Spaces of Splines, Vector Bundles, and Reflexive Sheaves

Peter F. Stiller

Texas A\&M University stiller@math.tamu.edu

SIAM Conference on Applied Algebraic Geometry, Georgia Institute of Technology

August 2, 2017

Introduction - The Basic Case

Let \triangle be a triangulation of a simply connected domain $\Omega \subseteq \mathbb{R}^{2}$ which is homeomorphic to a closed disk.

Generalizations

1) polyhedral subdivision
2) semi-algebraic subdivision
3) $\Omega \subseteq \mathbb{R}^{k} \quad k>2$

$S_{d}^{r}(\triangle)=$ space of piecewise polynomial functions of degree d and smoothness r
So $f \in S_{d}^{r}(\triangle)$ if $\left.f\right|_{\sigma_{i}}=f_{i}$ is a polynomial in two variables of degree $\leq d$ on each triangle σ_{i} in \triangle and f is a C^{r}-function, i.e. f has continuous derivatives to order r.

The latter means

$$
f_{i}-f_{j}=g_{i j} r_{i j}^{r+1}
$$

where $\Lambda_{i j}$ is a linear equation defining the edge $\sigma_{i} \cap \sigma_{j}$ when σ_{i}, σ_{j} are adjacent.

What can we say about

$$
\operatorname{dim} S_{d}^{r}(\triangle)=? ? ?
$$

Strang's Lower Bound (1973)

$$
\begin{aligned}
\operatorname{dim} S_{d}^{r}(\triangle) \geq & \binom{d+2}{2}+\binom{d-r+1}{2} E_{I} \\
& -\left[\binom{d+2}{2}-\binom{r+2}{2}\right] V_{l}+\delta
\end{aligned}
$$

where

$$
\begin{aligned}
& E_{I}=\# \text { of interior edges } \\
& V_{I}=\# \text { of interior vertices }
\end{aligned}
$$

and

$$
\delta=\sum_{i=1}^{V_{l}} \sum_{j=1}^{d-r}\left(r+j+1-j e_{i}\right)_{+}
$$

where e_{i} is the number of interior edges with different slopes attached to interior vertex v_{i}.

How is this derived from the standpoint of algebraic geometry?
Using the conformality conditions and the fact that Ω is simply connected, one can produce an exact sequence of vector bundles on \mathbb{P}^{2}

$$
(*) \quad 0 \rightarrow K(d) \rightarrow \bigoplus_{\triangle_{1}^{0}} O_{\mathbb{P}^{2}}(d-r-1) \rightarrow \bigoplus_{\triangle_{0}^{0}} O_{\mathbb{P}^{2}}(d)
$$

where

$$
\operatorname{dim} S_{d}^{r}(\triangle)=\binom{d+2}{2}+\operatorname{dim} H^{0}\left(\mathbb{P}^{2}, K(d)\right)
$$

We can break (*) into two short exact sequences

$$
\begin{aligned}
& 0 \rightarrow K(d) \rightarrow \bigoplus_{\Delta_{1}^{0}} O_{\mathbb{P}^{2}}(d-r-1) \rightarrow R(d) \rightarrow 0 \\
& 0 \rightarrow R(d) \rightarrow \bigoplus_{\Delta_{0}^{0}} O_{\mathbb{P}^{2}}(d) \rightarrow C(d) \rightarrow 0
\end{aligned}
$$

where C is a skyscraper sheaf supported at the interior vertices so $C(d)=C$.

Using Serre's Vanishing Theorem B, local calculation of C, and the long exact sequences in cohomology, we get for d sufficiently large that $\operatorname{dim} S_{d}^{r}(\triangle)=$ Strang's Lower Bound

Schumaker 1979 proved Strang's conjectured lower bound. Alfeld and Schumaker 1987: If $d \geq 3 r+2$ the dimension of $S_{d}^{r}(\triangle)$ is given by the lower bound.

Alfeld and Schumaker 1990: If $d=3 r+1$ then for generic \triangle the dimension is given by the lower bound.

