Piecewise Polynomials and Algebraic Geometry

Michael DiPasquale
University of Idaho
Colloquium

Piecewise Polynomials

Spline

A piecewise polynomial function, continuously differentiable to some order.

Univariate Splines

Most widely studied case: approximation of a function $f(x)$ over an interval $\Delta=[a, b] \subset \mathbb{R}$ by C^{r} piecewise polynomials.

Univariate Splines

Most widely studied case: approximation of a function $f(x)$ over an interval $\Delta=[a, b] \subset \mathbb{R}$ by C^{r} piecewise polynomials.

- Subdivide $\Delta=[a, b]$ into subintervals:

$$
\Delta=\left[a_{0}, a_{1}\right] \cup\left[a_{1}, a_{2}\right] \cup \cdots \cup\left[a_{n-1}, a_{n}\right]
$$

- Find a basis for the vector space $C_{d}^{r}(\Delta)$ of C^{r} piecewise polynomial functions on Δ with degree at most d (B-splines!)
- Find best approximation to $f(x)$ in $C_{d}^{r}(\Delta)$

Two Subintervals

$\Delta=\left[a_{0}, a_{1}\right] \cup\left[a_{1}, a_{2}\right]$ (assume WLOG $a_{1}=0$)

$$
\begin{aligned}
\left(f_{1}, f_{2}\right) \in C_{d}^{r}(\Delta) & \Longleftrightarrow f_{1}^{(i)}(0)=f_{2}^{(i)}(0) \text { for } 0 \leq i \leq r \\
& \Longleftrightarrow x^{r+1} \mid\left(f_{2}-f_{1}\right) \\
& \Longleftrightarrow \quad\left(f_{2}-f_{1}\right) \in\left\langle x^{r+1}\right\rangle
\end{aligned}
$$

Two Subintervals

$\Delta=\left[a_{0}, a_{1}\right] \cup\left[a_{1}, a_{2}\right]$ (assume WLOG $a_{1}=0$)

$$
\begin{aligned}
\left(f_{1}, f_{2}\right) \in C_{d}^{r}(\Delta) & \Longleftrightarrow f_{1}^{(i)}(0)=f_{2}^{(i)}(0) \text { for } 0 \leq i \leq r \\
& \Longleftrightarrow x^{r+1} \mid\left(f_{2}-f_{1}\right) \\
& \Longleftrightarrow\left(f_{2}-f_{1}\right) \in\left\langle x^{r+1}\right\rangle
\end{aligned}
$$

Even more explicitly:

- $f_{1}(x)=b_{0}+b_{1} x+\cdots+b_{d} x^{d}$
- $f_{2}(x)=c_{0}+c_{1} x+\cdots+c_{d} x^{d}$
$\square\left(f_{0}, f_{1}\right) \in C_{d}^{r}(\Delta) \Longleftrightarrow b_{0}=c_{0}, \ldots, b_{r}=c_{r}$.

Two Subintervals

$\Delta=\left[a_{0}, a_{1}\right] \cup\left[a_{1}, a_{2}\right]$ (assume WLOG $a_{1}=0$)

$$
\begin{aligned}
\left(f_{1}, f_{2}\right) \in C_{d}^{r}(\Delta) & \Longleftrightarrow f_{1}^{(i)}(0)=f_{2}^{(i)}(0) \text { for } 0 \leq i \leq r \\
& \Longleftrightarrow x^{r+1} \mid\left(f_{2}-f_{1}\right) \\
& \Longleftrightarrow\left(f_{2}-f_{1}\right) \in\left\langle x^{r+1}\right\rangle
\end{aligned}
$$

Even more explicitly:

- $f_{1}(x)=b_{0}+b_{1} x+\cdots+b_{d} x^{d}$
- $f_{2}(x)=c_{0}+c_{1} x+\cdots+c_{d} x^{d}$
$\square\left(f_{0}, f_{1}\right) \in C_{d}^{r}(\Delta) \Longleftrightarrow b_{0}=c_{0}, \ldots, b_{r}=c_{r}$.

$$
\operatorname{dim} C_{d}^{r}(\Delta)= \begin{cases}d+1 & \text { if } d \leq r \\ (d+1)+(d-r) & \text { if } d>r\end{cases}
$$

Note: $\operatorname{dim} C_{d}^{r}(\Delta)$ is polynomial in d for $d>r$.

Univariate Dimension Formula

Suppose I is a subdivision of an interval with v^{0} interior vertices and e edges. Then

$$
\operatorname{dim} C_{d}^{r}(I)= \begin{cases}d+1 & d<r+1 \\ e(d+1)-v^{0}(r+1) & d \geq r+1\end{cases}
$$

Univariate Dimension Formula

Suppose I is a subdivision of an interval with v^{0} interior vertices and e edges. Then

$$
\operatorname{dim} C_{d}^{r}(I)= \begin{cases}d+1 & d<r+1 \\ e(d+1)-v^{0}(r+1) & d \geq r+1\end{cases}
$$

Basis for $C_{d}^{r}(I)$ is given by B-splines.

Univariate Dimension Formula

Suppose I is a subdivision of an interval with v^{0} interior vertices and e edges. Then

$$
\operatorname{dim} C_{d}^{r}(I)= \begin{cases}d+1 & d<r+1 \\ e(d+1)-v^{0}(r+1) & d \geq r+1\end{cases}
$$

Basis for $C_{d}^{r}(I)$ is given by B-splines.

B-spline basis for $C_{2}^{1}(I)$ where I consists of two subintervals

Univariate Dimension Formula

Suppose I is a subdivision of an interval with v^{0} interior vertices and e edges. Then

$$
\operatorname{dim} C_{d}^{r}(I)= \begin{cases}d+1 & d<r+1 \\ e(d+1)-v^{0}(r+1) & d \geq r+1\end{cases}
$$

Basis for $C_{d}^{r}(I)$ is given by B-splines.

B-spline basis for $C_{2}^{1}(I)$ where I consists of two subintervals

Univariate Dimension Formula

Suppose I is a subdivision of an interval with v^{0} interior vertices and e edges. Then

$$
\operatorname{dim} C_{d}^{r}(I)= \begin{cases}d+1 & d<r+1 \\ e(d+1)-v^{0}(r+1) & d \geq r+1\end{cases}
$$

Basis for $C_{d}^{r}(I)$ is given by B-splines.

