Dimension of Tchebycheffian Spline Spaces on T-meshes

Cesare Bracco

(joint work with T.Lyche, C. Manni, F. Roman, H. Speleers)

Dipartimento di Matematica e Informatica "U. Dini"- Università di Firenze

SIAM Conference on Applied Algebraic Geometry August $3^{\text {rd }} 2017$

T-meshes

Many bivariate spline spaces used in applications are based on the tensor-product of univariate spline spaces, and then are using a tensor-product mesh (B-splines, NURBS).

$\mathbb{S}_{p_{h}}$

T-meshes

Many bivariate spline spaces used in applications are based on the tensor-product of univariate spline spaces, and then are using a tensor-product mesh (B-splines, NURBS).

$$
\mathbb{S}_{p_{h}} \mathbb{S}_{p_{v}}
$$

T-meshes

Many bivariate spline spaces used in applications are based on the tensor-product of univariate spline spaces, and then are using a tensor-product mesh (B-splines, NURBS).

$\mathbb{S}_{\mathbf{p}}=\mathbb{S}_{p_{h}} \otimes \mathbb{S}_{p_{v}}=\{$ polynomial in each cell, with suitable regularity $\}$

T-meshes

What refinement is allowed?

T-meshes

What refinement is allowed?

T-meshes

T-meshes allow local refinement!

T-meshes

LOCAL REFINEMENT allows:

- adaptive algorithms
- isogeometric analysis
- data fitting
- lower dimension spaces (lower computational costs)
- handling unstructured data with a structured space
- ...and more...

T-meshes

Definition

A T-mesh \mathcal{T} is a collection of axis-aligned rectangles $\mathcal{T}_{2}=\left\{\sigma_{i}\right\}_{i=1}^{N_{2}}$ such that $\Omega \equiv \cup_{i} \sigma_{i}$ is connected and any pair of rectangles (cel/s) $\sigma_{i}, \sigma_{j} \in \mathcal{T}_{2}$ intersect each other only on their edges.

- $\mathcal{T}_{1}=\mathcal{T}_{1}^{h} \cup \mathcal{T}_{1}^{\vee}=$ set of horizontal and vertical (closed) edges in $\bigcup_{\sigma \in \mathcal{T}_{2}} \partial \sigma$
- $\mathcal{T}_{0}:=\bigcup_{\tau \in \mathcal{T}_{1}} \partial \tau=$ set of vertices;

(Polynomial) splines spaces over T-meshes

A smoothness distribution on a T -mesh \mathcal{T} is a map

$$
\mathbf{r}: \mathcal{T}_{1}^{o}:=\{\text { interior edges of } \mathcal{T}\} \longrightarrow \mathbb{N}
$$

For any vertex $\gamma \in \mathcal{T}_{0}^{\circ}:=\{$ interior vertices of $\mathcal{T}\}$

$$
r_{h}(\gamma):=r\left(\tau_{v}\right), \quad r_{v}(\gamma):=r\left(\tau_{h}\right)
$$

such that $\gamma=\tau_{h} \cap \tau_{v}$ and $\tau_{h} \in \mathcal{T}_{1}^{o, h}, \tau_{v} \in \mathcal{T}_{1}^{o, v}$.

(Polynomial) splines spaces over T-meshes

A smoothness distribution on a T -mesh \mathcal{T} is a map

$$
\mathbf{r}: \mathcal{T}_{1}^{o}:=\{\text { interior edges of } \mathcal{T}\} \longrightarrow \mathbb{N},
$$

For any vertex $\gamma \in \mathcal{T}_{0}^{\circ}:=\{$ interior vertices of $\mathcal{T}\}$

$$
r_{h}(\gamma):=r\left(\tau_{v}\right), \quad r_{v}(\gamma):=r\left(\tau_{h}\right)
$$

such that $\gamma=\tau_{h} \cap \tau_{v}$ and $\tau_{h} \in \mathcal{T}_{1}^{o, h}, \tau_{v} \in \mathcal{T}_{1}^{o, v}$.
The space of splines over a T-mesh \mathcal{T} of bi-degree $\mathbf{p}=\left(p_{h}, p_{v}\right)$ and smoothness r is

$$
\mathbb{S}_{\mathbf{p}}^{r}(\mathcal{T}):=\left\{s \in C^{r}(\mathcal{T}): s_{\mid \sigma} \in \mathbb{P}_{\mathbf{p}}, \sigma \in \mathcal{T}_{2}\right\}
$$

where $\mathbb{P}_{\mathbf{p}}$ is the space of polynomials of bi-degree \mathbf{p}, and we say that $f \in C^{r}(\mathcal{T})$ if the partial derivatives of f up to order $r(\tau)$ are continuous across the edge τ, for $\tau \in \mathcal{T}_{1}^{\circ}$.

Extension to non-polynomial (Tchebycheffian) splines?

Motivations:

- exactly reproducing relevant shapes (cycloids, helices, transcendental curves, etc.)
- compared to NURBS, they can be used to reproduce the same shapes but with a better behaviour with respect to differentiation and integration

Extension to non-polynomial (Tchebycheffian) splines?

