Interpolating with Hyperplane Arrangements via Generalized Star Configurations Varieties

Ştefan O. Tohǎneanu

2017 SIAM Conference on Applied Algebraic Geometry

Summary

Summary

- Generalized Star Configurations Varieties (GSCV's)

Summary

- Generalized Star Configurations Varieties (GSCV's)
- Subspace Arrangements as GSCV's

Summary

- Generalized Star Configurations Varieties (GSCV's)
- Subspace Arrangements as GSCV's
- Three applications.

Generalized Star Configurations Varieties (GSCV's)

Generalized Star Configurations Varieties (GSCV's)

Let $R:=\mathbb{K}\left[x_{1}, \ldots, x_{k}\right], \mathfrak{m}:=\left\langle x_{1}, \ldots, x_{k}\right\rangle$, and let $\Lambda:=\left(\ell_{1}, \ldots, \ell_{n}\right)$ be a collection of some linear forms of R, possibly with repetitions, such that $\left\langle\ell_{1}, \ldots, \ell_{n}\right\rangle=\mathfrak{m}$.

Generalized Star Configurations Varieties (GSCV's)

Let $R:=\mathbb{K}\left[x_{1}, \ldots, x_{k}\right], \mathfrak{m}:=\left\langle x_{1}, \ldots, x_{k}\right\rangle$, and let $\Lambda:=\left(\ell_{1}, \ldots, \ell_{n}\right)$ be a collection of some linear forms of R, possibly with repetitions, such that $\left\langle\ell_{1}, \ldots, \ell_{n}\right\rangle=\mathfrak{m}$. Let $a \in\{1, \ldots, n\}$.

Generalized Star Configurations Varieties (GSCV's)

Let $R:=\mathbb{K}\left[x_{1}, \ldots, x_{k}\right], \mathfrak{m}:=\left\langle x_{1}, \ldots, x_{k}\right\rangle$, and let $\Lambda:=\left(\ell_{1}, \ldots, \ell_{n}\right)$ be a collection of some linear forms of R, possibly with repetitions, such that $\left\langle\ell_{1}, \ldots, \ell_{n}\right\rangle=\mathfrak{m}$. Let $a \in\{1, \ldots, n\}$.

$$
I_{a}(\Lambda):=\left\langle\left\{\ell_{i_{1}} \cdots \ell_{i_{a}} \mid 1 \leq i_{1}<\cdots<i_{a} \leq n\right\}\right\rangle .
$$

Generalized Star Configurations Varieties (GSCV's)

Let $R:=\mathbb{K}\left[x_{1}, \ldots, x_{k}\right], \mathfrak{m}:=\left\langle x_{1}, \ldots, x_{k}\right\rangle$, and let $\Lambda:=\left(\ell_{1}, \ldots, \ell_{n}\right)$ be a collection of some linear forms of R, possibly with repetitions, such that $\left\langle\ell_{1}, \ldots, \ell_{n}\right\rangle=\mathfrak{m}$. Let $a \in\{1, \ldots, n\}$.

$$
I_{a}(\Lambda):=\left\langle\left\{\ell_{i_{1}} \cdots \ell_{i_{a}} \mid 1 \leq i_{1}<\cdots<i_{a} \leq n\right\}\right\rangle .
$$

The Generalized Star Configuration Variety (GSCV) of size a and support Λ is the projective subvariety of \mathbb{P}^{k-1} with defining ideal $\sqrt{l_{a}(\Lambda)}$, denoted $\mathcal{V}_{a}(\Lambda)$.

Generalized Star Configurations Varieties (GSCV's)

Let $R:=\mathbb{K}\left[x_{1}, \ldots, x_{k}\right], \mathfrak{m}:=\left\langle x_{1}, \ldots, x_{k}\right\rangle$, and let $\Lambda:=\left(\ell_{1}, \ldots, \ell_{n}\right)$ be a collection of some linear forms of R, possibly with repetitions, such that $\left\langle\ell_{1}, \ldots, \ell_{n}\right\rangle=\mathfrak{m}$. Let $a \in\{1, \ldots, n\}$.

$$
I_{a}(\Lambda):=\left\langle\left\{\ell_{i_{1}} \cdots \ell_{i_{a}} \mid 1 \leq i_{1}<\cdots<i_{a} \leq n\right\}\right\rangle .
$$

The Generalized Star Configuration Variety (GSCV) of size a and support Λ is the projective subvariety of \mathbb{P}^{k-1} with defining ideal $\sqrt{I_{a}(\Lambda)}$, denoted $\mathcal{V}_{a}(\Lambda)$.

