# Algebraic Geometry and Approximation Theory 

Michael DiPasquale<br>Oklahoma State University<br>Colloquium

## Piecewise Polynomials

## Spline

A piecewise polynomial function, continuously differentiable to some order.

## Piecewise Polynomials

## Spline

A piecewise polynomial function, continuously differentiable to some order.


The Zwart-Powell element, a $C^{1}$ spline of degree 2

## Univariate Splines

Most widely studied case: approximation of a function $f(x)$ over an interval $\Delta=[a, b] \subset \mathbb{R}$ by $C^{r}$ piecewise polynomials.

## Univariate Splines

Most widely studied case: approximation of a function $f(x)$ over an interval $\Delta=[a, b] \subset \mathbb{R}$ by $C^{r}$ piecewise polynomials.

- Subdivide $\Delta=[a, b]$ into subintervals:

$$
\Delta=\left[a_{0}, a_{1}\right] \cup\left[a_{1}, a_{2}\right] \cup \cdots \cup\left[a_{n-1}, a_{n}\right]
$$

- Find a basis for the vector space $C_{d}^{r}(\Delta)$ of $C^{r}$ piecewise polynomial functions on $\Delta$ with degree at most $d$ (B-splines!)
- Find best approximation to $f(x)$ in $C_{d}^{r}(\Delta)$


## Two Subintervals

$\Delta=\left[a_{0}, a_{1}\right] \cup\left[a_{1}, a_{2}\right]$ (assume WLOG $a_{1}=0$ )

$$
\begin{aligned}
\left(f_{1}, f_{2}\right) \in C_{d}^{r}(\Delta) & \Longleftrightarrow f_{1}^{(i)}(0)=f_{2}^{(i)}(0) \text { for } 0 \leq i \leq r \\
& \Longleftrightarrow x^{r+1} \mid\left(f_{2}-f_{1}\right) \\
& \Longleftrightarrow \quad\left(f_{2}-f_{1}\right) \in\left\langle x^{r+1}\right\rangle
\end{aligned}
$$

## Two Subintervals

$\Delta=\left[a_{0}, a_{1}\right] \cup\left[a_{1}, a_{2}\right]$ (assume WLOG $a_{1}=0$ )

$$
\begin{aligned}
\left(f_{1}, f_{2}\right) \in C_{d}^{r}(\Delta) & \Longleftrightarrow f_{1}^{(i)}(0)=f_{2}^{(i)}(0) \text { for } 0 \leq i \leq r \\
& \Longleftrightarrow x^{r+1} \mid\left(f_{2}-f_{1}\right) \\
& \Longleftrightarrow\left(f_{2}-f_{1}\right) \in\left\langle x^{r+1}\right\rangle
\end{aligned}
$$

Even more explicitly:

- $f_{1}(x)=b_{0}+b_{1} x+\cdots+b_{d} x^{d}$
- $f_{2}(x)=c_{0}+c_{1} x+\cdots+c_{d} x^{d}$
$\square\left(f_{0}, f_{1}\right) \in C_{d}^{r}(\Delta) \Longleftrightarrow b_{0}=c_{0}, \ldots, b_{r}=c_{r}$.


## Two Subintervals

$\Delta=\left[a_{0}, a_{1}\right] \cup\left[a_{1}, a_{2}\right]$ (assume WLOG $a_{1}=0$ )

$$
\begin{aligned}
\left(f_{1}, f_{2}\right) \in C_{d}^{r}(\Delta) & \Longleftrightarrow f_{1}^{(i)}(0)=f_{2}^{(i)}(0) \text { for } 0 \leq i \leq r \\
& \Longleftrightarrow x^{r+1} \mid\left(f_{2}-f_{1}\right) \\
& \Longleftrightarrow\left(f_{2}-f_{1}\right) \in\left\langle x^{r+1}\right\rangle
\end{aligned}
$$

Even more explicitly:

- $f_{1}(x)=b_{0}+b_{1} x+\cdots+b_{d} x^{d}$
- $f_{2}(x)=c_{0}+c_{1} x+\cdots+c_{d} x^{d}$
$\square\left(f_{0}, f_{1}\right) \in C_{d}^{r}(\Delta) \Longleftrightarrow b_{0}=c_{0}, \ldots, b_{r}=c_{r}$.

$$
\operatorname{dim} C_{d}^{r}(\Delta)= \begin{cases}d+1 & \text { if } d \leq r \\ (d+1)+(d-r) & \text { if } d>r\end{cases}
$$

Note: $\operatorname{dim} C_{d}^{r}(\Delta)$ is polynomial in $d$ for $d>r$.

