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Introduction – The Basic Case

Let 4 be a triangulation of a simply connected domain Ω ⊆ R2

which is homeomorphic to a closed disk.

Generalizations

1) polyhedral subdivision

2) semi-algebraic subdivision

3) Ω ⊆ Rk k > 2
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S r
d(4)=space of piecewise polynomial functions of degree

d and smoothness r

So f ∈ S r
d(4) if f |σi = fi is a polynomial in two variables of degree

≤ d on each triangle σi in 4 and f is a C r -function, i.e. f has
continuous derivatives to order r .

The latter means
fi − fj = gij l

r+1
ij

where lij is a linear equation defining the edge σi ∩ σj when σi , σj
are adjacent.
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What can we say about

dimS r
d(4) =???

Strang’s Lower Bound (1973)

dimS r
d(4) ≥

(
d + 2

2

)
+

(
d − r + 1

2

)
EI

−
[(

d + 2

2

)
−
(
r + 2

2

)]
VI + δ
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where

EI = # of interior edges

VI = # of interior vertices

and

δ =

VI∑
i=1

d−r∑
j=1

(r + j + 1− jei )+

where ei is the number of interior edges with different slopes
attached to interior vertex vi .
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How is this derived from the standpoint of algebraic geometry?

Using the conformality conditions and the fact that Ω is simply
connected, one can produce an exact sequence of vector bundles
on P2

(∗) 0→ K (d)→
⊕
40

1

OP2(d − r − 1)→
⊕
40

0

OP2(d)

where

dimS r
d(4) =

(
d + 2

2

)
+ dimH0(P2,K (d))
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We can break (∗) into two short exact sequences

0→ K (d)→
⊕
40

1

OP2(d − r − 1)→ R(d)→ 0

0→ R(d)→
⊕
40

0

OP2(d)→ C (d)→ 0

where C is a skyscraper sheaf supported at the interior vertices so
C (d) = C .

Using Serre’s Vanishing Theorem B, local calculation of C , and the
long exact sequences in cohomology, we get for d sufficiently large
that dim S r

d(4) = Strang’s Lower Bound
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Schumaker 1979 proved Strang’s conjectured lower bound.

Alfeld and Schumaker 1987: If d ≥ 3r + 2 the dimension of S r
d(4)

is given by the lower bound.

Alfeld and Schumaker 1990: If d = 3r + 1 then for generic 4 the
dimension is given by the lower bound.

For d = 4 and r = 1 the dimension is given by the lower bound in
all cases.
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“... As far as I know there has been no real progress on the
dimension of S r

d(4) for general triangulations when
2r + 1 ≤ d ≤ 3r + 1, for many years. In particular, the dimension
S1

3 (4), the most interesting case in my opinion, seems to be as
inaccessible as ever. ...”
– Peter Alfeld 6/26/17
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Example (Stefan Tohaneanu)

dimS1
3 (4) = 23 r = 1 and d = 3
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Note: Strang’s lower bound in this case is 23(
3 + 2

2

)
+

(
3− 1 + 1

2

)
EI −

[(
3 + 2

2

)
−
(

1 + 2

2

)]
VI + δ

where

EI = 9 the number of interior edges

VI = 2 the number of interior vertices

δ =

VI∑
i=1

d−r∑
j=1

(r + j + 1− jei )+

ei is the number of edges with different slopes attached to
interior vertex vi , so ei = 3 for both interior vertices and
δ = 0.
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But for S r
2r (4) Tohaneanu shows

dim S r
2r (4) > lower bound

In this case the lower bound is

4r2 + 9
2 r + 1 for r even

4r2 + 9
2 r + 1

2 for r odd

Later Tohaneanu and Minac 2012 showed that in this example, for
d ≥ 2r + 1 the dimension is the lower bound.
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Conjecture (“The 2r + 1 Conjecture”)

Conjecture
For d ≥ 2r + 1 the dimension of S r

d(4) is given by the lower
bound and this is sharp, i.e. for d = 2r there exist 4 for which
dim S r

d(4) exceeds the lower bound.
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More algebraic geometry

From the long exact sequence in cohomology for

0→ K (d)→
⊕
40

1

OP2(d − r − 1)→ R(d)→ 0

we get
H1(R(d)) ∼= H2(K (d))

but it can be shown (Lau, Stiller) dimH2(K (d)) = 0 for d ≥ 2r .
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This gives for d ≥ 2r and d > r .

h0(K (d))− h1(K (d)) = f 0
1

(
d − r + 1

2

)
− f 0

0

[(
d + 2

2

)
−
(
r + 2

2

)]

+

f 0
0∑

i=1

d−r∑
j=1

[−ei j + j + r + 1]+

It follows that for d ≥ 2r and d > r

dim S r
d = lower bound

if and only if H1(K (d)) = 0.
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So we can re-interpret the 2r + 1 conjecture as a cohomology
vanishing result.

Conjecture 1

For d ≥ 2r + 1, H1(K (d)) = 0.

In fact one can show if H1(K (d0)) = 0 for some d0 ≥ 2r + 1 then
H1(K (d)) = 0 for all d ≥ d0 ≥ 2r + 1.

