Splines on Lattices and Equivariant Cohomology of Certain Affine Springer Fibers

Julianna Tymoczko
Smith College
August 2, 2017

Outline

I. Definition of splines
II. Splines on lattices
III. Equivariant cohomology of certain affine Springer fibers

Splines

- Fix a ring R and a graph $G=(V, E)$
- Fix a function $\alpha: E \rightarrow\{$ ideals in $R\}$
- The ring of splines over G and α is

$$
R_{G, \alpha}=\left\{p \in R^{|V|}: \quad \text { for each edge } u v\right.
$$

Basic examples: $R=\mathbb{C}[\alpha, \beta]$

Principal ideals: If two vertices are connected by an edge, their labels must differ by a multiple of the label on that edge.
(Edge-labels are colored.)

Basic examples: $R=\mathbb{C}[\alpha, \beta]$

Principal ideals: If two vertices are connected by an edge, their labels must differ by a multiple of the label on that edge.
(Edge-labels are colored.)

Basic examples: $R=\mathbb{C}[\alpha, \beta]$

Principal ideals: If two vertices are connected by an edge, their labels must differ by a multiple of the label on that edge.
(Edge-labels are colored.)
$p \bullet \quad \alpha \longrightarrow p+q \alpha$

Basic examples: $R=\mathbb{C}[\alpha, \beta]$

Principal ideals: If two vertices are connected by an edge, their labels must differ by a multiple of the label on that edge.
(Edge-labels are colored.)
$p \bullet \quad \alpha \quad p+q \alpha$

Basic examples: $R=\mathbb{C}[\alpha, \beta]$

Principal ideals: If two vertices are connected by an edge, their labels must differ by a multiple of the label on that edge.
(Edge-labels are colored.)

Basic examples: $R=\mathbb{C}[\alpha, \beta]$

Principal ideals: If two vertices are connected by an edge, their labels must differ by a multiple of the label on that edge.
(Edge-labels are colored.)

Third example: $R=\mathbb{C}[\alpha, \beta]$

Principal ideals: If two vertices are connected by an edge, their labels must differ by a multiple of the label on that edge.
(Edge-labels are colored.)

Third example: $R=\mathbb{C}[\alpha, \beta]$

Principal ideals: If two vertices are connected by an edge, their labels must differ by a multiple of the label on that edge.
(Edge-labels are colored.)

Third example: $R=\mathbb{C}[\alpha, \beta]$

Principal ideals: If two vertices are connected by an edge, their labels must differ by a multiple of the label on that edge.
(Edge-labels are colored.)

Third example: $R=\mathbb{C}[\alpha, \beta]$

Principal ideals: If two vertices are connected by an edge, their labels must differ by a multiple of the label on that edge.
(Edge-labels are colored.)

Relation to classical splines: the dual graph

Consider the dual graph Δ^{*} to a triangulation Δ :

- each triangle becomes a vertex; and
- if two triangles share an edge, draw an edge between the corresponding vertices.

We also label each edge $u v$ in Δ^{*} by the slope $\ell_{u v}$ of the corresponding edge in Δ.

Relation to classical splines: the dual graph

Consider the dual graph Δ^{*} to a triangulation Δ :

- each triangle becomes a vertex; and
- if two triangles share an edge, draw an edge between the corresponding vertices.

We also label each edge $u v$ in Δ^{*} by the slope $\ell_{u v}$ of the corresponding edge in Δ.

Relation to classical splines: essentially the same

Classical splines: Given a triangulation Δ of a region in the plane (say), the set of splines is

$$
S_{d}^{r}(\Delta)=\left\{\begin{array}{l}
\text { piecewise polynomials of degree at most } d \\
\text { that agree on the boundaries with smoothness } r
\end{array}\right\}
$$

Relation to classical splines: essentially the same

Classical splines: Given a triangulation Δ of a region in the plane (say), the set of splines is

$$
S_{d}^{r}(\Delta)=\left\{\begin{array}{l}
\text { piecewise polynomials of degree at most } d \\
\text { that agree on the boundaries with smoothness } r
\end{array}\right\}
$$

Theorem (Billera-Rose)

$S_{d}^{r}(\Delta)$ is isomorphic to splines over $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right] / \mathcal{I}_{d+1}$ on Δ^{*} with edge labels $\alpha(u v)=\left(\ell_{u v}^{r}\right)$.

Background

Splines on lattices

Basic question: Can we explicitly construct a basis 1 for the splines on a lattice?

Splines on lattices

Basic question: Can we explicitly construct a basis ${ }^{1}$ for the splines on a lattice?

Flow-up basis: We want the basis to be "upper-triangular" relative to a vertex-ordering $\left\{v_{1}, v_{2}, v_{3}, \ldots\right\}$ in the sense that each $b_{v_{i}}$ is zero on all vertices $v_{1}, v_{2}, \ldots, v_{i-1}$.

