Basis and dimension of trivariate geometrically continuous isogeometric functions on two-patch domains

<u>Katharina Birner</u>*, Bert Jüttler*, Angelos Mantzaflaris⁺ *JKU Linz, ⁺RICAM Linz

SIAM Conference on Applied Algebraic Geometry

August 3, 2017

MOTIVATION

GEOMETRICALLY CONTINUOUS ISOGEOMETRIC FUNCTIONS

DIMENSION AND BASIS OF GLUED SPLINE SPACE Dimension Basis computation

ISOGEOMETRIC ANALYSIS (IGA)

T.J.R.Hughes, J.A.Cottrell and Y.Bazilevs.

Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement.

Computer methods in applied mechanics and engineering, 194(39), 4135–4195, 2005.

- Approximation method for PDEs,
- alternative to standard FEM.
- Use same basis functions to represent the geometry and to approximate the solutions of PDEs.

Advantages:

- smooth basis functions with compact support,
- perform computations on exact geometry.

ISOGEOMETRIC ANALYSIS (IGA)

IGA allows discretization spaces of high order smoothness.

Need multi-patch parameterization.

Question:

How to obtain smooth (C^1) functions on multi-patch domains?

Trivial

Non-trivial

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Related work - planar domains

J⊻U

 C^1 -smooth isogeometric function spaces on *bilinearly* parametrized planar domains:

M.Kapl, V.Vitrih, B.Jüttler and K.Birner. Isogeometric analysis with geometrically continuous functions on two-patch geometries.

Computers & Mathematics with Applications, 70(7), 1518–1538, 2015.

M.Kapl, F.Buchegger, M.Bercovier and B.Jüttler.

Isogeometric analysis with geometrically continuous functions on planar multi-patch geometries.

Computer Methods in Applied Mechanics and Engineering, 316, 209–234, 2017.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Related work - planar domains

 C^1 -smooth isogeometric function spaces on *more general* parametrized planar domains:

M.Kapl, G.Sangalli and T.Takacs.

Dimension and basis construction for analysis-suitable G^1 two-patch parameterizations.

Computer Aided Geometric Design, 52, 75–89, 2017.

M.Kapl, G.Sangalli and T.Takacs.

Construction of analysis-suitable G^1 planar multi-patch parameterizations.

arXiv preprint arXiv:1706.03264, 2017.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

MOTIVATION

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Extend these results to volumetric domains

Given: Hexahedral volumetric two-patch domain $\Omega = \Omega_1 \cup \Omega_2$.

Goal: Dimension and basis of C^1 -smooth isogeometric functions on Ω . **Future work:** 4th-order PDEs, e.g biharmonic equation.

VOLUMETRIC SETTING

J⊻U

- Common face parameterized by $\Gamma = [0, 1]^2 \times \{0\}$.
- Parametric representations $F^{(1)}, F^{(2)}$ with coordinate functions from

$$\mathcal{P}=\mathcal{S}_k^p\otimes\mathcal{S}_k^p\otimes\mathcal{S}_k^p,$$

- S_k^p space of spline functions on [0, 1] of degree p with k uniformly distributed inner knots of multiplicity p 1,
- ▶ two-patch geometry mapping $\boldsymbol{F} = (\boldsymbol{F}^{(1)}, \, \boldsymbol{F}^{(2)}) \in C^0(\Omega)$ where

$$\boldsymbol{F}^{(1)} = \boldsymbol{F}^{(2)}$$
 on $\boldsymbol{\Gamma}$.

MOTIVATION

GEOMETRICALLY CONTINUOUS ISOGEOMETRIC FUNCTIONS

DIMENSION AND BASIS OF GLUED SPLINE SPACE Dimension Basis computation

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Space of C^1 -smooth isogeometric functions

Isogeometric function $\nu \in (\mathcal{P} \times \mathcal{P}) \circ \mathbf{F}^{-1}$

$$(
u|_{\Omega^{(i)}})(\pmb{x}) =
u^{(i)}(\pmb{x}) = (w^{(i)} \circ (\pmb{F}^{(i)})^{-1})(\pmb{x}), \quad \pmb{x} \in \Omega^{(i)}$$

with $w^{(1)}, w^{(2)} \in \mathcal{P}$.