## Higher Dimensions

More General Problem: Compute $\operatorname{dim} C_{d}^{r}(\Delta)$ where $\Delta \subset \mathbb{R}^{n}$ is

## Higher Dimensions

More General Problem: Compute $\operatorname{dim} C_{d}^{r}(\Delta)$ where $\Delta \subset \mathbb{R}^{n}$ is

- a polytopal complex
- pure $n$-dimensional

■ a pseudomanifold

## Higher Dimensions

More General Problem: Compute $\operatorname{dim} C_{d}^{r}(\Delta)$ where $\Delta \subset \mathbb{R}^{n}$ is

- a polytopal complex
- pure $n$-dimensional
- a pseudomanifold


A polytopal complex

## Higher Dimensions

More General Problem: Compute $\operatorname{dim} C_{d}^{r}(\Delta)$ where $\Delta \subset \mathbb{R}^{n}$ is

- a polytopal complex
- pure $n$-dimensional
- a pseudomanifold


A polytopal complex

## (Algebraic) Spline Criterion:

■ If $\tau \in \Delta_{n-1}, I_{\tau}=$ affine form vanishing on affine span of $\tau$
■ Collection $\left\{f_{\sigma}\right\}_{\sigma \in \Delta_{n}}$ glue to $F \in C^{r}(\Delta) \Longleftrightarrow$ for every pair of adjacent facets $\sigma_{1}, \sigma_{2} \in \Delta_{n}$ with $\sigma_{1} \cap \sigma_{2}=\tau \in \Delta_{n-1},\left.\right|_{\tau} ^{r+1} \mid\left(f_{\sigma_{1}}-f_{\sigma_{2}}\right)$

## Who Cares?

1 Computation of $\operatorname{dim} C_{d}^{r}(\Delta)$ for higher dimensions initiated by [Strang '73] in connection with finite element method
2 Data fitting in approximation theory
3 [Farin '97] Computer Aided Geometric Design (CAGD) - building surfaces by splines.
4 [Payne '06] Toric Geometry - Equivariant cohomology rings of toric varieties are rings of continuous splines on the fan (under appropriate conditions).

## Part I: Continuous Splines and Freeness

## Continuous Splines


$(-2,-2)$

## Continuous Splines



## Continuous Splines



$$
\begin{gathered}
\left(F_{1}, F_{2}, F_{3}\right) \in C^{0}(\Delta) \Longleftrightarrow \\
\exists f_{1}, f_{2}, f_{3} \text { so that } \\
F_{1}-F_{2}=f_{1} x \\
F_{2}-F_{3}=f_{2}(x-y) \\
F_{3}-F_{1}=f_{3} y
\end{gathered}
$$

## Spline Matrix



$$
\begin{gathered}
\left(F_{1}, F_{2}, F_{3}\right) \in C^{0}(\Delta) \Longleftrightarrow \text { there are } \\
f_{1}, f_{2}, f_{3} \text { so that }
\end{gathered}
$$

## Spline Matrix


$\left(F_{1}, F_{2}, F_{3}\right) \in C^{0}(\Delta) \Longleftrightarrow$ there are $f_{1}, f_{2}, f_{3}$ so that

$$
\left(\begin{array}{cccccc}
1 & -1 & 0 & x & 0 & 0 \\
0 & 1 & -1 & 0 & x-y & 0 \\
-1 & 0 & 1 & 0 & 0 & y
\end{array}\right)\left(\begin{array}{c}
F_{1} \\
F_{2} \\
F_{3} \\
-f_{1} \\
-f_{2} \\
-f_{3}
\end{array}\right)=0
$$

This matrix constructed in [Billera-Rose '91].

## Observations

- $C^{0}(\Delta)$, the kernel of this matrix, is a graded $\mathbb{R}[x, y]$ - module (matrix entries are homogeneous).
- $C^{0}(\Delta)_{d}:=$ splines of degree $d$


## Observations

- $C^{0}(\Delta)$, the kernel of this matrix, is a graded $\mathbb{R}[x, y]$ - module (matrix entries are homogeneous).
- $C^{0}(\Delta)_{d}:=$ splines of degree $d$
- Every spline in $C^{0}(\Delta)$ can be written uniquely as a polynomial combination of the three splines pictured below:



## Observations, continued

$C^{0}(\Delta)$ is a free $R=\mathbb{R}[x, y]$-module generated in degrees $0,1,2$. Record degrees as $C^{0}(\Delta) \cong R \oplus R(-1) \oplus R(-2)$.

## Observations, continued

$C^{0}(\Delta)$ is a free $R=\mathbb{R}[x, y]$-module generated in degrees $0,1,2$.
Record degrees as $C^{0}(\Delta) \cong R \oplus R(-1) \oplus R(-2)$.

$$
\operatorname{dim} C^{0}(\Delta)_{d}=\binom{d+1}{1}+\binom{(d+1)-1}{1}+\binom{(d+1)-2}{1}
$$

## Observations, continued

$C^{0}(\Delta)$ is a free $R=\mathbb{R}[x, y]$-module generated in degrees $0,1,2$.
Record degrees as $C^{0}(\Delta) \cong R \oplus R(-1) \oplus R(-2)$.

$$
\begin{aligned}
\operatorname{dim} C^{0}(\Delta)_{d} & =\binom{d+1}{1}+\binom{(d+1)-1}{1}+\binom{(d+1)-2}{1} \\
& =3 d \text { for } d \geq 1
\end{aligned}
$$

## Observations, continued

$C^{0}(\Delta)$ is a free $R=\mathbb{R}[x, y]$-module generated in degrees $0,1,2$. Record degrees as $C^{0}(\Delta) \cong R \oplus R(-1) \oplus R(-2)$.

$$
\begin{aligned}
\operatorname{dim} C^{0}(\Delta)_{d} & =\binom{d+1}{1}+\binom{(d+1)-1}{1}+\binom{(d+1)-2}{1} \\
& =3 d \text { for } d \geq 1 \\
\operatorname{dim} C_{d}^{0}(\Delta) & = \\
\operatorname{dim} C^{0}(\widehat{\Delta})_{d} & =\binom{d+2}{2}+\binom{(d+2)-1}{2}+\binom{(d+2)-2}{2} \\
& =\frac{3}{2} d^{2}+\frac{3}{2} d+1 \text { for } d \geq 0
\end{aligned}
$$

where $\widehat{\Delta}$ is the cone over $\Delta$.

