Two Tales of Freeness

Hyperplane
Arrangements
Connections
Michael DiPasquale
Oklahoma State University

Two Algebraic Objects

Two Tales of
Freeness
Michael DiPasquale

Introduction

Continuous Splines

Hyperplane
Arrangements
Connections

- Pure n-dimensional polytopal complex $\Delta \subset \mathbb{R}^{n}$ (subdivision of region homeomorphic to n-dimensional ball by convex polytopes)
- Module $C^{0}(\Delta)$ of continuous functions piecewise polynomial with respect to Δ

Two Algebraic Objects

Two Tales of
Freeness
Michael DiPasquale

Introduction

Continuous Splines

Hyperplane Arrangements

Connections

- Pure n-dimensional polytopal complex $\Delta \subset \mathbb{R}^{n}$ (subdivision of region homeomorphic to n-dimensional ball by convex polytopes)
- Module $C^{0}(\Delta)$ of continuous functions piecewise polynomial with respect to Δ
- Hyperplane arrangement $\mathcal{A} \subset \mathbb{K}^{n}$ (K a field) (union of hyperplanes in \mathbb{K}^{n})
- Module $D(\mathcal{A})$ of vector fields tangent to \mathcal{A}

Algebraic structure (in particular, freeness) of $C^{0}(\Delta)$ and $D(\mathcal{A})$ depend on

- Combinatorics of Δ (number of faces of dimension i) and \mathcal{A} (intersection lattice of \mathcal{A})
- Geometry of Δ, \mathcal{A} (how each is embedded in ambient space) DiPasquale

Introduction
Continuous Splines

Hyperplane Arrangements

Algebraic structure (in particular, freeness) of $C^{0}(\Delta)$ and $D(\mathcal{A})$ depend on

- Combinatorics of Δ (number of faces of dimension i) and \mathcal{A} (intersection lattice of \mathcal{A})
- Geometry of Δ, \mathcal{A} (how each is embedded in ambient space)

We'll discuss

- What is freeness? (contextually)
- Why should anyone care? (implications of freeness)
- What connections are there between $D(\mathcal{A})$ and $C^{0}(\Delta)$? What light do these shed on freeness in the two contexts?

Two Tales of Freeness

Michael
DiPasquale

Introduction
Continuous
Splines
Hyperplane
Arrangements
Connections

Part I: Continuous Splines

Continuous Piecewise Polynomials

Two Tales of
Freeness
Michael DiPasquale

Introduction
Continuous Splines

Hyperplane Arrangements

Connections

Continuous Spline

A continuous piecewise polynomial function.
Notation:

- $C^{0}(\Delta)=$ continuous piecewise polynomial functions over a subdivision Δ
- $C_{d}^{0}(\Delta)=\mathbb{R}$-vector space of splines whose restriction to each polytope is a polynomial of degree $\leq d$
Main problem: Compute $\operatorname{dim} C_{d}^{0}(\Delta)$.

Some Context: Splines in Calculus 1

Two Tales of
Freeness
Michael
DiPasquale

Introduction
Low degree splines are used in Calc 1 to approximate integrals.

Continuous
Splines
Hyperplane
Arrangements
Connections

Some Context: Splines in Calculus 1

Two Tales of
Freeness
Michael
DiPasquale

Low degree splines are used in Calc 1 to approximate integrals.

Introduction

Continuous Splines

Hyperplane Arrangements

Connections

Graph of a function

Some Context: Splines in Calculus 1

Two Tales of
Freeness
Michael
DiPasquale

Low degree splines are used in Calc 1 to approximate integrals.

Introduction

Continuous Splines

Hyperplane
Arrangements
Connections

Trapezoid Rule

Some Context: Splines in Calculus 1

Two Tales of
Freeness
Michael
DiPasquale

Low degree splines are used in Calc 1 to approximate integrals.

Introduction

Continuous Splines

Hyperplane
Arrangements
Connections

Simpson's Rule

Two Subintervals

Two Tales of
Freeness
Michael DiPasquale

Introduction
Continuous Splines

Hyperplane Arrangements

Connections

$$
\Delta=\left[a_{0}, a_{1}\right] \cup\left[a_{1}, a_{2}\right] \text { (assume WLOG } a_{1}=0 \text {) }
$$

$$
\left(f_{1}, f_{2}\right) \in C_{d}^{0}(\Delta) \Longleftrightarrow f_{1}(0)=f_{2}(0)
$$

$$
\Longleftrightarrow \quad x \mid\left(f_{2}-f_{1}\right)
$$

Two Subintervals

Two Tales of
Freeness
Michael DiPasquale

Introduction

Continuous Splines

Hyperplane Arrangements

Connections

$$
\Delta=\left[a_{0}, a_{1}\right] \cup\left[a_{1}, a_{2}\right]\left(\text { assume WLOG } a_{1}=0\right)
$$

$$
\begin{aligned}
\left(f_{1}, f_{2}\right) \in C_{d}^{0}(\Delta) & \Longleftrightarrow f_{1}(0)=f_{2}(0) \\
& \Longleftrightarrow x \mid\left(f_{2}-f_{1}\right)
\end{aligned}
$$

Even more explicitly:

- $f_{1}(x)=b_{0}+b_{1} x+\cdots+b_{d} x^{d}$
- $f_{2}(x)=c_{0}+c_{1} x+\cdots+c_{d} x^{d}$
- $\left(f_{0}, f_{1}\right) \in C_{d}^{0}(\Delta) \Longleftrightarrow b_{0}=c_{0}$.

Two Subintervals

Two Tales of
Freeness
Michael DiPasquale

Introduction

Continuous Splines

Hyperplane Arrangements

Connections

$$
\Delta=\left[a_{0}, a_{1}\right] \cup\left[a_{1}, a_{2}\right]\left(\text { assume WLOG } a_{1}=0\right)
$$

$$
\begin{aligned}
\left(f_{1}, f_{2}\right) \in C_{d}^{0}(\Delta) & \Longleftrightarrow f_{1}(0)=f_{2}(0) \\
& \Longleftrightarrow x \mid\left(f_{2}-f_{1}\right)
\end{aligned}
$$

Even more explicitly:

- $f_{1}(x)=b_{0}+b_{1} x+\cdots+b_{d} x^{d}$
- $f_{2}(x)=c_{0}+c_{1} x+\cdots+c_{d} x^{d}$
- $\left(f_{0}, f_{1}\right) \in C_{d}^{0}(\Delta) \Longleftrightarrow b_{0}=c_{0}$.