For $d=4$ and $r=1$ the dimension is given by the lower bound in all cases.
"... As far as I know there has been no real progress on the dimension of $S_{d}^{r}(\triangle)$ for general triangulations when $2 r+1 \leq d \leq 3 r+1$, for many years. In particular, the dimension $S_{3}^{1}(\triangle)$, the most interesting case in my opinion, seems to be as inaccessible as ever. ..."

- Peter Alfeld 6/26/17

Example (Stefan Tohaneanu)

$$
\operatorname{dim} S_{3}^{1}(\triangle)=23 \quad r=1 \text { and } d=3
$$

Note: Strang's lower bound in this case is 23

$$
\binom{3+2}{2}+\binom{3-1+1}{2} E_{I}-\left[\binom{3+2}{2}-\binom{1+2}{2}\right] V_{I}+\delta
$$

where
$E_{I}=9$ the number of interior edges
$V_{l}=2$ the number of interior vertices

$$
\delta=\sum_{i=1}^{V_{1}} \sum_{j=1}^{d-r}\left(r+j+1-j e_{i}\right)_{+}
$$

e_{i} is the number of edges with different slopes attached to interior vertex v_{i}, so $e_{i}=3$ for both interior vertices and $\delta=0$.

But for $S_{2 r}^{r}(\triangle)$ Tohaneanu shows

$$
\operatorname{dim} S_{2 r}^{r}(\triangle)>\text { lower bound }
$$

In this case the lower bound is

$$
\begin{array}{ll}
4 r^{2}+\frac{9}{2} r+1 & \text { for } r \text { even } \\
4 r^{2}+\frac{9}{2} r+\frac{1}{2} & \text { for } r \text { odd }
\end{array}
$$

Later Tohaneanu and Minac 2012 showed that in this example, for $d \geq 2 r+1$ the dimension is the lower bound.

Conjecture ("The $2 r+1$ Conjecture")

Conjecture
For $d \geq 2 r+1$ the dimension of $S_{d}^{r}(\triangle)$ is given by the lower bound and this is sharp, i.e. for $d=2 r$ there exist \triangle for which $\operatorname{dim} S_{d}^{r}(\triangle)$ exceeds the lower bound.

More algebraic geometry

From the long exact sequence in cohomology for

$$
0 \rightarrow K(d) \rightarrow \bigoplus_{\Delta_{1}^{0}} O_{\mathbb{P}^{2}}(d-r-1) \rightarrow R(d) \rightarrow 0
$$

we get

$$
H^{1}(R(d)) \cong H^{2}(K(d))
$$

but it can be shown (Lau, Stiller) $\operatorname{dim} H^{2}(K(d))=0$ for $d \geq 2 r$.

This gives for $d \geq 2 r$ and $d>r$.
$h^{0}(K(d))-h^{1}(K(d))=f_{1}^{0}\binom{d-r+1}{2}-f_{0}^{0}\left[\binom{d+2}{2}-\binom{r+2}{2}\right]$
$+\sum_{i=1}^{f_{0}^{0}} \sum_{j=1}^{d-r}\left[-e_{i} j+j+r+1\right]_{+}$
It follows that for $d \geq 2 r$ and $d>r$
$\operatorname{dim} S_{d}^{r}=$ lower bound
if and only if $H^{1}(K(d))=0$.

So we can re-interpret the $2 r+1$ conjecture as a cohomology vanishing result.

Conjecture 1

For $d \geq 2 r+1, \quad H^{1}(K(d))=0$.
In fact one can show if $H^{1}\left(K\left(d_{0}\right)\right)=0$ for some $d_{0} \geq 2 r+1$ then $H^{1}(K(d))=0$ for all $d \geq d_{0} \geq 2 r+1$.

Conjecture 2

$H^{1}(K(2 r+1))=0$.
Are there cohomology vanishing theorems that can help us?

