Dimensions of Spline Spaces and Commutative Algebra

Michael DiPasquale

Towson University
Colloquium

Dimensions of
Spline Spaces
Michael
DiPasquale

Background
and Central
Questions
Freeness
How Big is
Big Enough?
Semi
Algebraic
Splines
Open
Questions

Part I: Background and Central Questions

Piecewise Polynomials

Dimensions of
Spline Spaces
Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough ?
Semi-
Algebraic
Splines
Open
Questions

Spline
A piecewise polynomial function, continuously differentiable to some order.

Piecewise Polynomials

Dimensions of
Spline Spaces

Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi
Algebraic
Splines
Open
Questions

Spline

A piecewise polynomial function, continuously differentiable to some order.

Low degree splines are used in Calc 1 to approximate integrals.

Piecewise Polynomials

Dimensions of
Spline Spaces
Michael
DiPasquale

Background and Central Questions

Freeness
How Big is Big Enough?

Semi
Algebraic Splines

Open
Questions

Spline

A piecewise polynomial function, continuously differentiable to some order.

Low degree splines are used in Calc 1 to approximate integrals.

Graph of a function

Piecewise Polynomials

Dimensions of
Spline Spaces
Michael
DiPasquale

Background and Central Questions

Freeness
How Big is Big Enough?

Semi
Algebraic Splines

Open
Questions

Spline

A piecewise polynomial function, continuously differentiable to some order.

Low degree splines are used in Calc 1 to approximate integrals.

Trapezoid Rule

Piecewise Polynomials

Dimensions of
Spline Spaces
Michael
DiPasquale

Background and Central Questions

Freeness
How Big is Big Enough?

Semi
Algebraic Splines

Open
Questions

Spline

A piecewise polynomial function, continuously differentiable to some order.

Low degree splines are used in Calc 1 to approximate integrals.

Simpson's Rule

Univariate Splines

Dimensions of
Spline Spaces

Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi
Algebraic
Splines
Open
Questions

Most widely studied case: approximation of a function $f(x)$ over an interval $\Delta=[a, b] \subset \mathbb{R}$ by C^{r} piecewise polynomials.

Univariate Splines

Dimensions of
Spline Spaces
Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi-
Algebraic Splines

Open Questions

Most widely studied case: approximation of a function $f(x)$ over an interval $\Delta=[a, b] \subset \mathbb{R}$ by C^{r} piecewise polynomials.

- Subdivide $\Delta=[a, b]$ into subintervals:
$\Delta=\left[a_{0}, a_{1}\right] \cup\left[a_{1}, a_{2}\right] \cup \cdots \cup\left[a_{n-1}, a_{n}\right]$
- Find a basis for the vector space $C_{d}^{r}(\Delta)$ of C^{r} piecewise polynomial functions on Δ with degree at most d (B-splines!)
- Find best approximation to $f(x)$ in $C_{d}^{r}(\Delta)$

Two Subintervals

Dimensions of
Spline Spaces
Michael
DiPasquale

Background and Central Questions

Freeness
How Big is Big Enough?

Semi-

Algebraic
Splines

Open

Questions
$\Delta=\left[a_{0}, a_{1}\right] \cup\left[a_{1}, a_{2}\right]$ (assume WLOG $a_{1}=0$)
$\left(f_{1}, f_{2}\right) \in C_{d}^{r}(\Delta) \Longleftrightarrow f_{1}^{(i)}(0)=f_{2}^{(i)}(0)$ for $0 \leq i \leq r$
$\Longleftrightarrow \quad x^{r+1} \mid\left(f_{2}-f_{1}\right)$
$\Longleftrightarrow\left(f_{2}-f_{1}\right) \in\left\langle x^{r+1}\right\rangle$

Two Subintervals

Dimensions of Spline Spaces

Michael
DiPasquale

Background and Central Questions

Freeness
How Big is Big Enough?