$$
\operatorname{dim} C_{d}^{0}(\Delta)=2 d+1 \text { for } d \geq 0
$$

Higher Dimensions

Two Tales of Freeness

Michael DiPasquale

Introduction

Continuous
Splines
Hyperplane
Arrangements
Connections

More General Problem: Compute $\operatorname{dim} C_{d}^{0}(\Delta)$ where $\Delta \subset \mathbb{R}^{n}$
is

Higher Dimensions

Two Tales of
Freeness
Michael DiPasquale

Introduction
Continuous Splines

Hyperplane
Arrangements

More General Problem: Compute $\operatorname{dim} C_{d}^{0}(\Delta)$ where $\Delta \subset \mathbb{R}^{n}$

- a polytopal complex
is - pure n-dimensional
- a pseudomanifold

Higher Dimensions

Two Tales of
Freeness
Michael DiPasquale

Introduction

Continuous Splines

Hyperplane
Arrangements
Connections

More General Problem: Compute $\operatorname{dim} C_{d}^{0}(\Delta)$ where $\Delta \subset \mathbb{R}^{n}$

- a polytopal complex
is pure n-dimensional
- a pseudomanifold

A polytopal complex

Higher Dimensions

Two Tales of
Freeness
Michael DiPasquale

Introduction
Continuous Splines

Hyperplane Arrangements

More General Problem: Compute $\operatorname{dim} C_{d}^{0}(\Delta)$ where $\Delta \subset \mathbb{R}^{n}$

- a polytopal complex
is - pure n-dimensional
- a pseudomanifold

A polytopal complex
(Algebraic) Spline Criterion:

- If $\tau \in \Delta_{n-1}, I_{\tau}=$ affine form vanishing on affine span of τ
- Collection $\left\{f_{\sigma}\right\}_{\sigma \in \Delta_{n}}$ glue to $F \in C^{0}(\Delta) \Longleftrightarrow$ for every pair of adjacent facets $\sigma_{1}, \sigma_{2} \in \Delta_{n}$ with $\sigma_{1} \cap \sigma_{2}=\tau \in \Delta_{n-1}, I_{\tau} \mid\left(f_{\sigma_{1}}-f_{\sigma_{2}}\right)$

Continuous Splines in Two Dimensions

Continuous Splines in Two Dimensions

Two Tales of
Freeness
Michael
DiPasquale

Introduction
Continuous Splines

Hyperplane
Arrangements
Connections

Continuous Splines in Two Dimensions

Two Tales of
Freeness

Michael DiPasquale

Introduction

Continuous Splines

Hyperplane Arrangements

Connections

Freeness

Two Tales of Freeness
Michael DiPasquale

Introduction
Continuous
Splines
Hyperplane
Arrangements
Connections
Three splines in $C^{0}(\Delta)$:

Freeness

Two Tales of
Freeness
Michael DiPasquale

Introduction

Continuous Splines

Hyperplane
Arrangements

Connections

Three splines in $C^{0}(\Delta)$:

Freeness

Two Tales of
Freeness
Michael DiPasquale

Introduction

Continuous Splines

Hyperplane
Arrangements
Connections

Three splines in $C^{0}(\Delta)$:

- In fact, every spline $F \in C^{0}(\Delta)$ can be written uniquely as a polynomial combination of these three splines.

Freeness

Two Tales of
Freeness
Michael DiPasquale

Introduction
Continuous Splines

Hyperplane Arrangements

Connections

Three splines in $C^{0}(\Delta)$:

- In fact, every spline $F \in C^{0}(\Delta)$ can be written uniquely as a polynomial combination of these three splines.
- We say $C^{0}(\Delta)$ is a free $\mathbb{R}[x, y]$-module, generated in degrees $0,1,2$

Consequence of freeness

Two Tales of
Freeness
Michael DiPasquale

Introduction
Continuous
Splines
Hyperplane
Arrangements
Connections
$C^{0}(\Delta)$ is a free $\mathbb{R}[x, y]$-module generated in degrees $0,1,2$.

Consequence of freeness

Two Tales of
Freeness
Michael DiPasquale

Introduction

Continuous Splines

Hyperplane Arrangements

Connections
$C^{0}(\Delta)$ is a free $\mathbb{R}[x, y]$-module generated in degrees $0,1,2$.

- $C^{0}(\Delta)_{d} \cong \mathbb{R}[x, y]_{d}(1,1,1) \oplus \mathbb{R}[x, y]_{d-1}(0, x, y) \oplus$ $\mathbb{R}[x, y]_{d-2}\left(0, x^{2}, y^{2}\right)$.
- $\operatorname{dim} C^{0}(\Delta)_{d}=(d+1)+(d)+(d-1)=3 d$ for $d \geq 1$.

Consequence of freeness

Two Tales of
Freeness
Michael DiPasquale

Introduction

Continuous Splines

Hyperplane Arrangements

Connections
$C^{0}(\Delta)$ is a free $\mathbb{R}[x, y]$-module generated in degrees $0,1,2$.

- $C^{0}(\Delta)_{d} \cong \mathbb{R}[x, y]_{d}(1,1,1) \oplus \mathbb{R}[x, y]_{d-1}(0, x, y) \oplus$ $\mathbb{R}[x, y]_{d-2}\left(0, x^{2}, y^{2}\right)$.
- $\operatorname{dim} C^{0}(\Delta)_{d}=(d+1)+(d)+(d-1)=3 d$ for $d \geq 1$.
- $C_{d}^{0}(\Delta) \cong \mathbb{R}[x, y]_{\leq d}(1,1,1) \oplus \mathbb{R}[x, y]_{\leq d-1}(0, x, y) \oplus$ $\mathbb{R}[x, y]_{\leq d-2}\left(0, x^{2}, y^{2}\right)$.
- $\operatorname{dim} C_{d}^{0}(\Delta)=\binom{d+2}{2}+\binom{d+1}{2}+\binom{d}{2}$

Consequence of freeness

Two Tales of
Freeness
Michael DiPasquale

Continuous Splines
$C^{0}(\Delta)$ is a free $\mathbb{R}[x, y]$-module generated in degrees $0,1,2$.

- $C^{0}(\Delta)_{d} \cong \mathbb{R}[x, y]_{d}(1,1,1) \oplus \mathbb{R}[x, y]_{d-1}(0, x, y) \oplus$ $\mathbb{R}[x, y]_{d-2}\left(0, x^{2}, y^{2}\right)$.
- $\operatorname{dim} C^{0}(\Delta)_{d}=(d+1)+(d)+(d-1)=3 d$ for $d \geq 1$.
- $C_{d}^{0}(\Delta) \cong \mathbb{R}[x, y]_{\leq d}(1,1,1) \oplus \mathbb{R}[x, y]_{\leq d-1}(0, x, y) \oplus$ $\mathbb{R}[x, y]_{\leq d-2}\left(0, x^{2}, y^{2}\right)$.
- $\operatorname{dim} C_{d}^{0}(\Delta)=\binom{d+2}{2}+\binom{d+1}{2}+\binom{d}{2}$

In general, employ a coning construction $\Delta \rightarrow \widehat{\Delta}$ to homogenize and consider $\operatorname{dim} C^{0}(\widehat{\Delta})_{d}$.

