Subdivision and spline spaces

H. Schenck and T. Sorokina*

August 2017

* partially supported by a grant from the Simons Foundation \#235411

set up

- Δ is a k-dimensional simplicial complex in \mathbb{R}^{k}
- Δ is modified by subdividing a single maximal cell $\sigma \in \Delta_{k}$ to obtain Δ^{\prime}
- $\Delta^{\prime \prime}$ a subdivision of σ
- Δ^{\prime} is a complex if any modifications made to the boundary of σ occur only on $\sigma \cap \partial(\Delta)$
- how do relate splines on a simplicial complex Δ and $\Delta^{\prime \prime}$ to splines on a complex Δ^{\prime} ?

main definitions: $\mathcal{R} / \mathcal{J}(\Delta)$

$$
0 \longrightarrow \bigoplus_{\sigma \in \Delta_{k}} R \xrightarrow{\partial_{k}} \bigoplus_{\tau \in \Delta_{k-1}^{0}} R / J_{\tau} \xrightarrow{\partial_{k-1}} \bigoplus_{\psi \in \Delta_{k-2}^{0}} R / J_{\psi} \xrightarrow{\partial_{k-2}} \ldots \xrightarrow{\partial_{1}} \bigoplus_{v \in \Delta_{0}^{0}} R / J_{v} \longrightarrow 0,
$$

where for an interior i-face $\gamma \in \Delta_{i}^{0}$,

$$
J_{\gamma}=\left\langle l_{\hat{\tau}}^{r+1} \mid \gamma \subseteq \tau \in \Delta_{k-1}\right\rangle
$$

- complex of $R=\mathbb{R}\left[x_{0}, \ldots, x_{k}\right]$ modules
- ∂_{i} the usual boundary operator in relative homology
- Δ_{i} the set of i-dimensional faces
- Δ_{i}^{0} the set of interior i-dimensional faces
- all k-dimensional faces are considered interior so $\Delta_{k}=\Delta_{k}^{0}$

main definitions: simple and split subdivisions

$\sigma \in \Delta_{k}$, and $\Delta^{\prime \prime}$ a subdivision of σ

$$
\partial(\sigma)=\partial\left(\Delta^{\prime \prime}\right) \quad \text { on } \quad \Delta^{0}
$$

Then the resulting subdivision Δ^{\prime} is again a simplicial complex, and we call the subdivision a simple subdivision.

A simple subdivision Δ^{\prime} is called split if for every $\gamma \in \partial\left(\Delta^{\prime \prime}\right)_{i}$ but not in $\partial\left(\Delta^{\prime}\right)$,

$$
J\left(\Delta^{\prime}\right)_{\gamma}=J(\Delta)_{\gamma}
$$

examples of simple and split subdivisions

Figure: Δ

Figure: Δ^{\prime}

Figure: $\Delta^{\prime \prime}$

Figure: $\widetilde{\Delta}^{\prime}$

main result

Theorem. If Δ^{\prime} is a split subdivision of Δ and both $S^{r}(\widehat{\Delta})$ and $S^{r}\left(\widehat{\Delta}^{\prime \prime}\right)$ are free, then

$$
S^{r}\left(\widehat{\Delta}^{\prime}\right) \simeq S^{r}(\widehat{\Delta}) \bigoplus\left(S^{r}\left(\widehat{\Delta}^{\prime \prime}\right) / \mathbb{R}\left[x_{0}, \ldots, x_{k}\right]\right)
$$

and $S^{r}\left(\widehat{\Delta}^{\prime}\right)$ is free.

starting point, Schenck, 2014

Theorem. Let $A\left(T_{k}\right)$ be the Alfeld split of an k-simplex T_{k} in \mathbb{R}^{k}. Then

$$
\operatorname{dim} S_{d}^{r}\left(A\left(T_{k}\right)\right)=\binom{d+k}{k}+A(k, d, r)
$$

where

$$
A(k, d, r):= \begin{cases}k\left(\begin{array}{l}
\left.d+k-\frac{(r+1)(k+1)}{2}\right), \\
\left(\begin{array}{c}
\left.d+k-1-\frac{r(k+1)}{2}\right)+\cdots+\left({ }^{d-\frac{r(k+1)}{k^{2}}}\right), \\
\text { if } \mathrm{r} \text { is odd }
\end{array}\right. \\
\end{array} \text { even } .\right.\end{cases}
$$

Moreover, the associated module of splines $S^{r}\left(\widehat{A}\left(T_{k}\right)\right)$ is free for any r.

- Alfeld split $A\left(T_{k}\right)$ of an k-dimensional simplex T_{k} in \mathbb{R}^{k}, is obtained from a single simplex T_{k} by adding a single interior vertex u, and then coning over the boundary of T_{k}.

subdivisions: facet split

For a full-dimensional k-simplex $T_{k}:=\left[v_{0}, v_{1}, \ldots, v_{k}\right] \subseteq \mathbb{R}^{k}$, start with the Alfeld split $A\left(T_{k}\right)$ with the interior vertex u.