Conjecture 2

H1(K (2r + 1)) = 0.

Are there cohomology vanishing theorems that can help us?
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Cohomology Vanishing Results

Elenewajg and Forester “Bounding Cohomology Groups of Vector
Bundles on Pn,” Math. Ann. 246, 251–270 (1980)

Hartshorne, “Stable Vector Bundles,” Math. Ann. 238, 229–280
(1978)
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A Deeper Look

Notation For v ∈ 40
0 let

εv = number of edges incident to v

kv = the number of those edges with distinct slopes

αv = b r+1
kv−1c

Kv = bundle associated with splines on the star of v .
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Using Schumaker’s dimension formula for the star one can show

(∗)Kv
∼= Os1

P2(−r − 1− αv )⊕ Os2

P2(−r − 2− αv )

⊕ Os3

P2(−r − 1)

s1 = (kv − 1)αv + kv − r − 2

s2 = r + 1− (kv − 1)αv

s3 = εv − kv (so = 0 for a “non-singular” vertex)
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Using (∗) and

0→ K →
⊕
v∈40

0

Kv → O
f 00
1

P2 (−r − 1)→ 0

one gets

c1(K ) = −f 0
1 (r + 1)

c2(K ) =

(
f 0
1

2

)
(r + 1)2 −

(
r + 2

2

)
f 0
0

+ 1
2

∑
v∈40

0

((kv − 1)α2
v + (kv − 2r − 3)αv )
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One can get estimates for e(K ), b(K ), and δ(K )

Putting these into Elencwajg and Forester’s Theorem we get
H1(K (d)) = 0 if

d ≥ c2(K )− f2 − 2

2(f2 − 1)
(f 0

1 (r + 1))2 +
f2 − 1

8
(f 0

0 (r + 1))2

+ (f 0
0 + 1)(r + 1)− 1

(Schenck and S. 2001)
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Remark

H1(K (d)) for d ≥ 2r + 1 depends only on H1(E(d)) for a certain
2-bundle E constructed from K.

First split off line bundle summands of K

K ∼=
⊕̀
i=1

OP2(ai )⊕ K1

a1 ≥ a2... ≥ a`
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Twist K1 by O(g) so K (g) is generated by global sections (while
K1(g − 1) is not). We get a sequence (Serre)

o → Orank K1−2
P2 → K1(g)→ E(g)→ 0

and of course H1(K (d)) ∼= H1(E(d)).
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Questions

What 2-bundles E do we get?

Is E semi-stable / stable?

Can we leverage semi-stability / stability to get better cohomology
vanishing estimates?

(see Hartshorne “Stable Reflexive Sheaves”)
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Example Schenck and Stiller, “Cohomology vanishing and
a problem in approximation theory”

For r = 1 our estimate using Elencwajg and Forster gives

H1(K (d)) = 0

for d ≥ 4 which is 3r + 1 (Alfeld and Schumaker).
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For r = 2
K has rank 7 and c1(K ) = −27. Computations show

1) K ∼= O4
P2(−3)⊕ K1 K1 indecomposable

2) K1|L ∼= Oε
L(−5) L generic line in P2

3) 0→ OP2(−7)→ O2
P2(−5)⊕ O2

P2(−6)→ K1 → 0 is a
resolution of K1.

4) χ(K (d)) = 7
2d

2 − 33
2 d + 21

5) c1(K1) = −15 c2(K1) = 76 b(K1) = −5

6) δ(K1) = 1 (δ = c2 −
∑

i<j bibj) where K1|L ∼= ⊕OL(bi ) see
2) above.
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By (3) or Lau and S., H2(K (d)) = 0 for d ≥ 4 (which is 2r).

By Elencwajg and Forester

H1(K (d)) = 0 for d ≥ δ − b − 1 = 5

(which is 2r + 1!)

dimH1(K (4)) = 1 which is Tohaneanu’s result.

7) Knorm
1 = K1(5)

8) Knorm
1 |L ∼= O3

L so generic splitting type is (0, 0, 0)

9) c1(Knorm
1 ) = 0, c2(Knorm

1 ) = 1, δ(Knorm
1 ) = 1, b(Knorm

1 ) = 0
and H1(Knorm

1 (d)) = 0 d ≥ 0
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By results in Elencwajg and Forster K1(6) is generated by global
sections. K1(5) is not by 3) above. So from Serre we get a
sequence

0→ OP2 → K1(6)→ E(6)→ 0
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Here E(4) = Enorm and

c1(Enorm) = −1 and c2(Enorm) = 2

Since c1(Enorm) is odd to show Enorm stable it suffices to show
H0(Enorm) = 0. But we have

0→ OP2(−2)→ K1(4)→ E(4)→ 0

where K1(4) = Knorm
1 (−1) and E(4) = Enorm.

This gives H0(K1(4))→ H0(Enorm)→ 0 and 3) shows
H0(K1(4)) = 0 so E is stable!