Semi-
Algebraic
Splines
Open
Questions
$\Delta=\left[a_{0}, a_{1}\right] \cup\left[a_{1}, a_{2}\right]$ (assume WLOG $\left.a_{1}=0\right)$

$$
\begin{aligned}
\left(f_{1}, f_{2}\right) \in C_{d}^{r}(\Delta) & \Longleftrightarrow f_{1}^{(i)}(0)=f_{2}^{(i)}(0) \text { for } 0 \leq i \leq r \\
& \Longleftrightarrow x^{r+1} \mid\left(f_{2}-f_{1}\right) \\
& \Longleftrightarrow\left(f_{2}-f_{1}\right) \in\left\langle x^{r+1}\right\rangle
\end{aligned}
$$

Even more explicitly:

- $f_{1}(x)=b_{0}+b_{1} x+\cdots+b_{d} x^{d}$
- $f_{2}(x)=c_{0}+c_{1} x+\cdots+c_{d} x^{d}$
- $\left(f_{0}, f_{1}\right) \in C_{d}^{r}(\Delta) \Longleftrightarrow b_{0}=c_{0}, \ldots, b_{r}=c_{r}$.

Two Subintervals

Dimensions of Spline Spaces

Michael
DiPasquale

Background and Central Questions

Freeness
How Big is Big Enough?
$\Delta=\left[a_{0}, a_{1}\right] \cup\left[a_{1}, a_{2}\right]$ (assume WLOG $a_{1}=0$)

$$
\begin{aligned}
\left(f_{1}, f_{2}\right) \in C_{d}^{r}(\Delta) & \Longleftrightarrow f_{1}^{(i)}(0)=f_{2}^{(i)}(0) \text { for } 0 \leq i \leq r \\
& \Longleftrightarrow x^{r+1} \mid\left(f_{2}-f_{1}\right) \\
& \Longleftrightarrow \quad\left(f_{2}-f_{1}\right) \in\left\langle x^{r+1}\right\rangle
\end{aligned}
$$

Even more explicitly:

- $f_{1}(x)=b_{0}+b_{1} x+\cdots+b_{d} x^{d}$
- $f_{2}(x)=c_{0}+c_{1} x+\cdots+c_{d} x^{d}$
- $\left(f_{0}, f_{1}\right) \in C_{d}^{r}(\Delta) \Longleftrightarrow b_{0}=c_{0}, \ldots, b_{r}=c_{r}$.

$$
\operatorname{dim} C_{d}^{r}(\Delta)= \begin{cases}d+1 & \text { if } d \leq r \\ (d+1)+(d-r) & \text { if } d>r\end{cases}
$$

Note: $\operatorname{dim} C_{d}^{r}(\Delta)$ is polynomial in d for $d>r$.

Higher Dimensions

Dimensions of
Spline Spaces
Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi-
Algebraic
Splines
Open
Questions

Let $\Delta \subset \mathbb{R}^{n}$ be

Higher Dimensions

Dimensions of
Spline Spaces
Michael
DiPasquale

Background
and Central
Questions
Freeness
How Big is
Big Enough?
Semi-
Algebraic
Splines
Open
Questions

$$
\text { Let } \Delta \subset \mathbb{R}^{n} \text { be }
$$

- a polytopal complex
- pure n-dimensional
- a pseudomanifold

Higher Dimensions

Dimensions of
Spline Spaces

Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi-
Algebraic
Splines
Open
Questions

Let $\Delta \subset \mathbb{R}^{n}$ be

- a polytopal complex
- pure n-dimensional
- a pseudomanifold

A polytopal complex \mathcal{Q}

Higher Dimensions

Dimensions of Spline Spaces

Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi
Algebraic Splines

Open Questions

Let $\Delta \subset \mathbb{R}^{n}$ be

- a polytopal complex
- pure n-dimensional
- a pseudomanifold

A polytopal complex \mathcal{Q}
(Algebraic) Spline Criterion:

- If $\tau \in \Delta_{n-1}, I_{\tau}=$ affine form vanishing on affine span of τ
- Collection $\left\{F_{\sigma}\right\}_{\sigma \in \Delta_{n}}$ glue to $F \in C^{r}(\Delta) \Longleftrightarrow$ for every pair of adjacent facets $\sigma_{1}, \sigma_{2} \in \Delta_{n}$ with $\sigma_{1} \cap \sigma_{2}=\tau \in \Delta_{n-1}, I_{\tau}^{r+1} \mid\left(F_{\sigma_{1}}-F_{\sigma_{2}}\right)$

The dimension question

Dimensions of
Spline Spaces

Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi
Algebraic
Splines
Open
Questions

Key Fact: $C_{d}^{r}(\Delta)$ is a finite dimensional real vector space.