## Coning Construction

■ $\widehat{\Delta} \subset \mathbb{R}^{n+1}$ denotes the cone over $\Delta \subset \mathbb{R}^{n}$.

$\Delta$

$\widehat{\Delta}$

## Coning Construction

- $\widehat{\Delta} \subset \mathbb{R}^{n+1}$ denotes the cone over $\Delta \subset \mathbb{R}^{n}$.

$\Delta$

$\widehat{\Delta}$
- $C^{r}(\widehat{\Delta})$ is always a graded algebra over $S=\mathbb{R}\left[x_{0}, \ldots, x_{n}\right]$
- $C_{d}^{r}(\Delta) \cong C^{r}(\widehat{\Delta})_{d}$ [Billera-Rose '91]


## Consequences of Freeness

■ Freeness of $C^{r}(\widehat{\Delta}) \Longrightarrow$ straightforward computation of $\operatorname{dim} C_{d}^{r}(\Delta)$.

## Consequences of Freeness

■ Freeness of $C^{r}(\widehat{\Delta}) \Longrightarrow$ straightforward computation of $\operatorname{dim} C_{d}^{r}(\Delta)$.

- [Schenck-Stillman '97] Many widely-used partitions $\Delta$ actually satisfy the property that $C^{r}(\Delta)$ is free (type I and II triangulations, cross-cut partitions, rectangular meshes, etc.)


## Consequences of Freeness

■ Freeness of $C^{r}(\widehat{\Delta}) \Longrightarrow$ straightforward computation of $\operatorname{dim} C_{d}^{r}(\Delta)$.

- [Schenck-Stillman '97] Many widely-used partitions $\Delta$ actually satisfy the property that $C^{r}(\Delta)$ is free (type I and II triangulations, cross-cut partitions, rectangular meshes, etc.)
- [Billera-Rose '92] criteria for freeness in terms of localization
- [Yuzvinsky '92] criteria for freeness in terms of sheaves on posets
- [Schenck '97] criteria for freeness in terms of homologies of a chain complex ( $\Delta$ simplicial)


## Face Rings of Simplicial Complexes

## Face Ring of $\Delta$

$\Delta$ a simplicial complex.

$$
A_{\Delta}=\mathbb{R}\left[x_{v} \mid v \text { a vertex of } \Delta\right] / I_{\Delta},
$$

where $I_{\Delta}$ is the ideal generated by monomials corresponding to non-faces.

## Face Rings of Simplicial Complexes

## Face Ring of $\Delta$

$\Delta$ a simplicial complex.

$$
A_{\Delta}=\mathbb{R}\left[x_{v} \mid v \text { a vertex of } \Delta\right] / I_{\Delta},
$$

where $I_{\Delta}$ is the ideal generated by monomials corresponding to non-faces.


## Face Rings of Simplicial Complexes

## Face Ring of $\Delta$

$\Delta$ a simplicial complex.

$$
A_{\Delta}=\mathbb{R}\left[x_{v} \mid v \text { a vertex of } \Delta\right] / I_{\Delta},
$$

where $I_{\Delta}$ is the ideal generated by monomials corresponding to non-faces.


- Nonfaces are $\{1,2,3,4\},\{2,3,4\}$
- $I_{\Delta}=\left\langle x_{2} x_{3} x_{4}\right\rangle$
- $A_{\Delta}=\mathbb{R}\left[x_{1}, x_{2}, x_{3}, x_{4}\right] / I_{\Delta}$


## Freeness for $C^{0}$ simplicial splines

$C^{0}$ for Simplicial Splines [Billera '89]

- $C^{0}(\widehat{\Delta}) \cong A_{\Delta}$, the face ring of $\Delta$.


## Freeness for $C^{0}$ simplicial splines

## $C^{0}$ for Simplicial Splines [Billera '89]

- $C^{0}(\widehat{\Delta}) \cong A_{\Delta}$, the face ring of $\Delta$.
- $\operatorname{dim} C_{d}^{0}(\Delta)=\sum_{i=0}^{n} f_{i}\binom{d-1}{i}$ for $d>0$, where $f_{i}=\# i$-faces of $\Delta$.


## Freeness for $C^{0}$ simplicial splines

## $C^{0}$ for Simplicial Splines [Billera '89]

- $C^{0}(\widehat{\Delta}) \cong A_{\Delta}$, the face ring of $\Delta$.
- $\operatorname{dim} C_{d}^{0}(\Delta)=\sum_{i=0}^{n} f_{i}\binom{d-1}{i}$ for $d>0$, where $f_{i}=\# i$-faces of $\Delta$.

