $E F$ and $D G$ are parallel to $A C$. Similarly $D I$ and $E H$ are parallel to $B C$, and $G H$ and $F I$ are parallel to $A B$. Let P be the intersection of $E H$ and $D G$. We claim that P is the midpoint of both $E H$ and $D G$. Observe that $D E P$ is similar to $A B C$ (because of the parallel sides), and $D E=\frac{1}{3} A B$. Thus $E P=\frac{1}{3} B C=\frac{1}{2} E H$, so P is the midpoint of $E H$. Similarly, it is the midpoint of $D G$.
The same argument shows that $E H$ and $F I$ intersect in the midpoint of $E H$, so we conclude that $E H, D G$, and $F I$ all meet at P.
Now triangles $A D I, D E P, I P H, E B F, P F G, H G C, P I D, F P E$, and $G H P$ are all similar to $A B C$ with length ratio $\frac{1}{3}$. Thus their areas are all equal to $\frac{9}{3^{2}}=1$.
Now suppose ℓ is any line through P. Suppose ℓ passes through triangles PID and $P F G$ (the other cases will be similar). Let J and K be the intersections of ℓ with $D I$ and $F G$, respectively. Then $P I J$ and $P F K$ are congruent by side-angle-side. Let X be the part of $A B C$ to the left of ℓ. Then we have

$$
\begin{aligned}
X & =E B F \cup P F E \cup D E P \cup P J D \cup P F K \cup(\text { part of } A D I) \\
\operatorname{area}(X) & \geq \operatorname{area}(E B F)+\operatorname{area}(P F E)+\operatorname{area}(D E P)+\operatorname{area}(P J D)+\operatorname{area}(P F K) \\
& \geq 1+1+1+(\operatorname{area}(P J D)+\operatorname{area}(P I J)) \\
& \geq 1+1+1+\operatorname{area}(P I D) \\
& \geq 4 .
\end{aligned}
$$

Similarly, the area to the right of ℓ is at least 4 . Since these add to 9 , they must both be between four and five.
2. Factor the polynomial $p(x)=x^{8}+x^{4}+1$ as a product of three nontrivial polynomials with integer coefficients. Describe the roots of p.

Solution: Observe that $p(x)=1+x^{4}+x^{8}$ is a geometric series with common ratio x^{4}. Thus $p(x)=\frac{x^{12}-1}{x^{4}-1}$.
We factor the numerator

$$
\begin{aligned}
x^{12}-1 & =\left(x^{6}+1\right)\left(x^{6}-1\right) \\
& =\left(x^{2}+1\right)\left(x^{4}-x^{2}+1\right)\left(x^{3}+1\right)\left(x^{3}-1\right) \\
& =\left(x^{2}+1\right)\left(x^{4}-x^{2}+1\right)(x+1)\left(x^{2}-x+1\right)(x-1)\left(x^{2}+x+1\right) .
\end{aligned}
$$

Similarly, we factor the denominator,

$$
\begin{aligned}
x^{4}-1 & =\left(x^{2}+1\right)\left(x^{2}-1\right) \\
& =\left(x^{2}+1\right)(x+1)(x-1) .
\end{aligned}
$$

Cancelling, we have $p(x)=\left(x^{4}-x^{2}+1\right)\left(x^{2}-x+1\right)\left(x^{2}+x+1\right)$.
The roots of p are the roots of $x^{12}-1$ which are not roots of $x^{4}-1$, that is, the complex numbers other than $\pm 1, \pm i$ which satisfy $x^{12}=1$. They are

$$
\left\{e^{\frac{\pi i}{6}}, e^{\frac{\pi i}{3}}, e^{\frac{2 \pi i}{3}}, e^{\frac{5 \pi i}{6}}, e^{\frac{7 \pi i}{6}}, e^{\frac{4 \pi i}{3}}, e^{\frac{5 \pi i}{3}}, e^{\frac{11 \pi i}{6}}\right\}
$$

3. Suppose that a polygon P is invariant under the rotation about a given point c by an angle of 48°. (This means the polygon obtained after the rotation coincides with P. For example, a square is invariant under a rotation about its center by 90°, by not by 45°.)
(a.) Is P necessarily invariant under a rotation about c by 90° ?
(b.) Is P necessarily invariant under a rotation about c by 72° ?
(c.) Is P necessarily invariant under a rotation about c by 120° ?

Solution: Observe that P is invariant under a rotation about c by 360°, since this rotation fixes the entire plane. Also observe that if P is invariant under rotations about c by angles α and β, then it is invariant under rotations about c by $A \alpha+B \beta$, for any integers A and B.

