Geometric Realizations of the Space of Splines on Simplicial Complexes

Nelly Villamizar
Swansea University, UK
SIAM Conference on Applied Algebraic Geometry
Atlanta, USA, July 31 - August 2, 2017

Spline (or piecewise polynomial) functions

- For a pure d-dimensional simplicial complex $\Delta \subset \mathbb{R}^{d}$

- The space $C^{r}(\Delta)$ of splines is the set of all C^{r}-continuous functions $f: \Delta \mapsto \mathbb{R}$ such that $\left.f\right|_{\sigma}$ to each maximal simplex σ is a real polynomial.
- The set $C^{r}(\Delta)$ is a vector space over \mathbb{R}.

One would like to find the dimension and a basis for each of the subspaces $C_{k}^{r}(\Delta)$ of elements of degree at most $k \ldots$

- Additionally, $C^{r}(\Delta)$ forms a ring under pointwise multiplication.
\Rightarrow What is the ring structure of $C^{r}(\Delta)$? geometric interpretations?

The algebra of continuous splines

- Suppose v_{0}, \ldots, v_{n} are the vertices of the simplicial complex Δ.
- Let Y_{i} be the unique piecewise linear function on Δ defined by $Y_{i}\left(V_{j}\right)=\delta_{i j}$ the Kronecker delta.
Then Y_{1}, \ldots, Y_{m} form a basis for $C_{1}^{0}(\Delta)$ as a real vector space (the Courant functions on Δ).
\Rightarrow They generate $C^{0}(\Delta)$ as an \mathbb{R}-algebra, and

$$
C^{0}(\Delta) \cong A_{\Delta} /\left(Y_{0}+\cdots+Y_{n}-1\right)
$$

where A_{Δ} is the face ring of Δ

$$
A_{\Delta}=\mathbb{R}\left[Y_{0}, \ldots, Y_{n}\right] / I_{\Delta}
$$

with I_{Δ} is the monomial ideal generated by the products $Y_{i_{1}} \ldots Y_{i_{j}}$ such that $\left\{v_{i_{1}}, \ldots, v_{i_{j}}\right\}$ is not a face of Δ.

Example: spline space $C^{0}(\Delta)$ and face ring A_{Δ}

- For $\Delta \subset \mathbb{R}^{2}$ with vertices v_{1}, \ldots, v_{5}, The Stanley-Reisner ring

$$
A_{\Delta}=\mathbb{R}\left[Y_{0}, Y_{1}, Y_{2}, Y_{3}, Y_{4}\right] / I_{\Delta}
$$ with $I_{\Delta}=\left(Y_{1} Y_{3}, Y_{2} Y_{4}\right)$.

- The spline space:

$$
C^{0}(\Delta) \cong A_{\Delta} /\left(Y_{0}+\cdots+Y_{4}-1\right)
$$

- If we "homogenize" Δ then

$$
C^{0}(\hat{\Delta}) \cong A_{\Delta}
$$

- It is known [Bruns-Gubeladze] that if two simplicial complexes have isomorphic Stanley-Reisner rings, then they are themselves isomorphic.

Affine Stanley-Reisner rings

- Identify Y_{i} with the Courant (hat) function at v_{i} and extending by linearity $\sum_{i} Y_{i}=1$, and

$$
A_{\Delta} /\left(\sum_{i} Y_{i}-1\right) \cong C^{0}(\Delta)
$$

is called the affine Stanley-Reisner ring of Δ.

- Then

$$
\operatorname{Spec}\left(C^{0}(\Delta)\right)=\operatorname{Spec}\left(A_{\Delta}\right) \cap Z\left(\sum_{i} Y_{i}-1\right) \subset \mathbb{A}_{\mathbb{R}}^{n}=\mathbb{R}^{n}
$$

and the points that have non-negative coordinates, give a model of Δ.

Example $(d=1)$:

Let Δ be a one-dimensional simplicial complex with three vertices $v_{0}, v_{1}, v_{2} \in \mathbb{R}$, and assume $v_{0}<v_{1}<v_{2}$.