Moreover, if $\Delta$ is homeomorphic to a disk, then $C^{0}(\widehat{\Delta})$ is free.

## Nonsimplicial Case

## Nonfreeness for Polytopal Complexes [D. '12]

$C^{0}(\widehat{\Delta})$ need not be free if $\Delta$ has nonsimplicial faces.

## Nonsimplicial Case

## Nonfreeness for Polytopal Complexes [D. '12]

$C^{0}(\widehat{\Delta})$ need not be free if $\Delta$ has nonsimplicial faces.

$C^{0}(\widehat{\Delta})$ is not a free module over $\mathbb{R}[x, y, z]$.

## Part II: Hilbert Polynomials and Regularity

## Some Graded Commutative Algebra

Given a finitely generated graded $S=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$-module $M$ (like $\left.C^{r}(\widehat{\Delta})\right)$.

■ $H F(M, d):=\operatorname{dim} M_{d}$ is the Hilbert function of $M$.

## Some Graded Commutative Algebra

Given a finitely generated graded $S=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$-module $M$ (like $\left.C^{r}(\widehat{\Delta})\right)$.

■ $H F(M, d):=\operatorname{dim} M_{d}$ is the Hilbert function of $M$.
■ If $d \gg 0, \operatorname{HF}(M, d)=H P(M, d)$, where $\operatorname{HP}(M, d)$ is the Hilbert polynomial of $M$.

## Some Graded Commutative Algebra

Given a finitely generated graded $S=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$-module $M$ (like $\left.C^{r}(\widehat{\Delta})\right)$.

■ $H F(M, d):=\operatorname{dim} M_{d}$ is the Hilbert function of $M$.
■ If $d \gg 0, \operatorname{HF}(M, d)=H P(M, d)$, where $\operatorname{HP}(M, d)$ is the Hilbert polynomial of $M$.

- Upshot: $\operatorname{dim} C_{d}^{r}(\Delta)=\operatorname{dim} C^{r}(\widehat{\Delta})_{d}$ is eventually polynomial in $d$ (in fact, linear combination of binomial coefficients)


## The Good News and the Bad News

Good news: $\operatorname{HP}(\operatorname{Cr}(\widehat{\Delta}), d)$ has been computed for $\Delta \subset \mathbb{R}^{2}$.

- $\Delta$ simplicial: [Alfeld-Schumaker '90, Hong '91], [Ibrahim-Schumaker '91]
- $\Delta$ nonsimplicial: [McDonald-Schenck '09]


## The Good News and the Bad News

Good news: $\operatorname{HP}\left(\operatorname{Cr}^{r}(\widehat{\Delta}), d\right)$ has been computed for $\Delta \subset \mathbb{R}^{2}$.

- $\Delta$ simplicial: [Alfeld-Schumaker '90, Hong '91], [lbrahim-Schumaker '91]
- $\Delta$ nonsimplicial: [McDonald-Schenck '09]

Bad news: $\operatorname{dim} C_{d}^{r}(\Delta)$ is still a mystery for small $d$.

- $\operatorname{dim} C_{3}^{1}(\Delta)$ still unknown for $\Delta \subset \mathbb{R}^{2}$ !


## Planar Hilbert Polynomials

## Planar Simplicial Dimension [Alfeld-Schumaker '90]

If $\Delta \subset \mathbb{R}^{2}$ is a simply connected triangulation and $d \geq 3 r+1$, then
$\operatorname{dim} C_{d}^{r}(\Delta)=\binom{d+2}{2}+\binom{d-r+1}{2} f_{1}^{0}-\left(\binom{d+2}{2}-\binom{r+2}{2}\right) f_{0}^{0}+\sigma$,

## Planar Hilbert Polynomials

## Planar Simplicial Dimension [Alfeld-Schumaker '90]

If $\Delta \subset \mathbb{R}^{2}$ is a simply connected triangulation and $d \geq 3 r+1$, then
$\operatorname{dim} C_{d}^{r}(\Delta)=\binom{d+2}{2}+\binom{d-r+1}{2} f_{1}^{0}-\left(\binom{d+2}{2}-\binom{r+2}{2}\right) f_{0}^{0}+\sigma$,

- $f_{i}^{0}$ is the number of interior $i$-dimensional faces.


## Planar Hilbert Polynomials

## Planar Simplicial Dimension [Alfeld-Schumaker '90]

If $\Delta \subset \mathbb{R}^{2}$ is a simply connected triangulation and $d \geq 3 r+1$, then
$\operatorname{dim} C_{d}^{r}(\Delta)=\binom{d+2}{2}+\binom{d-r+1}{2} f_{1}^{0}-\left(\binom{d+2}{2}-\binom{r+2}{2}\right) f_{0}^{0}+\sigma$,

- $f_{i}^{0}$ is the number of interior $i$-dimensional faces.
- $n\left(v_{i}\right)=\#$ distinct slopes at an interior vertex $v_{i}$.