Space of C^1 -smooth isogeometric functions \mathcal{V}_F

$$\mathcal{V}_{\boldsymbol{F}} = \left[(\mathcal{P} \times \mathcal{P}) \circ \boldsymbol{F}^{-1} \right] \cap C^1(\Omega_1 \cup \Omega_2).$$

G^1 -continuity condition

Associated graph surface $\Phi = (\Phi^{(1)}, \Phi^{(2)}), \ \Phi^{(i)} = (F^{(i)}, w^{(i)}) \in \mathbb{R}^4.$

► Isogeometric function ν is C^1 -smooth if Φ is G^1 -smooth $(G^1$ -smooth = C^1 -smooth after reparameterization).

G^1 -CONTINUITY CONDITION

(日) (日) (日) (日) (日) (日) (日) (日)

Associated graph surface $\Phi = (\Phi^{(1)}, \Phi^{(2)}), \ \Phi^{(i)} = (F^{(i)}, w^{(i)}) \in \mathbb{R}^4.$

► Isogeometric function ν is C^1 -smooth if Φ is G^1 -smooth $(G^1$ -smooth = C^1 -smooth after reparameterization).

 Φ is $G^1\mbox{-smooth}$ iff the two patches have identical tangent hyperplanes along the common interface

$$\Phi^{(1)} = \Phi^{(2)}$$
 on Γ .

G^1 -CONTINUITY CONDITION

Identical tangent hyperplanes:

•
$$w^{(1)}(\xi_1,\xi_2,0) = w^{(2)}(\xi_1,\xi_2,0).$$

►
$$\partial_1 \Phi^{(1)}(\xi_1, \xi_2, 0) = \partial_1 \Phi^{(2)}(\xi_1, \xi_2, 0),$$

 $\partial_2 \Phi^{(1)}(\xi_1, \xi_2, 0) = \partial_2 \Phi^{(2)}(\xi_1, \xi_2, 0),$
 $\partial_3 \Phi^{(1)}(\xi_1, \xi_2, 0)$ and $\partial_3 \Phi^{(2)}(\xi_1, \xi_2, 0)$
are linearly dependent at each point of the interface.

$$\longrightarrow \qquad M(\xi_1,\xi_2) = \det \begin{pmatrix} \nabla \boldsymbol{F}^{(1)}|_{\Gamma} & \partial_3 \boldsymbol{F}^{(2)}|_{\Gamma} \\ \nabla w^{(1)}|_{\Gamma} & \partial_3 w^{(2)}|_{\Gamma} \end{pmatrix} = 0$$

G^1 -continuity condition

J⊻U

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

$$M(\xi_1,\xi_2) = \det egin{pmatrix}
abla m{F}^{(1)}|_{m{\Gamma}} & \partial_3 m{F}^{(2)}|_{m{\Gamma}} \\
abla w^{(1)}|_{m{\Gamma}} & \partial_3 w^{(2)}|_{m{\Gamma}} \end{pmatrix} =$$

$$\alpha_1 \partial_1 w^{(1)}|_{\Gamma} - \alpha_2 \partial_2 w^{(1)}|_{\Gamma} + \alpha_3 \partial_3 w^{(1)}|_{\Gamma} - \alpha_4 \partial_3 w^{(2)}|_{\Gamma} = 0, \quad (*)$$

where

$$\alpha_{1} = \det(\partial_{2}\boldsymbol{F}^{(1=2)}|_{\boldsymbol{\Gamma}} \partial_{3}\boldsymbol{F}^{(1=2)}|_{\boldsymbol{\Gamma}} \partial_{3}\boldsymbol{F}^{(2)}|_{\boldsymbol{\Gamma}})$$

$$\alpha_{2} = \det(\partial_{1}\boldsymbol{F}^{(1=2)}|_{\boldsymbol{\Gamma}} \partial_{3}\boldsymbol{F}^{(1)}|_{\boldsymbol{\Gamma}} \partial_{3}\boldsymbol{F}^{(2)}|_{\boldsymbol{\Gamma}})$$