The dimension question

Dimensions of
Spline Spaces

Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi
Algebraic
Splines
Open
Questions

Key Fact: $C_{d}^{r}(\Delta)$ is a finite dimensional real vector space.

A basis for $C_{1}^{0}(\mathcal{Q})$
is shown at right.

The dimension question

Dimensions of Spline Spaces

Michael
DiPasquale

Background and Central Questions

Freeness
How Big is Big Enough?

Semi-
Algebraic
Splines
Open
Questions

Key Fact: $C_{d}^{r}(\Delta)$ is a finite dimensional real vector space.

A basis for $C_{1}^{0}(\mathcal{Q})$ is shown at right.

$$
\operatorname{dim}_{\mathbb{R}} C_{1}^{0}(\mathcal{Q})=4
$$

The dimension question

Dimensions of Spline Spaces

Michael
DiPasquale

Background and Central Questions

Freeness
How Big is Big Enough?

Semi-

Algebraic Splines

Open
Questions

Key Fact: $C_{d}^{r}(\Delta)$ is a finite dimensional real vector space.

A basis for $C_{1}^{0}(\mathcal{Q})$ is shown at right.

$$
\operatorname{dim}_{\mathbb{R}} C_{1}^{0}(\mathcal{Q})=4
$$

Two central problems in approximation theory:
(1) Determine $\operatorname{dim} C_{d}^{r}(\Delta)$
(2) Construct a 'local' basis of $C_{d}^{r}(\Delta)$, if possible

Who Cares?

Dimensions of
Spline Spaces
Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi-
Algebraic Splines

Open Questions
(1) Computation of $\operatorname{dim} C_{d}^{r}(\Delta)$ for higher dimensions initiated by [Strang '75] in connection with finite element method
(2) Data fitting in approximation theory
(3) Computer Aided Geometric Design (CAGD) - building surfaces by splines [Farin '97]
(9) Toric Geometry: Equivariant Chow cohomology rings of toric varieties are rings of continuous splines on the fan (under appropriate conditions) [Payne '06]

Part II: Freeness and (mostly) Continuous Splines

Continuous Splines in Two Dimensions

Dimensions of
Spline Spaces

Michael
DiPasquale

Background

and Central

Questions
Freeness
How Big is
Big Enough?
Semi-
Algebraic
Splines
Open
Questions
$(0,2)$

Continuous Splines in Two Dimensions

Dimensions of
Spline Spaces
Michael
DiPasquale

Background

and Central

 QuestionsFreeness
How Big is
Big Enough?
Semi-
Algebraic
Splines
Open
Questions

Continuous Splines in Two Dimensions

Dimensions of
Spline Spaces
Michael
DiPasquale

Background

and Central

Questions
Freeness
How Big is
Big Enough?
Semi-
Algebraic
Splines
Open
Questions

$\left(F_{1}, F_{2}, F_{3}\right) \in C^{0}(\Delta) \Longleftrightarrow$ $\exists f_{1}, f_{2}, f_{3}$ so that

$$
\begin{aligned}
& F_{1}-F_{2}=f_{1} x \\
& F_{2}-F_{3}=f_{2}(x-y) \\
& F_{3}-F_{1}=f_{3} y
\end{aligned}
$$

Freeness

Three splines in $C^{0}(\Delta)$:

Freeness

Dimensions of
Spline Spaces
Michael
DiPasquale

Background

and Central

 QuestionsFreeness
How Big is
Big Enough?
Semi-
Algebraic
Splines
Open
Questions

Three splines in $C^{0}(\Delta)$:

Freeness

Dimensions of Spline Spaces

Michael
DiPasquale

Background

and Central

 QuestionsFreeness
How Big is Big Enough?
Semi-
Algebraic
Splines
Open
Questions

Three splines in $C^{0}(\Delta)$:

- In fact, every spline $F \in C^{0}(\Delta)$ can be written uniquely as a polynomial combination of these three splines.