## Planar Hilbert Polynomials

## Planar Simplicial Dimension [Alfeld-Schumaker '90]

If $\Delta \subset \mathbb{R}^{2}$ is a simply connected triangulation and $d \geq 3 r+1$, then
$\operatorname{dim} C_{d}^{r}(\Delta)=\binom{d+2}{2}+\binom{d-r+1}{2} f_{1}^{0}-\left(\binom{d+2}{2}-\binom{r+2}{2}\right) f_{0}^{0}+\sigma$,

- $f_{i}^{0}$ is the number of interior $i$-dimensional faces.
- $n\left(v_{i}\right)=\#$ distinct slopes at an interior vertex $v_{i}$.
- $\sigma_{i}=\sum_{j} \max \left\{\left(r+1+j\left(1-n\left(v_{i}\right)\right)\right), 0\right\}$.


## Planar Hilbert Polynomials

## Planar Simplicial Dimension [Alfeld-Schumaker '90]

If $\Delta \subset \mathbb{R}^{2}$ is a simply connected triangulation and $d \geq 3 r+1$, then
$\operatorname{dim} C_{d}^{r}(\Delta)=\binom{d+2}{2}+\binom{d-r+1}{2} f_{1}^{0}-\left(\binom{d+2}{2}-\binom{r+2}{2}\right) f_{0}^{0}+\sigma$,

- $f_{i}^{0}$ is the number of interior $i$-dimensional faces.
- $n\left(v_{i}\right)=\#$ distinct slopes at an interior vertex $v_{i}$.
- $\sigma_{i}=\sum_{j} \max \left\{\left(r+1+j\left(1-n\left(v_{i}\right)\right)\right), 0\right\}$.
- $\sigma=\sum \sigma_{i}$.


## Planar Hilbert Polynomials

## Planar Simplicial Dimension [Alfeld-Schumaker '90]

If $\Delta \subset \mathbb{R}^{2}$ is a simply connected triangulation and $d \geq 3 r+1$, then $\operatorname{dim} C_{d}^{r}(\Delta)=\binom{d+2}{2}+\binom{d-r+1}{2} f_{1}^{0}-\left(\binom{d+2}{2}-\binom{r+2}{2}\right) f_{0}^{0}+\sigma$,

- $f_{i}^{0}$ is the number of interior $i$-dimensional faces.
- $n\left(v_{i}\right)=\#$ distinct slopes at an interior vertex $v_{i}$.
- $\sigma_{i}=\sum_{j} \max \left\{\left(r+1+j\left(1-n\left(v_{i}\right)\right)\right), 0\right\}$.
- $\sigma=\sum \sigma_{i}$.


## Conjecture [Schenck '97]

Above formula holds for $d \geq 2 r+1$.

## Planar Hilbert Polynomials

- $\Delta \subset \mathbb{R}^{2}$ a simply connected polytopal complex
- [McDonald-Schenck '09] give formulas for coefficients of $H P\left(C^{r}(\widehat{\Delta}), d\right)$


## Planar Hilbert Polynomials

- $\Delta \subset \mathbb{R}^{2}$ a simply connected polytopal complex
- [McDonald-Schenck '09] give formulas for coefficients of $H P\left(C^{r}(\widehat{\Delta}), d\right)$



## Planar Hilbert Polynomials

- $\Delta \subset \mathbb{R}^{2}$ a simply connected polytopal complex
- [McDonald-Schenck '09] give formulas for coefficients of $H P\left(C^{r}(\widehat{\Delta}), d\right)$


How large does $d$ have to be for $\operatorname{dim} C_{d}^{r}(\Delta)=\operatorname{HP}\left(C^{r}(\widehat{\Delta}), d\right)$ ?

## Planar Hilbert Polynomials

- $\Delta \subset \mathbb{R}^{2}$ a simply connected polytopal complex
- [McDonald-Schenck '09] give formulas for coefficients of $H P\left(C^{r}(\widehat{\Delta}), d\right)$


How large does $d$ have to be for $\operatorname{dim} C_{d}^{r}(\Delta)=\operatorname{HP}\left(C^{r}(\widehat{\Delta}), d\right)$ ? In simplicial case, $d \geq 3 r+1$ suffices.

## Large degree generators

## Proposition [D. '14]

Given an n-polytope $A \subset \mathbb{R}^{n}$ and a choice of codimension 1 face $\tau \in A_{n-1}$, there is a polytopal complex $\mathcal{P}(A)$ having $A$ as a facet so that 1 Every codimension 1 face of $A$ except $\tau$ is interior to $\mathcal{P}(A)$
2 There is a minimal generator of $C^{r}(\widehat{\mathcal{P}(A)})$ supported only on $A$.

## Large degree generators

## Proposition [D. '14]

Given an n-polytope $A \subset \mathbb{R}^{n}$ and a choice of codimension 1 face $\tau \in A_{n-1}$, there is a polytopal complex $\mathcal{P}(A)$ having $A$ as a facet so that
1 Every codimension 1 face of $A$ except $\tau$ is interior to $\mathcal{P}(A)$
2 There is a minimal generator of $C^{r}(\widehat{\mathcal{P}(A)})$ supported only on $A$.