$$\alpha_{3} = \det(\partial_{1}\boldsymbol{F}^{(1=2)}|_{\boldsymbol{\Gamma}} \partial_{2}\boldsymbol{F}^{(1=2)}|_{\boldsymbol{\Gamma}} \partial_{3}\boldsymbol{F}^{(2)}|_{\boldsymbol{\Gamma}}) = \det(\nabla \boldsymbol{F}^{(2)}|_{\boldsymbol{\Gamma}})$$

$$\alpha_{4} = \det(\partial_{1}\boldsymbol{F}^{(1=2)}|_{\boldsymbol{\Gamma}} \partial_{2}\boldsymbol{F}^{(1=2)}|_{\boldsymbol{\Gamma}} \partial_{3}\boldsymbol{F}^{(1)}|_{\boldsymbol{\Gamma}}) = \det(\nabla \boldsymbol{F}^{(1)}|_{\boldsymbol{\Gamma}})$$

GLUING DATA

$$\alpha_1 \partial_1 w^{(1)}|_{\mathbf{\Gamma}} - \alpha_2 \partial_2 w^{(1)}|_{\mathbf{\Gamma}} + \alpha_3 \partial_3 w^{(1)}|_{\mathbf{\Gamma}} - \alpha_4 \partial_3 w^{(2)}|_{\mathbf{\Gamma}} = 0 \qquad (*)$$

 $(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ called *gluing data*, is defined by the first three coordinates of $\Phi^{(i)}$, i.e. $F^{(i)}$.

For a given geometry mapping $\mathbf{F} = (\mathbf{F}^{(1)}, \mathbf{F}^{(2)})$ the gluing data can be computed from \mathbf{F} .

- We call gluing data derived from known geometry mapping F geometric gluing data D_F.
- ► If gluing data D_F is derived from trilinear F = (F⁽¹⁾, F⁽²⁾) we call it trilinear geometric gluing data.

GLUED SPLINE SPACE

► General *gluing data*

$$D = (\alpha_1, \alpha_2, \alpha_3, \alpha_4) \in \Pi^{\mathbf{q}_1} \times \Pi^{\mathbf{q}_2} \times \Pi^{\mathbf{q}_3} \times \Pi^{\mathbf{q}_4},$$

where Π^{q} denotes the space of bivariate tensor-product polynomials of bi-degree q, with the four bi-degrees $Q = [q_1, q_2, q_3, q_4]$.

Regular gluing data:

$$lpha_3(s,t) \; lpha_4(s,t)
eq 0 \quad orall (s,t) \in \left[0,1
ight]^2.$$

• Glued spline space: $\mathcal{G}_D \subseteq \mathcal{P} \times \mathcal{P}$ with

$$\mathcal{G}_{D} = \{ \boldsymbol{f} = (f^{(1)}, f^{(2)}) \in \mathcal{P}^{2} : \underbrace{f^{(1)} = f^{(2)} \text{ on } \boldsymbol{\Gamma}}_{(**)} \text{ and }$$

$$\underbrace{\alpha_1\partial_1 f^{(1)} - \alpha_2\partial_2 f^{(1)} + \alpha_3\partial_3 f^{(1)} - \alpha_4\partial_3 f^{(2)} = 0 \text{ on } \Gamma}_{(*)} \}$$

◆ロト ◆昼 ▶ ◆ 臣 ト ◆ 臣 - の へ ()

Space \mathcal{V}_{F}

Space of C^1 -smooth isogeometric functions \mathcal{V}_F

$$\mathcal{V}_{\textit{F}} = \left[(\mathcal{P} \times \mathcal{P}) \circ \textit{F}^{-1}
ight] \cap C^1(\Omega_1 \cup \Omega_2).$$

Theorem

Consider regular gluing data D and regular geometry mapping $\mathbf{F} \in \mathcal{G}_D^3$. Any C^1 -smooth isogeometric function is the push-forward of a glued spline function,

$$\mathcal{V}_{\boldsymbol{F}} = \mathcal{G}_D \circ \boldsymbol{F}^{-1}.$$

Closely related to:

D.Groisser and J.Peters.

Matched G^k -constructions always yield C^k -continuous isogeometric elements.

Computer Aided Geometric Design, 34, 67-72, 2015.