We have:

$$
C^{0}(\Delta)=A_{\Delta} /\left(\sum_{i=1}^{3} Y_{i}-1\right)=\mathbb{R}\left[Y_{0}, Y_{1}, Y_{2}\right] /\left(Y_{0} Y_{2}, Y_{0}+Y_{1}+Y_{2}-1\right)
$$

$$
\operatorname{Spec}\left(C^{0}(\Delta)\right)=Z\left(Y_{0}, Y_{1}+Y_{2}-1\right) \cup Z\left(Y_{2}, Y_{0}+Y_{1}-1\right) \subset \mathbb{R}^{3}
$$

The segments of these two lines contained in the positive octant mimic the two 1 -faces of Δ, and they intersect transversally.

Subalgebras of the Stanley-Reisner ring

- Consider $\cdots \subseteq C^{r}(\Delta) \subseteq C^{1}(\Delta) \subseteq C^{0}(\Delta)=A_{\Delta} /\left(\sum Y_{i}-1\right)$.
- The diagram is commutative and exact

If $\sigma_{i} \cap \sigma_{j}=\tau$ then $\left.\partial^{r}\left(f_{1}, \ldots, f_{m}\right)\right|_{\tau}=f_{i}-f_{j} \quad$ in R / ℓ_{τ}^{r+1} and,

$$
\left.\psi^{r}\left(f_{\sigma_{1}}, \ldots, f_{\sigma_{m}}\right)\right|_{\tau}=f_{\sigma_{i}}-B_{\sigma_{j} \sigma_{i}}\left(f_{\sigma_{j}}\right) \text { in } A_{\sigma} / B_{\sigma_{i}}\left(\ell_{\tau}^{r+1}\right) .
$$

-The ring A_{Δ} is related to $C^{r}(\Delta)$ by the inclusion: $\Phi: A_{\Delta} \rightarrow \bigoplus_{\sigma \in \Delta_{d}} A_{\sigma}$ defined by $\Phi\left(Y_{i}\right)=\left\{\begin{array}{lll}0 & \text { if } & v_{i} \notin \sigma \\ X_{i}^{\sigma} & \text { if } & v_{i} \in \sigma .\end{array}\right.$
$\Rightarrow F \in A_{\Delta} /\left(\sum_{i} Y_{i}-1\right)$ is an element of $C^{r}(\Delta) \Leftrightarrow \Psi^{r}(\Phi(F))=0$ [Schenck]. 6

Trivial splines in A_{\triangle}

- For a simplicial complex $\Delta \subset \mathbb{R}^{d}$, set

$$
H_{j}:=v_{1, j} Y_{1}+\cdots+v_{n, j} Y_{n}, \quad \text { for } j=1, \ldots, d
$$

$$
\text { and } H_{d+1}:=Y_{1}+\cdots+Y_{n} \text {, where } v_{i}=\left(v_{i, 1}, \ldots, v_{i, d}\right) .
$$

- Then H_{j} is equal to the j-th coordinate function on $\Delta \subset \mathbb{R}^{d}$, and so

$$
\mathbb{R}\left[H_{1}, \ldots, H_{d}\right] \subseteq C^{r}(\Delta)
$$

is the subring of trivial splines.
Example: $H_{1}:=v_{0} Y_{0}+v_{1} Y_{1}+v_{2} Y_{2}$ is the trivial spline.

In fact, $H_{1}(x)=x$ for any point $x \in \Delta$, and $\mathbb{R}\left[H_{1}\right] \subseteq C^{r}(\Delta)$, for any $r \geq 0$.