Cohomology Vanishing Results

Elenewajg and Forester "Bounding Cohomology Groups of Vector Bundles on \mathbb{P}^{n}," Math. Ann. 246, 251-270 (1980)

Hartshorne, "Stable Vector Bundles," Math. Ann. 238, 229-280 (1978)

A Deeper Look

Notation For $v \in \triangle_{0}^{0}$ let
$\epsilon_{v}=$ number of edges incident to v
$k_{v}=$ the number of those edges with distinct slopes
$\alpha_{v}=\left\lfloor\frac{r+1}{k_{v}-1}\right\rfloor$
$K_{v}=$ bundle associated with splines on the star of v.

Using Schumaker's dimension formula for the star one can show

$$
\begin{aligned}
(*) K_{v} & \cong O_{\mathbb{P}^{2}}^{s_{1}}\left(-r-1-\alpha_{v}\right) \oplus O_{\mathbb{P}^{2}}^{s_{2}}\left(-r-2-\alpha_{v}\right) \\
& \oplus O_{\mathbb{P}^{2}}^{s_{3}}(-r-1) \\
s_{1} & =\left(k_{v}-1\right) \alpha_{v}+k_{v}-r-2 \\
s_{2} & =r+1-\left(k_{v}-1\right) \alpha_{v} \\
s_{3} & =\epsilon_{v}-k_{v}(\text { so }=0 \text { for a "non-singular" vertex })
\end{aligned}
$$

Using (*) and

$$
0 \rightarrow K \rightarrow \bigoplus_{v \in \Delta_{0}^{0}} K_{v} \rightarrow O_{\mathbb{P}^{2}}^{f_{1}^{00}}(-r-1) \rightarrow 0
$$

one gets

$$
\begin{aligned}
c_{1}(K)= & -f_{1}^{0}(r+1) \\
c_{2}(K)= & \binom{f_{1}^{0}}{2}(r+1)^{2}-\binom{r+2}{2} f_{0}^{0} \\
& +\frac{1}{2} \sum_{v \in \triangle_{0}^{0}}\left(\left(k_{v}-1\right) \alpha_{v}^{2}+\left(k_{v}-2 r-3\right) \alpha_{v}\right)
\end{aligned}
$$

One can get estimates for $e(K), b(K)$, and $\delta(K)$
Putting these into Elencwajg and Forester's Theorem we get $H^{1}(K(d))=0$ if

$$
\begin{gathered}
d \geq c_{2}(K)-\frac{f_{2}-2}{2\left(f_{2}-1\right)}\left(f_{1}^{0}(r+1)\right)^{2}+\frac{f_{2}-1}{8}\left(f_{0}^{0}(r+1)\right)^{2} \\
+\left(f_{0}^{0}+1\right)(r+1)-1
\end{gathered}
$$

(Schenck and S. 2001)

Remark

$H^{1}(K(d))$ for $d \geq 2 r+1$ depends only on $H^{1}(\mathcal{E}(d))$ for a certain 2-bundle \mathcal{E} constructed from K.

First split off line bundle summands of K

$$
\begin{gathered}
K \cong \bigoplus_{i=1}^{\ell} O_{\mathbb{P}^{2}}\left(a_{i}\right) \oplus K_{1} \\
a_{1} \geq a_{2} \ldots \geq a_{\ell}
\end{gathered}
$$

Twist K_{1} by $O(g)$ so $K(g)$ is generated by global sections (while $K_{1}(g-1)$ is not). We get a sequence (Serre)

$$
o \rightarrow O_{\mathbb{P}^{2}}^{\text {rank }} K_{1}-2 \rightarrow K_{1}(g) \rightarrow \mathcal{E}(g) \rightarrow 0
$$

and of course $H^{1}(K(d)) \cong H^{1}(\mathcal{E}(d))$.

Questions

What 2-bundles \mathcal{E} do we get?
Is \mathcal{E} semi-stable / stable?
Can we leverage semi-stability / stability to get better cohomology vanishing estimates?
(see Hartshorne "Stable Reflexive Sheaves")

Example Schenck and Stiller, "Cohomology vanishing and a problem in approximation theory"

For $r=1$ our estimate using Elencwajg and Forster gives

$$
H^{1}(K(d))=0
$$

for $d \geq 4$ which is $3 r+1$ (Alfeld and Schumaker).

