Part II. Team Round

1. Oh no! OSU mascot Pistol Pete has been kidnapped, stripped of his signature cowboy
hat and gun, and abandoned in the middle of the desert. Upon investigation, Pete
discovers that he’s on an “island” surrounded by a perfectly circular moat, which is
in turn patrolled by a vicious mascot-eating shark. The moat is narrow enough for
Pete to jump across, but if he tries to jump over the shark it will leap up and devour
him. Unfortunately the shark swims four times as fast as Pete can run, so it is always
waiting for him whenever he tries to beat it by running across the island in a straight
line.

Explain how Pete can beat the shark to a spot on the moat and escape.

Solution: Let us assume that the island has radius 4000 feet and that Pete can run
at 1000 —L Then the shark swims at 4000 < or one raidan per minute. (The
actual distances and speeds don’t matter; we just use that the shark can cover four
radians in the time it takes Pete to run one radius.) Thus if Pete simply runs in a
straight line from the center of the island, he needs four minutes to reach the moat,

but the shark needs only 7 minutes to cover a semicircle.

On the other hand, if Pete can arrange to be partway to the moat and diametrically
opposite the shark, he may be able to cover the remaining distance in less than
minutes. (Specifically, Pete needs to be at least 1000(4 — 7) feet from the center.)



Thus, Pete wants to arrange this situation. He can run around the center of the island
at an arbitrary radial speed by running in a sufficiently tight circle. Pete runs around
a circle of radius r in 12&;0 minutes, whereas the shark always needs 27 minutes to go
all the way around the moat. Thus, if Pete runs in a circle with radius less than 1000

feet, the shark can’t keep up with him.

In particular, if Pete can find a radius r which is less than 1000 feet but more than
1000(4 — ) feet, he can run around at that radius until he’s created the situation in
the second picture, then run directly to the water. Since 4 — m < 1, such an r exists.
One possible strategy is as follows.

Step One: Mark off a circle of radius 990 feet about the center of the island.
Step Two: Run around the circle until he’s diametrically opposite the shark.

Step Three: Run straight to the water.



2. The Fibonnaci numbers are defined by Fy = F} = 1, and F,, = F,,_1 + F,,_» for all
integers n > 2. Prove that F,, < (g)n for all n > 0.

Solution: We use induction on n. Observe that Fy =1 < (g)o and F; =1< (g)l, SO
the statement is true for n = 0 and for n = 1.

For the inductive step, we assume that the statement is true for n = k — 1 and for
n = k. That is, Fj_; < (g)kil, and [}, < (g)k Using these and the definition of the
Fibonacci numbers, we have:

Frvw =Fe+ Frq
5 k 5 k—1
< (2 —
<(5) +(5)
B 3 5 k+1+ 9 5 k+1
5\ 3 25 \ 3
24 5 k+1
5 ()
5 k+1
< | = .
(5)

() R<(3) and A< (),

Thus we have shown that

and that

(2) if Fror < (3)"" and B < (3)" then Frpy < (3)

It follows that F,, < (g)n for all positive integers n.



3. An abandoned alien spaceship is shaped like a rectangular prism with dimensions
300" x 120" x 120". An astronaut wearing magnetic shoes lands on the “front” of the
spaceship at point A, 10’ from the “top” and midway between the adjacent walls. Her
shoes allow her to walk comfortably anywhere on the outside surface, and she wants
to get to point B, on the “back” of the ship, 10’ from the “bottom” and again midway
between the adjacent walls. What is the length of the shortest route she can walk from
point A to point B?
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Solution: The astronaut has several strategic options. She can:
(
(b

a) Walk across the top of the spaceship.
)

(c) Walk diagonally partway across the top, then the rest of the way along the side.
)
)

Walk across the side of the spaceship.

(d) Walk diagonally partway along the side, then the rest of the way across the top.

e) Walk partway across the top, then across the side, then the rest of the way alon
g
the bottom.

(There are other options, but they’re all equal in length to one of the five listed above
(because of the symmetry between A and B) or obviously longer.)

We determine the minimum length of a path by unfolding the spaceship in a way that
leaves the appropriate faces connected.



Strategy (a) requires the astronaut to walk 420 = /176400 feet:
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Strategy (c) requires the astronaut to walk /4202 + 1002 = /186400 feet:
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Strategy (d) requires the astronaut to walk /4702 + 702 = /225800 feet:




Strategy (e) requires the astronaut to walk V3202 4 2402 = /160000 feet:
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The answer is the shortest of these, /160000 = | 400 feet |.