Motivations:

- exactly reproducing relevant shapes (cycloids, helices, transcendental curves, etc.)
- compared to NURBS, they can be used to reproduce the same shapes but with a better behaviour with respect to differentiation and integration

Tchebycheffian spline spaces are spaces of splines which, in each interval, belong to an Extended Tchebycheff space $\mathbb{T}_{p}([a, b])$ (ex: generalized splines).

Extension to non-polynomial (Tchebycheffian) splines?

Motivations:

- exactly reproducing relevant shapes (cycloids, helices, transcendental curves, etc.)
- compared to NURBS, they can be used to reproduce the same shapes but with a better behaviour with respect to differentiation and integration
Tchebycheffian spline spaces are spaces of splines which, in each interval, belong to a space $\mathbb{T}_{p}([a, b])$ of dimension $p+1$ of functions defined on $[a, b]$ such that any Hermite interpolation problem with $p+1$ data in $[a, b]$ has a unique solution in $\mathbb{T}_{p}([a, b])$ (ex: generalized splines).

Spaces of Tchebycheffian splines over T-meshes

Let \mathcal{T} be a T -mesh with a smoothness distribution \mathbf{r}, $\mathbf{p}:=\left(p_{h}, p_{v}\right) \in \mathbb{N} \times \mathbb{N}$ with $p_{h}, p_{v} \geq 0$, and $\mathbf{T}:=\left(T_{h}, T_{v}\right):=\left(\mathbb{T}_{p_{h}}^{h}, \mathbb{T}_{p_{v}}^{v}\right)$. The space of Tchebycheffian splines over the T-mesh \mathcal{T}, denoted by $\mathbb{S}_{\mathbf{p}}^{\boldsymbol{T}, r}(\mathcal{T})$, is the space

$$
\mathbb{S}_{\mathbf{p}}^{\mathbf{T}, \mathbf{r}}(\mathcal{T}):=\left\{s \in C^{\mathbf{r}}(\mathcal{T}): s_{\mid \sigma} \in \mathbb{P}_{\mathbf{p}}^{\mathbf{T}}, \sigma \in \mathcal{T}_{2}\right\}
$$

where

$$
\mathbb{P}_{\mathbf{p}}^{\mathbf{\top}}:=\mathbb{T}_{p_{h}}^{h}\left(\left[a_{h}, b_{h}\right]\right) \otimes \mathbb{T}_{p_{v}}^{v}\left(\left[a_{v}, b_{v}\right]\right),
$$

with $\mathbb{T}_{p_{h}}^{h}\left(\left[a_{h}, b_{h}\right]\right)$ and $\mathbb{T}_{p_{v}}^{v}\left(\left[a_{v}, b_{v}\right]\right)$ are two extended Tchebycheff spaces of dimension $p_{h}+1$ and $p_{v}+1$ respectively.

Dimension: the homological approach

The approach generalizes [Mourrain; 2014] (polynomial case).
We define the following subspaces of \mathbb{P}_{p}^{\top} :

- for any vertical edge $\tau=\{\bar{x}\} \times\left[a_{v}, b_{v}\right]$

$$
\begin{aligned}
\mathbb{I}_{\mathbf{p}}^{\mathbf{T}, \mathbf{r}}(\tau):= & \left\{q \in \mathbb{P}_{\mathbf{p}}^{\mathbf{T}}: D_{x}^{k} q(\bar{x}, y) \equiv 0,\right. \\
& \left.\forall y \in\left[a_{v}, b_{v}\right], k=0, \ldots, r(\tau)\right\},
\end{aligned}
$$

- for any horizontal edge $\tau=\left[a_{h}, b_{h}\right] \times\{\bar{y}\}$

$$
\begin{aligned}
\mathbb{I}_{\mathbf{p}}^{\mathbf{T}, r}(\tau):= & \left\{q \in \mathbb{P}_{\mathbf{p}}^{\mathbf{T}}: D_{y}^{\prime} q(x, \bar{y}) \equiv 0,\right. \\
& \left.\forall x \in\left[a_{h}, b_{h}\right], I=0, \ldots, r(\tau)\right\},
\end{aligned}
$$

- for any vertex $\gamma=(\bar{x}, \bar{y})$

$$
\begin{aligned}
\mathbb{I}_{\mathbf{p}}^{\mathbf{T}, r}(\gamma):= & \left\{q \in \mathbb{P}_{\mathbf{p}}^{\mathbf{T}}: D_{x}^{k} D_{y}^{\prime} q(\bar{x}, \bar{y}) \equiv 0,\right. \\
& \left.k=0, \ldots, r_{h}(\gamma), \quad l=0, \ldots, r_{v}(\gamma)\right\}
\end{aligned}
$$

Dimension: the homological approach

The approach generalizes [Mourrain; 2014] (polynomial case).
We define the following subspaces of $\mathbb{P}_{\mathbf{p}}^{\top}$:

- for any vertical edge $\tau=\{\bar{x}\} \times\left[a_{v}, b_{v}\right]$

$$
\begin{aligned}
\mathbb{I}_{\mathbf{p}}^{\mathbf{T}, \mathbf{r}}(\tau):= & \left\{q \in \mathbb{P}_{\mathbf{p}}^{\mathbf{T}}: D_{x}^{k} q(\bar{x}, y) \equiv 0,\right. \\
& \left.\forall y \in\left[a_{v}, b_{v}\right], k=0, \ldots, r(\tau)\right\},
\end{aligned}
$$

- for any horizontal edge $\tau=\left[a_{h}, b_{h}\right] \times\{\bar{y}\}$

$$
\begin{aligned}
\mathbb{I}_{\mathbf{p}}^{\mathbf{T}, r}(\tau):= & \left\{q \in \mathbb{P}_{\mathbf{p}}^{\mathbf{T}}: D_{y}^{\prime} q(x, \bar{y}) \equiv 0,\right. \\
& \left.\forall x \in\left[a_{h}, b_{h}\right], I=0, \ldots, r(\tau)\right\},
\end{aligned}
$$

- for any vertex $\gamma=(\bar{x}, \bar{y})$

$$
\begin{aligned}
\mathbb{I}_{\mathbf{p}}^{\mathbf{T}, r}(\gamma):= & \left\{q \in \mathbb{P}_{\mathbf{p}}^{\mathbf{T}}: D_{x}^{k} D_{y}^{\prime} q(\bar{x}, \bar{y}) \equiv 0,\right. \\
& \left.k=0, \ldots, r_{h}(\gamma), \quad I=0, \ldots, r_{v}(\gamma)\right\}
\end{aligned}
$$

Hermite interpolant assumption crucial for their dimension!

Dimension: the homological approach - basic idea

$$
\begin{aligned}
& 0 \quad 0 \\
& \downarrow \quad \downarrow
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{cc}
\mathfrak{S}_{\mathbf{p}}^{\mathbf{T}, \mathbf{r}}\left(\mathcal{T}^{o}\right): 0 \stackrel{\bar{\partial}_{3}}{\rightarrow} \bigoplus_{\sigma \in \mathcal{T}_{2}} \mathbb{P}_{\mathbf{p}}^{\mathbf{T}} \xrightarrow{\bar{\partial}_{2}} \bigoplus_{\tau \in \mathcal{T}_{1}^{o}} \mathbb{P}_{\mathbf{p}}^{\mathbf{T}} / \mathbb{I}_{\mathbf{p}}^{\mathbf{T}, \mathbf{r}}(\tau) \xrightarrow{\bar{\partial}_{7}} \bigoplus_{\gamma \in \mathcal{T}_{0}^{o}} \mathbb{P}_{\mathbf{p}}^{\mathbf{T}} / \mathbb{I}_{\mathbf{p}}^{\mathbf{T}, \mathbf{r}}(\gamma) \xrightarrow{\bar{\partial}_{0}} 0 \\
\downarrow & \downarrow \\
0 & 0
\end{array}
\end{aligned}
$$

Dimension: the homological approach - basic idea

$\oplus_{\text {陪 }}$
$\sigma \in T_{2}$
$\underset{T \in T T_{i}^{-}}{\oplus} \mathbb{P}^{T}$
$\left[q_{\sigma_{1}}, q_{\sigma_{2}}, \ldots, q_{\sigma_{N_{2}}}\right]$

$\left[q_{\tau_{1}}, q_{\tau_{2}}, \ldots, q_{\tau_{N_{1}}}\right]$

Dimension: the homological approach - basic idea

$\oplus_{\text {陪 }}$ $\sigma \in \mathcal{T}_{2}$

$\left[q_{\sigma_{1}}, q_{\sigma_{2}}, \ldots, q_{\sigma_{N_{2}}}\right]$
$\xrightarrow{\partial_{2}}$
\longrightarrow
$\bigoplus \mathbb{P}_{p}^{\top}$
$\tau \in \tau_{1}^{\circ}$
$\left[\ldots, q_{\tau_{k}}, \ldots\right]$

Dimension: the homological approach - basic idea

where σ_{i} and σ_{j} are the cells containing the edge τ_{k}.

Dimension: the homological approach - basic idea

$$
\begin{aligned}
& \bigoplus_{\sigma \in \mathcal{T}_{2}} \mathbb{P}_{\mathbf{p}}^{\top} \\
& {\left[\ldots, q_{\sigma_{i}}, \ldots, q_{\sigma_{j}}, \ldots\right]}
\end{aligned}
$$

$$
\xrightarrow{\partial_{2}}
$$

$$
\underset{\tau \in \mathcal{T}_{1}^{\circ}}{\mathbb{P}_{p}^{T}}
$$

$$
\longrightarrow
$$

$$
\left[\ldots, q_{\sigma_{i}}-q_{\sigma_{j}}, \ldots\right]
$$

where σ_{i} and σ_{j} are the cells containing the edge τ_{k}.