Important:

$$
\sqrt{I_{a}(\Lambda)}=\bigcap_{1 \leq i_{1}<\cdots<i_{n-a+1} \leq n}\left\langle\ell_{i_{1}}, \ldots, \ell_{i_{n-a+1}}\right\rangle .
$$

Generalized Star Configurations Varieties (GSCV's)

Let $R:=\mathbb{K}\left[x_{1}, \ldots, x_{k}\right], \mathfrak{m}:=\left\langle x_{1}, \ldots, x_{k}\right\rangle$, and let $\Lambda:=\left(\ell_{1}, \ldots, \ell_{n}\right)$ be a collection of some linear forms of R, possibly with repetitions, such that $\left\langle\ell_{1}, \ldots, \ell_{n}\right\rangle=\mathfrak{m}$. Let $a \in\{1, \ldots, n\}$.

$$
I_{a}(\Lambda):=\left\langle\left\{\ell_{i_{1}} \cdots \ell_{i_{a}} \mid 1 \leq i_{1}<\cdots<i_{a} \leq n\right\}\right\rangle .
$$

The Generalized Star Configuration Variety (GSCV) of size a and support Λ is the projective subvariety of \mathbb{P}^{k-1} with defining ideal $\sqrt{l_{a}(\Lambda)}$, denoted $\mathcal{V}_{a}(\Lambda)$.

Important:

$$
\sqrt{I_{a}(\Lambda)}=\bigcap_{1 \leq i_{1}<\cdots<i_{n-a+1} \leq n}\left\langle\ell_{i_{1}}, \ldots, \ell_{i_{n-a+1}}\right\rangle .
$$

So GSCV's are union of linear subspaces; i.e., subspace arrangements.

Subspace Arrangements as GSCV's

Subspace Arrangements as GSCV's

MAIN GOAL: Show that every subspace arrangement is a GSCV.

Subspace Arrangements as GSCV's

MAIN GOAL: Show that every subspace arrangement is a GSCV.
Suppose \mathbb{K} is an infinite field.

Subspace Arrangements as GSCV's

MAIN GOAL: Show that every subspace arrangement is a GSCV.
Suppose \mathbb{K} is an infinite field. Let $V=V_{1} \cup \cdots \cup V_{m} \subset \mathbb{P}_{\mathbb{K}}^{k-1}$ be a subspace arrangement of m irreducible components such that $V_{1} \cap \cdots \cap V_{m}=\emptyset$ (i.e., essential).

Subspace Arrangements as GSCV's

MAIN GOAL: Show that every subspace arrangement is a GSCV.
Suppose \mathbb{K} is an infinite field. Let $V=V_{1} \cup \cdots \cup V_{m} \subset \mathbb{P}_{\mathbb{K}}^{k-1}$ be a subspace arrangement of m irreducible components such that
$V_{1} \cap \cdots \cap V_{m}=\emptyset$ (i.e., essential). Let $c_{i}:=\operatorname{codim}\left(V_{i}\right), i=1, \ldots, m$.

Subspace Arrangements as GSCV's

MAIN GOAL: Show that every subspace arrangement is a GSCV.
Suppose \mathbb{K} is an infinite field. Let $V=V_{1} \cup \cdots \cup V_{m} \subset \mathbb{P}_{\mathbb{K}}^{k-1}$ be a subspace arrangement of m irreducible components such that $V_{1} \cap \cdots \cap V_{m}=\emptyset$ (i.e., essential). Let $c_{i}:=\operatorname{codim}\left(V_{i}\right), i=1, \ldots, m$.

Find $\Lambda=\left(\ell_{1}, \ldots, \ell_{n}\right) \subset R$, and find $a \in\{1, \ldots, n\}$ such that $V=\mathcal{V}_{a}(\Lambda)$.

Subspace Arrangements as GSCV's

MAIN GOAL: Show that every subspace arrangement is a GSCV.
Suppose \mathbb{K} is an infinite field. Let $V=V_{1} \cup \cdots \cup V_{m} \subset \mathbb{P}_{\mathbb{K}}^{k-1}$ be a subspace arrangement of m irreducible components such that $V_{1} \cap \cdots \cap V_{m}=\emptyset$ (i.e., essential). Let $c_{i}:=\operatorname{codim}\left(V_{i}\right), i=1, \ldots, m$.
Find $\Lambda=\left(\ell_{1}, \ldots, \ell_{n}\right) \subset R$, and find $a \in\{1, \ldots, n\}$ such that $V=\mathcal{V}_{a}(\Lambda)$.

1. For each $i \in\{1, \ldots, m\}$, let Λ_{i} be a collection of
$\aleph:=1+\sum_{i=1}^{m}\left(c_{i}-1\right)$ linear forms such that each c_{i} of them generate $I\left(V_{i}\right)$.

Subspace Arrangements as GSCV's

MAIN GOAL: Show that every subspace arrangement is a GSCV.
Suppose \mathbb{K} is an infinite field. Let $V=V_{1} \cup \cdots \cup V_{m} \subset \mathbb{P}_{\mathbb{K}}^{k-1}$ be a subspace arrangement of m irreducible components such that $V_{1} \cap \cdots \cap V_{m}=\emptyset$ (i.e., essential). Let $c_{i}:=\operatorname{codim}\left(V_{i}\right), i=1, \ldots, m$.
Find $\Lambda=\left(\ell_{1}, \ldots, \ell_{n}\right) \subset R$, and find $a \in\{1, \ldots, n\}$ such that $V=\mathcal{V}_{a}(\Lambda)$.