Freeness

Dimensions of Spline Spaces

Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi-
Algebraic
Splines
Open
Questions

Three splines in $C^{0}(\Delta)$:

- In fact, every spline $F \in C^{0}(\Delta)$ can be written uniquely as a polynomial combination of these three splines.
- We say $C^{0}(\Delta)$ is a free $\mathbb{R}[x, y]$-module, generated in degrees $0,1,2$

Freeness and Dimension Computation

Dimensions of
Spline Spaces

Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi
Algebraic
Splines
Open
Questions
$C^{0}(\Delta)$ is a free $\mathbb{R}[x, y]$-module generated in degrees $0,1,2$.

Freeness and Dimension Computation

Dimensions of
Spline Spaces

Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi
Algebraic
Splines
$C^{0}(\Delta)$ is a free $\mathbb{R}[x, y]$-module generated in degrees $0,1,2$.

- $C_{d}^{0}(\Delta) \cong \mathbb{R}[x, y]_{\leq d}(1,1,1) \oplus \mathbb{R}[x, y]_{\leq d-1}(0, x, y) \oplus$ $\mathbb{R}[x, y]_{\leq d-2}\left(0, x^{2}, y^{2}\right)$.
- $\operatorname{dim} C_{d}^{0}(\Delta)=\binom{d+2}{2}+\binom{d+1}{2}+\binom{d}{2}$
$=\frac{3}{2} d^{2}+\frac{3}{2} d+1$ for $d \geq 1$

Freeness and Dimension Computation

Dimensions of Spline Spaces

Michael
DiPasquale

Background and Central Questions

Freeness
How Big is Big Enough?
$C^{0}(\Delta)$ is a free $\mathbb{R}[x, y]$-module generated in degrees $0,1,2$.

- $C_{d}^{0}(\Delta) \cong \mathbb{R}[x, y]_{\leq d}(1,1,1) \oplus \mathbb{R}[x, y]_{\leq d-1}(0, x, y) \oplus$ $\mathbb{R}[x, y]_{\leq d-2}\left(0, x^{2}, y^{2}\right)$.
- $\operatorname{dim} C_{d}^{0}(\Delta)=\binom{d+2}{2}+\binom{d+1}{2}+\binom{d}{2}$
$=\frac{3}{2} d^{2}+\frac{3}{2} d+1$ for $d \geq 1$
In general, employ a coning construction $\Delta \rightarrow \widehat{\Delta}$ to homogenize and consider $\operatorname{dim} C^{r}(\widehat{\Delta})_{d}$.

Coning Construction

Dimensions of
Spline Spaces

Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi
Algebraic
Splines
Open
Questions

- $\widehat{\Delta} \subset \mathbb{R}^{n+1}$ denotes the cone over $\Delta \subset \mathbb{R}^{n}$.

Δ

$\widehat{\Delta}$

Coning Construction

Dimensions of
Spline Spaces

Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi-
Algebraic
Splines
Open
Questions

- $\widehat{\Delta} \subset \mathbb{R}^{n+1}$ denotes the cone over $\Delta \subset \mathbb{R}^{n}$.

Δ

$\widehat{\Delta}$
- $C^{r}(\widehat{\Delta})$ is always a graded module over $\mathbb{R}\left[x_{0}, \ldots, x_{n}\right]$
- $C_{d}^{r}(\Delta) \cong C^{r}(\widehat{\Delta})_{d}$ [Billera-Rose '91]

Consequences of Freeness

Dimensions of
Spline Spaces

Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi
Algebraic
Splines
Open
Questions

- Freeness of $C^{r}(\widehat{\Delta}) \Longrightarrow$ straightforward computation of $\operatorname{dim} C_{d}^{r}(\Delta)$.