For $r=2$
K has rank 7 and $c_{1}(K)=-27$. Computations show

1) $K \cong O_{\mathbb{P}^{2}}^{4}(-3) \oplus K_{1} \quad K_{1}$ indecomposable
2) $\left.K_{1}\right|_{L} \cong O_{L}^{\epsilon}(-5) \quad L$ generic line in \mathbb{P}^{2}
3) $0 \rightarrow O_{\mathbb{P}^{2}}(-7) \rightarrow O_{\mathbb{P}^{2}}^{2}(-5) \oplus O_{\mathbb{P}^{2}}^{2}(-6) \rightarrow K_{1} \rightarrow 0$ is a resolution of K_{1}.
4) $\chi(K(d))=\frac{7}{2} d^{2}-\frac{33}{2} d+21$
5) $c_{1}\left(K_{1}\right)=-15 \quad c_{2}\left(K_{1}\right)=76 \quad b\left(K_{1}\right)=-5$
6) $\delta\left(K_{1}\right)=1 \quad\left(\delta=c_{2}-\sum_{i<j} b_{i} b_{j}\right)$ where $\left.K_{1}\right|_{L} \cong \oplus O_{L}\left(b_{i}\right)$ see 2) above.

By (3) or Lau and S., $H^{2}(K(d))=0$ for $d \geq 4$ (which is $2 r$).
By Elencwajg and Forester

$$
H^{1}(K(d))=0 \text { for } d \geq \delta-b-1=5
$$

(which is $2 r+1$!)
$\operatorname{dim} H^{1}(K(4))=1$ which is Tohaneanu's result.
7) $K_{1}^{\text {norm }}=K_{1}(5)$
8) $\left.K_{1}^{\text {norm }}\right|_{L} \cong O_{L}^{3}$ so generic splitting type is $(0,0,0)$
9) $c_{1}\left(K_{1}^{\text {norm }}\right)=0, c_{2}\left(K_{1}^{\text {norm }}\right)=1, \delta\left(K_{1}^{\text {norm }}\right)=1, b\left(K_{1}^{\text {norm }}\right)=0$ and $H^{1}\left(K_{1}^{\text {norm }}(d)\right)=0 \quad d \geq 0$

By results in Elencwajg and Forster $K_{1}(6)$ is generated by global sections. $K_{1}(5)$ is not by 3) above. So from Serre we get a sequence

$$
0 \rightarrow O_{\mathbb{P}^{2}} \rightarrow K_{1}(6) \rightarrow \mathcal{E}(6) \rightarrow 0
$$

Here $\mathcal{E}(4)=\mathcal{E}^{\text {norm }}$ and

$$
c_{1}\left(\mathcal{E}^{\text {norm }}\right)=-1 \text { and } c_{2}\left(\mathcal{E}^{\text {norm }}\right)=2
$$

Since $c_{1}\left(\mathcal{E}^{\text {norm }}\right)$ is odd to show $\mathcal{E}^{\text {norm }}$ stable it suffices to show $H^{0}\left(\mathcal{E}^{\text {norm }}\right)=0$. But we have

$$
\begin{aligned}
& 0 \rightarrow O_{\mathbb{P}^{2}}(-2) \rightarrow K_{1}(4) \rightarrow \mathcal{E}(4) \rightarrow 0 \\
& \text { where } K_{1}(4)=K_{1}^{\text {norm }}(-1) \text { and } \mathcal{E}(4)=\mathcal{E}^{\text {norm }} .
\end{aligned}
$$

This gives $H^{0}\left(K_{1}(4)\right) \rightarrow H^{0}\left(\mathcal{E}^{\text {norm }}\right) \rightarrow 0$ and 3) shows $H^{0}\left(K_{1}(4)\right)=0$ so \mathcal{E} is stable!

Note for $r=3$ the \mathcal{E} you get is semi-stable and is the restriction of the null-correlation bundle on \mathbb{P}^{3} to \mathbb{P}^{2}.