1. For each $i \in\{1, \ldots, m\}$, let Λ_{i} be a collection of
$\aleph:=1+\sum_{i=1}^{m}\left(c_{i}-1\right)$ linear forms such that each c_{i} of them generate
$I\left(V_{i}\right)$. Since \mathbb{K} is infinite, Λ_{i} 's exist.

Subspace Arrangements as GSCV's

MAIN GOAL: Show that every subspace arrangement is a GSCV.
Suppose \mathbb{K} is an infinite field. Let $V=V_{1} \cup \cdots \cup V_{m} \subset \mathbb{P}_{\mathbb{K}}^{k-1}$ be a subspace arrangement of m irreducible components such that $V_{1} \cap \cdots \cap V_{m}=\emptyset$ (i.e., essential). Let $c_{i}:=\operatorname{codim}\left(V_{i}\right), i=1, \ldots, m$.
Find $\Lambda=\left(\ell_{1}, \ldots, \ell_{n}\right) \subset R$, and find $a \in\{1, \ldots, n\}$ such that $V=\mathcal{V}_{a}(\Lambda)$.

1. For each $i \in\{1, \ldots, m\}$, let Λ_{i} be a collection of
$\aleph:=1+\sum_{i=1}^{m}\left(c_{i}-1\right)$ linear forms such that each c_{i} of them generate $I\left(V_{i}\right)$. Since \mathbb{K} is infinite, Λ_{i} 's exist.
2. Let $\Lambda:=\bigcup_{i=1}^{m} \Lambda_{i}$ be the collection of all these $n:=|\Lambda| \leq m \aleph$ linear forms.

Subspace Arrangements as GSCV's

MAIN GOAL: Show that every subspace arrangement is a GSCV.
Suppose \mathbb{K} is an infinite field. Let $V=V_{1} \cup \cdots \cup V_{m} \subset \mathbb{P}_{\mathbb{K}}^{k-1}$ be a subspace arrangement of m irreducible components such that $V_{1} \cap \cdots \cap V_{m}=\emptyset$ (i.e., essential). Let $c_{i}:=\operatorname{codim}\left(V_{i}\right), i=1, \ldots, m$.
Find $\Lambda=\left(\ell_{1}, \ldots, \ell_{n}\right) \subset R$, and find $a \in\{1, \ldots, n\}$ such that $V=\mathcal{V}_{a}(\Lambda)$.

1. For each $i \in\{1, \ldots, m\}$, let Λ_{i} be a collection of
$\aleph:=1+\sum_{i=1}^{m}\left(c_{i}-1\right)$ linear forms such that each c_{i} of them generate
$I\left(V_{i}\right)$. Since \mathbb{K} is infinite, Λ_{i} 's exist.
2. Let $\Lambda:=\bigcup_{i=1}^{m} \Lambda_{i}$ be the collection of all these $n:=|\Lambda| \leq m \aleph$ linear forms.
3. Let $a=n-\aleph+1$.

Example 1:

Example 1:

Let V be the subspace arrangement with defining ideal $I(V)=\langle x, z, w\rangle \cap\langle x, y\rangle \subset R:=\mathbb{C}[x, y, z, w]$.

Example 1:

Let V be the subspace arrangement with defining ideal $I(V)=\langle x, z, w\rangle \cap\langle x, y\rangle \subset R:=\mathbb{C}[x, y, z, w]$. $m=2, c_{1}=3, c_{2}=2$, hence $\aleph=4$.

Example 1:

Let V be the subspace arrangement with defining ideal $I(V)=\langle x, z, w\rangle \cap\langle x, y\rangle \subset R:=\mathbb{C}[x, y, z, w]$. $m=2, c_{1}=3, c_{2}=2$, hence $\aleph=4$.

We can pick

$$
\Lambda_{1}=\{x, z, w, x+z+w\} \text { and } \Lambda_{2}=\{x, y, x+y, x-y\} .
$$

Example 1:

Let V be the subspace arrangement with defining ideal $I(V)=\langle x, z, w\rangle \cap\langle x, y\rangle \subset R:=\mathbb{C}[x, y, z, w]$. $m=2, c_{1}=3, c_{2}=2$, hence $\aleph=4$.

We can pick

$$
\Lambda_{1}=\{x, z, w, x+z+w\} \text { and } \Lambda_{2}=\{x, y, x+y, x-y\}
$$

Any three of the linear forms in Λ_{1} generate $\langle x, z, w\rangle$, and any two of the linear forms in Λ_{2} generate $\langle x, y\rangle$.

Example 1:

Let V be the subspace arrangement with defining ideal $I(V)=\langle x, z, w\rangle \cap\langle x, y\rangle \subset R:=\mathbb{C}[x, y, z, w]$. $m=2, c_{1}=3, c_{2}=2$, hence $\aleph=4$.