B-spline basis for $C_{2}^{1}(I)$ where I consists of two subintervals

Univariate Dimension Formula

Suppose I is a subdivision of an interval with v^{0} interior vertices and e edges. Then

$$
\operatorname{dim} C_{d}^{r}(I)= \begin{cases}d+1 & d<r+1 \\ e(d+1)-v^{0}(r+1) & d \geq r+1\end{cases}
$$

Basis for $C_{d}^{r}(I)$ is given by B-splines.

B-spline basis for $C_{2}^{1}(I)$ where I consists of two subintervals

Higher Dimensions

More General Problem: Compute $\operatorname{dim} C_{d}^{r}(\Delta)$ where $\Delta \subset \mathbb{R}^{n}$ is

Higher Dimensions

More General Problem: Compute $\operatorname{dim} C_{d}^{r}(\Delta)$ where $\Delta \subset \mathbb{R}^{n}$ is

- a polytopal complex
- pure n-dimensional
- a pseudomanifold

Higher Dimensions

More General Problem: Compute $\operatorname{dim} C_{d}^{r}(\Delta)$ where $\Delta \subset \mathbb{R}^{n}$ is

- a polytopal complex
- pure n-dimensional
- a pseudomanifold

A polytopal complex \mathcal{Q}

Higher Dimensions

More General Problem: Compute $\operatorname{dim} C_{d}^{r}(\Delta)$ where $\Delta \subset \mathbb{R}^{n}$ is

- a polytopal complex
- pure n-dimensional
- a pseudomanifold

A polytopal complex \mathcal{Q}
(Algebraic) Spline Criterion:
$■$ For $\tau \in \Delta_{n-1}, I_{\tau}=$ affine form vanishing on affine span of τ
■ Collection $\left\{f_{\sigma}\right\}_{\sigma \in \Delta_{n}}$ glue to $F \in C^{r}(\Delta) \Longleftrightarrow$ for every pair of adjacent facets $\sigma_{1}, \sigma_{2} \in \Delta_{n}$ with $\sigma_{1} \cap \sigma_{2}=\tau \in \Delta_{n-1}, I_{\tau}^{r+1} \mid\left(f_{\sigma_{1}}-f_{\sigma_{2}}\right)$

Algebraic structure of splines

$C^{r}(\Delta)$ is an algebra over the polynomial ring $R=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$.

Algebraic structure of splines

$C^{r}(\Delta)$ is an algebra over the polynomial ring $R=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$.
■ R lives inside of $C^{r}(\Delta)$ as global polynomial functions on Δ

Algebraic structure of splines

$C^{r}(\Delta)$ is an algebra over the polynomial ring $R=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$.

- R lives inside of $C^{r}(\Delta)$ as global polynomial functions on Δ

■ Given $F, G \in C^{r}(\Delta), F+G \in C^{r}(\Delta)$ and $F \cdot G \in C^{r}(\Delta)$, where addition and multiplication are defined pointwise.

Algebraic structure of splines

$C^{r}(\Delta)$ is an algebra over the polynomial ring $R=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$.
■ R lives inside of $C^{r}(\Delta)$ as global polynomial functions on Δ
■ Given $F, G \in C^{r}(\Delta), F+G \in C^{r}(\Delta)$ and $F \cdot G \in C^{r}(\Delta)$, where addition and multiplication are defined pointwise.

$F \in C_{1}^{0}(\mathcal{Q})$

Algebraic structure of splines

$C^{r}(\Delta)$ is an algebra over the polynomial ring $R=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$.
■ R lives inside of $C^{r}(\Delta)$ as global polynomial functions on Δ
■ Given $F, G \in C^{r}(\Delta), F+G \in C^{r}(\Delta)$ and $F \cdot G \in C^{r}(\Delta)$, where addition and multiplication are defined pointwise.

$F \in C_{1}^{0}(\mathcal{Q})$

$x \in C_{1}^{0}(\mathcal{Q})$

Algebraic structure of splines

$C^{r}(\Delta)$ is an algebra over the polynomial ring $R=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$.

- R lives inside of $C^{r}(\Delta)$ as global polynomial functions on Δ
- Given $F, G \in C^{r}(\Delta), F+G \in C^{r}(\Delta)$ and $F \cdot G \in C^{r}(\Delta)$, where addition and multiplication are defined pointwise.

$F \in C_{1}^{0}(\mathcal{Q})$

$x \in C_{1}^{0}(\mathcal{Q})$

$x F \in C_{2}^{0}(\mathcal{Q})$

Who Cares?

1 Computation of $\operatorname{dim} C_{d}^{r}(\Delta)$ for higher dimensions initiated by [Strang '73] in connection with finite element method
2 Data fitting in approximation theory
3 [Farin '97] Computer Aided Geometric Design (CAGD) - building surfaces by splines.
4 [Payne '06] Toric Geometry - Equivariant cohomology rings of toric varieties are rings of continuous splines on the fan (under appropriate conditions).

Part I: Continuous Splines and (some) C^{1} Splines

Prelude: Coning Construction

■ $\widehat{\Delta} \subset \mathbb{R}^{n+1}$ denotes the cone over $\Delta \subset \mathbb{R}^{n}$.

\mathcal{Q}

$\widehat{\mathcal{Q}}$

Prelude: Coning Construction

■ $\widehat{\Delta} \subset \mathbb{R}^{n+1}$ denotes the cone over $\Delta \subset \mathbb{R}^{n}$.

\mathcal{Q}
$\widehat{\mathcal{Q}}$

- $C^{r}(\widehat{\Delta})$ is a graded module over $S=\mathbb{R}\left[x_{0}, \ldots, x_{n}\right]$ (every spline can be written as a sum of homogeneous splines)
- $F\left(x_{0}, \ldots, x_{n}\right) \in C^{r}(\widehat{\Delta}) \rightarrow F\left(1, x_{1}, \ldots, x_{n}\right) \in C^{r}(\Delta)$

■ In fact $C_{d}^{r}(\Delta)$ (splines of degree at most $\left.d\right) \cong C^{r}(\widehat{\Delta})_{d}$ (splines of degree exactly d) [Billera-Rose '91].