Semistable and Stable Sheaves

Definition

A coherent sheaf F over a complex manifold X is a k th syzergy sheaf if there is an exact sequence

$$
0 \rightarrow F \rightarrow O_{x}^{\oplus p_{1}} \rightarrow O_{x}^{\oplus p_{2}} \rightarrow \ldots \rightarrow O_{x}^{\oplus p_{k}}
$$

Theorem

The codimension of the singularity set of F (where F_{X} is not free over $O_{X, x}$) has codimension greater than k.

Let E be a torsion free sheaf on $\mathbb{P}^{n} \quad n \geq 2$.

Definition

Define $\mu(E)=\frac{c_{1}(E)}{r k E}$ then E is semi-stable if for a very coherent subsheaf F

$$
0 \neq F \subset E
$$

we have

$$
\mu(F) \leq \mu(E)
$$

and stable if for all coherent subsheaves $F \subset E$ with
$0<r k F<r k E$ we have

$$
\mu(F)<\mu(E) .
$$

Fact: For E a vector bundle on \mathbb{P}^{2} of rank 2 we get E is stable if and only if $H^{0}\left(\mathbb{P}^{2}, E_{\text {norm }}\right)=0$. If $c_{1}(E)$ is even, then E is semistable if and only if $H^{0}\left(\mathbb{P}^{2}, E_{\text {norm }}(-1)\right)=0$.

Riemann-Roch for a 2-bundle E over \mathbb{P}^{2} is

$$
\chi\left(\mathbb{P}^{2}, E\right)=\frac{1}{2}\left(c_{1}(E)^{2}-2 c_{2}(E)+3 c_{1}(E)+4\right) .
$$

If E is normalized and semistable, but not stable then $c_{1}(E)=0$ and one can show

$$
0 \leq h^{1}\left(\mathbb{P}^{2}, E(-1)\right)-\chi\left(\mathbb{P}^{2}, E(-1)\right)=c_{2}(E)
$$

Theorem

The generic splitting type of a semistable bundle E over \mathbb{P}^{n}, $\underline{a}_{E}=\left(a_{1}, \ldots, a_{r}\right) \quad a_{1} \geq a_{2} \ldots \geq a_{r}$ has $a_{i}-a_{i+1} \leq 1$ for all $i=1, \ldots, r-1$.

So for a normalized semistable 2 bundle E on \mathbb{P}^{n} you can only get

$$
\begin{aligned}
& (0,0) \text { when } c_{1}(E)=0 \text {; or } \\
& (0,-1) \text { when } c_{1}(E)=-1
\end{aligned}
$$

Semialgebraic Splines

Chui and Wang

(S.) "Certain Reflexive Sheaves on $\mathbb{P}_{\mathbb{C}}^{n}$ and a Problem in Approximation Theory," Trans. Amer. Math. Soc. 279 (1983), no. 1, 125-142.

DiPasquale, Sottile, and Sun, "Semi-algebraic Splines," preprint.

Conformality Conditions:

$$
\begin{aligned}
f_{i+1}-f_{i} & =g_{i} p_{i}^{\mu+1} \\
i=1, \ldots, N & \left(f_{N+1}=f_{1}\right) \\
&
\end{aligned}
$$

where $\operatorname{deg} g_{i} \leq k-d_{i}(\mu+1)$. Let $S_{k}^{\mu}=$ local splines of degree $\leq k$ and smoothness μ

WLOG work in \mathbb{P}^{2} - homogenize the p_{i}, g_{i}, f_{i} to have degree $d_{i}, k-d_{i}(\mu+1), k$ respectively.
NOTE: By Bezout's Theorem

$$
1 \leq \operatorname{dim} H^{0}\left(O_{x}\right) \leq \min _{i \neq j} d_{i} d_{j}(\mu+1)^{2}
$$