Consequences of Freeness

Dimensions of
Spline Spaces
Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi-
Algebraic Splines

Open Questions

- Freeness of $C^{r}(\widehat{\Delta}) \Longrightarrow$ straightforward computation of $\operatorname{dim} C_{d}^{r}(\Delta)$.
- Many widely-used planar partitions Δ actually satisfy the property that $C^{r}(\widehat{\Delta})$ is free (type I and II triangulations, cross-cut partitions, rectangular meshes) [Schenck '97]

Consequences of Freeness

Dimensions of Spline Spaces

Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?

- Freeness of $C^{r}(\widehat{\Delta}) \Longrightarrow$ straightforward computation of $\operatorname{dim} C_{d}^{r}(\Delta)$.
- Many widely-used planar partitions Δ actually satisfy the property that $C^{r}(\widehat{\Delta})$ is free (type I and II triangulations, cross-cut partitions, rectangular meshes) [Schenck '97]
- Freeness of $C^{r}(\widehat{\Delta})$ is highly studied:
- via localization [Billera-Rose '92]
- via sheaves on posets [Yuzvinsky '92]
- via dual graphs [Rose '95]
- via homologies of a chain complex [Schenck '97] (Δ simplicial)

C^{0} simplicial splines

Dimensions of
Spline Spaces

Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi
Algebraic
Splines
Open
Questions

Basis for $C_{1}^{0}(\Delta)$ is 'Courant functions' or 'Tent functions'

C^{0} simplicial splines

Dimensions of
Spline Spaces

Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi
Algebraic
Splines
Open
Questions

Basis for $C_{1}^{0}(\Delta)$ is 'Courant functions' or 'Tent functions'

C^{0} simplicial splines

Dimensions of
Spline Spaces

Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi
Algebraic
Splines
Open
Questions

Basis for $C_{1}^{0}(\Delta)$ is 'Courant functions' or 'Tent functions'

C^{0} simplicial splines

Dimensions of
Spline Spaces

Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi
Algebraic
Splines
Open
Questions

Basis for $C_{1}^{0}(\Delta)$ is 'Courant functions' or 'Tent functions'

C^{0} simplicial splines

Dimensions of
Spline Spaces

Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi
Algebraic
Splines
Open
Questions

Basis for $C_{1}^{0}(\Delta)$ is 'Courant functions' or 'Tent functions'

C^{0} simplicial splines

Dimensions of
Spline Spaces

Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi
Algebraic
Splines
Open
Questions

Basis for $C_{1}^{0}(\Delta)$ is 'Courant functions' or 'Tent functions'

C^{0} simplicial splines

Dimensions of
Spline Spaces

Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi
Algebraic
Splines
Open
Questions

Basis for $C_{1}^{0}(\Delta)$ is 'Courant functions' or 'Tent functions'

C^{0} simplicial splines

Dimensions of
Spline Spaces

Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi
Algebraic
Splines
Open
Questions

Basis for $C_{1}^{0}(\Delta)$ is 'Courant functions' or 'Tent functions'

C^{0} simplicial splines

Dimensions of
Spline Spaces

Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi
Algebraic
Splines
Open
Questions

Basis for $C_{1}^{0}(\Delta)$ is 'Courant functions' or 'Tent functions'

C^{0} simplicial splines

Dimensions of
Spline Spaces

Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi
Algebraic
Splines

- $\operatorname{dim} C_{1}^{0}(\Delta)=$ number of vertices of Δ

C^{0} simplicial splines

Dimensions of
Spline Spaces
Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi-
Algebraic
Splines
Open
Questions

Basis for $C_{1}^{0}(\Delta)$ is 'Courant functions' or 'Tent functions'

- $\operatorname{dim} C_{1}^{0}(\Delta)=$ number of vertices of Δ
- $C^{0}(\Delta)$ is generated as an algebra by tent functions [Billera-Rose '92]

Face rings of simplicial complexes

Dimensions of
Spline Spaces

Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi
Algebraic
Splines
Open
Questions

Face Ring of Δ

Δ a simplicial complex.

$$
A_{\Delta}=\mathbb{R}\left[x_{v} \mid v \text { a vertex of } \Delta\right] / I_{\Delta},
$$

where I_{Δ} is the ideal generated by monomials corresponding to non-faces.