$C^{r}(\widehat{\Delta})$ has minimal generator of degree $4(r+1)$

## A Positive Result

## Agreement of Hilbert Function and Polynomial [D. '14]

$\Delta \subset \mathbb{R}^{2}$ a planar polytopal complex. Let $F=$ maximum number of edges of a polygon of $\Delta$. Then

$$
H P\left(C^{r}(\widehat{\Delta}), d\right)=\operatorname{dim} C_{d}^{r}(\Delta) \text { for } d \geq(2 F-1)(r+1)-1
$$

## A Positive Result

## Agreement of Hilbert Function and Polynomial [D. '14]

$\Delta \subset \mathbb{R}^{2}$ a planar polytopal complex. Let $F=$ maximum number of edges of a polygon of $\Delta$. Then

$$
H P\left(C^{r}(\widehat{\Delta}), d\right)=\operatorname{dim} C_{d}^{r}(\Delta) \text { for } d \geq(2 F-1)(r+1)-1
$$

This is the first such result for nonsimplicial complexes.

## A Positive Result

## Agreement of Hilbert Function and Polynomial [D. '14]

$\Delta \subset \mathbb{R}^{2}$ a planar polytopal complex. Let $F=$ maximum number of edges of a polygon of $\Delta$. Then

$$
H P\left(C^{r}(\widehat{\Delta}), d\right)=\operatorname{dim} C_{d}^{r}(\Delta) \text { for } d \geq(2 F-1)(r+1)-1
$$

This is the first such result for nonsimplicial complexes.


## A Positive Result

## Agreement of Hilbert Function and Polynomial [D. '14]

$\Delta \subset \mathbb{R}^{2}$ a planar polytopal complex. Let $F=$ maximum number of edges of a polygon of $\Delta$. Then

$$
H P\left(C^{r}(\widehat{\Delta}), d\right)=\operatorname{dim} C_{d}^{r}(\Delta) \text { for } d \geq(2 F-1)(r+1)-1
$$

This is the first such result for nonsimplicial complexes.

$$
H P\left(C^{0}(\widehat{\Delta}), d\right)
$$

$$
=\frac{5}{2} d^{2}-\frac{1}{2} d+2
$$

- $F=4$
- $\Longrightarrow \operatorname{dim} C_{d}^{0}(\Delta)=$

$$
\frac{5}{2} d^{2}-\frac{1}{2} d+2 \text { for } d \geq 6
$$

## A Positive Result

## Agreement of Hilbert Function and Polynomial [D. '14]

$\Delta \subset \mathbb{R}^{2}$ a planar polytopal complex. Let $F=$ maximum number of edges of a polygon of $\Delta$. Then

$$
H P\left(C^{r}(\widehat{\Delta}), d\right)=\operatorname{dim} C_{d}^{r}(\Delta) \text { for } d \geq(2 F-1)(r+1)-1
$$

This is the first such result for nonsimplicial complexes.


- $F=4$
- $\Longrightarrow \operatorname{dim} C_{d}^{0}(\Delta)=$
$\frac{5}{2} d^{2}-\frac{1}{2} d+2$ for $d \geq 6$
- Macaulay2:
$\operatorname{dim} C_{d}^{0}(\Delta)=\frac{5}{2} d^{2}-\frac{1}{2} d+2$ for $d \geq 1$


## The Technique: Regularity

Set $S=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$

## The Technique: Regularity

Set $S=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
A graded $S$-module $M$ has a graded minimal free resolution:

$$
0 \rightarrow F_{\delta} \rightarrow F_{\delta-1} \rightarrow \cdots F_{0} \rightarrow M \rightarrow 0, \quad \text { where } F_{i} \cong \bigoplus_{j} S\left(-a_{i j}\right)
$$

## The Technique: Regularity

Set $S=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
A graded $S$-module $M$ has a graded minimal free resolution:

$$
0 \rightarrow F_{\delta} \rightarrow F_{\delta-1} \rightarrow \cdots F_{0} \rightarrow M \rightarrow 0, \quad \text { where } F_{i} \cong \bigoplus_{j} S\left(-a_{i j}\right)
$$

- Projective dimension $\operatorname{pdim}(M):=\delta$

■ Castelnuovo-Mumford Regularity $\operatorname{reg}(M):=\max _{i, j}\left(a_{i j}-i\right)$

## The Technique: Regularity

Set $S=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
A graded $S$-module $M$ has a graded minimal free resolution:

$$
0 \rightarrow F_{\delta} \rightarrow F_{\delta-1} \rightarrow \cdots F_{0} \rightarrow M \rightarrow 0, \quad \text { where } F_{i} \cong \bigoplus_{j} S\left(-a_{i j}\right)
$$

- Projective dimension $\operatorname{pdim}(M):=\delta$

■ Castelnuovo-Mumford Regularity $\operatorname{reg}(M):=\max _{i, j}\left(a_{i j}-i\right)$
■ Note: $M \cong \oplus_{j} S\left(-a_{j}\right) \Longrightarrow \operatorname{reg}(M)=\max \left\{a_{j}\right\}$

## The Technique: Regularity

Set $S=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
A graded $S$-module $M$ has a graded minimal free resolution:

$$
0 \rightarrow F_{\delta} \rightarrow F_{\delta-1} \rightarrow \cdots F_{0} \rightarrow M \rightarrow 0, \quad \text { where } F_{i} \cong \bigoplus_{j} S\left(-a_{i j}\right)
$$