We have exact sequences of coherent sheaves

$$
\begin{aligned}
& 0 \rightarrow K(k) \rightarrow \bigoplus_{i=1}^{N} O_{\mathbb{P}^{2}}\left(k-d_{i}(\mu+1)\right) \rightarrow \mathcal{I}_{x}(k) \rightarrow 0 \\
& 0 \rightarrow \mathcal{I}(k) \rightarrow O_{\mathbb{P}^{2}}(k) \rightarrow O_{x} \rightarrow 0
\end{aligned}
$$

K is a vector bundle of rank $N-1$
\mathcal{I}_{X} is the ideal sheaf of $\left(p_{1}^{\mu+1}, \ldots, p_{N}^{\mu+1}\right)$
X (zero-dimensional) subscheme in \mathbb{P}^{2} defined by the $\left\{p_{i}^{\mu+1}\right\}$
O_{x} the structure sheaf of X - a skyscraper sheaf
supported at the points of X

$$
\operatorname{dim} S_{k}^{\mu}=\operatorname{dim} H^{0}(K(k))+\binom{k+2}{2}
$$

We see for $k \gg 0$
$\operatorname{dim} H^{0}(K(k))=\sum_{i=1}^{N}\binom{k-d_{i}(\mu+1)+2}{2}-\binom{k+2}{2}+\operatorname{dim} H^{0}\left(O_{x}\right)$
So for k sufficiently large

$$
\operatorname{dim} S_{k}^{\mu}=\sum_{i=1}^{N}\binom{k-d_{i}(\mu+1)+2}{2}+\operatorname{dim} H^{0}\left(O_{x}\right)
$$

Examples:

1. All $d_{i}=1$ Chui and Wang computed $\operatorname{dim} S_{k}^{\mu}(1981)$ Using this computation one can show (distinct slopes)

$$
K(\mu+1+r) \cong \underbrace{O \oplus \ldots \oplus O}_{N-1-q} \oplus \underbrace{O(-1) \oplus \ldots \oplus O(-1)}_{q}
$$

where we write $\mu+1=r(N-1)+q \quad 0 \leq q<N-1$.
2. $\quad N=3, d_{i}=2$ for $i=1,2,3 \quad p_{1}, p_{2}, p_{3}$ linearly independent quadrics

$$
0 \rightarrow K \rightarrow \bigoplus_{i=1}^{3} O_{\mathbb{P}^{2}}(-2) \rightarrow \mathcal{I}_{x} \rightarrow 0
$$

K is vector bundle of rank 2 on \mathbb{P}^{2} with $c_{1}(K)=-6 \quad K_{\text {norm }}=K(3) \quad c_{1}\left(K_{\text {norm }}\right)=0$

Proposition

K is semistable.

Proof.

Need to show $H^{0}\left(K_{\text {norm }}(-1)\right)=H^{0}(K(2))=0$ but this follow from fact p_{1}, p_{2}, p_{3} linearly independent.

If p_{1}, p_{2}, p_{3} intersect in $s=1,2$ or 3 simple points then
a) for $s=3 \mathrm{~K}$ splits as $O_{\mathbb{P}^{2}}(-3) \oplus O_{\mathbb{P}^{2}}(-3)$
b) for $s=1,2 K$ does not split as $\operatorname{dim} H^{1}(K(2))=3-s \neq 0$

Using Noether's "AF+BG" Theorem one can show

$$
\operatorname{dim} H^{0}(K(k))=k^{2}-3 k-1+s \quad k \geq 3
$$

which is the dimension we get for k sufficiently large.
Note: for $s=1 \quad c_{2}\left(K_{\text {norm }}\right)=c_{2}(K(3))=2$ and for $s=2 \quad c_{2}\left(K_{\text {norm }}\right)=c_{2}(K(3))=1$
Also $\operatorname{dim} H^{0}(K(3))=\operatorname{dim} H^{0}\left(K_{\text {norm }}\right)=s-1$ which $=0$ for $s=1$ so K is stable in this case.

The moduli space $M_{\mathbb{P}^{2}}(0,2)$ of stable 2-bundles with $c_{1}=0, c_{2}=2$ is a smooth irreducible variety that is well understood.