We can pick

$$
\Lambda_{1}=\{x, z, w, x+z+w\} \text { and } \Lambda_{2}=\{x, y, x+y, x-y\}
$$

Any three of the linear forms in Λ_{1} generate $\langle x, z, w\rangle$, and any two of the linear forms in Λ_{2} generate $\langle x, y\rangle$.
With $\Lambda=\{x, z, w, x+z+w, y, x+y, x-y\}$ and $a=7-4+1=4$, and conclude

$$
V=\mathcal{V}_{4}(\Lambda)
$$

Example 1:

Let V be the subspace arrangement with defining ideal $I(V)=\langle x, z, w\rangle \cap\langle x, y\rangle \subset R:=\mathbb{C}[x, y, z, w]$. $m=2, c_{1}=3, c_{2}=2$, hence $\aleph=4$.

We can pick

$$
\Lambda_{1}=\{x, z, w, x+z+w\} \text { and } \Lambda_{2}=\{x, y, x+y, x-y\} .
$$

Any three of the linear forms in Λ_{1} generate $\langle x, z, w\rangle$, and any two of the linear forms in Λ_{2} generate $\langle x, y\rangle$.

With $\Lambda=\{x, z, w, x+z+w, y, x+y, x-y\}$ and $a=7-4+1=4$, and conclude

$$
V=\mathcal{V}_{4}(\Lambda) .
$$

Observe that in the previous slide and in this example Λ is a set and not a collection, so the linear forms cannot repeat.

Three applications

Three applications

Application 1: Building linear codes with prescribed projective codewords of minimum weight.

Three applications

Application 1: Building linear codes with prescribed projective codewords of minimum weight.

- Linear Code \mathcal{C} : image of a \mathbb{K}-linear map (encoding) $\phi: \mathbb{K}^{k} \longrightarrow \mathbb{K}^{n}$. Elements of \mathcal{C} are called codewords.

Three applications

Application 1: Building linear codes with prescribed projective codewords of minimum weight.

- Linear Code \mathcal{C} : image of a \mathbb{K}-linear map (encoding) $\phi: \mathbb{K}^{k} \longrightarrow \mathbb{K}^{n}$. Elements of \mathcal{C} are called codewords.
-Generating matrix G : the matrix of the map above, usually in standard bases. Assume $\operatorname{rank}(G)=k$ and that G has no zero columns. n is called the length of \mathcal{C}, and k is called the dimension of \mathcal{C}.

Three applications

Application 1: Building linear codes with prescribed projective codewords of minimum weight.

- Linear Code \mathcal{C} : image of a \mathbb{K}-linear map (encoding) $\phi: \mathbb{K}^{k} \longrightarrow \mathbb{K}^{n}$. Elements of \mathcal{C} are called codewords.
-Generating matrix G : the matrix of the map above, usually in standard bases. Assume $\operatorname{rank}(G)=k$ and that G has no zero columns. n is called the length of \mathcal{C}, and k is called the dimension of \mathcal{C}.
\bullet Minimum (Hamming) distance d : The weight, $w t(\mathbf{v})$, of $\mathbf{v} \in \mathbb{K}^{n}$ is the number of nonzero entries of \mathbf{v}.

Three applications

Application 1: Building linear codes with prescribed projective codewords of minimum weight.

- Linear Code \mathcal{C} : image of a \mathbb{K}-linear map (encoding) $\phi: \mathbb{K}^{k} \longrightarrow \mathbb{K}^{n}$. Elements of \mathcal{C} are called codewords.
-Generating matrix G : the matrix of the map above, usually in standard bases. Assume $\operatorname{rank}(G)=k$ and that G has no zero columns. n is called the length of \mathcal{C}, and k is called the dimension of \mathcal{C}.
\bullet Minimum (Hamming) distance d : The weight, $w t(\mathbf{v})$, of $\mathbf{v} \in \mathbb{K}^{n}$ is the number of nonzero entries of \mathbf{v}.

$$
d:=\min \{w t(\mathbf{c}) \mid \mathbf{c} \in \mathcal{C} \backslash\{\mathbf{0}\}\} .
$$

Three applications

Application 1: Building linear codes with prescribed projective codewords of minimum weight.

- Linear Code \mathcal{C} : image of a \mathbb{K}-linear map (encoding) $\phi: \mathbb{K}^{k} \longrightarrow \mathbb{K}^{n}$. Elements of \mathcal{C} are called codewords.
-Generating matrix G : the matrix of the map above, usually in standard bases. Assume $\operatorname{rank}(G)=k$ and that G has no zero columns. n is called the length of \mathcal{C}, and k is called the dimension of \mathcal{C}.
\bullet Minimum (Hamming) distance d : The weight, $w t(\mathbf{v})$, of $\mathbf{v} \in \mathbb{K}^{n}$ is the number of nonzero entries of \mathbf{v}.

$$
d:=\min \{w t(\mathbf{c}) \mid \mathbf{c} \in \mathcal{C} \backslash\{\mathbf{0}\}\} .
$$

- A $\mathbf{c} \in \mathcal{C}$ with $w t(\mathbf{c})=d$ is called a codeword of minimum weight;

Three applications

Application 1: Building linear codes with prescribed projective codewords of minimum weight.