Coning Construction

Two Tales of
Freeness
Michael DiPasquale

Introduction

Continuous Splines

Hyperplane
Arrangements
Connections

- $\widehat{\Delta} \subset \mathbb{R}^{n+1}$ denotes the cone over $\Delta \subset \mathbb{R}^{n}$.

Δ

$\widehat{\Delta}$

Coning Construction

Two Tales of
Freeness
Michael DiPasquale

Introduction
Continuous Splines

Hyperplane
Arrangements
Connections

- $\widehat{\Delta} \subset \mathbb{R}^{n+1}$ denotes the cone over $\Delta \subset \mathbb{R}^{n}$.

Δ

$\widehat{\Delta}$
- $C^{0}(\widehat{\Delta})$ is always a graded module over $\mathbb{R}\left[x_{0}, \ldots, x_{n}\right]$
- $C_{d}^{0}(\Delta) \cong C^{0}(\widehat{\Delta})_{d}$ [Billera-Rose '91]

Consequences of Freeness

Two Tales of
Freeness
Michael DiPasquale

Introduction
Continuous
Splines
Hyperplane
Arrangements
Connections

- Freeness of $C^{0}(\widehat{\Delta}) \Longrightarrow$ straightforward computation of $\operatorname{dim} C_{d}^{0}(\Delta)$.

Consequences of Freeness

Two Tales of
Freeness
Michael DiPasquale

- Freeness of $C^{0}(\widehat{\Delta}) \Longrightarrow$ straightforward computation of $\operatorname{dim} C_{d}^{0}(\Delta)$.
- Freeness of $C^{0}(\widehat{\Delta})$ is highly studied:
- via localization [Billera-Rose '92]
- via sheaves on posets [Yuzvinsky '92]
- via dual graphs [Rose '95]
- via homologies of a chain complex [Schenck '97] (Δ simplicial)

C^{0} for triangulations: Courant functions

Two Tales of
Freeness
Michael DiPasquale

Introduction

Continuous Splines

Hyperplane
Arrangements
Connections
A basis for $C_{1}^{0}(\Delta)$ is given by Courant functions T_{v}, which take a value of 1 at a chosen vertex v and 0 at all other vertices.
C^{0} for triangulations: Courant functions

Two Tales of
Freeness
Michael DiPasquale

Introduction

Continuous Splines

Hyperplane
Arrangements
Connections

A basis for $C_{1}^{0}(\Delta)$ is given by Courant functions T_{v}, which take a value of 1 at a chosen vertex v and 0 at all other vertices.

C^{0} for triangulations: Courant functions

Two Tales of
Freeness
Michael DiPasquale

Introduction

Continuous Splines

Hyperplane Arrangements Connections

A basis for $C_{1}^{0}(\Delta)$ is given by Courant functions T_{v}, which take a value of 1 at a chosen vertex v and 0 at all other vertices.

C^{0} for triangulations: Courant functions

Two Tales of
Freeness
Michael DiPasquale

Introduction

Continuous Splines

Hyperplane
Arrangements

A basis for $C_{1}^{0}(\Delta)$ is given by Courant functions T_{v}, which take a value of 1 at a chosen vertex v and 0 at all other vertices.
C^{0} for triangulations: Courant functions

Two Tales of
Freeness
Michael DiPasquale

Introduction

Continuous Splines

Hyperplane Arrangements Connections

A basis for $C_{1}^{0}(\Delta)$ is given by Courant functions T_{v}, which take a value of 1 at a chosen vertex v and 0 at all other vertices.

C^{0} for triangulations: Courant functions

Two Tales of
Freeness
Michae DiPasquale

Introduction

Continuous Splines

Hyperplane
Arrangements

A basis for $C_{1}^{0}(\Delta)$ is given by Courant functions T_{v}, which take a value of 1 at a chosen vertex v and 0 at all other vertices.

C^{0} for triangulations: Courant functions

Two Tales of
Freeness
Michael DiPasquale

Introduction

Continuous Splines

Hyperplane Arrangements Connections

A basis for $C_{1}^{0}(\Delta)$ is given by Courant functions T_{v}, which take a value of 1 at a chosen vertex v and 0 at all other vertices.

C^{0} for triangulations: Courant functions

Two Tales of
Freeness
Michael DiPasquale

Introduction

Continuous Splines

Hyperplane
Arrangements
Connections

A basis for $C_{1}^{0}(\Delta)$ is given by Courant functions T_{v}, which take a value of 1 at a chosen vertex v and 0 at all other vertices.
C^{0} for triangulations: Courant functions

Two Tales of
Freeness
Michael DiPasquale

Introduction

Continuous Splines

Hyperplane
Arrangements
Connections

A basis for $C_{1}^{0}(\Delta)$ is given by Courant functions T_{v}, which take a value of 1 at a chosen vertex v and 0 at all other vertices.

C^{0} for triangulations: face rings

Two Tales of
Freeness
Michael DiPasquale

Introduction
Continuous Splines

Hyperplane
Arrangements
Connections

Face Ring of Δ

Δ a simplicial complex.

$$
A_{\Delta}=\mathbb{R}\left[x_{v} \mid v \text { a vertex of } \Delta\right] / I_{\Delta},
$$

where I_{Δ} is the ideal generated by monomials corresponding to non-faces.
C^{0} for triangulations: face rings

Two Tales of
Freeness
Michael DiPasquale

Introduction
Continuous Splines

Hyperplane
Arrangements
Connections

Face Ring of Δ

Δ a simplicial complex.

$$
A_{\Delta}=\mathbb{R}\left[x_{v} \mid v \text { a vertex of } \Delta\right] / I_{\Delta},
$$

where I_{Δ} is the ideal generated by monomials corresponding to non-faces.

C^{0} for triangulations: face rings

Two Tales of
Freeness
Michael DiPasquale

Introduction
Continuous Splines

Hyperplane
Arrangements

Face Ring of Δ

Δ a simplicial complex.

$$
A_{\Delta}=\mathbb{R}\left[x_{v} \mid v \text { a vertex of } \Delta\right] / I_{\Delta},
$$

where I_{Δ} is the ideal generated by monomials corresponding to non-faces.