■ Projective dimension $\operatorname{pdim}(M):=\delta$
■ Castelnuovo-Mumford Regularity $\operatorname{reg}(M):=\max _{i, j}\left(a_{i j}-i\right)$

- Note: $M \cong \oplus_{j} S\left(-a_{j}\right) \Longrightarrow \operatorname{reg}(M)=\max \left\{a_{j}\right\}$
$\operatorname{reg}(M)$ governs when $\operatorname{HF}(M, d)=H P(M, d)$ [Eisenbud '05]:

$$
H F(M, d)=H P(M, d) \text { for } d \geq \operatorname{reg}(M)+\operatorname{pdim}(M)-n+1
$$

## The Technique: Regularity

Set $S=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$
A graded $S$-module $M$ has a graded minimal free resolution:

$$
0 \rightarrow F_{\delta} \rightarrow F_{\delta-1} \rightarrow \cdots F_{0} \rightarrow M \rightarrow 0, \quad \text { where } F_{i} \cong \bigoplus_{j} S\left(-a_{i j}\right)
$$

- Projective dimension $\operatorname{pdim}(M):=\delta$

■ Castelnuovo-Mumford Regularity $\operatorname{reg}(M):=\max _{i, j}\left(a_{i j}-i\right)$
$\square$ Note: $M \cong \oplus_{j} S\left(-a_{j}\right) \Longrightarrow \operatorname{reg}(M)=\max \left\{a_{j}\right\}$
$\operatorname{reg}(M)$ governs when $\operatorname{HF}(M, d)=H P(M, d)$ [Eisenbud '05]:

$$
H F(M, d)=H P(M, d) \text { for } d \geq \operatorname{reg}(M)+\operatorname{pdim}(M)-n+1
$$

Results on previous slide follow from bounding $\operatorname{reg}\left(C^{r}(\widehat{\Delta})\right)$.

## Obtaining the Regularity Bound

Two key properties:
1 Regularity of any module in $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ can be bounded by regularity of other two.

## Obtaining the Regularity Bound

Two key properties:
1 Regularity of any module in $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ can be bounded by regularity of other two.
2 If $A \subset B$ is a submodule and $\operatorname{pdim}(B)<\operatorname{codim}(B / A)$, then $\operatorname{reg}(B) \leq \operatorname{reg}(A)$.

## Obtaining the Regularity Bound

Two key properties:
1 Regularity of any module in $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ can be bounded by regularity of other two.
2 If $A \subset B$ is a submodule and $\operatorname{pdim}(B)<\operatorname{codim}(B / A)$, then $\operatorname{reg}(B) \leq \operatorname{reg}(A)$.

- Regularity bound obtained by finding an approximation $L S^{r, 1}(\widehat{\Delta}) \subset C^{r}(\widehat{\Delta})$ satisfying property 2.


## Obtaining the Regularity Bound

Two key properties:
1 Regularity of any module in $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ can be bounded by regularity of other two.
2 If $A \subset B$ is a submodule and $\operatorname{pdim}(B)<\operatorname{codim}(B / A)$, then $\operatorname{reg}(B) \leq \operatorname{reg}(A)$.

- Regularity bound obtained by finding an approximation $L S^{r, 1}(\widehat{\Delta}) \subset C^{r}(\widehat{\Delta})$ satisfying property 2 .
- $L S^{r, 1}(\widehat{\Delta})$ is the subalgebra of $C^{r}(\widehat{\Delta})$ generated by splines supported on the union of two adjacent facets.


## Obtaining the Regularity Bound

Two key properties:
1 Regularity of any module in $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ can be bounded by regularity of other two.
2 If $A \subset B$ is a submodule and $\operatorname{pdim}(B)<\operatorname{codim}(B / A)$, then $\operatorname{reg}(B) \leq \operatorname{reg}(A)$.

- Regularity bound obtained by finding an approximation $L S^{r, 1}(\widehat{\Delta}) \subset C^{r}(\widehat{\Delta})$ satisfying property 2.
- $L S^{r, 1}(\widehat{\Delta})$ is the subalgebra of $C^{r}(\widehat{\Delta})$ generated by splines supported on the union of two adjacent facets.
- Property 1 used to break bounding $\operatorname{reg}\left(L S^{r, 1}(\widehat{\Delta})\right)$ down into a local problem by fitting into exact complexes.


## Obtaining the Regularity Bound

Two key properties:
1 Regularity of any module in $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ can be bounded by regularity of other two.
2 If $A \subset B$ is a submodule and $\operatorname{pdim}(B)<\operatorname{codim}(B / A)$, then $\operatorname{reg}(B) \leq \operatorname{reg}(A)$.