- Linear Code \mathcal{C} : image of a \mathbb{K}-linear map (encoding) $\phi: \mathbb{K}^{k} \longrightarrow \mathbb{K}^{n}$. Elements of \mathcal{C} are called codewords.
-Generating matrix G : the matrix of the map above, usually in standard bases. Assume $\operatorname{rank}(G)=k$ and that G has no zero columns. n is called the length of \mathcal{C}, and k is called the dimension of \mathcal{C}.
\bullet Minimum (Hamming) distance d : The weight, $w t(\mathbf{v})$, of $\mathbf{v} \in \mathbb{K}^{n}$ is the number of nonzero entries of \mathbf{v}.

$$
d:=\min \{w t(\mathbf{c}) \mid \mathbf{c} \in \mathcal{C} \backslash\{\mathbf{0}\}\} .
$$

- A $\mathbf{c} \in \mathcal{C}$ with $w t(\mathbf{c})=d$ is called a codeword of minimum weight, a projective codeword of minimum weight is the equivalence class under nonzero scalar multiplication of a codeword of minimum weight.

Three applications

Application 1: Building linear codes with prescribed projective codewords of minimum weight.

- Linear Code \mathcal{C} : image of a \mathbb{K}-linear map (encoding) $\phi: \mathbb{K}^{k} \longrightarrow \mathbb{K}^{n}$. Elements of \mathcal{C} are called codewords.
-Generating matrix G : the matrix of the map above, usually in standard bases. Assume $\operatorname{rank}(G)=k$ and that G has no zero columns. n is called the length of \mathcal{C}, and k is called the dimension of \mathcal{C}.
\bullet Minimum (Hamming) distance d : The weight, $w t(\mathbf{v})$, of $\mathbf{v} \in \mathbb{K}^{n}$ is the number of nonzero entries of \mathbf{v}.

$$
d:=\min \{w t(\mathbf{c}) \mid \mathbf{c} \in \mathcal{C} \backslash\{\mathbf{0}\}\} .
$$

- A $\mathbf{c} \in \mathcal{C}$ with $w t(\mathbf{c})=d$ is called a codeword of minimum weight; a projective codeword of minimum weight is the equivalence class under nonzero scalar multiplication of a codeword of minimum weight.
Question: Given $V:=\left\{P_{1}, \ldots, P_{m}\right\}$ distinct points in \mathbb{P}^{k-1}, find a linear code such that all its projective codewords of minimum weight are $\phi\left(P_{1}\right), \ldots, \phi\left(P_{m}\right)$.

1. $c_{1}=\cdots=c_{m}=k-1$, so $\aleph=1+m(k-2)$.
2. $c_{1}=\cdots=c_{m}=k-1$, so $\aleph=1+m(k-2)$.
3. Through each P_{i} pick \aleph hyperplanes such that any $k-1$ of them are linearly independent, and no hyperplane through P_{i} will contain a $P_{j}, j \neq i$.
4. $c_{1}=\cdots=c_{m}=k-1$, so $\aleph=1+m(k-2)$.
5. Through each P_{i} pick \aleph hyperplanes such that any $k-1$ of them are linearly independent, and no hyperplane through P_{i} will contain a $P_{j}, j \neq i$. So n, the number of hyperplanes, is $n:=m \aleph$.
6. $c_{1}=\cdots=c_{m}=k-1$, so $\aleph=1+m(k-2)$.
7. Through each P_{i} pick \aleph hyperplanes such that any $k-1$ of them are linearly independent, and no hyperplane through P_{i} will contain a $P_{j}, j \neq i$. So n, the number of hyperplanes, is $n:=m \aleph$.
8. Let \mathcal{C} be the linear code with generating matrix G, of size $k \times n$, with columns dual to the defining linear forms of the chosen hyperplanes.
9. $c_{1}=\cdots=c_{m}=k-1$, so $\aleph=1+m(k-2)$.
10. Through each P_{i} pick \aleph hyperplanes such that any $k-1$ of them are linearly independent, and no hyperplane through P_{i} will contain a $P_{j}, j \neq i$. So n, the number of hyperplanes, is $n:=m \aleph$.
11. Let \mathcal{C} be the linear code with generating matrix G, of size $k \times n$, with columns dual to the defining linear forms of the chosen hyperplanes. The minimum distance is $d=n-\aleph$.

Example 2. Let $V=\{[0,0,1],[0,1,1],[0,2,1],[1,0,1],[1,1,1]\} \subset \mathbb{P}^{2}$.