- Nonfaces are $\{1,2,3,4\},\{2,3,4\}$
- $I_{\Delta}=\left\langle x_{2} x_{3} x_{4}\right\rangle$
- $A_{\Delta}=$
$\mathbb{R}\left[x_{1}, x_{2}, x_{3}, x_{4}\right] / I_{\Delta}$
C^{0} for triangulations: the main structure theorem

Two Tales of
Freeness
Michael
DiPasquale
Introduction
Continuous
Splines
Hyperplane
Arrangements
Connections

C^{0} for Simplicial Splines [Billera-Rose '92]
$C^{0}(\widehat{\Delta}) \cong A_{\Delta}$, the face ring of Δ.
C^{0} for triangulations: the main structure theorem
Two Tales of
Freeness
Michael
DiPasquale

Introduction
Continuous
Splines
Hyperplane
Arrangements
Connections
C^{0} for Simplicial Splines [Billera-Rose '92]
$C^{0}(\widehat{\Delta}) \cong A_{\Delta}$, the face ring of Δ.
Map is $T_{v} \rightarrow x_{v}$ (v not the cone vertex)
C^{0} for triangulations: the main structure theorem

Two Tales of
Freeness
Michael DiPasquale

Continuous Splines

Hyperplane Arrangements

Connections

C^{0} for Simplicial Splines [Billera-Rose '92]

$C^{0}(\widehat{\Delta}) \cong A_{\Delta}$, the face ring of Δ.
Map is $T_{v} \rightarrow x_{v}$ (v not the cone vertex)
Consequences:

- $\operatorname{dim} C_{d}^{0}(\Delta)=\sum_{i=0}^{n} f_{i}\binom{d-1}{i}$ for $d>0$, where $f_{i}=\# i$-faces of Δ.
- If Δ is homeomorphic to a disk, then $C^{0}(\widehat{\Delta})$ is free as a $S=\mathbb{R}\left[x_{0}, \ldots, x_{n}\right]$ module.
- If Δ is shellable, then degrees of free generators for $C^{0}(\widehat{\Delta})$ as S-module can be read off the h-vector of Δ.

Nonsimplicial Case

Two Tales of Freeness

Michael DiPasquale

Introduction
Continuous
Splines
Hyperplane
Arrangements
Connections

Nonfreeness for Polytopal Complexes [D. '12]
$C^{0}(\widehat{\Delta})$ need not be free if Δ has nonsimplicial faces [D. '12].

Nonsimplicial Case

Two Tales of
Freeness
Michael
DiPasquale

Nonfreeness for Polytopal Complexes [D. '12]

$C^{0}(\widehat{\Delta})$ need not be free if Δ has nonsimplicial faces [D. '12].

Introduction

Continuous
Splines
Hyperplane
Arrangements
Connections
$(-2,2) \quad(2,2)$

$(-2,-2) \quad(2,-2)$
$C^{0}(\widehat{\Delta})$ is a free $\mathbb{R}[x, y, z]$-module

Nonsimplicial Case

Two Tales of
Freeness
Michael DiPasquale

Nonfreeness for Polytopal Complexes [D. '12]

$C^{0}(\widehat{\Delta})$ need not be free if Δ has nonsimplicial faces [D. '12].

Introduction

Continuous Splines

Hyperplane Arrangements
$(-2,3) \quad(2,3)$

$$
(-2,-2) \quad(2,-2)
$$

$C^{0}(\widehat{\Delta})$ is not a free $\mathbb{R}[x, y, z]$-module

Nonsimplicial Case

Two Tales of
Freeness
Michael DiPasquale

Nonfreeness for Polytopal Complexes [D. '12]

$C^{0}(\widehat{\Delta})$ need not be free if Δ has nonsimplicial faces [D. '12].

Two Tales of
Freeness
Michael
DiPasquale

Introduction
Continuous
Splines
Hyperplane
Arrangements
Connections

Part II: Hyperplanes and Derivations

Hyperplane Arrangements

Two Tales of
Freeness
Michael DiPasquale

Introduction

Continuous Splines

Hyperplane
Arrangements
Connections
\mathbb{K} : Field, characteristic zero
$V: \mathbb{K}^{\ell}$
Hyperplane: zero locus $V(\alpha)$ of affine linear form $\alpha=\left(\sum_{i=1}^{\ell} a_{i} x_{i}\right)+a_{0}$

Arrangement: $\mathcal{A}=\cup_{i=1}^{k} H_{i}, H_{i}=V\left(\alpha_{i}\right)$.

Hyperplane Arrangements

Two Tales of
Freeness
Michael DiPasquale

Introduction

Continuous Splines

Hyperplane
Arrangements
Connections
$\mathbb{K}:$ Field, characteristic zero
$V: \mathbb{K}^{\ell}$
Hyperplane: zero locus $V(\alpha)$ of affine linear form

$$
\alpha=\left(\sum_{i=1}^{\ell} a_{i} x_{i}\right)+a_{0}
$$

Arrangement: $\mathcal{A}=\cup_{i=1}^{k} H_{i}, H_{i}=V\left(\alpha_{i}\right)$.
A_{2} braid arrangement in \mathbb{R}^{2} :

Braid arrangement

Two Tales of Freeness

Michael DiPasquale

Introduction
Continuous Splines

Hyperplane Arrangements Connections

Braid arrangement: $\quad A_{\ell}=\bigcup_{0 \leq i<j \leq \ell} V\left(y_{i}-y_{j}\right) \subset \mathbb{K}^{\ell+1}$
Set $x_{i}=y_{0}-y_{i}: \quad A_{\ell}=\left(\bigcup_{i=1}^{\ell} V\left(x_{i}\right)\right) \bigcup\left(\bigcup_{1 \leq i<j \leq \ell} V\left(x_{j}-x_{i}\right)\right)$

A_{3} braid arrangement in \mathbb{R}^{3}

Motion planning

Two Tales of Freeness

Michael

DiPasquale

Introduction

Continuous Splines

Hyperplane Arrangements

Connections

How can $\ell+1$ robots move in the plane without collision?

Motion planning

Two Tales of
Freeness
Michael DiPasquale

Introduction
Continuous Splines

Hyperplane
Arrangements
Connections

How can $\ell+1$ robots move in the plane without collision?

Motion planning

Two Tales of
Freeness
Michael DiPasquale

Introduction
Continuous Splines

Hyperplane
Arrangements
Connections

How can $\ell+1$ robots move in the plane without collision?

Motion planning

Two Tales of

Freeness
Michael DiPasquale

Introduction
Continuous Splines

Hyperplane
Arrangements
Connections

How can $\ell+1$ robots move in the plane without collision?