4. A connected planar graph is a nonempty collection of line segments (called edges) in
the plane, with the properties that no two edges intersect except perhaps at a common
endpoint, and that any two endpoints (or vertices) are connected by a sequence of
edges. Two examples are the five-pointed star and the projection of a cube shown
below.

Every connected planar graph divides the plane into a number of connected regions,
called faces. If V| E, and F' are the number of vertices, edges, and faces, then we have
(V,E,F) = (6,5,1) for the star and (V, E, F') = (8,12,6) for the cube above. (The
“outside face” counts as a face.) Prove that V' — E' + F' = 2 for any connected planar
graph with finitely many edges.

Solution: We work by induction on F.

If £ =1, we have a graph with one edge and two vertices. There is only one face: the
entire plane. Thus V=2, F=1,and F=1,s0V — E+ F = 2.

For the inductive step, let G be a connected graph with Egs edges, and assume we
know that Vg — Eg + Fg = 2 for every connected graph H with at most Fg — 1 edges.

First, suppose that G has a vertex v which is an endpoint of only one edge e. Let H
be the graph obtained by deleting v and e from G. Then Vg =V — 1, Eyg = Eg — 1,
and Fy = Fg. Furthermore, H is still connected. Thus Vg — Ey + Fy = 2 by the
inductive hypothesis, so Vg — Eg + Fg = 2 as well.

If G has no such vertex, then every vertex is a common endpoint of two or more edges.
We claim that G contains a loop: Choose any vertex v; and any edge e; having v; as
an endpoint. Then let v, be the other endpoint of e;, and let e; be any other edge
having vy as an endpoint. Let vs be the other endpoint of e, and continue in this
way until a vertex repeats. (This has to happen because there are only finitely many
vertices.) Suppose v, = v is the repeated vertex. Then the edges e,...,e,—1 form a
loop, which divides the plane into two regions (inside and outside).

G may have many faces inside the loop, and many faces outside it, but every face is
completely contained in either the interior or the exterior of our loop. Let e be any
edge on the boundary of the loop. Then the two faces bordering e are distinct, since
one is inside the loop and the other is outside. If we delete e, these two faces will
merge, but we will not lose any vertices.



Let H be the graph obtained by deleting e from G. Then Ey = Eg —1, Vg = Vg, and
Fy = Fg—1. Also, H is connected (since any connection that went through the deleted
edge e can detour around the loop). Since Ey < Eg, we again have Vi — Ey + Fg = 2
from the inductive hypothesis. It follows that Vi — Eg + Fg = 2 as well.

Thus we have proved that
(HW)V—-E+F=2if E=1.
and that

(2) f V— E+F =2 whenever E =n—1, then V — E+ F = 2 whenever
E =n.

Consequently, V' — E + F' = 2 whenever F is any positive integer.



5. A “truncated icosahedron” or “soccer ball” is a polyhedron with pentagonal and hexag-
onal faces arranged according to the following rules:
(a) No two pentagons share an edge.
(b) The edges of each hexagon alternately meet pentagons and hexagons.

(c¢) Exactly one pentagon and two hexagons meet at each vertex.

If a truncated icosahedron has H hexagonal and P pentagonal faces, find all possible
values for (H, P).

Solution: Let V', E, and F' be the number of vertices, edges, and faces, respectively.

Immediately, we have
F=H+P. (1)

From the statement of problem 4 (if puncture any face of a polyhedron and pull it flat,
or, equivalently, take the stereographic projection from a point just outside, the edges
form a connected planar graph), we have

V-E+F=2 (2)

If we count the vertices of each pentagon, (c) tells us that we count each vertex once.
On the other hand, if we count the vertices of each hexagon, (c) tells us that that we
count each vertex twice. Thus
SP=V (3)
6H = 2V. (4)

Finally, if we count all the edges of each pentagon and all the edges of each hexagon,
we will have counted every edge twice. Thus

5P + 6H = 2E. (5)

This is five equations in five variables, so we should be able to solve.

From (3), (4), and (5), we have 3V = 2E. From (1), (3), and (4), we have 15F = 8V.
Substituting these into (2) yields V' — gV + %V = 2. Thus V=60, E =90, F = 32,
P =12, and H = 20.

The answer is | (20,12) |