1. $c_{1}=\cdots=c_{m}=k-1$, so $\aleph=1+m(k-2)$.
2. Through each P_{i} pick \aleph hyperplanes such that any $k-1$ of them are linearly independent, and no hyperplane through P_{i} will contain a $P_{j}, j \neq i$. So n, the number of hyperplanes, is $n:=m \aleph$.
3. Let \mathcal{C} be the linear code with generating matrix G, of size $k \times n$, with columns dual to the defining linear forms of the chosen hyperplanes. The minimum distance is $d=n-\aleph$.
Example 2. Let $V=\{[0,0,1],[0,1,1],[0,2,1],[1,0,1],[1,1,1]\} \subset \mathbb{P}^{2}$.
Through each of the 5 points pick 6 lines (so 5 pencils of lines), such that no point of V belongs to the pencil of lines of another point of V.
4. $c_{1}=\cdots=c_{m}=k-1$, so $\aleph=1+m(k-2)$.
5. Through each P_{i} pick \aleph hyperplanes such that any $k-1$ of them are linearly independent, and no hyperplane through P_{i} will contain a $P_{j}, j \neq i$. So n, the number of hyperplanes, is $n:=m \aleph$.
6. Let \mathcal{C} be the linear code with generating matrix G, of size $k \times n$, with columns dual to the defining linear forms of the chosen hyperplanes. The minimum distance is $d=n-\aleph$.
Example 2. Let $V=\{[0,0,1],[0,1,1],[0,2,1],[1,0,1],[1,1,1]\} \subset \mathbb{P}^{2}$.
Through each of the 5 points pick 6 lines (so 5 pencils of lines), such that no point of V belongs to the pencil of lines of another point of V.
So $n=30$ distinct lines forming a line arrangement, say \mathcal{A}.
7. $c_{1}=\cdots=c_{m}=k-1$, so $\aleph=1+m(k-2)$.
8. Through each P_{i} pick \aleph hyperplanes such that any $k-1$ of them are linearly independent, and no hyperplane through P_{i} will contain a $P_{j}, j \neq i$. So n, the number of hyperplanes, is $n:=m \aleph$.
9. Let \mathcal{C} be the linear code with generating matrix G, of size $k \times n$, with columns dual to the defining linear forms of the chosen hyperplanes. The minimum distance is $d=n-\aleph$.

Example 2. Let $V=\{[0,0,1],[0,1,1],[0,2,1],[1,0,1],[1,1,1]\} \subset \mathbb{P}^{2}$.
Through each of the 5 points pick 6 lines (so 5 pencils of lines), such that no point of V belongs to the pencil of lines of another point of V.
So $n=30$ distinct lines forming a line arrangement, say \mathcal{A}.
The points of V are the the singularities of \mathcal{A} of maximum multiplicity (equal to 6), so they correspond to projective codewords of minimum weight.

1. $c_{1}=\cdots=c_{m}=k-1$, so $\aleph=1+m(k-2)$.
2. Through each P_{i} pick \aleph hyperplanes such that any $k-1$ of them are linearly independent, and no hyperplane through P_{i} will contain a $P_{j}, j \neq i$. So n, the number of hyperplanes, is $n:=m \aleph$.
3. Let \mathcal{C} be the linear code with generating matrix G, of size $k \times n$, with columns dual to the defining linear forms of the chosen hyperplanes. The minimum distance is $d=n-\aleph$.

Example 2. Let $V=\{[0,0,1],[0,1,1],[0,2,1],[1,0,1],[1,1,1]\} \subset \mathbb{P}^{2}$.
Through each of the 5 points pick 6 lines (so 5 pencils of lines), such that no point of V belongs to the pencil of lines of another point of V.
So $n=30$ distinct lines forming a line arrangement, say \mathcal{A}.
The points of V are the the singularities of \mathcal{A} of maximum multiplicity (equal to 6), so they correspond to projective codewords of minimum weight.

Quite messy, but it does the trick.

Application 2: A (better) interpolation of points in \mathbb{P}^{2}.

Application 2: A (better) interpolation of points in \mathbb{P}^{2}.
Above we did not take into account the underlying geometry of the points, and we did not allow repetitions of the linear forms considered.

Application 2: A (better) interpolation of points in \mathbb{P}^{2}.
Above we did not take into account the underlying geometry of the points, and we did not allow repetitions of the linear forms considered. Now, we will do both.

Application 2: A (better) interpolation of points in \mathbb{P}^{2}.
Above we did not take into account the underlying geometry of the points, and we did not allow repetitions of the linear forms considered. Now, we will do both.
The main idea is to construct a multiarrangement of lines in \mathbb{P}^{2}, such that its points of maximum multiplicity are precisely the given set of points.

Application 2: A (better) interpolation of points in \mathbb{P}^{2}.
Above we did not take into account the underlying geometry of the points, and we did not allow repetitions of the linear forms considered. Now, we will do both.
The main idea is to construct a multiarrangement of lines in \mathbb{P}^{2}, such that its points of maximum multiplicity are precisely the given set of points.

1. Suppose $V=\left\{P_{1}, \ldots, P_{m}\right\} \subset \mathbb{P}^{2}$.

Application 2: A (better) interpolation of points in \mathbb{P}^{2}.
Above we did not take into account the underlying geometry of the points, and we did not allow repetitions of the linear forms considered. Now, we will do both.

The main idea is to construct a multiarrangement of lines in \mathbb{P}^{2}, such that its points of maximum multiplicity are precisely the given set of points.