Generators of $C^{r}(\Delta)$ for $d=1$

- In the case

also Y_{1}^{r+1} and Y_{3}^{r+1} correspond to elements in $C^{r}(\Delta)$.
\Rightarrow In fact: $C^{r}(\Delta) \cong \mathbb{R}\left[H, Y_{1}^{r+1}\right] /\left(Y_{1} Y_{3}, Y_{1}+Y_{2}+Y_{3}-1\right)$.
On the other hand, $H_{1}-v_{1}=\left(v_{0}-v_{1}\right) Y_{0}+\left(v_{1}-v_{2}\right) Y_{2}$.
Consider the map

$$
\begin{aligned}
& \varphi_{r}: \mathbb{R}\left[y_{0}, y_{1}, y_{2}\right] \rightarrow \mathbb{R}\left[Y_{0}, Y_{1}, Y_{2}\right] /\left(Y_{0} Y_{2}, Y_{0}+Y_{1}+Y_{2}-1\right) \\
& \varphi\left(y_{1}\right)=H_{1}, \quad \varphi\left(y_{0}\right)=\left(\left(v_{0}-v_{1}\right) Y_{0}\right)^{r+1} \\
& \varphi\left(y_{2}\right)=\left(\left(v_{1}-v_{2}\right) Y_{2}\right)^{r+1}
\end{aligned}
$$

Then, $\operatorname{Im}\left(\varphi_{r}\right) \cong C^{r}(\Delta)$ and $\operatorname{ker}\left(\phi_{r}\right)=\left(y_{0} y_{2}, y_{0}+y_{2}-\left(y_{1}+u_{2}\right)^{r+1}\right)$.
$\Rightarrow \operatorname{Spec}\left(C^{r}(\Delta)\right)=Z\left(y_{0}, y_{2}-\left(y_{1}-v_{1}\right)^{r+1}\right) \cup Z\left(y_{2}, y_{0}-\left(y_{1}-v_{1}\right)^{r+1}\right)$.

Geometric realization of $C^{r}(\Delta)$

\Rightarrow Hence $C^{r}(\Delta) \cong \mathbb{R}\left[y_{0}, y_{1}, y_{2}\right] /\left(y_{0} y_{2}, y_{0}+y_{2}-\left(y_{1}-v_{1}\right) r+1\right)$, and

$$
\left.\operatorname{Spec}\left(C^{r}(\Delta)\right)=Z\left(y_{0}, y_{2}-\left(y_{1}-v_{1}\right)^{r+1}\right)\right) \cup Z\left(y_{2}, y_{0}-\left(y_{1}-v_{1}\right)^{r+1}\right)
$$

\Rightarrow For $r \geq 1$, both curves have the $y_{1}-v_{1}$ line as tangent at their point of intersection (the origin), and the tangent intersects each curve with multiplicity $r+1$.

The local spline ring geometric description

Let Δ be a (general) d-dimensional simplicial complex consisting of two d-simplices intersecting in a $(d-1)$-simplex.
Then we can realize $\operatorname{Spec}\left(C^{r}(\Delta)\right) \subset \mathbb{R}^{d+2}$ as the union of two smooth d-dimensional varieties V_{1} and V_{2} intersecting along a linear ($d-1$)-dimensional space L, such that V_{1} and V_{2} have the same d-dimensional linear space T as tangent space at each point of L and such that V_{i} and T have order of contact $r+1$ at each point of L.

Idea of the proof

- We have $H_{j}=v_{0, j} Y_{0}+\cdots+v_{d+1, j} Y_{d+1}$ for $j=1, \ldots, d$, where $v_{t}=\left(v_{t, 1}, \ldots, v_{t, d}\right) \in \mathbb{R}^{d}$ are the vertices of Δ.
- Let $c_{0}=\operatorname{det} M_{\sigma}$ and $c_{d+1}=\operatorname{det} M_{\sigma^{\prime}}$.
- Define $F:=c_{0} Y_{0}+c_{d+1} Y_{d+1}$, which is a trivial spline on Δ and therefore, $F=u_{1} H_{1}+\cdots+u_{d+1} H_{d+1}$ for $u_{1}, \cdots, u_{d+1} \in \mathbb{R}$.
- Notice that $\left(c_{0} Y_{0}\right)^{r+1}+\left(c_{d+1} Y_{d+1}^{r+1}\right)=F^{r+1}$.
- Define the map