Coning example

Coning example

Coning example

Coning example

Piecewise Linear Functions

If $\Delta \subset \mathbb{R}^{2}$ is a triangulation with v vertices, then $\operatorname{dim} C_{1}^{0}(\Delta)=v$.

Piecewise Linear Functions

If $\Delta \subset \mathbb{R}^{2}$ is a triangulation with v vertices, then $\operatorname{dim} C_{1}^{0}(\Delta)=v$.
Proof by picture: PL function on Δ uniquely determined by value at vertices.

Piecewise Linear Functions

If $\Delta \subset \mathbb{R}^{2}$ is a triangulation with v vertices, then $\operatorname{dim} C_{1}^{0}(\Delta)=v$.
Proof by picture: PL function on Δ uniquely determined by value at vertices.

Piecewise Linear Functions

If $\Delta \subset \mathbb{R}^{2}$ is a triangulation with v vertices, then $\operatorname{dim} C_{1}^{0}(\Delta)=v$.
Proof by picture: PL function on Δ uniquely determined by value at vertices.

Piecewise Linear Functions

If $\Delta \subset \mathbb{R}^{2}$ is a triangulation with v vertices, then $\operatorname{dim} C_{1}^{0}(\Delta)=v$.
Proof by picture: PL function on Δ uniquely determined by value at vertices.

Tent Functions

A basis for $C_{1}^{0}(\Delta)$ is given by Courant functions T_{v}, which take a value of 1 at a chosen vertex v and 0 at all other vertices.

Tent Functions

A basis for $C_{1}^{0}(\Delta)$ is given by Courant functions T_{v}, which take a value of 1 at a chosen vertex v and 0 at all other vertices.

Tent Functions

A basis for $C_{1}^{0}(\Delta)$ is given by Courant functions T_{v}, which take a value of 1 at a chosen vertex v and 0 at all other vertices.

Tent Functions

A basis for $C_{1}^{0}(\Delta)$ is given by Courant functions T_{v}, which take a value of 1 at a chosen vertex v and 0 at all other vertices.

Tent Functions

A basis for $C_{1}^{0}(\Delta)$ is given by Courant functions T_{v}, which take a value of 1 at a chosen vertex v and 0 at all other vertices.

Tent Functions

A basis for $C_{1}^{0}(\Delta)$ is given by Courant functions T_{v}, which take a value of 1 at a chosen vertex v and 0 at all other vertices.

Tent Functions

A basis for $C_{1}^{0}(\Delta)$ is given by Courant functions T_{v}, which take a value of 1 at a chosen vertex v and 0 at all other vertices.

Tent Functions

A basis for $C_{1}^{0}(\Delta)$ is given by Courant functions T_{v}, which take a value of 1 at a chosen vertex v and 0 at all other vertices.

Tent Functions

A basis for $C_{1}^{0}(\Delta)$ is given by Courant functions T_{v}, which take a value of 1 at a chosen vertex v and 0 at all other vertices.

Face Rings of Simplicial Complexes

Face Ring of Δ

Δ a simplicial complex.

$$
A_{\Delta}=\mathbb{R}\left[x_{v} \mid v \text { a vertex of } \Delta\right] / I_{\Delta},
$$

where I_{Δ} is the ideal generated by monomials corresponding to non-faces.

Face Rings of Simplicial Complexes

Face Ring of Δ

Δ a simplicial complex.

$$
A_{\Delta}=\mathbb{R}\left[x_{v} \mid v \text { a vertex of } \Delta\right] / I_{\Delta},
$$

where I_{Δ} is the ideal generated by monomials corresponding to non-faces.

Face Rings of Simplicial Complexes

Face Ring of Δ

Δ a simplicial complex.

$$
A_{\Delta}=\mathbb{R}\left[x_{v} \mid v \text { a vertex of } \Delta\right] / I_{\Delta},
$$

where I_{Δ} is the ideal generated by monomials corresponding to non-faces.

- Nonfaces are $\{1,2,3,4\},\{2,3,4\}$
- $I_{\Delta}=\left\langle x_{2} x_{3} x_{4}\right\rangle$
- $A_{\Delta}=\mathbb{R}\left[x_{1}, x_{2}, x_{3}, x_{4}\right] / I_{\Delta}$

C^{0} simplicial splines

C^{0} for Simplicial Splines [Billera '89]
 $C^{0}(\widehat{\Delta}) \cong A_{\Delta}$, the face ring of Δ.

C^{0} simplicial splines

C^{0} for Simplicial Splines [Billera '89]
 $C^{0}(\widehat{\Delta}) \cong A_{\Delta}$, the face ring of Δ.

Map is $T_{v} \rightarrow x_{v}$ (v not the cone vertex)

C^{0} simplicial splines

C^{0} for Simplicial Splines [Billera '89]

$C^{0}(\widehat{\Delta}) \cong A_{\Delta}$, the face ring of Δ.
Map is $T_{v} \rightarrow x_{v}$ (v not the cone vertex)
Consequences:
$\square \operatorname{dim} C_{d}^{0}(\Delta)=\sum_{i=0}^{n} f_{i}\binom{d-1}{i}$ for $d>0$, where $f_{i}=\# i$-faces of Δ.

- If Δ is homeomorphic to a disk, then $C^{0}(\widehat{\Delta})$ is free as a $S=\mathbb{R}\left[x_{0}, \ldots, x_{n}\right]$ module.
- If Δ is shellable, then degrees of free generators for $C^{0}(\widehat{\Delta})$ as S-module can be read off the h-vector of Δ.