1. Suppose $V=\left\{P_{1}, \ldots, P_{m}\right\} \subset \mathbb{P}^{2}$.
2. For $1 \leq i<j \leq m$ consider the line $\ell_{i, j}$ connecting the points P_{i} and P_{j}.

Application 2: A (better) interpolation of points in \mathbb{P}^{2}.
Above we did not take into account the underlying geometry of the points, and we did not allow repetitions of the linear forms considered. Now, we will do both.

The main idea is to construct a multiarrangement of lines in \mathbb{P}^{2}, such that its points of maximum multiplicity are precisely the given set of points.

1. Suppose $V=\left\{P_{1}, \ldots, P_{m}\right\} \subset \mathbb{P}^{2}$.
2. For $1 \leq i<j \leq m$ consider the line $\ell_{i, j}$ connecting the points P_{i} and P_{j}.
3. If such a line has s points of V on itself, we consider this line $s-1$ times.

Application 2: A (better) interpolation of points in \mathbb{P}^{2}.
Above we did not take into account the underlying geometry of the points, and we did not allow repetitions of the linear forms considered. Now, we will do both.

The main idea is to construct a multiarrangement of lines in \mathbb{P}^{2}, such that its points of maximum multiplicity are precisely the given set of points.

1. Suppose $V=\left\{P_{1}, \ldots, P_{m}\right\} \subset \mathbb{P}^{2}$.
2. For $1 \leq i<j \leq m$ consider the line $\ell_{i, j}$ connecting the points P_{i} and P_{j}.
3. If such a line has s points of V on itself, we consider this line $s-1$ times.

We construct, say, p distinct lines L_{1}, \ldots, L_{p}, and for $k \in\{1, \ldots, p\}$, if each line L_{k} has $r_{k}+1 \geq 2$ points of V on it, then it is considered $r_{k} \geq 1$ times.

Example 3. Same set of points as in Example 2.

Example 3. Same set of points as in Example 2.

Example 3. Same set of points as in Example 2.

$$
\Lambda=(x, x, x-z, x-y, y, x+y-z, y-z, 2 x+y-2 z, x+y-2 z)
$$

Example 3. Same set of points as in Example 2.

$$
\Lambda=(x, x, x-z, x-y, y, x+y-z, y-z, 2 x+y-2 z, x+y-2 z)
$$

Dually, $G=\left[\begin{array}{rrrrrrrrr}1 & 1 & 1 & 1 & 0 & 1 & 0 & 2 & 1 \\ 0 & 0 & 0 & -1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & -1 & 0 & 0 & -1 & -1 & -2 & -2\end{array}\right]$, is
generating matrix of a linear code with minimum distance $d=9-4=5$.

Example 3 (continued).

Example 3 (continued).
There are 5 projective codewords of minimum weight d.

$$
\begin{aligned}
& {\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right] G=\left[\begin{array}{lllllllll}
0 & 0 & -1 & 0 & 0 & -1 & -1 & -2 & -2
\end{array}\right]} \\
& {\left[\begin{array}{lll}
0 & 1 & 1
\end{array}\right] G=\left[\begin{array}{lllllllll}
0 & 0 & -1 & -1 & 1 & 0 & 0 & -1 & -1
\end{array}\right]} \\
& {\left[\begin{array}{lll}
0 & 2 & 1
\end{array}\right] G=\left[\begin{array}{lllllllll}
0 & 0 & -1 & -2 & 2 & 1 & 1 & 0 & 0
\end{array}\right]} \\
& {\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right] G=\left[\begin{array}{lllllllll}
1 & 1 & 0 & 1 & 0 & 0 & -1 & 0 & -1
\end{array}\right]} \\
& {\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right] G=\left[\begin{array}{lllllllll}
1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0
\end{array}\right] \text {. }}
\end{aligned}
$$

Application 3: Arithmetic rank of subspace arrangements.

Application 3: Arithmetic rank of subspace arrangements.

The arithmetic rank of a variety is the minimum number of polynomials that generate the defining ideal of the variety, up to the radical.

Application 3: Arithmetic rank of subspace arrangements.

The arithmetic rank of a variety is the minimum number of polynomials that generate the defining ideal of the variety, up to the radical. If the arithmetic rank of a variety equal the codimension of the variety, the variety is called set-theoretic complete intersection (s.t.c.i.).

Application 3: Arithmetic rank of subspace arrangements.
The arithmetic rank of a variety is the minimum number of polynomials that generate the defining ideal of the variety, up to the radical. If the arithmetic rank of a variety equal the codimension of the variety, the variety is called set-theoretic complete intersection (s.t.c.i.).

- Hartshorne's example: the subspace arrangement
$V:=V(x, y) \cup V(z, w) \subset \mathbb{P}_{\mathbb{C}}^{3}$ is NOT s.t.c.i.

Application 3: Arithmetic rank of subspace arrangements.
The arithmetic rank of a variety is the minimum number of polynomials that generate the defining ideal of the variety, up to the radical. If the arithmetic rank of a variety equal the codimension of the variety, the variety is called set-theoretic complete intersection (s.t.c.i.).

