Part I. Individual Round

1. Find an integer d with the property that the multiples of d are exactly the numbers which are divisible by both 12 and 21.

A. 4

B. 63

- **C.** 84
- **D.** 108
- **E.** 252

Answer: C.

- 2. Let ABC be an equilateral triangle with sides of length 2. Find the shortest possible distance from A to a point on BC.
- A. 1 B. $\sqrt{2}$ C. $\sqrt{3}$ D. 2 E. $\sqrt{5}$ Answer: C. 3. Simplify $\sqrt{6 - 4\sqrt{2}}$. A. $2\sqrt{2} - \sqrt{3}$ B. $\sqrt{3} - 2\sqrt{2}$
 - **C.** $\sqrt{2} 2$
 - **D.** $2 \sqrt{2}$
 - **E.** $\sqrt{6} \sqrt[4]{8}$

Answer: D.

4. Write the repeating decimal $0.\overline{987654321}$ as a fraction in lowest terms.

А.	$\frac{12193281}{12345697}$
в.	$\frac{109739369}{11111111}$
C.	987654321
	9999999999
D.	$\frac{48773044}{49382707}$
Е.	987654321
	100000000

Answer: B.

- 5. Square ABCD is inscribed inside a circle of area π . Then another circle is inscribed inside square ABCD. What is the area of the smaller circle?
 - **A.** $\frac{\pi}{4}$ **B.** 1 **C.** $\frac{\pi}{3}$ **D.** 2 **E.** $\frac{\pi}{2}$

Answer: E.

6. Suppose we have a collection of cards, each of which has a letter printed on one side and a number printed on the other. We want the cards to follow the rule: "If there is a vowel on one side, the number on the other side must be even."

How many of the five cards below must be turned over to verify the rule?

- A. None.
- **B.** One.
- C. Two.
- **D.** Three.
- E. Four.

Answer: D.

- 7. What is the area of the shape bounded by the equation $x^2 + 2y^2 + 4x 4y = 1000?$
 - **A.** 503π
 - **B.** 961π
 - **C.** 1000π
 - **D.** 1006π
 - **E.** 2012π

Answer: The correct answer is $503\pi\sqrt{2}$, which does not appear among these choices. We apologize for the error.

- 8. If two men can paint two rooms in two days, how long does it take one man to paint one room?
 - A. Half a day.
 - **B.** One day.
 - C. Two days.
 - **D.** Four days.
 - E. Eight days.

Answer: C.

9. Express $\cot(\alpha + \beta)$ in terms of $\cot \alpha$ and $\cot \beta$.

A.
$$\frac{\cot \alpha \cot \beta - 1}{\cot \alpha + \cot \beta}$$

B.
$$\frac{\cot \alpha \cot \beta + 1}{\cot \alpha + \cot \beta}$$

C.
$$\cot \alpha + \cot \beta$$

D.
$$\frac{\cot \alpha + \cot \beta}{1 - \cot \alpha \cot \beta}$$

E.
$$\frac{\cot \alpha + \cot \beta}{1 + \cot \alpha \cot \beta}$$

Answer: A.

- 10. Find the area of a regular octagon with side-length one. (An octagon has eight sides.)
 - **A.** $6\sqrt{2} 4$ **B.** 7 **C.** $2\sqrt{2} + 2$ **D.** $2\sqrt{6}$ **E.** $8\sqrt{2} - 8$
 - Answer: C.
- 11. Given that the polynomial $x^5 2x^4 3x^3 + 4x^2 + 2x 1$ has five distinct real roots, how many of them are positive?
 - **A.** 0
 - **B.** 1
 - **C.** 2
 - **D.** 3
 - **E.** 4

Answer: D.

- 12. The positive integer x is the arithmetic mean of the twenty integers a_1, a_2, \ldots, a_{20} . The arithmetic mean of the twelve integers b_1, b_2, \ldots, b_{12} is 5x. What is the smallest integer that could be the arithmetic mean of the numbers $a_1, \ldots, a_{20}, b_1, \ldots, b_{12}$?
 - **A.** 1
 - **B.** 2
 - **C.** 3
 - **D.** 4
 - **E.** 5

Answer: E.