Nonsimplicial Case

- $\operatorname{dim} C_{d}^{0}(\Delta)$ depends on combinatorics of Δ (number of faces, edges, vertices, etc.) and its geometry.
- $C_{1}^{0}(\Delta)$ usually doesn't have 'local' basis

Nonsimplicial Case

- $\operatorname{dim} C_{d}^{0}(\Delta)$ depends on combinatorics of Δ (number of faces, edges, vertices, etc.) and its geometry.
- $C_{1}^{0}(\Delta)$ usually doesn't have 'local' basis

$\operatorname{dim} C_{1}^{0}(\mathcal{Q})=4$

Nonsimplicial Case

- $\operatorname{dim} C_{d}^{0}(\Delta)$ depends on combinatorics of Δ (number of faces, edges, vertices, etc.) and its geometry.
- $C_{1}^{0}(\Delta)$ usually doesn't have 'local' basis

$\operatorname{dim} C_{1}^{0}(\mathcal{Q})=4$

$\operatorname{dim} C_{1}^{0}\left(\mathcal{Q}^{\prime}\right)=3$

Nonsimplicial Case

- $\operatorname{dim} C_{d}^{0}(\Delta)$ depends on combinatorics of Δ (number of faces, edges, vertices, etc.) and its geometry.
- $C_{1}^{0}(\Delta)$ usually doesn't have 'local' basis

$\operatorname{dim} C_{1}^{0}(\mathcal{Q})=4$

$\operatorname{dim} C_{1}^{0}\left(\mathcal{Q}^{\prime}\right)=3$

Relationship to polyhedral surfaces makes $\operatorname{dim} C_{1}^{0}(\Delta)$ geometric in nature,

Comparing Perturbations

■ $S=\mathbb{R}[x, y, z]$

- $P(d)=5\binom{d+2}{2}-8\binom{d+1}{1}+4=\frac{1}{2}\left(5 d^{2}-d+2\right)$

Comparing Perturbations

- $S=\mathbb{R}[x, y, z]$
- $P(d)=5\binom{d+2}{2}-8\binom{d+1}{1}+4=\frac{1}{2}\left(5 d^{2}-d+2\right)$

Comparing Perturbations

■ $S=\mathbb{R}[x, y, z]$

- $P(d)=5\binom{d+2}{2}-8\binom{d+1}{1}+4=\frac{1}{2}\left(5 d^{2}-d+2\right)$

$\operatorname{dim} C_{d}^{0}= \begin{cases}1 & d=0 \\ P(d)+1 & d \geq 1\end{cases}$

Comparing Perturbations

■ $S=\mathbb{R}[x, y, z]$

- $P(d)=5\binom{d+2}{2}-8\binom{d+1}{1}+4=\frac{1}{2}\left(5 d^{2}-d+2\right)$

$\operatorname{dim} C_{d}^{0}= \begin{cases}1 & d=0 \\ P(d)+1 & d \geq 1\end{cases}$

$$
P(d) \quad d \geq 0
$$

Comparing Perturbations

■ $S=\mathbb{R}[x, y, z]$

- $P(d)=5\binom{d+2}{2}-8\binom{d+1}{1}+4=\frac{1}{2}\left(5 d^{2}-d+2\right)$

$\operatorname{dim} C_{d}^{0}= \begin{cases}1 & d=0 \\ P(d)+1 & d \geq 1\end{cases}$

$P(d) \quad d \geq 0$

Comparing Perturbations

■ $S=\mathbb{R}[x, y, z]$

- $P(d)=5\binom{d+2}{2}-8\binom{d+1}{1}+4=\frac{1}{2}\left(5 d^{2}-d+2\right)$

$\operatorname{dim} C_{d}^{0}= \begin{cases}1 & d=0 \\ P(d)+1 & d \geq 1\end{cases}$
$C^{0}(\widehat{\mathcal{Q}})$ is Free S-module
e

$P(d) \quad d \geq 0$

Comparing Perturbations

■ $S=\mathbb{R}[x, y, z]$

- $P(d)=5\binom{d+2}{2}-8\binom{d+1}{1}+4=\frac{1}{2}\left(5 d^{2}-d+2\right)$

$\operatorname{dim} C_{d}^{0}= \begin{cases}1 & d=0 \\ P(d)+1 & d \geq 1\end{cases}$
$C^{0}(\widehat{\mathcal{Q}})$ is Free S-module

$P(d) \quad d \geq 0$
Free S-module

Comparing Perturbations

■ $S=\mathbb{R}[x, y, z]$

- $P(d)=5\binom{d+2}{2}-8\binom{d+1}{1}+4=\frac{1}{2}\left(5 d^{2}-d+2\right)$

$\operatorname{dim} C_{d}^{0}= \begin{cases}1 & d=0 \\ P(d)+1 & d \geq 1\end{cases}$
$C^{0}(\widehat{\mathcal{Q}})$ is Free S-module

$P(d) \quad d \geq 0$
Free S-module

NOT free S-module

C^{1} simplicial splines

$C_{d}^{1}(\Delta)$ depends both on combinatorics and geometry.

C^{1} simplicial splines

$C_{d}^{1}(\Delta)$ depends both on combinatorics and geometry.

- $S=\mathbb{R}[x, y, z]$
- $P(d)=4\binom{d+2}{2}-8\binom{d+1}{1}+7=2 d^{2}-2 d+3$

C^{1} simplicial splines

$C_{d}^{1}(\Delta)$ depends both on combinatorics and geometry.

- $S=\mathbb{R}[x, y, z]$
- $P(d)=4\binom{d+2}{2}-8\binom{d+1}{1}+7=2 d^{2}-2 d+3$

C^{1} simplicial splines

$C_{d}^{1}(\Delta)$ depends both on combinatorics and geometry.

- $S=\mathbb{R}[x, y, z]$
- $P(d)=4\binom{d+2}{2}-8\binom{d+1}{1}+7=2 d^{2}-2 d+3$

C^{1} simplicial splines

$C_{d}^{1}(\Delta)$ depends both on combinatorics and geometry.

- $S=\mathbb{R}[x, y, z]$
- $P(d)=4\binom{d+2}{2}-8\binom{d+1}{1}+7=2 d^{2}-2 d+3$

$\operatorname{dim} C_{d}^{1}(\mathcal{T})= \begin{cases}1 & d=0 \\ 3 & d=1 \\ P(d)+1 & d \geq 2\end{cases}$

C^{1} simplicial splines

$C_{d}^{1}(\Delta)$ depends both on combinatorics and geometry.