Face rings of simplicial complexes

Dimensions of
Spline Spaces

Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi
Algebraic
Splines
Open
Questions

Face Ring of Δ

Δ a simplicial complex.

$$
A_{\Delta}=\mathbb{R}\left[x_{v} \mid v \text { a vertex of } \Delta\right] / I_{\Delta},
$$

where I_{Δ} is the ideal generated by monomials corresponding to non-faces.

Face rings of simplicial complexes

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness
How Big is Big Enough?

Face Ring of Δ

Δ a simplicial complex.

$$
A_{\Delta}=\mathbb{R}\left[x_{v} \mid v \text { a vertex of } \Delta\right] / I_{\Delta},
$$

where I_{Δ} is the ideal generated by monomials corresponding to non-faces.

- Nonfaces are
$\{1,2,3,4\},\{2,3,4\}$
- $I_{\Delta}=\left\langle x_{2} x_{3} x_{4}\right\rangle$
- $A_{\Delta}=$
$\mathbb{R}\left[x_{1}, x_{2}, x_{3}, x_{4}\right] / I_{\Delta}$
C^{0} simplicial splines

Dimensions of
Spline Spaces

Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi
Algebraic
Splines
Open
Questions
C^{0} for Simplicial Splines [Billera-Rose '92]
$C^{0}(\widehat{\Delta}) \cong A_{\Delta}$, the face ring of Δ.

C^{0} simplicial splines

Dimensions of

Michael
DiPasquale

Background
and Central
Questions
Freeness
How Big is
Big Enough?
Semi
Algebraic
Splines
Open
Questions
C^{0} for Simplicial Splines [Billera-Rose '92]
$C^{0}(\widehat{\Delta}) \cong A_{\Delta}$, the face ring of Δ.
Why is this an isomorphism?

- Send tent function at vertex v to x_{v}.
- Product of tent functions is zero if correspond to nonface.

C^{0} simplicial splines

Dimensions of
Spline Spaces
Michael
DiPasquale

Background and Central Questions

Freeness
How Big is Big Enough?

C^{0} for Simplicial Splines [Billera-Rose '92]

$C^{0}(\widehat{\Delta}) \cong A_{\Delta}$, the face ring of Δ.
Why is this an isomorphism?

- Send tent function at vertex v to x_{v}.
- Product of tent functions is zero if correspond to nonface.

Consequences:

- $C^{0}(\widehat{\Delta})$ is entirely combinatorial!
- $\operatorname{dim} C_{d}^{0}(\Delta)=\sum_{i=0}^{n} f_{i}\binom{d-1}{i}$ for $d>0$, where $f_{i}=\# i$-faces of Δ.
- If Δ is homeomorphic to a disk, then $C^{0}(\widehat{\Delta})$ is free as a $S=\mathbb{R}\left[x_{0}, \ldots, x_{n}\right]$ module.
- If Δ is shellable, then degrees of free generators for $C^{0}(\widehat{\Delta})$ as S-module can be read off the h-vector of Δ.

Cautionary Tale I

Dimensions of
Spline Spaces

Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi
Algebraic
Splines
Open
Questions

Nonfreeness for Polytopal Complexes [D. '12]
$C^{0}(\widehat{\Delta})$ need not be free if Δ has nonsimplicial faces [D. '12].

Cautionary Tale I

Dimensions of
Spline Spaces
Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi
Algebraic Splines

Open
Questions

Nonfreeness for Polytopal Complexes [D. '12]

$C^{0}(\widehat{\Delta})$ need not be free if Δ has nonsimplicial faces [D. '12].

$C^{0}(\widehat{\Delta})$ is a free $\mathbb{R}[x, y, z]$-module

Cautionary Tale I

Dimensions of
Spline Spaces
Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi-
Algebraic Splines

Open
Questions

Nonfreeness for Polytopal Complexes [D. '12]

$C^{0}(\widehat{\Delta})$ need not be free if Δ has nonsimplicial faces [D. '12].