- 13. If you answered all 25 questions on this contest at random, what is the probability that you would get exactly one question right?
 - A. $\left(\frac{4}{5}\right)^{24}$ B. $\frac{1}{5} + \left(\frac{4}{5}\right)^{24}$ C. $25 \left(\frac{4}{5}\right)^{25}$ D. $5 \left(\frac{4}{5}\right)^{24}$ E. $4 \left(\frac{4}{5}\right)^{25}$ Answer: D.
- 14. Suppose ABCD is a quadrilateral with perpendicular diagonals. If AB = 6, BC = 2, and CD = 7, find AD.
 - **A.** 8**B.** 9
 - **C.** 10
 - **D.** 11
 - **E.** 12

Answer: B.

15. Find the largest integer less than 2012 with an odd number of positive divisors.

- **A.** 1440
- **B.** 1936
- **C.** 1944
- **D.** 2000
- **E.** 2011

Answer: B.

16. Suppose that $x^{\frac{1}{5}}$ and $x^{\frac{1}{7}}$ are integers. Which of the following must also be an integer?

- **A.** $x^{\frac{1}{2}}$
- **B.** $x^{\frac{1}{12}}$
- **C.** $x^{\frac{1}{35}}$
- **D.** All of the above.
- **E.** None of the above.

Answer: C.

- 17. An athlete runs three laps around a quarter-mile track at 9 miles per hour. How fast must she run the fourth lap in order to complete the mile in 6 minutes?
 - **A.** It can't be done.
 - **B.** 6 mph
 - **C.** 10 mph
 - **D.** 12 mph
 - **E.** 15 mph

Answer: E.

18. What is the shape of the graph of |x - y| + ||x| - x| = 0?

A. A line segment.

B. A line.

- C. A rectangle.
- **D.** A single point.

E. A ray.

Answer: E.

19. Find $\cos \frac{\pi}{12}$.

A.
$$\frac{\sqrt{2-\sqrt{3}}}{2}$$

B. $\frac{\sqrt{2+\sqrt{3}}}{2}$
C. $\frac{\sqrt{2}+\sqrt{3}}{2}$
D. $\frac{\sqrt{3}-\sqrt{2}}{2}$
E. $\frac{\sqrt{\sqrt{2}+\sqrt{3}}}{2}$

Answer: B.

- 20. What is the area of the pentagon with vertices (in order) at (0,0), (12,2), (14,15), (7, 16), and (2, 14)?
 - **A.** $\frac{333}{2}$ **B.** $\frac{335}{2}$ C. $\frac{337}{2}$

 - **D.** $\frac{339}{2}$
 - **E.** $\frac{341}{2}$

Answer: C.

- 21. Find all the functions on \mathbb{R} that satisfy the condition f(x) > 0 for all x and the equation $f(x+y) = \frac{f(x)}{f(y)}$ for all x and y.
 - A. The power functions $f(x) = x^n$ for even integers n.
 - **B.** The constant function f(x) = 1.
 - **C.** The logarithmic functions $f(x) = C \ln x$ for positive numbers C.
 - **D.** No functions satisfy these conditions.
 - **E.** The exponential functions $f(x) = b^x$ for positive numbers b.

Answer: B.

- 22. How many digits are in the decimal representation of 2012^{2012} ?
 - **A.** 6047
 - **B.** 6197
 - **C.** 6347
 - **D.** 6497
 - **E.** 6647

Answer: E.

23. Ten dots are marked on a circle. In how many ways can five chords be drawn so that each chord connects two of the dots, but no two chords intersect?

A. 42

- **B.** 60
- **C.** 84
- **D.** 120
- **E.** 1920

Answer: A.

24. Given A = (0,1) and C = (2,3), let B = (x,0) be the point on the x-axis that minimizes the perimeter of triangle ABC. Find x.

A. $\frac{1}{3}$ B. $\frac{1}{2}$ C. $\frac{2}{3}$ D. $\frac{5}{6}$ E. 1

Answer: B.

- 25. Given a triangle ABC, let D be a point on AB such that AD : DB = 2 : 3, and let E be a point on BC such that BE : EC = 5 : 7. If AE meets CD at F, find $\frac{AF}{EF}$.
 - A. $\frac{7}{8}$ B. $\frac{14}{15}$ C. 1 D. $\frac{15}{14}$ E. $\frac{8}{7}$

Answer: E.