Avoid the locus $z_{i}=z_{j}$!
In other words
$\left(z_{0}, \ldots, z_{\ell}\right) \in \mathbb{C}^{\ell+1} \backslash A_{\ell}$.

Paths in $\mathbb{C}^{\ell+1} \backslash A_{\ell} \leftrightarrow$ non-colliding trajectories for $\ell+1$ robots.

Questions about arrangement complements

Two Tales of
Freeness
Michael
DiPasquale

Introduction

- $\mathbb{K}=\mathbb{R}$: Count connected components (chambers) of $\left(V=\mathbb{R}^{\ell}\right) \backslash \mathcal{A}$. [Zaslavsky '75]

Questions about arrangement complements

Two Tales of
Freeness
Michael
DiPasquale

Introduction
Continuous Splines

Hyperplane Arrangements

Connections

- $\mathbb{K}=\mathbb{R}$: Count connected components (chambers) of $\left(V=\mathbb{R}^{\ell}\right) \backslash \mathcal{A}$. [Zaslavsky '75]
- $\mathbb{K}=$ finite field: Count elements of $\left(V=\mathbb{K}^{\ell}\right) \backslash \mathcal{A}$.

Questions about arrangement complements

Two Tales of
Freeness
Michael DiPasquale

Introduction

Continuous Splines

Hyperplane
Arrangements
Connections

- $\mathbb{K}=\mathbb{R}$: Count connected components (chambers) of $\left(V=\mathbb{R}^{\ell}\right) \backslash \mathcal{A}$. [Zaslavsky '75]
- $\mathbb{K}=$ finite field: Count elements of $\left(V=\mathbb{K}^{\ell}\right) \backslash \mathcal{A}$.
- $\mathbb{K}=\mathbb{C}:\left(V=\mathbb{C}^{\ell}\right) \backslash \mathcal{A}$ is connected! Describe
- Fundamental group $\pi_{1}(V \backslash \mathcal{A})$ [Most difficult]
- Cohomology ring $H^{*}(V \backslash \mathcal{A})$ [Orlik-Solomon '80]

Questions about arrangement complements

Two Tales of
Freeness
Michael DiPasquale

Introduction

Continuous Splines

Hyperplane Arrangements

Connections

- $\mathbb{K}=\mathbb{R}$: Count connected components (chambers) of $\left(V=\mathbb{R}^{\ell}\right) \backslash \mathcal{A}$. [Zaslavsky '75]
- $\mathbb{K}=$ finite field: Count elements of $\left(V=\mathbb{K}^{\ell}\right) \backslash \mathcal{A}$.
- $\mathbb{K}=\mathbb{C}:\left(V=\mathbb{C}^{\ell}\right) \backslash \mathcal{A}$ is connected! Describe
- Fundamental group $\pi_{1}(V \backslash \mathcal{A})$ [Most difficult]
- Cohomology ring $H^{*}(V \backslash \mathcal{A})$ [Orlik-Solomon '80]

Denote by $\pi(\mathcal{A}, t):=\sum_{i \geq 0} \mathrm{rk}\left(H^{i}\left(\mathbb{C}^{\ell} \backslash \mathcal{A}\right)\right) t^{i}$ the Poincare polynomial of \mathcal{A}.

Module of derivations

Two Tales of
Freeness
Michael
DiPasquale

Introduction
Continuous
Splines
Hyperplane
Arrangements

Connections

- $V=\mathbb{K}^{\ell}, S=\operatorname{Sym}\left(V^{*}\right) \cong \mathbb{K}\left[x_{1}, \ldots, x_{\ell}\right]$

$$
\operatorname{Der}_{\mathbb{K}}(S):=\left\{\sum_{i=1}^{\ell} \theta_{i} \frac{\partial}{\partial x_{i}}: \theta_{i} \in S \text { for } i=1, \ldots, \ell\right\}
$$

$=$ Polynomial vector fields

Module of derivations

Two Tales of
Freeness
Michael
DiPasquale

Introduction
Continuous Splines

Hyperplane
Arrangements
Connections

- $V=\mathbb{K}^{\ell}, S=\operatorname{Sym}\left(V^{*}\right) \cong \mathbb{K}\left[x_{1}, \ldots, x_{\ell}\right]$

$$
\operatorname{Der}_{\mathbb{K}}(S):=\left\{\sum_{i=1}^{\ell} \theta_{i} \frac{\partial}{\partial x_{i}}: \theta_{i} \in S \text { for } i=1, \ldots, \ell\right\}
$$

$=$ Polynomial vector fields

- Given $f \in S, \theta=\sum \theta_{i} \frac{\partial}{\partial x_{i}} \in \operatorname{Der}_{\mathbb{K}}(S)$:
- $f \theta=\sum\left(f \theta_{i}\right) \frac{\partial}{\partial x_{i}} \in \operatorname{Der}_{\mathbb{K}}(S)\left[\operatorname{Der}_{\mathbb{K}}(S)\right.$ is an S-module]
- $\theta(f)=\sum \theta_{i} \frac{\partial f}{\partial x_{i}} \in S$

Module of \mathcal{A}-derivations

Two Tales of
Freeness
Michael
DiPasquale

Introduction

Continuous Splines

Hyperplane
Arrangements

- $\mathcal{A}=\cup_{i=1}^{k} H_{i}, H_{i}=V\left(\alpha_{i}\right)$. Module of derivations of \mathcal{A} :

$$
D(\mathcal{A}):=\left\{\theta \in \operatorname{Der}_{\mathbb{K}}(S): \alpha_{i} \mid \theta\left(\alpha_{i}\right) \text { for } i=1, \ldots, k\right\}
$$

$=$ Polynomial vector fields tangent to \mathcal{A}

Module of \mathcal{A}-derivations

Two Tales of
Freeness
Michael

DiPasquale

Introduction
Continuous Splines

Hyperplane
Arrangements
Connections

- $\mathcal{A}=\cup_{i=1}^{k} H_{i}, H_{i}=V\left(\alpha_{i}\right)$. Module of derivations of \mathcal{A} :

$$
D(\mathcal{A}):=\left\{\theta \in \operatorname{Der}_{\mathbb{K}}(S): \alpha_{i} \mid \theta\left(\alpha_{i}\right) \text { for } i=1, \ldots, k\right\}
$$

$=$ Polynomial vector fields tangent to \mathcal{A}

- $D(\mathcal{A})$ is an S-module: $f \in S, \theta \in D(\mathcal{A})$, then $f \theta \in D(\mathcal{A})$