Dimension: the homological approach - basic idea

$$
\begin{array}{lcc}
\bigoplus_{\sigma \in \mathcal{T}_{2}} \mathbb{P}_{\mathbf{p}}^{\top} & \xrightarrow{\partial_{2}} & \bigoplus_{\tau \in \mathcal{T}_{i}^{\circ}} \mathbb{P}_{\mathbf{p}}^{\top} \\
{\left[\ldots, q_{\sigma_{i}}, \ldots, q_{\sigma_{j}}, \ldots\right]} & \longrightarrow & {\left[\ldots, q_{\sigma_{i}}-q_{\sigma_{j}}, \ldots\right]}
\end{array}
$$

where σ_{i} and σ_{j} are the cells containing the edge τ_{k}.

Dimension: the homological approach - basic idea

$\oplus{ }^{\text {Pr }}$
${ }_{\sigma \in E}$
$\left[\ldots, q_{\sigma_{i}}, \ldots, q_{\sigma_{j}}, \ldots\right]$

$\underset{\tau \in \mathcal{T}_{\mathrm{T}}^{\circ}}{\bigoplus} \mathbb{P}_{\mathrm{p}}^{\mathrm{T}}$
$\left[\ldots, q_{\sigma_{i}}-q_{\sigma_{j}}, \ldots\right]$
where σ_{i} and σ_{j} are the cells containing the edge τ_{k}.

The spline space can be written as

$$
\begin{aligned}
\mathbb{S}_{\mathbf{p}}^{\mathbf{T}, r}(\mathcal{T}) & =\left\{q \in C^{\mathbf{r}}(\Omega): q_{\sigma}:=\left.q\right|_{\sigma} \in \mathbb{P}_{\mathbf{p}}^{\mathbf{T}} \forall \sigma \in \mathcal{T}_{2}\right\} \\
& =\left\{\left[q_{\sigma_{1}}, \ldots, q_{\sigma_{N_{2}}}\right] \in \bigoplus_{\sigma \in \mathcal{T}_{2}} \mathbb{P}_{\mathbf{p}}^{\mathbf{T}}: q_{\sigma_{i}}-q_{\sigma_{j}} \in \mathbb{I}_{\mathbf{p}}^{\mathbf{T}, r}(\tau) \forall \tau \in \mathcal{T}_{1}^{o}\right\} \\
& =\operatorname{ker}\left(\bar{\partial}_{2}\right)=\mathbf{H}_{2}\left(\mathfrak{S}_{\mathbf{p}}^{\mathbf{T}, r}\left(\mathcal{T}^{\mathbf{o}}\right)\right)
\end{aligned}
$$

Similarly, the map ∂_{1} is:
$\bigoplus_{\tau \in \mathcal{T}_{1}^{\circ}} \mathbb{P}_{\mathbf{p}}^{\mathbf{T}}$
$\xrightarrow{\partial_{1}}$
$\bigoplus_{\gamma \in \mathcal{T}_{0}^{\circ}} \mathbb{P}_{\mathbf{p}}^{\mathbf{T}}$
$\left[q_{\tau_{1}}, q_{\tau_{2}}, \ldots, q_{\tau_{N_{1}}}\right]$

$$
\left[q_{\gamma_{1}}, q_{\gamma_{2}}, \ldots, q_{\gamma_{N_{0}}}\right]
$$

Similarly, the map ∂_{1} is:
$\bigoplus_{\tau \in \mathcal{T}_{1}^{\circ}} \mathbb{P}_{\mathbf{p}}^{\mathbf{T}}$
$\left[q_{\tau_{1}}, q_{\tau_{2}}, \ldots, q_{\tau_{N_{1}}}\right]$

$$
\begin{array}{r}
\bigoplus_{\gamma \in \mathcal{T}_{0}^{\circ}} \mathbb{P}_{\mathbf{p}}^{\top} \\
{\left[\ldots, q_{\gamma_{k}}, \ldots\right]}
\end{array}
$$

Similarly, the map ∂_{1} is:
\oplus 吅
$\tau \in T_{1}^{O}$
$\left[\ldots, q_{\tau_{i_{1}}}, \ldots, q_{\tau_{i_{2}}}, \ldots, q_{\tau_{i_{3}}}, \ldots, q_{\tau_{i_{4}}}, \ldots\right] \longrightarrow$

$$
\begin{array}{r}
\bigoplus_{\gamma \in \mathcal{T}_{0}^{\circ}} \mathbb{P}_{\mathbf{p}}^{\mathbf{T}} \\
{\left[\ldots, q_{\gamma_{k}}, \ldots\right]}
\end{array}
$$

where $\tau_{i_{1}}, \tau_{i_{2}}$ are the horizontal edges having γ_{k} as endpoint, and $\tau_{i_{3}}, \tau_{i_{4}}$ are the vertical edges having γ_{k} as endpoint.