Note for r = 3 the E you get is semi-stable and is the restriction of
the null-correlation bundle on P3 to P2.
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Semistable and Stable Sheaves

Definition

A coherent sheaf F over a complex manifold X is a
kth syzergy sheaf if there is an exact sequence

0→ F → O⊕p1
x → O⊕p2

x → ...→ O⊕pkx

Theorem

The codimension of the singularity set of F (where Fx is not free
over OX ,x) has codimension greater than k.

Let E be a torsion free sheaf on Pn n ≥ 2.
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Definition

Define µ(E ) = c1(E)
rkE then E is semi-stable if for a very coherent

subsheaf F
0 6= F ⊂ E

we have
µ(F ) ≤ µ(E )

and stable if for all coherent subsheaves F ⊂ E with
0 < rkF < rkE we have

µ(F ) < µ(E ).

Fact: For E a vector bundle on P2 of rank 2 we get E is stable if
and only if H0(P2,Enorm) = 0. If c1(E ) is even, then E is
semistable if and only if H0(P2,Enorm(−1)) = 0.
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Riemann-Roch for a 2-bundle E over P2 is

χ(P2,E ) = 1
2 (c1(E )2 − 2c2(E ) + 3c1(E ) + 4).

If E is normalized and semistable, but not stable then c1(E ) = 0
and one can show

0 ≤ h1(P2,E (−1))− χ(P2,E (−1)) = c2(E )

Theorem

The generic splitting type of a semistable bundle E over Pn,
aE = (a1, ..., ar ) a1 ≥ a2... ≥ ar has ai − ai+1 ≤ 1 for all
i = 1, ..., r − 1.

So for a normalized semistable 2 bundle E on Pn you can only get

(0, 0) when c1(E ) = 0; or

(0,−1) when c1(E ) = −1
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Semialgebraic Splines

Chui and Wang

(S .) “Certain Reflexive Sheaves on Pn
C and a Problem in

Approximation Theory,” Trans. Amer. Math. Soc. 279 (1983), no.
1, 125–142.

DiPasquale, Sottile, and Sun, “Semi-algebraic Splines,” preprint.
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Conformality Conditions:

fi+1−fi = gip
µ+1
i (fN+1 = f1)

i = 1, ...,N

where deg gi ≤ k − di (µ+ 1). Let Sµk = local splines of degree
≤ k and smoothness µ

WLOG work in P2 – homogenize the pi , gi , fi to have degree
di , k − di (µ+ 1), k respectively.

NOTE: By Bezout’s Theorem

1 ≤ dimH0(Ox) ≤ min
i 6=j

didj(µ+ 1)2
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We have exact sequences of coherent sheaves

0→ K (k)→
N⊕
i=1

OP2(k − di (µ+ 1))→ Ix(k)→ 0

0→ I(k)→ OP2(k)→ Ox → 0

K is a vector bundle of rank N − 1
Ix is the ideal sheaf of (pµ+1

1 , ..., pµ+1
N )

X (zero-dimensional) subscheme in P2 defined by the {pµ+1
i }

Ox the structure sheaf of X – a skyscraper sheaf
supported at the points of X

dimSµk = dimH0(K (k)) +

(
k + 2

2

)
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We see for k >> 0

dimH0(K (k)) =
N∑
i=1

(
k − di (µ+ 1) + 2

2

)
−
(
k + 2

2

)
+dimH0(Ox)

So for k sufficiently large

dim Sµk =
N∑
i=1

(
k − di (µ+ 1) + 2

2

)
+ dimH0(Ox)
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Examples:

1. All di = 1 Chui and Wang computed dim Sµk (1981)
Using this computation one can show (distinct slopes)

K (µ+ 1 + r) ∼= O ⊕ ...⊕ O︸ ︷︷ ︸
N−1−q

⊕O(−1)⊕ ...⊕ O(−1)︸ ︷︷ ︸
q

where we write µ+ 1 = r(N − 1) + q 0 ≤ q < N − 1.

2. N = 3, di = 2 for i = 1, 2, 3 p1, p2, p3 linearly independent
quadrics

0→ K →
3⊕

i=1

OP2(−2)→ Ix → 0

K is vector bundle of rank 2 on P2 with
c1(K ) = −6 Knorm = K (3) c1(Knorm) = 0
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Proposition

K is semistable.

Proof.

Need to show H0(Knorm(−1)) = H0(K (2)) = 0 but this follow
from fact p1, p2, p3 linearly independent.

If p1, p2, p3 intersect in s = 1, 2 or 3 simple points then

a) for s = 3 K splits as OP2(−3)⊕ OP2(−3)

b) for s = 1, 2 K does not split as dimH1(K (2)) = 3− s 6= 0
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Using Noether’s “AF+BG” Theorem one can show

dimH0(K (k)) = k2 − 3k − 1 + s k ≥ 3

which is the dimension we get for k sufficiently large.

Note: for s = 1 c2(Knorm) = c2(K (3)) = 2 and for
s = 2 c2(Knorm) = c2(K (3)) = 1

Also dimH0(K (3)) = dimH0(Knorm) = s − 1 which = 0 for s = 1
so K is stable in this case.

The moduli space MP2(0, 2) of stable 2-bundles with c1 = 0, c2 = 2
is a smooth irreducible variety that is well understood.