- Hartshorne's example: the subspace arrangement $V:=V(x, y) \cup V(z, w) \subset \mathbb{P}_{\mathbb{C}}^{3}$ is NOT s.t.c.i. Since $V=\mathcal{V}_{4}(\Lambda)$, where $\Lambda=\{x, y, x+y, z, w, z+w\}$, then there are some GSCV's that are NOT s.t.c.i.

Application 3: Arithmetic rank of subspace arrangements.
The arithmetic rank of a variety is the minimum number of polynomials that generate the defining ideal of the variety, up to the radical. If the arithmetic rank of a variety equal the codimension of the variety, the variety is called set-theoretic complete intersection (s.t.c.i.).

- Hartshorne's example: the subspace arrangement $V:=V(x, y) \cup V(z, w) \subset \mathbb{P}_{\mathbb{C}}^{3}$ is NOT s.t.c.i. Since $V=\mathcal{V}_{4}(\Lambda)$, where $\Lambda=\{x, y, x+y, z, w, z+w\}$, then there are some GSCV's that are NOT s.t.c.i.
- The arithmetic rank of any $\mathcal{V}_{a}(\Lambda)$, where Λ consists of n linear forms, is $\leq n-a+1$.

Application 3: Arithmetic rank of subspace arrangements.
The arithmetic rank of a variety is the minimum number of polynomials that generate the defining ideal of the variety, up to the radical. If the arithmetic rank of a variety equal the codimension of the variety, the variety is called set-theoretic complete intersection (s.t.c.i.).

- Hartshorne's example: the subspace arrangement $V:=V(x, y) \cup V(z, w) \subset \mathbb{P}_{\mathbb{C}}^{3}$ is NOT s.t.c.i. Since $V=\mathcal{V}_{4}(\Lambda)$, where $\Lambda=\{x, y, x+y, z, w, z+w\}$, then there are some GSCV's that are NOT s.t.c.i.
- The arithmetic rank of any $\mathcal{V}_{a}(\Lambda)$, where \wedge consists of n linear forms, is $\leq n-a+1$.
- If $V=V_{1} \cup \cdots \cup V_{m}$ is essential subspace arrangement of m irreducible components with $\operatorname{codim}\left(V_{i}\right)=c_{i}, i \in\{1, \ldots, m\}$, then

$$
\operatorname{ara}(V) \leq 1+\sum_{i=1}^{m}\left(c_{i}-1\right)
$$

Application 3: Arithmetic rank of subspace arrangements.
The arithmetic rank of a variety is the minimum number of polynomials that generate the defining ideal of the variety, up to the radical. If the arithmetic rank of a variety equal the codimension of the variety, the variety is called set-theoretic complete intersection (s.t.c.i.).

- Hartshorne's example: the subspace arrangement $V:=V(x, y) \cup V(z, w) \subset \mathbb{P}_{\mathbb{C}}^{3}$ is NOT s.t.c.i. Since $V=\mathcal{V}_{4}(\Lambda)$, where $\Lambda=\{x, y, x+y, z, w, z+w\}$, then there are some GSCV's that are NOT s.t.c.i.
- The arithmetic rank of any $\mathcal{V}_{a}(\Lambda)$, where Λ consists of n linear forms, is $\leq n-a+1$.
- If $V=V_{1} \cup \cdots \cup V_{m}$ is essential subspace arrangement of m irreducible components with $\operatorname{codim}\left(V_{i}\right)=c_{i}, i \in\{1, \ldots, m\}$, then

$$
\operatorname{ara}(V) \leq 1+\sum_{i=1}^{m}\left(c_{i}-1\right)
$$

Kimura-Terai-Yoshida (J. Alg. Comb., 2009) obtained in a different fashion the same result.

Application 3: Arithmetic rank of subspace arrangements.
The arithmetic rank of a variety is the minimum number of polynomials that generate the defining ideal of the variety, up to the radical. If the arithmetic rank of a variety equal the codimension of the variety, the variety is called set-theoretic complete intersection (s.t.c.i.).

- Hartshorne's example: the subspace arrangement $V:=V(x, y) \cup V(z, w) \subset \mathbb{P}_{\mathbb{C}}^{3}$ is NOT s.t.c.i. Since $V=\mathcal{V}_{4}(\Lambda)$, where $\Lambda=\{x, y, x+y, z, w, z+w\}$, then there are some GSCV's that are NOT s.t.c.i.
- The arithmetic rank of any $\mathcal{V}_{a}(\Lambda)$, where \wedge consists of n linear forms, is $\leq n-a+1$.
- If $V=V_{1} \cup \cdots \cup V_{m}$ is essential subspace arrangement of m irreducible components with $\operatorname{codim}\left(V_{i}\right)=c_{i}, i \in\{1, \ldots, m\}$, then

$$
\operatorname{ara}(V) \leq 1+\sum_{i=1}^{m}\left(c_{i}-1\right)
$$

Kimura-Terai-Yoshida (J. Alg. Comb., 2009) obtained in a different fashion the same result. Also there are examples, where the bound is attained.

THANK YOU!