Similarly, the map ∂_{1} is:

$$
\begin{aligned}
& \bigoplus_{\tau \in \mathcal{T}_{1}^{\circ}} \mathbb{P}_{\mathbf{p}}^{\mathbf{T}} \stackrel{\partial_{1}}{\longrightarrow} \bigoplus_{\gamma \in \mathcal{T}_{0}^{\circ}} \mathbb{P}_{\mathbf{p}}^{\top} \\
& {\left[\ldots, q_{\tau_{i_{1}}}, \ldots, q_{\tau_{i_{2}}}, \ldots, q_{\tau_{i_{3}}}, \ldots, q_{\tau_{\tau_{4}}}, \ldots\right] \longrightarrow\left[\ldots, q_{\tau_{i_{1}}}-q_{\tau_{\tau_{2}}}+q_{\tau_{i_{3}}}-q_{\tau_{\tau_{4}}}, \ldots\right]}
\end{aligned}
$$

where $\tau_{i_{1}}, \tau_{i_{2}}$ are the horizontal edges having γ_{k} as endpoint, and $\tau_{i_{3}}, \tau_{i_{4}}$ are the vertical edges having γ_{k} as endpoint.

Computing the dimension

Considering the Euler characteristic of $\mathfrak{S}_{\mathbf{p}}^{\mathbf{T}, \mathbf{r}}\left(\mathcal{T}^{\circ}\right)$, we get

$$
\begin{aligned}
& \operatorname{dim}\left(\bigoplus_{\sigma \in \mathcal{T}_{2}} \mathbb{P}_{\mathbf{p}}^{\mathbf{T}}\right)-\operatorname{dim}\left(\bigoplus_{\tau \in \mathcal{T}_{1}^{\circ}} \mathbb{P}_{\mathbf{p}}^{\mathbf{T}} / \mathbb{I}_{\mathbf{p}}^{\mathbf{T}, \mathbf{r}}(\tau)\right)+\operatorname{dim}\left(\bigoplus_{\gamma \in \mathcal{T}_{0}^{\circ}} \mathbb{P}_{\mathbf{p}}^{\mathbf{T}} / \mathbb{I}_{\mathbf{p}}^{\mathbf{T}, \mathbf{r}}(\gamma)\right) \\
& \quad=\operatorname{dim}\left(H_{2}\left(\mathfrak{S}_{\mathbf{p}}^{\mathbf{T}, \mathbf{r}}\left(\mathcal{T}^{\circ}\right)\right)\right)-\operatorname{dim}\left(H_{1}\left(\mathfrak{S}_{\mathbf{p}}^{\mathbf{T}, \mathbf{r}}\left(\mathcal{T}^{\circ}\right)\right)\right)+\operatorname{dim}\left(H_{0}\left(\mathfrak{S}_{\mathbf{p}}^{\mathbf{T}, \mathbf{r}}\left(\mathcal{T}^{\circ}\right)\right)\right)
\end{aligned}
$$

Computing the dimension

Considering the Euler characteristic of $\mathfrak{S}_{\mathbf{p}}^{\mathbf{T}, \mathbf{r}}\left(\mathcal{T}^{o}\right)$, we get

$$
\begin{aligned}
& \operatorname{dim}\left(\bigoplus_{\sigma \in \mathcal{T}_{2}} \mathbb{P}_{\mathbf{p}}^{\mathbf{T}}\right)-\operatorname{dim}\left(\bigoplus_{\tau \in \mathcal{T}_{1}^{\circ}} \mathbb{P}_{\mathbf{p}}^{\mathbf{T}} / \mathbb{I}_{\mathbf{p}}^{\mathbf{T}, \mathbf{r}}(\tau)\right)+\operatorname{dim}\left(\bigoplus_{\gamma \in \mathcal{T}_{0}^{\circ}} \mathbb{P}_{\mathbf{p}}^{\mathbf{T}} / \mathbb{I}_{\mathbf{p}}^{\mathbf{T}, \mathbf{r}}(\gamma)\right) \\
& \quad=\operatorname{dim}\left(H_{2}\left(\mathfrak{S}_{\mathbf{p}}^{\mathbf{T}, \mathbf{r}}\left(\mathcal{T}^{o}\right)\right)\right)-\operatorname{dim}\left(H_{1}\left(\mathfrak{S}_{\mathbf{p}}^{\mathbf{T}, \mathbf{r}}\left(\mathcal{T}^{o}\right)\right)\right)+0
\end{aligned}
$$