$$
\begin{gathered}
\varphi_{r}: \mathbb{R}\left[y_{0}, \ldots, y_{d+1}\right] \rightarrow \mathbb{R}\left[Y_{0}, \ldots, Y_{d+1}\right] /\left(Y_{0} Y_{d+1}, \sum_{i} Y_{i}-1\right) \text { by } \\
\qquad \varphi_{r}\left(y_{j}\right)= \begin{cases}\left(c_{j} Y_{j}\right)^{r+1} & \text { for } j=0, d+1, \\
H_{j} & \text { for } j=1, \ldots, d .\end{cases}
\end{gathered}
$$

- Then $C^{r}(\Delta) \cong \mathbb{R}\left[H_{1}, \ldots, H_{d+1}, Y_{0}^{r+1}\right] /\left(Y_{0} Y_{d+1}, \sum_{i=0}^{d+1} Y_{i}-1\right)$ implies $\operatorname{Im}\left(\varphi_{r}\right) \cong C^{r}(\Delta)$.
- $\operatorname{ker}\left(\varphi_{r}\right)=\left(y_{0} y_{d+1}, y_{0}+y_{d+1}-\left(\sum_{i} u_{i} y_{i}+u_{d+1}\right)^{r+1}\right)$.

Geometric realization

Thus, for $\Delta=\sigma \cup \sigma \subset \mathbb{R}^{d}$:

$$
\begin{aligned}
\operatorname{Spec}\left(C^{r}(\Delta)\right)= & Z\left(y_{0}, y_{d+1}-\left(u_{1} y_{1}+\cdots+u_{d} y_{d}+u_{d+1}\right)^{r+1}\right) \cup \\
& Z\left(y_{d+1}, y_{0}-\left(u_{1} y_{1}+\cdots+u_{d} y_{d}+u_{d+1}\right)^{r+1}\right)
\end{aligned}
$$

Example: In the case $d=2$, each V_{i} is a 2-dimensional variety in a 4-dimensional space. We have $F=\operatorname{det} M_{\sigma} Y_{0}+\operatorname{det} M_{\sigma^{\prime}} Y_{3}$. The matrix of the edge $\tau=\sigma \cap \sigma^{\prime}$

$$
M_{\tau}=\left(\begin{array}{lll}
v_{1,1} & v_{1,2} & 1 \\
v_{2,1} & v_{2,2} & 1
\end{array}\right)
$$

leads to $u_{1}=v_{1,2}-v_{2,1}$,
$u_{2}=-\left(v_{1,1}-v_{2,1}\right)$,
$u_{3}=v_{1,1} v_{2,2}-v_{1,2} v_{2,1}$, and $u_{1} H_{1}+u_{2} H_{2}+u_{3} H_{3}=F$.

Example $(d=2)$

$$
\begin{aligned}
& \Rightarrow \operatorname{Spec}\left(C^{r}(\Delta)\right)= \\
& \quad Z\left(y_{0}, y_{3}-\left(u_{1} y_{1}+u_{2} y_{2}+u_{3}\right)^{r+1}\right) \cup Z\left(y_{3}, y_{0}-\left(u_{1} y_{1}+u_{2} y_{2}+u_{3}\right)^{r+1}\right) .
\end{aligned}
$$

- The intersection of these surfaces is the line $Z\left(y_{0}, y_{3}, u_{1} y_{1}+u_{2} y_{2}+u_{3}\right)$.
- The plane $Z\left(y_{0}, y_{3}\right)$ is the tangent plane to both surfaces at all points of their line of intersection. The intersection of this tangent plane and each surface is the line, with multiplicity $r+1$.