MOTIVATION

GEOMETRICALLY CONTINUOUS ISOGEOMETRIC FUNCTIONS

DIMENSION AND BASIS OF GLUED SPLINE SPACE Dimension

< □ > < □ > < 臣 > < 臣 > < 臣 > ○ < ♡ < ♡

Basis computation

- ► To avoid numerical errors we use rational numbers.
- \blacktriangleright We compute various instances to obtain a lower bound of dim \mathcal{G}_D
- ▶ and use random numbers to get the *generic*¹ dimension.
- dim \mathcal{G}_D = dim(ker A_D).

Interpolation gives closed formulas for the generic dimension of \mathcal{G}_D .

¹generic: valid with probabilty 1.

Types of basis functions

We distinguish between two types of basis functions:

Inner basis functions (B-splines)

$$2(p+1+k(p-1))^2(p-1+k(p-1)), \qquad (1)$$

ヘロト 人間ト 人間ト 人間ト

-

interface basis functions.

TRILINEAR GEOMETRIC GLUING DATA

J⊻U

Remember: S_k^p with spline degree p and k uniformly distributed inner knots of multiplicity p - 1.

k	p=2	p=3	p=4	p=5	p=6		
0	18+10	64+20	150+34	288+52	490+74		
1	64+10	288+29	768+65	1600+117	2880+185		
2	150+10	768+40	2178+106	4704+208	8670+346		
3	288+10	1600+53	4704+157	10368+325	19360+557		
4	490+10	2880+68	8670+218	19360+468	36450+818		

• Interface basis functions, valid for $p \ge 3$:

$$2 + 2k + 13k^2 - 10p k(1+k) + 2p^2 (k+1)^2.$$
 (2)

The dimension of the glued spline space is given as (1) + (2).

MOTIVATION

GEOMETRICALLY CONTINUOUS ISOGEOMETRIC FUNCTIONS

DIMENSION AND BASIS OF GLUED SPLINE SPACE Dimension Basis computation

< □ > < □ > < 臣 > < 臣 > < 臣 > ○ < ♡ < ♡

- Interface basis functions.
- Locally supported functions,
- ► C¹ boundary conditions.

Local support: size of the support is independent of the number k of inner knots.

BASIS TRILINEAR GEOMETRIC GLUING DATA

p = 3

 \oplus

 \oplus

 \oplus

 \ominus θ

θ

- ▶ \exists locally supported basis functions if k > 2,
- one type of functions and $(k-2)^2$ (scaled) translates.

\oplus	\oplus	\ominus	\ominus	\ominus	\odot	$^{\odot}$	\odot	\odot	\odot	\odot	\ominus	\ominus	\ominus	\oplus	\oplus	\oplus
\oplus	\oplus	\ominus	\ominus	\ominus	\odot	\oplus	\oplus	\oplus	\oplus	\odot	\ominus	\ominus	\ominus	\oplus	\oplus	\oplus
\oplus	\oplus	\ominus	\ominus	\ominus	\odot	\oplus	\oplus	\oplus	\oplus	\odot	\ominus	\ominus	\ominus	\oplus	\oplus	\oplus
\ominus	\ominus	\oplus	\oplus	\oplus	\odot	\oplus	\oplus	\oplus	\oplus	\odot	\oplus	\oplus	\oplus	\ominus	\ominus	θ
\ominus	\ominus	\oplus	\oplus	\oplus	\odot	\oplus	\oplus	\oplus	\oplus	\odot	\oplus	\oplus	\oplus	\ominus	\ominus	θ
\ominus	\ominus	\oplus	\oplus	\oplus	0	0	0	0	0	0	\oplus	\oplus	\oplus	\ominus	\ominus	\ominus

J⊼∩

BASIS FUNCTION FOR p = 3

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

p = 4

- ▶ \exists locally supported basis functions if k > 1,
- ▶ six types of functions, in total $(5k^2 6k + 2)$

BASIS FUNCTION FOR p = 4

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Planar results extended to volumetric case,
- definition of gluing data and glued spline space,
- space of C¹-smooth isogeometric functions,
- results on the dimension and a basis for the glued spline space.
- ▶ Further investigation of basis functions for other types of gluing data,
- approximation power,
- ▶ solving 4th-order PDEs.