Computing the dimension

Considering the Euler characteristic of $\mathfrak{S}_{\mathbf{p}}^{\mathbf{T}, \mathbf{r}}\left(\mathcal{T}^{o}\right)$, we get

$$
\begin{aligned}
& \operatorname{dim}\left(\bigoplus_{\sigma \in \mathcal{T}_{2}} \mathbb{P}_{\mathbf{p}}^{\mathbf{T}}\right)-\operatorname{dim}\left(\bigoplus_{\tau \in \mathcal{T}_{1}^{\circ}} \mathbb{P}_{\mathbf{p}}^{\mathbf{T}} / \mathbb{I}_{\mathbf{p}}^{\mathbf{T}, \mathbf{r}}(\tau)\right)+\operatorname{dim}\left(\bigoplus_{\gamma \in \mathcal{T}_{0}^{\circ}} \mathbb{P}_{\mathbf{p}}^{\mathbf{T}} / \mathbb{I}_{\mathbf{p}}^{\mathbf{T}, \mathbf{r}}(\gamma)\right) \\
& \quad=\operatorname{dim}\left(\mathbb{S}_{\mathbf{p}}^{\mathbf{T}, \mathbf{r}}(\mathcal{T})\right)-\operatorname{dim}\left(H_{1}\left(\mathfrak{S}_{\mathbf{p}}^{\mathbf{T}, \mathbf{r}}\left(\mathcal{T}^{\circ}\right)\right)\right)+0
\end{aligned}
$$

Computing the dimension

Considering the Euler characteristic of $\mathfrak{S}_{\mathbf{p}}^{\mathbf{T}, \mathbf{r}}\left(\mathcal{T}^{o}\right)$, we get

$$
\begin{aligned}
& \operatorname{dim}\left(\bigoplus_{\sigma \in \mathcal{T}_{2}} \mathbb{P}_{\mathbf{p}}^{\mathbf{T}}\right)-\operatorname{dim}\left(\bigoplus_{\tau \in \mathcal{T}_{1}^{\circ}} \mathbb{P}_{\mathbf{p}}^{\mathbf{T}} / \mathbb{I}_{\mathbf{p}}^{\mathbf{T}, \mathbf{r}}(\tau)\right)+\operatorname{dim}\left(\bigoplus_{\gamma \in \mathcal{T}_{0}^{\circ}} \mathbb{P}_{\mathbf{p}}^{\mathbf{T}} / \mathbb{I}_{\mathbf{p}}^{\mathbf{T}, r}(\gamma)\right) \\
& \quad=\operatorname{dim}\left(\mathbb{S}_{\mathbf{p}}^{\mathbf{T}, \mathbf{r}}(\mathcal{T})\right)-\operatorname{dim}\left(H_{0}\left(\mathfrak{I}_{\mathbf{p}}^{\mathbf{T}, r}\left(\mathcal{T}^{o}\right)\right)+0\right.
\end{aligned}
$$

Theorem (B., Lyche, Manni, Roman, Speleers)

$$
\begin{aligned}
\operatorname{dim}\left(\mathbb{S}_{\mathbf{p}}^{\boldsymbol{T}, r}(\mathcal{T})\right) & =\sum_{\sigma \in \mathcal{T}_{2}}\left(p_{h}+1\right)\left(p_{v}+1\right) \\
& -\sum_{\tau \in \mathcal{T}_{1}^{\mathcal{T}_{1}^{o, h}}}\left(p_{h}+1\right)(\mathbf{r}(\tau)+1) \\
& -\sum_{\tau \in \mathcal{T}_{1}^{o, v}}(\mathbf{r}(\tau)+1)\left(p_{v}+1\right) \\
& +\sum_{\gamma \in \mathcal{T}_{0}^{\circ}}\left(r_{h}(\gamma)+1\right)\left(r_{v}(\gamma)+1\right)+D,
\end{aligned}
$$

where

$$
D:=\operatorname{dim}\left(H_{0}\left(\mathcal{S}_{\mathfrak{p}}^{\top}, r\left(\mathcal{T}^{\circ}\right)\right)\right) .
$$

Theorem (B., Lyche, Manni, Roman, Speleers)

$$
\begin{aligned}
\operatorname{dim}\left(\mathbb{S}_{\mathbf{p}}^{\top}, \mathbf{r}(\mathcal{T})\right) & =\sum_{\sigma \in \mathcal{T}_{2}}\left(p_{h}+1\right)\left(p_{v}+1\right) \\
& -\sum_{\tau \in \mathcal{T}_{1}^{\mathcal{T}_{1}^{o, h}}}\left(p_{h}+1\right)(\mathbf{r}(\tau)+1) \\
& -\sum_{\tau \in \mathcal{T}_{1}^{o, v}}(\mathbf{r}(\tau)+1)\left(p_{v}+1\right) \\
& +\sum_{\gamma \in \mathcal{T}_{0}^{o}}\left(r_{h}(\gamma)+1\right)\left(r_{v}(\gamma)+1\right)+D,
\end{aligned}
$$

where

$$
D:=\operatorname{dim}\left(H_{0}\left(\mathfrak{I}_{\mathbf{p}}^{\top, r}\left(\mathcal{T}^{o}\right)\right)\right) .
$$

Can we bound D in a meaningful way?