Since $24^{\circ}=360^{\circ}-7 \cdot 48^{\circ}$, it follows that P is invariant under a rotation about c by 24° and by any multiple of 24°. Thus in particular it is invariant under a rotation about c by 72°, and under a rotation about c by 120°.
However, 90 is not a multiple of 24 , so part (a) is still open. Observe that a regular 15 -gon is invariant under rotation about its center by $\frac{360^{\circ}}{15}=24^{\circ}$ and hence under a rotation about its center by 48°. However, the 15 -gon is not invariant under rotation by 90° about its center. Thus, P is not necessarily invariant under a rotation about c by 90°.
4. The Fibonacci sequence is defined by $F_{0}=F_{1}=1$ and $F_{n+1}=F_{n}+F_{n-1}$ for all positive integers n. Prove that $F_{n+10}-F_{n}$ is divisible by 11 for all positive n.

Solution: We have:

$$
\begin{array}{rlrl}
F_{n+10} & =F_{n+9}+F_{n+8} & & =F_{n+9}+F_{n+8} \\
& =F_{n+8}+F_{n+7}+F_{n+8} & & =2 F_{n+8}+F_{n+7} \\
& =2 F_{n+7}+2 F_{n+6}+F_{n+7} & & =3 F_{n+7}+2 F_{n+6} \\
& =3 F_{n+6}+3 F_{n+5}+2 F_{n+6} & =5 F_{n+6}+3 F_{n+5} \\
& =\ldots & & =55 F_{n+1}+34 F_{n} .
\end{array}
$$

(One can brute-force this, or prove inductively that $F_{a} F_{b}+F_{a-1} F_{b-1}=F_{a+b}$.) Thus $F_{n+10}-F_{n}=55 F_{n+1}+33 F_{n+1}=11\left(5 F_{n+1}+3 F_{n}\right)$ is divisible by 11 .

Alternative Solution: Observe that $F_{10}=89$ and $F_{11}=144$. Thus $F_{10}-F_{0}=88$ and $F_{11}-F_{1}=143$. In particular, these are both divisible by 11 .
Inductively, suppose $F_{k+9}+F_{k-1}=11 a$ and $F_{k+10}+F_{k}=11 b$ are both divisible by 11 . Then

$$
\begin{aligned}
F_{k+11}-F_{k+1} & =F_{k+10}+F_{k+9}-\left(F_{k}+F_{k-1}\right) \\
& =\left(F_{k+10}-F_{k}\right)+\left(F_{k+9}-F_{k-1}\right) \\
& =11(a+b)
\end{aligned}
$$

is also divisible by 11 . Thus $F_{n+10}-F_{n}$ is divisible by 11 for all n.
5. Find all real numbers a such that the polynomial $x^{2011}-a x^{2010}+a x-1$ is divisible by $(x-1)^{2}$.
Solution: Set $y=x-1$; then we are looking for the set of all a such that

$$
p(y)=(y+1)^{2011}-a(y+1)^{2010}+a(y+1)-1
$$

is divisible by y^{2}.
Expanding with the binomial theorem, we have

$$
\begin{aligned}
p(y)= & 1+2011 y+\text { terms divisible by } y^{2} \\
& -a\left(1+2010 y+\text { terms divisible by } y^{2}\right) \\
& +a y+a-1
\end{aligned}
$$

that is,

$$
p(y)=(1-a+a-1)+(2011-2010 a+a) y+\text { terms divisible by } y^{2} .
$$

This is divisible by y^{2} if and only if $2011-2010 a+a=0$.
The only solution is $a=\frac{2011}{2009}$.

Alternate solution: Let $f(x)=x^{2011}-a x^{2010}+a x-1$. We have

$$
\begin{aligned}
f(x) & =\left(x^{2011}-1\right)-a x\left(x^{2009}-1\right) \\
& =(x-1)\left(x^{2010}+(1-a) x^{2009}+(1-a) x^{2008}+\cdots+(1-a) x+1\right)
\end{aligned}
$$

Set $g(x)=x^{2010}+(1-a) x^{2009}+(1-a) x^{2008}+\cdots+(1-a) x+1$. Then $f(x)$ is divisible by $(x-1)^{2}$ if and only if $g(x)$ is divisible by $(x-1)$. By the Remainder Theorem, $g(x)$ is divisible by $(x-1)$ if and only if $g(1)=0$. We compute $g(1)=1+2009(1-a)+1=$ $2011-2009 a$. This is equal to zero if and only if $a=\frac{2011}{2009}$.

Solution using calculus: In general, a polynomial $p(x)$ is divisible by $(x-c)^{2}$ if and only both $p(x)$ and $p^{\prime}(x)$ are divisible by $(x-c)$. Here, $p^{\prime}(x)=2011 x^{2010}-2010 a x^{2009}+a$. By the remainder test, $p(x)$ is always divisible by $x-1$, and $p^{\prime}(x)$ is divisible by $(x-1)$ if and only if $2011-2010 a+a=0$, i.e., $a=\frac{2011}{2009}$.