For each $i=0, \ldots, k$, let F_{i} be the facet of T_{k} opposite vertex v_{i}. Let u_{i} be the point strictly interior to F_{i} and collinear with v_{i} and u. Each u_{i} induces a ($k-1$)-dimensional Alfeld split $A\left(F_{i}\right)$ of F_{i}. Cone u over $A\left(F_{i}\right)$ forming a pyramid P_{i} in \mathbb{R}^{k}.

The collection of $k+1$ pyramids P_{i} is the facet split $F\left(T_{k}\right)$.

subdivisions: double Alfeld split

For a full-dimensional k-simplex $T_{k}:=\left[v_{0}, v_{1}, \ldots, v_{k}\right] \subseteq \mathbb{R}^{k}$, start with the Alfeld split $A\left(T_{k}\right)$ with the interior vertex u.

For each $i=0, \ldots, k$, let F_{i} be the facet of T_{k} opposite vertex v_{i}. Let u_{i} be a point strictly interior to the simplex $T_{k}^{i}:=\left[u, F_{i}\right]$ and collinear with v_{i} and u. Each u_{i} induces an Alfeld split $A\left(T_{k}^{i}\right)$ of T_{k}^{i}.

The collection of $k+1$ Alfeld splits $A\left(T_{k}^{i}\right)$ is the double Alfeld split $A A\left(T_{k}\right)$.

2D subdivisions

Figure: $F\left(T_{2}\right)$

Figure: $A A\left(T_{2}\right)$

3D subdivisions

Figure: A part of $F\left(T_{3}\right)$
Figure: A part of $A A\left(T_{3}\right)$

main result

Let $F\left(T_{k}\right)$ and $A A\left(T_{k}\right)$ be the facet and double Alfeld splits. Then

$$
\begin{aligned}
& \operatorname{dim} S_{d}^{r}\left(F\left(T_{k}\right)\right)=\binom{d+k}{k}+A(k, d, r)+(k+1) P(k, d, r), \\
& \operatorname{dim} S_{d}^{r}\left(A A\left(T_{k}\right)\right)=\binom{d+k}{k}+(k+2) A(k, d, r), \\
& A(k, d, r):= \begin{cases}k\left(d+k-\frac{(r+1)(k+1)}{2}\right), & \text { if } \mathrm{r} \text { is odd }, \\
\binom{\left.d+k-1-\frac{(x+1)}{2}\right)}{k}+\cdots+\left({ }^{\left.d-\frac{r(k+1)}{k^{2}}\right),} \text { if } \mathrm{r}\right. \text { is even. }\end{cases}
\end{aligned}
$$

remarks

- The proof of the main result holds for partial facet and double Alfeld splits, i.e. for the case where not every tetrahedron in $A\left(T_{k}\right)$ is subdivided. Such partial subdivisions are useful in the context of boundary finite elements.
- The requirement of the collinearity in the definitions for the facet and double Alfeld splits can be omitted for $r=1$.
- Computations in the Macaulay2 package of Grayson and Stillman (available at http://www.math.uiuc.edu/Macaulay2) and in Alfeld's spline software (available at http://www.math.utah.edu/~pa) were essential to this work.
- We also thank the Mathematische Forschungsinstitut Oberwolfach, where our collaboration began.

bibliography

1. P. Alfeld, A trivariate Clough-Tocher scheme for tetrahedral data, Comput. Aided Geom. Design 1(1984), 169-181.
2. M. Lai, L. Schumaker, Spline functions on triangulations, Cambridge University Press, Cambridge, 2007.
3. H. Schenck, Splines on the Alfeld split of a simplex, and type A root systems, J. Approx. Theory, 182 (2014), 1-6.
4. H. Schenck, M. Stillman, Local cohomology of bivariate splines, J. Pure Applied Algebra, 117-118 (1997), 535-548.
5. H. Schenck, T. Sorokina, Subdivision and spline spaces, Constructive Approximation, to appear

starting point

T. S., Redundancy of smoothness conditions and supersmoothness of bivariate splines. IMA Journal of Numerical Analysis, Vol. 34, Number 3, 2014, 1701-1714

Lemma. Let Δ be a cell with four non-collinear edges meeting at the point u. Then there exists a unique straight line passing through u with the property that for any smooth quadratic spline s on Δ, the restriction of s on this line is a univariate quadratic polynomial.

example

number of vertices 7 , number of triangles 6 ; coordinates of the vertices:

$$
(0,0),(200,0),(0,200),(-160,80),(-200,50),(200,-200),(200,-100)
$$

and connectivities: $\quad(012),\left(\begin{array}{ll}0 & 2\end{array}\right),(034),(045),(056),(061)$.
Set $r=1, d=2$, and supersmoothness two across the edges $\left[v_{0}, v_{3}\right]$, and [$\left.v_{0}, v_{6}\right]$. This makes the partition into a cell with four interior non-collinear edges. The line $\left[v_{3}, v_{6}\right]$ is the line l from the Lemma.

comments and questions

- if Δ be a cell with four edges, and three slopes, i.e., two edges are collinear, then the straight line from the Lemma is the one formed by the collinear edges
- the result above can be easily generalized to smoothness r degree $r+1$; probably the lemma can be too
- both results can be restated in terms of supersmoothness: i.e. the second derivatives match in certain directions
- what about a different number of non-collinear edges in a cell?
- what is the geometric significance of this line?