Module of \mathcal{A}-derivations

Two Tales of
Freeness
Michael DiPasquale

Introduction
Continuous Splines

Hyperplane
Arrangements

- $\mathcal{A}=\cup_{i=1}^{k} H_{i}, H_{i}=V\left(\alpha_{i}\right)$. Module of derivations of \mathcal{A} :

$$
D(\mathcal{A}):=\left\{\theta \in \operatorname{Der}_{\mathbb{K}}(S): \alpha_{i} \mid \theta\left(\alpha_{i}\right) \text { for } i=1, \ldots, k\right\}
$$

$=$ Polynomial vector fields tangent to \mathcal{A}

- $D(\mathcal{A})$ is an S-module: $f \in S, \theta \in D(\mathcal{A})$, then $f \theta \in D(\mathcal{A})$
- $D(\mathcal{A})$ is a free S-module if there are $\theta_{1}, \ldots, \theta_{\ell} \in D(\mathcal{A})$ so that every $\theta \in D(\mathcal{A})$ can be written uniquely as $\theta=\sum_{i=1}^{\ell} f_{i} \theta_{i}$, where $f_{i} \in S$.
- \mathcal{A} is free if $D(\mathcal{A})$ is a free S-module.

Example

Two Tales of Freeness Michael DiPasquale

$$
A_{2}=V(x) \cup V(y) \cup V(y-x) \subset \mathbb{K}^{2}
$$

Introduction
Continuous Splines

Hyperplane Arrangements

Example

Two Tales of Freeness

Michael
DiPasquale

Introduction
Continuous Splines

Hyperplane
Arrangements

Connections

$$
A_{2}=V(x) \cup V(y) \cup V(y-x) \subset \mathbb{K}^{2}
$$

$$
D\left(A_{2}\right) \text { is free with basis }
$$

- $\theta_{1}=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}$ (degree 1)
- $\theta_{2}=x^{2} \frac{\partial}{\partial x}+y^{2} \frac{\partial}{\partial y}$ (degree 2)

Example

Two Tales of
Freeness
Michael
DiPasquale

Introduction
Continuous Splines

Hyperplane
Arrangements
Connections

$$
A_{2}=V(x) \cup V(y) \cup V(y-x) \subset \mathbb{K}^{2}
$$

$$
D\left(A_{2}\right) \text { is free with basis }
$$

- $\theta_{1}=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}$ (degree 1)
- $\theta_{2}=x^{2} \frac{\partial}{\partial x}+y^{2} \frac{\partial}{\partial y}$ (degree 2)
- A_{2} is free with exponents 1,2 .

Example

Two Tales of
Freeness
Michael DiPasquale

Introduction
Continuous Splines

Hyperplane Arrangements

Connections

$$
A_{2}=V(x) \cup V(y) \cup V(y-x) \subset \mathbb{K}^{2}
$$

$D\left(A_{2}\right)$ is free with basis

- $\theta_{1}=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}$ (degree 1)
- $\theta_{2}=x^{2} \frac{\partial}{\partial x}+y^{2} \frac{\partial}{\partial y}$ (degree 2)
- A_{2} is free with exponents 1,2 .

Check: $\quad \theta_{i}(x) \in\langle x\rangle, \quad \theta_{i}(y) \in\langle y\rangle, \quad \theta_{i}(y-x) \in\langle(y-x)\rangle$

Example

Two Tales of
Freeness
Michael DiPasquale

Introduction
Continuous Splines

Hyperplane Arrangements

Connections
$A_{2}=V(x) \cup V(y) \cup V(y-x) \subset \mathbb{K}^{2}$
$D\left(A_{2}\right)$ is free with basis

- $\theta_{1}=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}$ (degree 1)
- $\theta_{2}=x^{2} \frac{\partial}{\partial x}+y^{2} \frac{\partial}{\partial y}$ (degree 2)
- A_{2} is free with exponents 1,2 .

Check: $\quad \theta_{i}(x) \in\langle x\rangle, \quad \theta_{i}(y) \in\langle y\rangle, \quad \theta_{i}(y-x) \in\langle(y-x)\rangle$
Note: $\operatorname{det}\left[\begin{array}{cc}x & y \\ x^{2} & y^{2}\end{array}\right]=x y^{2}-x^{2} y=x y(y-x)$ (Saito's
Criterion!)

Consequence of Freeness

Two Tales of
Freeness
Michael DiPasquale

Introduction

Continuous Splines

Hyperplane
Arrangements
Connections

A seminal result of Terao relates freeness of $D(\mathcal{A})$ with the cohomology ring of $\mathbb{C}^{\ell} \backslash \mathcal{A}$.

Theorem (Terao '81)
If \mathcal{A} is free with exponents a_{1}, \ldots, a_{ℓ}, then $\pi(\mathcal{A}, t)=\prod_{i=1}^{\ell}\left(1+a_{i} t\right)$.

Consequence of Freeness

Two Tales of
Freeness
Michael DiPasquale

Introduction
Continuous Splines

Hyperplane
Arrangements
Connections

A seminal result of Terao relates freeness of $D(\mathcal{A})$ with the cohomology ring of $\mathbb{C}^{\ell} \backslash \mathcal{A}$.

Theorem (Terao '81)
If \mathcal{A} is free with exponents a_{1}, \ldots, a_{ℓ}, then $\pi(\mathcal{A}, t)=\prod_{i=1}^{\ell}\left(1+a_{i} t\right)$.

It is unknown precisely what characteristics make an arrangement free.

Lattice of an Arrangement

Two Tales of
Freeness
Michael DiPasquale

Introduction

Continuous Splines

Hyperplane
Arrangements
Connections

Lattice $L_{\mathcal{A}}$ of \mathcal{A} : all intersections of hyperplanes of \mathcal{A}, ordered with respect to reverse inclusion.

Lattice of an Arrangement

Two Tales of
Freeness
Michael DiPasquale

Introduction

Continuous Splines

Hyperplane
Arrangements
Connections

Lattice $L_{\mathcal{A}}$ of \mathcal{A} : all intersections of hyperplanes of \mathcal{A}, ordered with respect to reverse inclusion.

Lattice of an Arrangement

Two Tales of
Freeness
Michael DiPasquale

Continuous Splines

Hyperplane
Arrangements
Connections

Lattice $L_{\mathcal{A}}$ of \mathcal{A} : all intersections of hyperplanes of \mathcal{A}, ordered with respect to reverse inclusion.

A property of \mathcal{A} is combinatorial if it only depends on $L_{\mathcal{A}}$.

Supersolvable Arrangements

Two Tales of
Freeness
Michael
DiPasquale

Introduction
Continuous

- Sometimes freeness of \mathcal{A} can be read off the lattice $L_{\mathcal{A}}$.