- Regularity bound obtained by finding an approximation $L S^{r, 1}(\widehat{\Delta}) \subset C^{r}(\widehat{\Delta})$ satisfying property 2.
- $L S^{r, 1}(\widehat{\Delta})$ is the subalgebra of $C^{r}(\widehat{\Delta})$ generated by splines supported on the union of two adjacent facets.
■ Property 1 used to break bounding $\operatorname{reg}\left(L S^{r, 1}(\widehat{\Delta})\right)$ down into a local problem by fitting into exact complexes.
- Local problem solved directly


## Other Applications

Two other applications of algebraic techniques:

- Analogue of basis with local support for nonsimplicial $\Delta$ [D. '14]


## Other Applications

Two other applications of algebraic techniques:

- Analogue of basis with local support for nonsimplicial $\Delta$ [D. '14]
- Bounds on $\operatorname{dim} C_{d}^{r}(\Delta), \Delta \subset \mathbb{R}^{2}, \mathbb{R}^{3}$ simplicial [Mourrain-Villamizar '13, Mourrain-Villamizar '14] - latter involves problem of fat points in $\mathbb{P}^{2}$


## Other Applications

Two other applications of algebraic techniques:

- Analogue of basis with local support for nonsimplicial $\Delta$ [D. '14]
- Bounds on $\operatorname{dim} C_{d}^{r}(\Delta), \Delta \subset \mathbb{R}^{2}, \mathbb{R}^{3}$ simplicial [Mourrain-Villamizar '13, Mourrain-Villamizar '14] - latter involves problem of fat points in $\mathbb{P}^{2}$
Main Problem:
Planar case: Lower existing regularity bounds!


## Other Applications

## Two other applications of algebraic techniques:

- Analogue of basis with local support for nonsimplicial $\Delta$ [D. '14]
- Bounds on $\operatorname{dim} C_{d}^{r}(\Delta), \Delta \subset \mathbb{R}^{2}, \mathbb{R}^{3}$ simplicial [Mourrain-Villamizar '13, Mourrain-Villamizar '14] - latter involves problem of fat points in $\mathbb{P}^{2}$


## Main Problem:

Planar case: Lower existing regularity bounds!
Planar simplicial case: Show $\operatorname{dim} C_{d}^{r}(\Delta)=H P\left(C^{r}(\widehat{\Delta}), d\right)$ for $d \geq 2 r+1$.

- Regularity techniques in [D. '14] give equality in simplicial case for $d \geq 3 r+2$ (one off from Alfeld-Schumaker result).
- [Schenck-Stiller '02] use vector bundle techniques on projective space to approach regularity of $C^{r}(\widehat{\Delta})$.


## Thank You!

## References I

P. Alfeld, L. Schumaker, On the dimension of bivariate spline spaces of smoothness $r$ and degree $d=3 r+1$, Numer. Math. 57 (1990) 651-661.
L. Billera, Homology of Smooth Splines: Generic Triangulations and a Conjecture of Strang, Trans. Amer. Math. Soc. 310, 325-340 (1988).
L. Billera, The Algebra of Continuous Piecewise Polynomials, Adv. in Math. 76, 170-183 (1989).
L. Billera, L. Rose, A Dimension Series for Multivariate Splines, Discrete Comput. Geom. 6, 107-128 (1991).
L. Billera, L. Rose, Modules of piecewise polynomials and their freeness, Math. Z. 209 (1992), 485-497.
M. DiPasquale, Shellability and Freeness of Continuous Splines, J. Pure Appl. Algebra 216 (2012) 2519-2523.
M. DiPasquale, Lattice-Supported Splines on Polytopal Complexes, Adv. in Appl. Math. 55 (2014) 1-21.
M. DiPasquale, Regularity of Mixed Spline Spaces, submitted.
D. Eisenbud, The Geometry of Syzygies, Springer-Verlag, New York, 2005.
G. Farin, Curves and Surfaces for Computer Aided Geometric Design, 4th ed., Academic Press, Boston, 1997.
D. Hong, Spaces of bivariate spline functions over triangulation, Approx. Theory Appl. 7 (1991), 56-75.
A. Ibrahim, L. Schumaker, Super spline spaces of smoothness $r$ and degree $d \geq 3 r+2$, Constr. Approx. 7 (1991), 401-423.
T. McDonald, H. Schenck, Piecewise Polynomials on Polyhedral Complexes, Adv. in Appl. Math. 42, no. 1, 82-93 (2009).

## References II

```
B. Mourrain, N. Villamizar, Homological techniques for the analysis of the dimension of triangular spline spaces, J. Symbolic Comput. 50 (2013),
564-577.
B. Mourrain, N. Villamizar, Bounds on the dimension of trivariate spline spaces: A homological approach, Math. Comput. Sci. 8 (2014), 157-174.
S. Payne, Equivariant Chow Cohomology of Toric Varieties, Math. Res. Lett. 13, 29-41 (2006).
H. Schenck, Homological methods in the theory of splines, Thesis, Cornell University (1997).
H. Schenck, M. Stillman, Local Cohomology of Bivariate Splines, J. Pure Appl. Algebra 117 & 118, 535-548 (1997).
H. Schenck, A spectral sequences for splines, Adv. in Appl. Math. 19, 183-199 (1997).
H. Schenck, P. Stiller, Cohomology vanishing and a problem in approximation theory, Manuscripta Math. 107 (2002), 43-58.
G. Strang, Piecewise Polynomials and the Finite Element Method, Bull. Amer. Math. Soc. 79 (1973), 1128-1137.
S. Yuzvinsky, Modules of splines on polyhedral complexes, Math. Z. }210\mathrm{ (1992), 245-254.
```