Bounding D

Given $\mathbf{d}:=\left(d_{1}, \ldots, d_{m}\right), 0 \leq d_{i} \leq p, d_{i} \in \mathbb{N}, i=1, \ldots, m$, an Extended Tchebycheff space \mathbb{T}_{p} of dimension $p+1$ on $[a, b]$ has the d-sum property if for any m distinct points $x_{1}, \ldots, x_{m} \in[a, b]$

$$
\begin{aligned}
& \operatorname{dim}\left(\sum_{i=1}^{m} \mathbb{I}_{\mathbf{p}}^{\mathbf{T}, d_{i}}\left(x_{i}\right)\right)=\min \left(p+1, \sum_{i=1}^{m} p-d_{i}\right) \\
& \mathbb{I}^{\mathbf{T}_{p}, d_{i}}\left(x_{i}\right):=\left\{q \in \boldsymbol{t}_{p}: D^{\prime} q\left(x_{i}\right)=0, I=0, \ldots, d_{i}\right\}
\end{aligned}
$$

Hermite interp. assumption not enough!

Bounding D

Given $\mathbf{d}:=\left(d_{1}, \ldots, d_{m}\right), 0 \leq d_{i} \leq p, d_{i} \in \mathbb{N}, i=1, \ldots, m$, an Extended Tchebycheff space \mathbb{T}_{p} of dimension $p+1$ on $[a, b]$ has the d-sum property if for any m distinct points $x_{1}, \ldots, x_{m} \in[a, b]$

$$
\begin{aligned}
& \operatorname{dim}\left(\sum_{i=1}^{m} \mathbb{I}_{\mathbf{p}}^{\mathbf{T}, d_{i}}\left(x_{i}\right)\right)=\min \left(p+1, \sum_{i=1}^{m} p-d_{i}\right), \\
& \mathbb{T}^{\mathbf{T}_{p}, d_{i}}\left(x_{i}\right):=\left\{q \in \boldsymbol{t}_{p}: D^{\prime} q\left(x_{i}\right)=0, I=0, \ldots, d_{i}\right\} .
\end{aligned}
$$

Hermite interp. assumption not enough!
Theorem (B., Lyche, Manni, Speleers)
An Extended Complete Tchebycheff space (ECT space) \mathbb{T}_{p}, that is, spanned by a set of functions $\left\{u_{0}, \ldots, u_{p}\right\}$ such that $\operatorname{det}\left(\right.$ Hermite collocation matrix of u_{0}, \ldots, u_{p} at $\left.x_{0}, \ldots, x_{k}\right)>0$,
for any $x_{0} \leq \ldots \leq x_{k}, k=0, \ldots, p$, satisfies the \mathbf{d}-sum property for any $\mathbf{d}:=\left(d_{1}, \ldots, d_{m}\right), 0 \leq d_{i} \leq p, d_{i} \in \mathbb{N}, i=1, \ldots, m$ and any m.

Idea of the proof

Use the generalized power basis

- It exists if and only if \mathbb{T}_{p} is an ECT
- mimics the properties of the monomial basis $\left\{(x-c)^{k} / k!\right\}_{k=0, \ldots, p}$ (derivatives at c)
- write everything in this basis

Bounding D

A segment ρ composed of edges of $\mathcal{T}_{1}{ }^{\circ}$ which cannot be extended by adding other edges of \mathcal{T}_{1}° and does not intersect the boundary of the T-mesh, is a maximal interior segment.

$$
\begin{aligned}
& \operatorname{MIS}_{h}(\mathcal{T}):=\{\text { horizontal maximal interior segments }\}, \\
& \operatorname{MIS}_{v}(\mathcal{T}):=\left\{\operatorname{vertical}^{2} \text { maximal interior segments }\right\}, \\
& \operatorname{MIS}(\mathcal{T}):=\operatorname{MIS}_{h}(\mathcal{T}) \cup \operatorname{MIS}_{v}(\mathcal{T}) .
\end{aligned}
$$

MIS highlighted in red.

Bounding D

Given an ordering ι of $\operatorname{mis}(\mathcal{T})$, for any $\rho \in \operatorname{Mis}(\mathcal{T})$, we denote by $\Gamma_{\iota}(\rho)$ the set of vertices of ρ which do not belong to $\rho^{\prime} \in \operatorname{Mis}(\mathcal{T})$ with $\iota\left(\rho^{\prime}\right)>\iota(\rho)$. For any $\rho \in \operatorname{Mis}(\mathcal{T})$ we define its weight

$$
\omega_{\iota}(\rho):= \begin{cases}\sum_{\gamma \in \Gamma_{\iota}(\rho)}\left(p_{h}-r_{h}(\gamma)\right), & \text { if } \rho \in \operatorname{Mis}_{h}(\mathcal{T}) \\ \sum_{\gamma \in \Gamma_{\iota}(\rho)}\left(p_{v}-r_{v}(\gamma)\right), & \text { if } \rho \in \operatorname{MiS}_{v}(\mathcal{T})\end{cases}
$$

Theorem (B., Lyche, Manni, Roman, Speleers)
If ι is an ordering of $\operatorname{MiS}(\mathcal{T})$, and $\mathbb{S}_{\mathbf{p}}^{\boldsymbol{T}, r}(\mathcal{T})$ is an Extended Tchebycheff spline space with $\mathbf{T}=\left(\mathbb{T}_{p_{h}}^{h}, \mathbb{T}_{p_{v}}^{v}\right)$ being a couple of ECT spaces, then

$$
\begin{aligned}
0 \leq D & \leq \sum_{\rho \in \mathrm{MIS}_{h}(\mathcal{T})}\left(p_{h}+1-\omega_{\iota}(\rho)\right)_{+}\left(p_{v}-r(\rho)\right) \\
& +\sum_{\rho \in \mathrm{MIS}_{v}(\mathcal{T})}\left(p_{h}-r(\rho)\right)\left(p_{v}+1-\omega_{\iota}(\rho)\right)_{+}
\end{aligned}
$$

How to get T-meshes for which $D=0$?