Supersolvable Arrangements

Two Tales of
Freeness
Michael DiPasquale

- Sometimes freeness of \mathcal{A} can be read off the lattice $L_{\mathcal{A}}$.
- $L_{\mathcal{A}}$ is called supersolvable if there is a maximal chain of modular elements.
- If $L_{\mathcal{A}}$ is supersolvable then \mathcal{A} is free.

Supersolvable Arrangements

Two Tales of
Freeness
Michael
DiPasquale

- Sometimes freeness of \mathcal{A} can be read off the lattice $L_{\mathcal{A}}$.
- $L_{\mathcal{A}}$ is called supersolvable if there is a maximal chain of modular elements.
- If $L_{\mathcal{A}}$ is supersolvable then \mathcal{A} is free.
- For example, the braid arrangements A_{ℓ} are supersolvable.

Supersolvable Arrangements

Two Tales of
Freeness
Michael DiPasquale

Introduction

Continuous Splines

Hyperplane
Arrangements
Connections

- Sometimes freeness of \mathcal{A} can be read off the lattice $L_{\mathcal{A}}$.
- $L_{\mathcal{A}}$ is called supersolvable if there is a maximal chain of modular elements.
- If $L_{\mathcal{A}}$ is supersolvable then \mathcal{A} is free.
- For example, the braid arrangements A_{ℓ} are supersolvable.

Open question: does freeness of \mathcal{A} depend only on $L_{\mathcal{A}}$?

Two Tales of

Freeness
Michael
DiPasquale

Introduction
Continuous
Splines
Hyperplane
Arrangements
Part III: Connections
Connections

First Similarities

Two Tales of
Freeness
Michael DiPasquale

- Both $D(\mathcal{A})$ and $C^{0}(\Delta)$ computed as kernels of similar matrices [Billera-Rose '92] \Longrightarrow both reflexive modules

Introduction

Continuous Splines

Hyperplane
Arrangements
Connections

First Similarities

Two Tales of
Freeness
Michael
DiPasquale

Introduction
Continuous Splines

Hyperplane
Arrangements
Connections

- Both $D(\mathcal{A})$ and $C^{0}(\Delta)$ computed as kernels of similar matrices [Billera-Rose '92] \Longrightarrow both reflexive modules
- Have almost identical localization properties

First Similarities

Two Tales of
Freeness
Michael DiPasquale

Introduction

Continuous Splines

Hyperplane
Arrangements
Connections

- Both $D(\mathcal{A})$ and $C^{0}(\Delta)$ computed as kernels of similar matrices [Billera-Rose '92] \Longrightarrow both reflexive modules
- Have almost identical localization properties
- $D\left(A_{n}\right) \cong C^{0}(\Delta)$ for an appropriate triangulation Δ [Schenck '12]

First Similarities

Two Tales of
Freeness
Michael DiPasquale

Introduction
Continuous Splines

Hyperplane
Arrangements
Connections

- Both $D(\mathcal{A})$ and $C^{0}(\Delta)$ computed as kernels of similar matrices [Billera-Rose '92] \Longrightarrow both reflexive modules
- Have almost identical localization properties
- $D\left(A_{n}\right) \cong C^{0}(\Delta)$ for an appropriate triangulation Δ [Schenck '12]
- If \mathcal{A} is a sub-arrangement of A_{n} (a graphic arrangement), $D(\mathcal{A})$ can also be identified with a spline module [D. '16]

First Similarities

Two Tales of
Freeness
Michael DiPasquale

- Both $D(\mathcal{A})$ and $C^{0}(\Delta)$ computed as kernels of similar matrices [Billera-Rose '92] \Longrightarrow both reflexive modules
- Have almost identical localization properties
- $D\left(A_{n}\right) \cong C^{0}(\Delta)$ for an appropriate triangulation Δ [Schenck '12]
- If \mathcal{A} is a sub-arrangement of A_{n} (a graphic arrangement), $D(\mathcal{A})$ can also be identified with a spline module [D. '16]
- Correspondence extends to graphic multi-arrangements and study of free multiplicities on graphic arrangements

First Similarities

- Both $D(\mathcal{A})$ and $C^{0}(\Delta)$ computed as kernels of similar matrices [Billera-Rose '92] \Longrightarrow both reflexive modules
- Have almost identical localization properties
- $D\left(A_{n}\right) \cong C^{0}(\Delta)$ for an appropriate triangulation Δ [Schenck '12]
- If \mathcal{A} is a sub-arrangement of A_{n} (a graphic arrangement), $D(\mathcal{A})$ can also be identified with a spline module [D. '16]
- Correspondence extends to graphic multi-arrangements and study of free multiplicities on graphic arrangements
- Using the chain complex of Billera-Schenck-Stillman, get new obstructions to freeness of multi-braid arrangements [D-Francisco-Mermin-Schweig '16].

Hinting at deeper connections: Ziegler's Pair

Two Tales of
Freeness
Michael DiPasquale

Introduction

Continuous Splines

Hyperplane Arrangements

Connections

Consider the one-parameter family of arrangements \mathcal{A}_{t} whose hyperplanes are defined by the vanishing of the following forms (t is considered a parameter):

$$
\begin{array}{lll}
x & x+y+z & 2 x+y+z \\
y & 2 x+3 y+z & 2 x+3 y+4 z \\
z & (1+t) x+(3+t) z & (1+t) x+(2+t) y+(3+t) z
\end{array}
$$

Hinting at deeper connections: Ziegler's Pair

Two Tales of
Freeness
Michael DiPasquale

Introduction
Continuous Splines

Hyperplane
Arrangements
Connections

Consider the one-parameter family of arrangements \mathcal{A}_{t} whose hyperplanes are defined by the vanishing of the following forms (t is considered a parameter):

$$
\begin{array}{lll}
x & x+y+z & 2 x+y+z \\
y & 2 x+3 y+z & 2 x+3 y+4 z \\
z & (1+t) x+(3+t) z & (1+t) x+(2+t) y+(3+t) z
\end{array}
$$

\mathcal{A}_{t} has six triple points (in $\mathbb{P}^{2}(\mathbb{R})$), which lie on a smooth conic if and only if $t=0,-5$.

Hinting at deeper connections: Ziegler's Pair

Two Tales of
Freeness
Michael DiPasquale

Introduction
Continuous Splines

Hyperplane
Arrangements
Connections

Consider the one-parameter family of arrangements \mathcal{A}_{t} whose hyperplanes are defined by the vanishing of the following forms (t is considered a parameter):

$$
\begin{array}{lll}
x & x+y+z & 2 x+y+z \\
y & 2 x+3 y+z & 2 x+3 y+4 z \\
z & (1+t) x+(3+t) z & (1+t) x+(2+t) y+(3+t) z
\end{array}
$$

\mathcal{A}_{t} has six triple points (in $\mathbb{P}^{2}(\mathbb{R})$), which lie on a smooth conic if and only if $t=0,-5$.

