1. What is the value of the product

$$2^{1/2} \cdot 2^{1/4} \cdot \ldots \cdot 2^{1/2^n} \cdot \ldots$$
?

- A. ∞B. 1
- **C.** 2
- **D.** 4
- **E.** *e*
- 2. If a polygon is obtained by intersecting a triangle with a square, then what is the maximum possible number of its sides?
 - **A.** 3
 - **B.** 4
 - **C.** 5
 - **D.** 6
 - **E.** 7
- 3. A pair of fair six-dided dice is rolled. What is the probability of getting a sum of 2?
 - **A.** 1/6
 - **B.** 1/3
 - **C.** 1/36
 - **D.** 5/16
 - **E.** 1/4
- 4. What is the solution set to $x^2 20x < 25$?
 - A. $(10 5\sqrt{5}, 10 + 5\sqrt{5})$ B. $[10 - 5\sqrt{5}, 10 + 5\sqrt{5}]$ C. $(-\infty, 10 - 5\sqrt{5}) \cup (10 + 5\sqrt{5}, \infty)$
 - **D.** $\{10 5\sqrt{5}, 10 + 5\sqrt{5}\}$
 - **E.** $(-\infty, 10 5\sqrt{5}] \cup [10 + 5\sqrt{5}, \infty)$

- 5. Suppose that, in some base $b, 6_b \times 9_b = 42_b$. Then, still working in base b, what is $20_b \times 10_b$?
 - **A.** 13_b
 - **B.** 125_b
 - **C.** 200_b
 - **D.** 225_b
 - **E.** 256_b
- 6. How many integers between 1 and 2010 are divisible by all of 1, 2, 3, 4, 5, 6, 7, and 8?
 - **A.** 0
 - **B.** 1
 - **C.** 2
 - **D.** 4
 - **E.** 8
- 7. Let $f(x) = x^4 40x^3 + 501x^2 40x + 500$. Given that x = 20 + 10i is a solution to f(x) = 0, how many distinct real roots does f have?
 - **A.** 0
 - **B.** 1
 - **C.** 2
 - **D.** 3
 - **E.** 4
- 8. Find the remainder when $2x^3 + x$ is divided by x + 1.
 - **A.** 0
 - **B.** 3*x*
 - **C.** *x* 3
 - **D.** -3
 - **E.** 1
- 9. The diagonals of a convex quadrilateral are perpendicular and have lengths 4 and 8. The area of the quadrilateral is
 - **A.** 16
 - **B.** 20
 - **C.** 32
 - **D.** 60
 - ${\bf E}.$ Cannot be determined from the given information.

- 10. Given a triangle ABC such that $AB = \sqrt{2}, BC = 2$ and $\angle C = 30^{\circ}$, the measure of the angle B is
 - **A.** 15°
 - **B.** 45°
 - **C.** 45° or 135°
 - **D.** 15° or 105°
 - E. Cannot be determined from the given information.
- 11. In a shipment of 100 televisions, 6 are defective. If a person buys two televisions from that shipment, what is the probability that both are defective?
 - **A.** 3/100
 - **B.** 1/200
 - **C.** 9/2500
 - **D.** 1/330
 - **E.** 3/200
- 12. The set of solutions to the inequality

$$\frac{1}{\log_2 x} - \frac{1}{-1 + \log_2 x} < 1$$

is given by

- A. $(0, \infty)$ B. $(0, 1) \cup (4, \infty)$ C. $(0, 2) \cup (3, \infty)$ D. $(-\infty, 1) \cup (2, \infty)$ E. $(0, 1) \cup (2, \infty)$
- 13. The expression

 $\frac{\log_a x}{\log_{ab} x}$

can be written as

A. $\log_a x - \log_b x$ **B.** $\log_a x + \log_b a$ **C.** $1 + \log_a b$ **D.** $1 + \log_a x$ **E.** $1 - \log_b x$

- 14. For which value of a do the graphs of $y = x^2 + ax + 2$ and $y = 2x^2 ax + 6$ have exactly one point of intersection?
 - A. $\sqrt{2}$
 - **B.** 2
 - **C.** 3
 - **D.** π
 - **E.** 4
- 15. Find an equation of the circle inscribed into the rhombus with vertices (1,3), (5,6), (9,3) and (5,0).
 - A. $(x-5)^2 + (y-3)^2 = 4$ B. $(x-3)^2 + (y-5)^2 = 4$ C. $(x-5)^2 + (y-3)^2 = 144/25$ D. $(x-5)^2 + (y-3)^2 = 64/9$
 - **E.** None of the above.
- 16. Alice, Bob, Carl, and Dorothy must be seated on one side of a long table, but someone needs to sit between Alice and Bob. In how many distinguishable ways can these four people be seated at the table?
 - **A.** 10
 - **B.** 12
 - **C.** 16
 - **D.** 20
 - **E.** 22
- 17. The points A, B, C are on a circle of radius 5, and the segment AB has length 8. The maximum possible area of the triangle ABC is
 - **A.** 10
 - **B.** 20
 - **C.** 24
 - **D.** 32
 - **E.** 36

- 18. If a cowboy breaks as many horses in a day as a sooner does in a week, and three sooners working together can break four horses in five hours, how long will it take a team of twenty sooners and ten cowboys to break a herd of 120 horses?
 - **A.** 1 hour
 - **B.** 2 hours
 - C. 3 hours
 - **D.** 4 hours
 - **E.** 5 hours
- 19. The area of a triangle is 10, and its perimeter is 20. The radius of its inscribed circle is
 - **A.** 1
 - **B.** $\frac{5}{4}$
 - **C.** 8
 - **D.** 10
 - **E.** Cannot be determined from the given information.

20. Simplify:
$$\sqrt{3 + \sqrt{3 + \sqrt{3 + \cdots}}} =$$

A. $\frac{\sqrt{5}-1}{2}$
B. $\frac{\sqrt{13}-1}{2}$
C. $\frac{1+\sqrt{13}}{2}$
D. $\frac{7+\sqrt{13}}{2}$
E. $\frac{7-\sqrt{13}}{2}$

Part II. Complete solution problems

- 1. Diagonals AC and BD of a trapezoid ABCD intersect at point O. Assuming that AD is parallel to BC, prove that the areas of triangles ABO and CDO are equal.
- 2. Show that $a^4 + b^4 \ge 1/8$ for all real numbers a and b satisfying a + b = 1.
- 3. Let A = (c, 0) and B = (-c, 0) be distinct points in the plane, and let k be a positive number different from 1. Show that all points P such that $|\overline{AP}|/|\overline{BP}| = k$ lie on a circle with center on the line through A and B. What is the location of points P when k = 1?
- 4. What are the last 2015 digits of 2010^{2010} ? (For example, the last three digits of 2010 are 010.)
- 5. Consider an 8×8 chessboard with two squares in diagonally opposite corners removed. Is it possible to tile this board with 2×1 dominoes?