- $S=\mathbb{R}[x, y, z]$

■ $P(d)=4\binom{d+2}{2}-8\binom{d+1}{1}+7=2 d^{2}-2 d+3$

$\operatorname{dim} C_{d}^{1}(\mathcal{T})=\left\{\begin{array}{ll}1 & d=0 \\ 3 & d=1 \\ P(d)+1 & d \geq 2\end{array} \quad \operatorname{dim} C_{d}^{1}\left(\mathcal{T}^{\prime}\right)= \begin{cases}1 & d=0 \\ P(d) & d \geq 2\end{cases}\right.$

C^{1} simplicial splines

$C_{d}^{1}(\Delta)$ depends both on combinatorics and geometry.

- $S=\mathbb{R}[x, y, z]$
- $P(d)=4\binom{d+2}{2}-8\binom{d+1}{1}+7=2 d^{2}-2 d+3$

$\operatorname{dim} C_{d}^{1}(\mathcal{T})=\left\{\begin{array}{ll}1 & d=0 \\ 3 & d=1 \\ P(d)+1 & d \geq 2\end{array} \quad \operatorname{dim} C_{d}^{1}\left(\mathcal{T}^{\prime}\right)= \begin{cases}1 & d=0 \\ P(d) & d \geq 2\end{cases}\right.$

Both $C^{1}(\widehat{\mathcal{T}})$ and $C^{1}\left(\widehat{\mathcal{T}^{\prime}}\right)$ are free S-modules.

Morgan-Scott triangulation

■ $S=\mathbb{R}[x, y, z]$

- $P(d)=7\binom{d+2}{2}-18\binom{d+1}{1}+7=\frac{1}{2}\left(7 d^{2}-15 d+14\right)$

Morgan-Scott triangulation

- $S=\mathbb{R}[x, y, z]$
- $P(d)=7\binom{d+2}{2}-18\binom{d+1}{1}+7=\frac{1}{2}\left(7 d^{2}-15 d+14\right)$

Morgan-Scott triangulation

■ $S=\mathbb{R}[x, y, z]$

- $P(d)=7\binom{d+2}{2}-18\binom{d+1}{1}+7=\frac{1}{2}\left(7 d^{2}-15 d+14\right)$

Morgan-Scott triangulation

■ $S=\mathbb{R}[x, y, z]$

- $P(d)=7\binom{d+2}{2}-18\binom{d+1}{1}+7=\frac{1}{2}\left(7 d^{2}-15 d+14\right)$

$\operatorname{dim} C_{d}^{1}(\mathcal{T})= \begin{cases}1 & d=0 \\ 3 & d=1 \\ 7 & d=2 \\ P(d) & d \geq 3\end{cases}$
$\operatorname{dim} C_{d}^{1}\left(\mathcal{T}^{\prime}\right)= \begin{cases}1 & d=0 \\ 3 & d=1 \\ 6 & d=2 \\ P(d) & d \geq 1\end{cases}$

Morgan-Scott triangulation

- $S=\mathbb{R}[x, y, z]$
- $P(d)=7\binom{d+2}{2}-18\binom{d+1}{1}+7=\frac{1}{2}\left(7 d^{2}-15 d+14\right)$

$\operatorname{dim} C_{d}^{1}(\mathcal{T})= \begin{cases}1 & d=0 \\ 3 & d=1 \\ 7 & d=2 \\ P(d) & d \geq 3\end{cases}$
$\operatorname{dim} C_{d}^{1}\left(\mathcal{T}^{\prime}\right)= \begin{cases}1 & d=0 \\ 3 & d=1 \\ 6 & d=2 \\ P(d) & d \geq 1\end{cases}$

Part II: Hilbert Polynomials and Regularity

Some Graded Commutative Algebra

Given a finitely generated graded $S=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$-module M (like $\left.C^{r}(\widehat{\Delta})\right)$.

■ $H F(M, d):=\operatorname{dim} M_{d}$ is the Hilbert function of M.

Some Graded Commutative Algebra

Given a finitely generated graded $S=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$-module M (like $\left.C^{r}(\widehat{\Delta})\right)$.

■ $H F(M, d):=\operatorname{dim} M_{d}$ is the Hilbert function of M.
■ If $d \gg 0, \operatorname{HF}(M, d)=H P(M, d)$, where $\operatorname{HP}(M, d)$ is the Hilbert polynomial of M.

Some Graded Commutative Algebra

Given a finitely generated graded $S=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$-module M (like $\left.C^{r}(\widehat{\Delta})\right)$.

■ $H F(M, d):=\operatorname{dim} M_{d}$ is the Hilbert function of M.
■ If $d \gg 0, \operatorname{HF}(M, d)=H P(M, d)$, where $\operatorname{HP}(M, d)$ is the Hilbert polynomial of M.

- Upshot: $\operatorname{dim} C_{d}^{r}(\Delta)=\operatorname{dim} C^{r}(\widehat{\Delta})_{d}$ is eventually polynomial in d (in fact, linear combination of binomial coefficients)

The Good News and the Bad News

Good news: $\operatorname{HP}(\operatorname{Cr}(\widehat{\Delta}), d)$ has been computed for $\Delta \subset \mathbb{R}^{2}$.

- Δ simplicial: [Alfeld-Schumaker '90, Hong '91], [Ibrahim-Schumaker '91]
- Δ nonsimplicial: [McDonald-Schenck '09]

The Good News and the Bad News

Good news: $\operatorname{HP}(\operatorname{Cr}(\widehat{\Delta}), d)$ has been computed for $\Delta \subset \mathbb{R}^{2}$.

- Δ simplicial: [Alfeld-Schumaker '90, Hong ‘91], [lbrahim-Schumaker '91]
- Δ nonsimplicial: [McDonald-Schenck '09]

Bad news: $\operatorname{dim} C_{d}^{r}(\Delta)$ is still a mystery for small d.

- $\operatorname{dim} C_{3}^{1}(\Delta)$ still unknown for $\Delta \subset \mathbb{R}^{2}$!

