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set up

• ∆ is a k-dimensional simplicial complex in Rk

• ∆ is modified by subdividing a single maximal cell σ ∈ ∆k to obtain ∆′

• ∆′′ a subdivision of σ

• ∆′ is a complex if any modifications made to the boundary of σ occur only
on σ ∩ ∂(∆)

• how do relate splines on a simplicial complex ∆ and ∆′′ to splines on a
complex ∆′?
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• complex of R = R[x0, . . . , xk] modules

• ∂i the usual boundary operator in relative homology

• ∆i the set of i-dimensional faces

• ∆0
i the set of interior i-dimensional faces

• all k-dimensional faces are considered interior so ∆k = ∆0
k



main definitions: simple and split subdivisions

σ ∈ ∆k, and ∆′′ a subdivision of σ

∂(σ) = ∂(∆′′) on ∆0

Then the resulting subdivision ∆′ is again a simplicial complex, and we call
the subdivision a simple subdivision.

A simple subdivision ∆′ is called split if for every γ ∈ ∂(∆′′)i but not in
∂(∆′),

J(∆′)γ = J(∆)γ



examples of simple and split subdivisions

Figure: ∆ Figure: ∆′′

Figure: ∆′ Figure: ∆̃′



main result

Theorem. If ∆′ is a split subdivision of ∆ and both Sr(∆̂) and Sr(∆̂′′) are
free, then

Sr(∆̂′) ' Sr(∆̂)
⊕(

Sr(∆̂′′)/R[x0, . . . , xk]
)
,

and Sr(∆̂′) is free.



starting point, Schenck, 2014

Theorem. Let A(Tk) be the Alfeld split of an k-simplex Tk in Rk. Then
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2
k

)
, if r is even.

Moreover, the associated module of splines Sr(Â(Tk)) is free for any r.

• Alfeld split A(Tk) of an k-dimensional simplex Tk in Rk, is obtained from a
single simplex Tk by adding a single interior vertex u, and then coning over
the boundary of Tk.



subdivisions: facet split

For a full-dimensional k-simplex Tk := [v0, v1, . . . , vk] ⊆ Rk, start with the
Alfeld split A(Tk) with the interior vertex u.

For each i = 0, . . . , k, let Fi be the facet of Tk opposite vertex vi. Let ui be
the point strictly interior to Fi and collinear with vi and u. Each ui induces a
(k − 1)-dimensional Alfeld split A(Fi) of Fi. Cone u over A(Fi) forming a
pyramid Pi in Rk.

The collection of k + 1 pyramids Pi is the facet split F (Tk).



subdivisions: double Alfeld split

For a full-dimensional k-simplex Tk := [v0, v1, . . . , vk] ⊆ Rk, start with the
Alfeld split A(Tk) with the interior vertex u.

For each i = 0, . . . , k, let Fi be the facet of Tk opposite vertex vi. Let ui be a
point strictly interior to the simplex T ik := [u, Fi] and collinear with vi and u.
Each ui induces an Alfeld split A(T ik) of T ik.

The collection of k + 1 Alfeld splits A(T ik) is the double Alfeld split AA(Tk).



2D subdivisions
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3D subdivisions
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main result

Let F (Tk) and AA(Tk) be the facet and double Alfeld splits. Then

dimSrd(F (Tk)) =
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)
+ A(k, d, r) + (k + 1)P (k, d, r),
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remarks

• The proof of the main result holds for partial facet and double Alfeld splits,
i.e. for the case where not every tetrahedron in A(Tk) is subdivided. Such
partial subdivisions are useful in the context of boundary finite elements.

• The requirement of the collinearity in the definitions for the facet and
double Alfeld splits can be omitted for r = 1.

• Computations in the Macaulay2 package of Grayson and Stillman (available
at http://www.math.uiuc.edu/Macaulay2) and in Alfeld’s spline software
(available at http://www.math.utah.edu/∼pa) were essential to this work.

• We also thank the Mathematische Forschungsinstitut Oberwolfach, where
our collaboration began.
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starting point

T. S., Redundancy of smoothness conditions and supersmoothness of
bivariate splines. IMA Journal of Numerical Analysis, Vol. 34, Number 3,
2014, 1701–1714

Lemma. Let ∆ be a cell with four non-collinear edges meeting at the
point u. Then there exists a unique straight line passing through u with the
property that for any smooth quadratic spline s on ∆, the restriction of s on
this line is a univariate quadratic polynomial.



example
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number of vertices 7, number of triangles 6; coordinates of the vertices:

(0, 0), (200, 0), (0, 200), (−160, 80), (−200, 50), (200,−200), (200,−100),

and connectivities: (0 1 2), (0 2 3), (0 3 4), (0 4 5), (0 5 6), (0 6 1).

Set r = 1, d = 2, and supersmoothness two across the edges [v0, v3], and
[v0, v6]. This makes the partition into a cell with four interior non-collinear
edges. The line [v3, v6] is the line l from the Lemma.



comments and questions

• if ∆ be a cell with four edges, and three slopes, i.e., two edges are collinear,
then the straight line from the Lemma is the one formed by the collinear
edges

• the result above can be easily generalized to smoothness r degree r + 1;
probably the lemma can be too

• both results can be restated in terms of supersmoothness: i.e. the second
derivatives match in certain directions

• what about a different number of non-collinear edges in a cell?

• what is the geometric significance of this line?
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