Splines on Lattices and Equivariant Cohomology of Certain Affine Springer Fibers

Julianna Tymoczko Smith College

August 2, 2017

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline

- I. Definition of splines
- II. Splines on lattices
- III. Equivariant cohomology of certain affine Springer fibers

Splines

- Fix a ring R and a graph G = (V, E)
- Fix a function $\alpha : E \to \{ \text{ ideals in } R \}$
- The ring of splines over G and α is

$$\mathcal{R}_{G,lpha} = \left\{ p \in \mathcal{R}^{|V|} : egin{array}{cc} ext{for each edge } uv \ ext{the difference } p_u - p_v \in lpha(uv) \end{array}
ight\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(Edge-labels are colored.)

(Edge-labels are colored.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(Edge-labels are colored.)

(Edge-labels are colored.)

$$p \bullet a p + q\alpha$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(Edge-labels are colored.)

$$p \bullet a p + q\alpha$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(Edge-labels are colored.)

(Edge-labels are colored.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(Edge-labels are colored.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(Edge-labels are colored.)

(Edge-labels are colored.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Consider the dual graph Δ^* to a triangulation Δ :

- each triangle becomes a vertex; and
- if two triangles share an edge, draw an edge between the corresponding vertices.

We also label each edge uv in Δ^* by the slope ℓ_{uv} of the corresponding edge in Δ .

Consider the dual graph Δ^* to a triangulation Δ :

- each triangle becomes a vertex; and
- if two triangles share an edge, draw an edge between the corresponding vertices.

We also label each edge uv in Δ^* by the slope ℓ_{uv} of the corresponding edge in Δ .

Classical splines: Given a triangulation Δ of a region in the plane (say), the set of splines is

 $S_d^r(\Delta) = \left\{ egin{array}{c} \mbox{piecewise polynomials of degree at most } d \ \mbox{that agree on the boundaries with smoothness } r \end{array}
ight\}$

<ロト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

Classical splines: Given a triangulation Δ of a region in the plane (say), the set of splines is

 $S_d^r(\Delta) = \begin{cases} ext{ piecewise polynomials of degree at most } d \\ ext{ that agree on the boundaries with smoothness } r \end{cases}$

Theorem (Billera-Rose)

 $S_d^r(\Delta)$ is isomorphic to splines over $\mathbb{R}[x_1, \ldots, x_n]/\mathcal{I}_{d+1}$ on Δ^* with edge labels $\alpha(uv) = (\ell_{uv}^r)$.

(日) (同) (三) (三) (三) (○) (○)

Background

(ロ)、(型)、(E)、(E)、 E) の(の)

Basic question: Can we explicitly construct a *basis*¹ for the splines on a lattice?

Basic question: Can we explicitly construct a *basis*¹ for the splines on a lattice?

Flow-up basis: We want the basis to be "upper-triangular" relative to a vertex-ordering $\{v_1, v_2, v_3, \ldots\}$ in the sense that each b_{v_i} is zero on all vertices $v_1, v_2, \ldots, v_{i-1}$.

Basic question: Can we explicitly construct a *basis*¹ for the splines on a lattice?

Flow-up basis: We want the basis to be "upper-triangular" relative to a vertex-ordering $\{v_1, v_2, v_3, \ldots\}$ in the sense that each b_{v_i} is zero on all vertices $v_1, v_2, \ldots, v_{i-1}$.

Basis for splines on lattices

(ロ)、(型)、(E)、(E)、 E) の(の)

Basis for splines on lattices

Basis for splines on lattices

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Basis for splines on lattices: support on linear subspaces

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへぐ

Basis for splines on lattices: support on linear subspaces

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへぐ

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二回 - のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Theorem (T-Mandel-Yun)

This process produces a basis for splines on lattices in \mathbb{R}^n .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ うへぐ

Basis classes

・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ うへぐ

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ うへぐ

(ロ)、(型)、(E)、(E)、 E) のQ()

・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ うへぐ

うせん 前 (中学)(中学)(日)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ うへぐ

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Theorem: [T-Yun] A basis for splines on A_2 root lattice, with dimensions

うくぐ

Suppose X is a "nice" variety with a "good" action of a torus T.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Suppose X is a "nice" variety with a "good" action of a torus T.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- isolated *T*-fixed points
- isolated one-dimensional *T*-orbits

Suppose X is a "nice" variety with a "good" action of a torus T.

- isolated *T*-fixed points
- isolated one-dimensional *T*-orbits

Then we can create a moment graph:

- *T*-fixed points become vertices
- 1-dimensional orbits become edges
- label edges with weight of *T*-action on corresponding orbit

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Suppose X is an algebraic variety with the action of a torus T.

Theorem

Under certain technical conditions on X and T, the equivariant cohomology $H_T^*(X)$ is isomorphic to the ring of vertex-labelings satisfying the following condition:

For each edge, the labels on the vertices incident to the edge differ by a multiple of the label on the edge.

GKM theory applies to some affine Springer fibers

Theorem

When γ is a regular integral equivalued semisimple element of t with weight k = 1 then GKM theory applies to the affine Springer fiber of γ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

GKM theory applies to some affine Springer fibers

Theorem

When γ is a regular integral equivalued semisimple element of t with weight k = 1 then GKM theory applies to the affine Springer fiber of γ .

- The proof uses a result of Harada-Henriques-Holm (which says that under appropriate circumstances, GKM theory applies for infinite spaces) and a result of Goresky-Kottwitz-MacPherson (which implies that these X_γ satisfy the necessary conditions).
- Oblomkov-Yun show that the moment graph of these affine Springer fibers is the root lattice.

Punchline

Theorem

The collection of splines on the A_2 root lattice form the equivariant cohomology ring of the affine Springer fiber of γ in $\widetilde{A_2}$ when γ is a regular integral equivalued semisimple element of t with weight k = 1.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Punchline

Theorem

The collection of splines on the A_2 root lattice form the equivariant cohomology ring of the affine Springer fiber of γ in $\widetilde{A_2}$ when γ is a regular integral equivalued semisimple element of t with weight k = 1.

Open questions:

- What is a basis for the splines on A_n root lattice for n > 2? (This would give the equivariant cohomology ring of a larger family of affine Springer fibers.)
- Can we use the spline construction to say more about group actions on the equivariant cohomology ring?