Planar Hilbert Polynomials

Planar Simplicial Dimension [Alfeld-Schumaker '90]

If $\Delta \subset \mathbb{R}^{2}$ is a simply connected triangulation and $d \geq 3 r+1$, then
$\operatorname{dim} C_{d}^{r}(\Delta)=\binom{d+2}{2}+\binom{d-r+1}{2} f_{1}^{0}-\left(\binom{d+2}{2}-\binom{r+2}{2}\right) f_{0}^{0}+\sigma$,

Planar Hilbert Polynomials

Planar Simplicial Dimension [Alfeld-Schumaker '90]

If $\Delta \subset \mathbb{R}^{2}$ is a simply connected triangulation and $d \geq 3 r+1$, then
$\operatorname{dim} C_{d}^{r}(\Delta)=\binom{d+2}{2}+\binom{d-r+1}{2} f_{1}^{0}-\left(\binom{d+2}{2}-\binom{r+2}{2}\right) f_{0}^{0}+\sigma$,

- f_{i}^{0} is the number of interior i-dimensional faces.

Planar Hilbert Polynomials

Planar Simplicial Dimension [Alfeld-Schumaker '90]

If $\Delta \subset \mathbb{R}^{2}$ is a simply connected triangulation and $d \geq 3 r+1$, then
$\operatorname{dim} C_{d}^{r}(\Delta)=\binom{d+2}{2}+\binom{d-r+1}{2} f_{1}^{0}-\left(\binom{d+2}{2}-\binom{r+2}{2}\right) f_{0}^{0}+\sigma$,

- f_{i}^{0} is the number of interior i-dimensional faces.
- $n\left(v_{i}\right)=\#$ distinct slopes at an interior vertex v_{i}.

Planar Hilbert Polynomials

Planar Simplicial Dimension [Alfeld-Schumaker '90]

If $\Delta \subset \mathbb{R}^{2}$ is a simply connected triangulation and $d \geq 3 r+1$, then
$\operatorname{dim} C_{d}^{r}(\Delta)=\binom{d+2}{2}+\binom{d-r+1}{2} f_{1}^{0}-\left(\binom{d+2}{2}-\binom{r+2}{2}\right) f_{0}^{0}+\sigma$,

- f_{i}^{0} is the number of interior i-dimensional faces.
- $n\left(v_{i}\right)=\#$ distinct slopes at an interior vertex v_{i}.
- $\sigma_{i}=\sum_{j} \max \left\{\left(r+1+j\left(1-n\left(v_{i}\right)\right)\right), 0\right\}$.

Planar Hilbert Polynomials

Planar Simplicial Dimension [Alfeld-Schumaker '90]

If $\Delta \subset \mathbb{R}^{2}$ is a simply connected triangulation and $d \geq 3 r+1$, then
$\operatorname{dim} C_{d}^{r}(\Delta)=\binom{d+2}{2}+\binom{d-r+1}{2} f_{1}^{0}-\left(\binom{d+2}{2}-\binom{r+2}{2}\right) f_{0}^{0}+\sigma$,

- f_{i}^{0} is the number of interior i-dimensional faces.
- $n\left(v_{i}\right)=\#$ distinct slopes at an interior vertex v_{i}.
- $\sigma_{i}=\sum_{j} \max \left\{\left(r+1+j\left(1-n\left(v_{i}\right)\right)\right), 0\right\}$.
- $\sigma=\sum \sigma_{i}$.

Planar Hilbert Polynomials

Planar Simplicial Dimension [Alfeld-Schumaker '90]

If $\Delta \subset \mathbb{R}^{2}$ is a simply connected triangulation and $d \geq 3 r+1$, then
$\operatorname{dim} C_{d}^{r}(\Delta)=\binom{d+2}{2}+\binom{d-r+1}{2} f_{1}^{0}-\left(\binom{d+2}{2}-\binom{r+2}{2}\right) f_{0}^{0}+\sigma$,

- f_{i}^{0} is the number of interior i-dimensional faces.

■ $n\left(v_{i}\right)=\#$ distinct slopes at an interior vertex v_{i}.

- $\sigma_{i}=\sum_{j} \max \left\{\left(r+1+j\left(1-n\left(v_{i}\right)\right)\right), 0\right\}$.
- $\sigma=\sum \sigma_{i}$.

Conjecture [Schenck '97]

Above formula holds for $d \geq 2 r+1$.

Planar Hilbert Polynomials

- $\Delta \subset \mathbb{R}^{2}$ a simply connected polytopal complex
- [McDonald-Schenck '09] give formulas for coefficients of $H P\left(C^{r}(\widehat{\Delta}), d\right)$

Planar Hilbert Polynomials

- $\Delta \subset \mathbb{R}^{2}$ a simply connected polytopal complex
- [McDonald-Schenck '09] give formulas for coefficients of $H P\left(C^{r}(\widehat{\Delta}), d\right)$

Planar Hilbert Polynomials

- $\Delta \subset \mathbb{R}^{2}$ a simply connected polytopal complex
- [McDonald-Schenck '09] give formulas for coefficients of $H P\left(C^{r}(\widehat{\Delta}), d\right)$

How large does d have to be for $\operatorname{dim} C_{d}^{r}(\Delta)=\operatorname{HP}\left(C^{r}(\widehat{\Delta}), d\right)$?

Planar Hilbert Polynomials

- $\Delta \subset \mathbb{R}^{2}$ a simply connected polytopal complex
- [McDonald-Schenck '09] give formulas for coefficients of $H P\left(C^{r}(\widehat{\Delta}), d\right)$

How large does d have to be for $\operatorname{dim} C_{d}^{r}(\Delta)=\operatorname{HP}\left(C^{r}(\widehat{\Delta}), d\right)$? In simplicial case, $d \geq 3 r+1$ suffices.

A Positive Result

Agreement of Hilbert Function and Polynomial [D. '14]

$\Delta \subset \mathbb{R}^{2}$ a planar polytopal complex. Let $F=$ maximum number of edges of a polygon of Δ. Then

$$
H P\left(C^{r}(\widehat{\Delta}), d\right)=\operatorname{dim} C_{d}^{r}(\Delta) \text { for } d \geq(2 F-1)(r+1)-1
$$

A Positive Result

Agreement of Hilbert Function and Polynomial [D. '14]

$\Delta \subset \mathbb{R}^{2}$ a planar polytopal complex. Let $F=$ maximum number of edges of a polygon of Δ. Then

$$
H P\left(C^{r}(\widehat{\Delta}), d\right)=\operatorname{dim} C_{d}^{r}(\Delta) \text { for } d \geq(2 F-1)(r+1)-1
$$

This is the first such result for nonsimplicial complexes.