[^0]
Splines on lattices

Basic question: Can we explicitly construct a basis 1 for the splines on a lattice?

Flow-up basis: We want the basis to be "upper-triangular" relative to a vertex-ordering $\left\{v_{1}, v_{2}, v_{3}, \ldots\right\}$ in the sense that each $b_{v_{i}}$ is zero on all vertices $v_{1}, v_{2}, \ldots, v_{i-1}$.

[^1]
Basis for splines on lattices

Basis for splines on lattices

Basis for splines on lattices

Basis for splines on lattices: Ordering the vertices

Basis for splines on lattices: Ordering the vertices

Basis for splines on lattices: Ordering the vertices

Basis for splines on lattices: Ordering the vertices

Basis for splines on lattices: Ordering the vertices

Basis for splines on lattices: Ordering the vertices

Basis for splines on lattices: Ordering the vertices

Basis for splines on lattices: Ordering the vertices

Basis for splines on lattices: Ordering the vertices

Basis for splines on lattices: Ordering the vertices

Basis for splines on lattices: support on linear subspaces

Basis for splines on lattices: support on linear subspaces

Basis for splines on lattices: support on linear subspaces

Basis for splines on lattices: support on linear subspaces

Basis for splines on lattices: support on linear subspaces

Basis for splines on lattices: support on linear subspaces

Basis for splines on lattices: support on linear subspaces

Basis for splines on lattices: support on linear subspaces

Basis for splines on lattices: support on linear subspaces

Basis for splines on lattices: support on linear subspaces

Basis for splines on lattices: support on linear subspaces

Basis for splines on lattices: support on linear subspaces

Theorem (T-Mandel-Yun)

This process produces a basis for splines on lattices in \mathbb{R}^{n}.

Root lattices

Root lattices

Root lattices

Root lattices

Root lattices: Ordering the vertices

Basis classes

Basis classes

$\alpha \beta$

Basis classes

Basis classes

Basis classes

Basis classes

Theorem: [T-Yun] A basis for splines on A_{2} root lattice, with dimensions

GKM theory: moment graphs

Suppose X is a "nice" variety with a "good" action of a torus T.

GKM theory: moment graphs

Suppose X is a "nice" variety with a "good" action of a torus T.

- isolated T-fixed points
- isolated one-dimensional T-orbits

GKM theory: moment graphs

Suppose X is a "nice" variety with a "good" action of a torus T.

- isolated T-fixed points
- isolated one-dimensional T-orbits

Then we can create a moment graph:

- T-fixed points become vertices
- 1-dimensional orbits become edges
- label edges with weight of T-action on corresponding orbit

GKM theory: computing equivariant cohomology

Suppose X is an algebraic variety with the action of a torus T.

Theorem

Under certain technical conditions on X and T, the equivariant cohomology $H_{T}^{*}(X)$ is isomorphic to the ring of vertex-labelings satisfying the following condition:

For each edge, the labels on the vertices incident to the edge differ by a multiple of the label on the edge.

GKM theory applies to some affine Springer fibers

Theorem

When γ is a regular integral equivalued semisimple element of \mathfrak{t} with weight $k=1$ then GKM theory applies to the affine Springer fiber of γ.

GKM theory applies to some affine Springer fibers

Theorem

When γ is a regular integral equivalued semisimple element of \mathfrak{t} with weight $k=1$ then GKM theory applies to the affine Springer fiber of γ.

- The proof uses a result of Harada-Henriques-Holm (which says that under appropriate circumstances, GKM theory applies for infinite spaces) and a result of Goresky-Kottwitz-MacPherson (which implies that these X_{γ} satisfy the necessary conditions).
- Oblomkov-Yun show that the moment graph of these affine Springer fibers is the root lattice.

Punchline

Theorem

The collection of splines on the A_{2} root lattice form the equivariant cohomology ring of the affine Springer fiber of γ in $\widetilde{A_{2}}$ when γ is a regular integral equivalued semisimple element of \mathfrak{t} with weight $k=1$.

Punchline

Theorem

The collection of splines on the A_{2} root lattice form the equivariant cohomology ring of the affine Springer fiber of γ in $\widetilde{A_{2}}$ when γ is a regular integral equivalued semisimple element of \mathfrak{t} with weight $k=1$.

Open questions:

- What is a basis for the splines on A_{n} root lattice for $n>2$? (This would give the equivariant cohomology ring of a larger family of affine Springer fibers.)
- Can we use the spline construction to say more about group actions on the equivariant cohomology ring?

[^0]: ${ }^{1}$ Technical details around the word "basis".

[^1]: ${ }^{1}$ Technical details around the word "basis".