Algorithm (generalizes [Mourrain;2014]) For each new edge:

- insert the new edge τ
- if τ does not extend an existing edge, then extend it so that so that the horizontal (vertical) maximal segment containing τ, say $\rho(\tau)$, intersects Ω or satisfies $\omega_{\iota}(\rho(\tau)) \geq p_{h}+1$ $\left(\omega_{\iota}(\rho(\tau)) \geq p_{\nu}+1\right)$

If you start from a T-mesh with $\omega_{\iota}(\rho) \geq p_{h}+1$ for any $\rho \in \operatorname{MiS}_{h}(\mathcal{T})$ and $\omega_{\iota}(\rho) \geq p_{v}+1$ for any $\rho \in \operatorname{MIS}_{v}(\mathcal{T})$, such property is preserved by the algorithm.
\Longrightarrow The algorithm always gives for which $D=0$

How to get T-meshes for which $D=0$?

Definition (Cycle (of MIS))

A sequence $\rho_{1}, \ldots, \rho_{n}$ of composite edges (maximal interior segments) in a T-mesh forms a cycle (of MIS) if each ρ_{i} has one of its endpoints in the interior of $\rho_{i+1}\left(\rho_{n+1}:=\rho_{1}\right)$.

How to get T-meshes for which $D=0$?

Definition (Cycle (of MIS))
A sequence $\rho_{1}, \ldots, \rho_{n}$ of composite edges (maximal interior segments) in a T-mesh forms a cycle (of MIS) if each ρ_{i} has one of its endpoints in the interior of $\rho_{i+1}\left(\rho_{n+1}:=\rho_{1}\right)$.
Sufficient conditions which avoid extending inserted edges:

- T-meshes without cycles and $p_{h} \geq 2 r(\tau)+1$ for all $\tau \in \mathcal{T}_{1}^{0, v}$ and $p_{v} \geq 2 r(\tau)+1$ for all $\tau \in \mathcal{T}_{1}^{o, h}$
- T-meshes without cycles of MIS and $p_{h} \geq 2 r(\tau)+1$ for all $\tau \in \mathcal{T}_{1}^{o, v}$ and $p_{v} \geq 2 r(\tau)+1$ for all $\tau \in \mathcal{T}_{1}^{o, h}$
- hierarchical T-meshes (the T-mesh is obtained by repeated refinement of a tensor-product mesh) and $p_{h} \geq 2 r(\tau)+1$ for all $\tau \in \mathcal{T}_{1}^{o, v}$ and $p_{v} \geq 2 r(\tau)+1$ for all $\tau \in \mathcal{T}_{1}^{o, h}$

Concluding remarks

- The results of polynomial and Tchebycheffian spline spaces are very similar (identical under the assumption we made)
- Key points: ET spaces and ECT spaces (implying d - sum property) assumptions
- The main spaces used for nonpolynomial spline are ECT (trigonometric, hyperbolic)
- Knowing the dimension of the space is the first step to construct an efficient basis

Concluding remarks

- The results of polynomial and Tchebycheffian spline spaces are very similar (identical under the assumption we made)
- Key points: ET spaces and ECT spaces (implying d - sum property) assumptions
- The main spaces used for nonpolynomial spline are ECT (trigonometric, hyperbolic)
- Knowing the dimension of the space is the first step to construct an efficient basis

Thank you for your kind attention!

(Essential) bibliography

- C. Bracco and F. Roman, Generalized spline spaces over T-meshes, J. Comp. Appl. Math. 294 (2016), 102-123.
- C. Bracco, T. Lyche, C. Manni, F. Roman and H. Speleers, Generalized spline spaces over T-meshes: Dimension formula and locally refined generalized B-splines, Appl. Math. Comput. 272 (2016), 187-198.
- C. Bracco, T. Lyche, C. Manni, F. Roman and H. Speleers, On the dimension of Tchebycheffian spline spaces over planar T-meshes, Comput. Aided Geom. D. 25 (2016), 151-173.
- C. Bracco, T. Lyche, C. Manni, and H. Speleers, Extended complete Tchebycheffian spline spaces over planar T-meshes: d-sum property and its relation to the dimension, submitted (2016).
- B. Mourrain, On the dimension of spline spaces on planar T-meshes, Math. Comp. 83 (2014), 847-871.
- L.L. Schumaker and L. Wang, Approximation power of polynomial splines on T-meshes, Comput. Aided Geom. Design 29 (2012), 599-612.