A Positive Result

Agreement of Hilbert Function and Polynomial [D. '14]

$\Delta \subset \mathbb{R}^{2}$ a planar polytopal complex. Let $F=$ maximum number of edges of a polygon of Δ. Then

$$
H P\left(C^{r}(\widehat{\Delta}), d\right)=\operatorname{dim} C_{d}^{r}(\Delta) \text { for } d \geq(2 F-1)(r+1)-1
$$

This is the first such result for nonsimplicial complexes.

A Positive Result

Agreement of Hilbert Function and Polynomial [D. '14]

$\Delta \subset \mathbb{R}^{2}$ a planar polytopal complex. Let $F=$ maximum number of edges of a polygon of Δ. Then

$$
H P\left(C^{r}(\widehat{\Delta}), d\right)=\operatorname{dim} C_{d}^{r}(\Delta) \text { for } d \geq(2 F-1)(r+1)-1
$$

This is the first such result for nonsimplicial complexes.

$$
H P\left(C^{0}(\widehat{\Delta}), d\right)
$$

$$
=\frac{5}{2} d^{2}-\frac{1}{2} d+2
$$

- $F=4$
- $\Longrightarrow \operatorname{dim} C_{d}^{0}(\Delta)=$

$$
\frac{5}{2} d^{2}-\frac{1}{2} d+2 \text { for } d \geq 6
$$

A Positive Result

Agreement of Hilbert Function and Polynomial [D. '14]

$\Delta \subset \mathbb{R}^{2}$ a planar polytopal complex. Let $F=$ maximum number of edges of a polygon of Δ. Then

$$
H P\left(C^{r}(\widehat{\Delta}), d\right)=\operatorname{dim} C_{d}^{r}(\Delta) \text { for } d \geq(2 F-1)(r+1)-1
$$

This is the first such result for nonsimplicial complexes.

- $F=4$
- $\Longrightarrow \operatorname{dim} C_{d}^{0}(\Delta)=$
$\frac{5}{2} d^{2}-\frac{1}{2} d+2$ for $d \geq 6$
- However, $\operatorname{dim} C_{d}^{0}(\Delta)=\frac{5}{2} d^{2}-\frac{1}{2} d+2$ for $d \geq 1$

The Technique: Regularity

Set $S=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$

The Technique: Regularity

Set $S=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
A graded S-module M has a graded minimal free resolution:

$$
0 \rightarrow F_{\delta} \rightarrow F_{\delta-1} \rightarrow \cdots F_{0} \rightarrow M \rightarrow 0, \quad \text { where } F_{i} \cong \bigoplus_{j} S\left(-a_{i j}\right)
$$

The Technique: Regularity

Set $S=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
A graded S-module M has a graded minimal free resolution:

$$
0 \rightarrow F_{\delta} \rightarrow F_{\delta-1} \rightarrow \cdots F_{0} \rightarrow M \rightarrow 0, \quad \text { where } F_{i} \cong \bigoplus_{j} S\left(-a_{i j}\right)
$$

- Projective dimension $\operatorname{pdim}(M):=\delta$

■ Castelnuovo-Mumford Regularity $\operatorname{reg}(M):=\max _{i, j}\left(a_{i j}-i\right)$

The Technique: Regularity

Set $S=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
A graded S-module M has a graded minimal free resolution:

$$
0 \rightarrow F_{\delta} \rightarrow F_{\delta-1} \rightarrow \cdots F_{0} \rightarrow M \rightarrow 0, \quad \text { where } F_{i} \cong \bigoplus_{j} S\left(-a_{i j}\right)
$$

- Projective dimension $\operatorname{pdim}(M):=\delta$

■ Castelnuovo-Mumford Regularity $\operatorname{reg}(M):=\max _{i, j}\left(a_{i j}-i\right)$
■ Note: $M \cong \oplus_{j} S\left(-a_{j}\right) \Longrightarrow \operatorname{reg}(M)=\max \left\{a_{j}\right\}$

The Technique: Regularity

Set $S=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
A graded S-module M has a graded minimal free resolution:

$$
0 \rightarrow F_{\delta} \rightarrow F_{\delta-1} \rightarrow \cdots F_{0} \rightarrow M \rightarrow 0, \quad \text { where } F_{i} \cong \bigoplus_{j} S\left(-a_{i j}\right)
$$

■ Projective dimension $\operatorname{pdim}(M):=\delta$
■ Castelnuovo-Mumford Regularity $\operatorname{reg}(M):=\max _{i, j}\left(a_{i j}-i\right)$

- Note: $M \cong \oplus_{j} S\left(-a_{j}\right) \Longrightarrow \operatorname{reg}(M)=\max \left\{a_{j}\right\}$
$\operatorname{reg}(M)$ governs when $\operatorname{HF}(M, d)=H P(M, d)$ [Eisenbud '05]:

$$
H F(M, d)=H P(M, d) \text { for } d \geq \operatorname{reg}(M)+\operatorname{pdim}(M)-n+1
$$

The Technique: Regularity

Set $S=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
A graded S-module M has a graded minimal free resolution:

$$
0 \rightarrow F_{\delta} \rightarrow F_{\delta-1} \rightarrow \cdots F_{0} \rightarrow M \rightarrow 0, \quad \text { where } F_{i} \cong \bigoplus_{j} S\left(-a_{i j}\right)
$$

- Projective dimension $\operatorname{pdim}(M):=\delta$

■ Castelnuovo-Mumford Regularity $\operatorname{reg}(M):=\max _{i, j}\left(a_{i j}-i\right)$
\square Note: $M \cong \oplus_{j} S\left(-a_{j}\right) \Longrightarrow \operatorname{reg}(M)=\max \left\{a_{j}\right\}$
$\operatorname{reg}(M)$ governs when $\operatorname{HF}(M, d)=H P(M, d)$ [Eisenbud '05]:

$$
H F(M, d)=H P(M, d) \text { for } d \geq \operatorname{reg}(M)+\operatorname{pdim}(M)-n+1
$$

Results on previous slide follow from bounding $\operatorname{reg}\left(C^{r}(\widehat{\Delta})\right)$.