Generators of $C^{r}(\Delta)$ as a ring: shellable triangulations

Generators of the ring $C^{r}(\Delta)$: shellable triangulations

For any given 1-shellable triangulation Δ with m interior edges, there is a set of linearly independent polynomials $L_{1}, \ldots, L_{m} \in A_{\triangle}$ of degree 1, such that each L_{i}^{r+1} corresponds in $C^{0}(\Delta)$ to a C^{r}-continuous non-trivial spline on Δ, and

$$
C^{r}(\Delta) \cong \mathbb{R}\left[H_{1}, H_{2}, H_{3}, L_{1}^{r+1}, \ldots, L_{m}^{r+1}\right] /\left(I_{\Delta}, \sum_{i=1}^{n} Y_{i}-1\right)
$$

Triangulations with interior vertices

For quadrilateral triangulated by its two diagonals $C^{r}(\Delta) \cong$ $\mathbb{R}\left[H_{1}, H_{2}, H_{3}, Y_{1}^{r+1}, Y_{2}^{r+1}\right] /\left(Y_{1} Y_{3}, Y_{2} Y_{4}, 1-\left(Y_{0}+Y_{1}+Y_{2}+Y_{3}+Y_{4}\right)\right)$.

Similarly as before, there is a map
$\varphi_{r}: \mathbb{R}\left[y_{0}, \ldots, y_{5}\right] \rightarrow \mathbb{R}\left[Y_{0}, \ldots, Y_{4}\right] /\left(Y_{1} Y_{3}, Y_{2} Y_{4}, \sum_{i=0}^{4} Y_{i}-1\right)$ such that $\operatorname{Im}\left(\varphi_{r}\right) \cong C^{r}(\Delta)$ and $y_{1}+y_{3}-\left(u_{1} y_{0}+u_{2} y_{5}+u_{3}\right)^{r+1}$ and
$y_{2}+y_{4}-\left(u_{1}^{\prime} y_{0}+u_{2}^{\prime} y_{5}+u_{3}^{\prime}\right)^{r+1}$ are in $\operatorname{ker}\left(\varphi_{r}\right)$.

Interior vertices

$\Rightarrow \operatorname{Spec}\left(C^{r}(\Delta)\right)=$
$Z\left(y_{1}, y_{3}-\left(u_{1} y_{0}+u_{2} y_{5}+u_{3}\right)^{r+1}\right) \cup Z\left(y_{3}, y_{1}-\left(u_{1} y_{0}+u_{2} y_{5}+u_{3}\right)^{r+1}\right) \cup$
$Z\left(y_{2}, y_{4}-\left(u_{1}^{\prime} y_{0}+u_{2}^{\prime} y_{5}+u_{3}^{\prime}\right)^{r+1}\right) \cup Z\left(y_{4}, y_{2}-\left(u_{1}^{\prime} y_{0}+u_{2}^{\prime} y_{5}+u_{3}^{\prime}\right)^{r+1}\right)$

Dual graph with cycles

For Δ a generic triangulation with 5 vertices, $C^{1}(\Delta)$ is generated as a subring of $C^{0}(\Delta)$ by $H_{0}, H_{1}, H_{2}, S, T$, where S is a (nontrivial) quadratic spline, and T is linear (syzygy).

A similar proposition holds for triangulations whose dual graph is a cycle.

Final remarks and references

A natural next step is to consider a 2-dimensional Δ and
(i) find a geometric realization for the space of splines on simplices meeting whose dual graph is a tree,
(ii) and study the generators and geometric realizations in the case of generic simplices with interior vertices. Particularly, the role of the syzygies as elements of the Stanley-Reisner ring.
L. Billera, The algebra of continues piecewise polynomials, Advances in Mathematics, 76: 170-183, 1989.H. Schenck, Subalgebras of the Stanley-Reisner Ring, Discrete \& Computational Geometry, 21: 551-556, 1999.
R. Piene, Algebraic Spline Geometry: Some Remarks, SAGA- Advances in ShApes, Geometry, and Algebra, Geometry and Computing, 10, Springer, pp. 169-175, 2014.