- $D\left(\mathcal{A}_{t}\right)$ is not free for any t

Hinting at deeper connections: Ziegler's Pair

Two Tales of
Freeness
Michael DiPasquale

Consider the one-parameter family of arrangements \mathcal{A}_{t} whose hyperplanes are defined by the vanishing of the following forms (t is considered a parameter):

$$
\begin{array}{lll}
x & x+y+z & 2 x+y+z \\
y & 2 x+3 y+z & 2 x+3 y+4 z \\
z & (1+t) x+(3+t) z & (1+t) x+(2+t) y+(3+t) z
\end{array}
$$

\mathcal{A}_{t} has six triple points (in $\mathbb{P}^{2}(\mathbb{R})$), which lie on a smooth conic if and only if $t=0,-5$.

- $D\left(\mathcal{A}_{t}\right)$ is not free for any t
- $D\left(\mathcal{A}_{-5}\right), D\left(\mathcal{A}_{0}\right)$ have different algebraic structure from $D\left(\mathcal{A}_{t}\right)$ [Ziegler '89].

Hinting at deeper connections: Ziegler's Pair

Two Tales of
Freeness
Michael DiPasquale

Consider the one-parameter family of arrangements \mathcal{A}_{t} whose hyperplanes are defined by the vanishing of the following forms (t is considered a parameter):

$$
\begin{array}{lll}
x & x+y+z & 2 x+y+z \\
y & 2 x+3 y+z & 2 x+3 y+4 z \\
z & (1+t) x+(3+t) z & (1+t) x+(2+t) y+(3+t) z
\end{array}
$$

\mathcal{A}_{t} has six triple points (in $\mathbb{P}^{2}(\mathbb{R})$), which lie on a smooth conic if and only if $t=0,-5$.

- $D\left(\mathcal{A}_{t}\right)$ is not free for any t
- $D\left(\mathcal{A}_{-5}\right), D\left(\mathcal{A}_{0}\right)$ have different algebraic structure from $D\left(\mathcal{A}_{t}\right)$ [Ziegler '89].
- Let Σ_{t} be the fan whose maximal cones are the chambers of $\mathbb{R}^{3} \backslash \mathcal{A}_{t}$ (there are 62 maximal polyhedral cones)

Hinting at deeper connections: Ziegler's Pair

Two Tales of
Freeness
Michael DiPasquale

Consider the one-parameter family of arrangements \mathcal{A}_{t} whose hyperplanes are defined by the vanishing of the following forms (t is considered a parameter):

$$
\begin{array}{lll}
x & x+y+z & 2 x+y+z \\
y & 2 x+3 y+z & 2 x+3 y+4 z \\
z & (1+t) x+(3+t) z & (1+t) x+(2+t) y+(3+t) z
\end{array}
$$

\mathcal{A}_{t} has six triple points (in $\mathbb{P}^{2}(\mathbb{R})$), which lie on a smooth conic if and only if $t=0,-5$.

- $D\left(\mathcal{A}_{t}\right)$ is not free for any t
- $D\left(\mathcal{A}_{-5}\right), D\left(\mathcal{A}_{0}\right)$ have different algebraic structure from $D\left(\mathcal{A}_{t}\right)$ [Ziegler '89].
- Let Σ_{t} be the fan whose maximal cones are the chambers of $\mathbb{R}^{3} \backslash \mathcal{A}_{t}$ (there are 62 maximal polyhedral cones)
- $C^{0}\left(\Sigma_{t}\right)$ is free if and only if $t \neq-5,0$.

Hinting at deeper connections: Ziegler's Pair

Consider the one-parameter family of arrangements \mathcal{A}_{t} whose hyperplanes are defined by the vanishing of the following forms (t is considered a parameter):

$$
\begin{array}{lll}
x & x+y+z & 2 x+y+z \\
y & 2 x+3 y+z & 2 x+3 y+4 z \\
z & (1+t) x+(3+t) z & (1+t) x+(2+t) y+(3+t) z
\end{array}
$$

\mathcal{A}_{t} has six triple points (in $\mathbb{P}^{2}(\mathbb{R})$), which lie on a smooth conic if and only if $t=0,-5$.

- $D\left(\mathcal{A}_{t}\right)$ is not free for any t
- $D\left(\mathcal{A}_{-5}\right), D\left(\mathcal{A}_{0}\right)$ have different algebraic structure from $D\left(\mathcal{A}_{t}\right)$ [Ziegler '89].
- Let Σ_{t} be the fan whose maximal cones are the chambers of $\mathbb{R}^{3} \backslash \mathcal{A}_{t}$ (there are 62 maximal polyhedral cones)
- $C^{0}\left(\Sigma_{t}\right)$ is free if and only if $t \neq-5,0$.

Connection here hinges on formality of \mathcal{A}_{t}.

Future Work

Two Tales of
Freeness
Michael

DiPasquale

Introduction

Continuous Splines

Hyperplane
Arrangements
Connections
(1) Important obstructions to freeness of $C^{0}(\Delta)$ come from homologies of a chain complex due to Billera, Schenck, and Stillman.

Future Work

(1) Important obstructions to freeness of $C^{0}(\Delta)$ come from homologies of a chain complex due to Billera, Schenck, and Stillman.
(2) There are promising indications that an analogous chain complex can be defined for arrangements (building on work of Yuzvinsky, Brandt, and Terao), which coincides with the known spline complex in the case of braid arrangements.

Future Work

(1) Important obstructions to freeness of $C^{0}(\Delta)$ come from homologies of a chain complex due to Billera, Schenck, and Stillman.
(2) There are promising indications that an analogous chain complex can be defined for arrangements (building on work of Yuzvinsky, Brandt, and Terao), which coincides with the known spline complex in the case of braid arrangements.
(3) Such homological obstructions complement known methods for proving freeness of arrangements via deletion-restriction.

Future Work

(1) Important obstructions to freeness of $C^{0}(\Delta)$ come from homologies of a chain complex due to Billera, Schenck, and Stillman.
(2) There are promising indications that an analogous chain complex can be defined for arrangements (building on work of Yuzvinsky, Brandt, and Terao), which coincides with the known spline complex in the case of braid arrangements.
(3) Such homological obstructions complement known methods for proving freeness of arrangements via deletion-restriction.
(4) Can deletion-restriction methods be found for splines?

Two Tales of Freeness

Michael
DiPasquale

Introduction
Continuous
Splines
Hyperplane
Arrangements

THANK YOU!

Connections