Obtaining the Regularity Bound

Two key properties:
1 Regularity of any module in $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ can be bounded by regularity of other two.

Obtaining the Regularity Bound

Two key properties:
1 Regularity of any module in $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ can be bounded by regularity of other two.
2 If $A \subset B$ is a submodule and $\operatorname{pdim}(B)<\operatorname{codim}(B / A)$, then $\operatorname{reg}(B) \leq \operatorname{reg}(A)$.

Obtaining the Regularity Bound

Two key properties:
1 Regularity of any module in $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ can be bounded by regularity of other two.
2 If $A \subset B$ is a submodule and $\operatorname{pdim}(B)<\operatorname{codim}(B / A)$, then $\operatorname{reg}(B) \leq \operatorname{reg}(A)$.

- Regularity bound obtained by finding an approximation $L S^{r, 1}(\widehat{\Delta}) \subset C^{r}(\widehat{\Delta})$ satisfying property 2.

Obtaining the Regularity Bound

Two key properties:
1 Regularity of any module in $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ can be bounded by regularity of other two.
2 If $A \subset B$ is a submodule and $\operatorname{pdim}(B)<\operatorname{codim}(B / A)$, then $\operatorname{reg}(B) \leq \operatorname{reg}(A)$.

- Regularity bound obtained by finding an approximation $L S^{r, 1}(\widehat{\Delta}) \subset C^{r}(\widehat{\Delta})$ satisfying property 2 .
- $L S^{r, 1}(\widehat{\Delta})$ is the subalgebra of $C^{r}(\widehat{\Delta})$ generated by splines supported on the union of two adjacent facets.

Obtaining the Regularity Bound

Two key properties:
1 Regularity of any module in $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ can be bounded by regularity of other two.
2 If $A \subset B$ is a submodule and $\operatorname{pdim}(B)<\operatorname{codim}(B / A)$, then $\operatorname{reg}(B) \leq \operatorname{reg}(A)$.

- Regularity bound obtained by finding an approximation $L S^{r, 1}(\widehat{\Delta}) \subset C^{r}(\widehat{\Delta})$ satisfying property 2.
- $L S^{r, 1}(\widehat{\Delta})$ is the subalgebra of $C^{r}(\widehat{\Delta})$ generated by splines supported on the union of two adjacent facets.
- Property 1 used to break bounding $\operatorname{reg}\left(L S^{r, 1}(\widehat{\Delta})\right)$ down into a local problem by fitting into exact complexes.

Obtaining the Regularity Bound

Two key properties:
1 Regularity of any module in $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ can be bounded by regularity of other two.
2 If $A \subset B$ is a submodule and $\operatorname{pdim}(B)<\operatorname{codim}(B / A)$, then $\operatorname{reg}(B) \leq \operatorname{reg}(A)$.

- Regularity bound obtained by finding an approximation $L S^{r, 1}(\widehat{\Delta}) \subset C^{r}(\widehat{\Delta})$ satisfying property 2.
- $L S^{r, 1}(\widehat{\Delta})$ is the subalgebra of $C^{r}(\widehat{\Delta})$ generated by splines supported on the union of two adjacent facets.
■ Property 1 used to break bounding $\operatorname{reg}\left(L S^{r, 1}(\widehat{\Delta})\right)$ down into a local problem by fitting into exact complexes.
- Local problem solved directly

Thank You!

References I

P. Alfeld, L. Schumaker, On the dimension of bivariate spline spaces of smoothness r and degree $d=3 r+1$, Numer. Math. 57 (1990) 651-661
L. Billera, Homology of Smooth Splines: Generic Triangulations and a Conjecture of Strang, Trans. Amer. Math. Soc. 310, 325-340 (1988).
L. Billera, The Algebra of Continuous Piecewise Polynomials, Adv. in Math. 76, 170-183 (1989).
L. Billera, L. Rose, A Dimension Series for Multivariate Splines, Discrete Comput. Geom. 6, 107-128 (1991).
L. Billera, L. Rose, Modules of piecewise polynomials and their freeness, Math. Z. 209 (1992), 485-497.
M. DiPasquale, Shellability and Freeness of Continuous Splines, J. Pure Appl. Algebra 216 (2012) 2519-2523.
M. DiPasquale, Lattice-Supported Splines on Polytopal Complexes, Adv. in Appl. Math. 55 (2014) 1-21.
M. DiPasquale, Regularity of Mixed Spline Spaces, submitted.
D. Eisenbud, The Geometry of Syzygies, Springer-Verlag, New York, 2005.
G. Farin, Curves and Surfaces for Computer Aided Geometric Design, 4th ed., Academic Press, Boston, 1997.
D. Hong, Spaces of bivariate spline functions over triangulation, Approx. Theory Appl. 7 (1991), 56-75.
A. Ibrahim, L. Schumaker, Super spline spaces of smoothness r and degree $d \geq 3 r+2$, Constr. Approx. 7 (1991), 401-423.
T. McDonald, H. Schenck, Piecewise Polynomials on Polyhedral Complexes, Adv. in Appl. Math. 42, no. 1, 82-93 (2009).
S. Payne, Equivariant Chow Cohomology of Toric Varieties, Math. Res. Lett. 13, 29-41 (2006).

References II

```
H. Schenck, Homological methods in the theory of splines, Thesis, Cornell University (1997).
H. Schenck, M. Stillman, Local Cohomology of Bivariate Splines, J. Pure Appl. Algebra 117 & 118, 535-548 (1997).
H. Schenck, A spectral sequences for splines, Adv. in Appl. Math. 19, 183-199 (1997).
H. Schenck, P. Stiller, Cohomology vanishing and a problem in approximation theory, Manuscripta Math. 107 (2002), 43-58.
G. Strang, Piecewise Polynomials and the Finite Element Method, Bull. Amer. Math. Soc. 79 (1973), 1128-1137.
S. Yuzvinsky, Modules of splines on polyhedral complexes, Math. Z. 210 (1992), 245-254.
```