$C^{0}(\widehat{\Delta})$ is not a free $\mathbb{R}[x, y, z]$-module

Cautionary Tale I

Dimensions of
Spline Spaces
Michael
DiPasquale

Background and Central Questions

Freeness
How Big is Big Enough?

Semi-
Algebraic Splines

Open
Questions

Nonfreeness for Polytopal Complexes [D. '12]

$C^{0}(\widehat{\Delta})$ need not be free if Δ has nonsimplicial faces [D. '12].

$C^{0}(\widehat{\Delta})$ is a free $\mathbb{R}[x, y, z]$-module

Cross-Cut Partitions

Dimensions of
Spline Spaces
Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi
Algebraic
Splines
Open
Questions

A partition of a domain D is called a cross-cut partition if the union of its two-cells are the complement of a line arrangement.

Cross-Cut Partitions

Dimensions of
Spline Spaces
Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi-
Algebraic
Splines
Open
Questions

A partition of a domain D is called a cross-cut partition if the union of its two-cells are the complement of a line arrangement.

Cross-Cut Partitions

A partition of a domain D is called a cross-cut partition if the union of its two-cells are the complement of a line arrangement.

- Basis for $C_{d}^{r}(\Delta)$ and $\operatorname{dim} C_{d}^{r}(\Delta)$ [Chui-Wang '83]
- $C^{r}(\widehat{\Delta})$ is free for any r [Schenck '97]

Cautionary Tale II: Ziegler's Pair

Dimensions of
Spline Spaces
Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi
Algebraic
Splines

Open

Questions

Cross-cut partitions fail to be free in \mathbb{R}^{3} !

Cautionary Tale II: Ziegler's Pair

Dimensions of
Spline Spaces
Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi-
Algebraic Splines

Open
Questions

Cross-cut partitions fail to be free in \mathbb{R}^{3} ! $\mathcal{A}_{t}=$ union of hyperplanes defined by the vanishing of the forms (t is considered a parameter):

$$
\begin{array}{lll}
x & x+y+z & 2 x+y+z \\
y & 2 x+3 y+z & 2 x+3 y+4 z \\
z & (1+t) x+(3+t) z & (1+t) x+(2+t) y+(3+t) z
\end{array}
$$

Cautionary Tale II: Ziegler's Pair

Dimensions of Spline Spaces

Michael
DiPasquale

Background and Central Questions

Freeness
How Big is Big Enough?

Cross-cut partitions fail to be free in \mathbb{R}^{3} ! $\mathcal{A}_{t}=$ union of hyperplanes defined by the vanishing of the forms (t is considered a parameter):

$$
\begin{array}{lll}
x & x+y+z & 2 x+y+z \\
y & 2 x+3 y+z & 2 x+3 y+4 z \\
z & (1+t) x+(3+t) z & (1+t) x+(2+t) y+(3+t) z
\end{array}
$$

\mathcal{A}_{t} has six triple lines (where three planes intersect), which lie on a non-degenerate conic if and only if $t=0,-5$.

Cautionary Tale II: Ziegler's Pair

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness
How Big is Big Enough?

Cross-cut partitions fail to be free in \mathbb{R}^{3} !
$\mathcal{A}_{t}=$ union of hyperplanes defined by the vanishing of the forms (t is considered a parameter):

$$
\begin{array}{lll}
x & x+y+z & 2 x+y+z \\
y & 2 x+3 y+z & 2 x+3 y+4 z \\
z & (1+t) x+(3+t) z & (1+t) x+(2+t) y+(3+t) z
\end{array}
$$

\mathcal{A}_{t} has six triple lines (where three planes intersect), which lie on a non-degenerate conic if and only if $t=0,-5$.

- Let Δ_{t} be the polytopal complex formed by closures of connected components of $[-1,1] \times[-1,1] \times[-1,1] \backslash \mathcal{A}_{t}$. (there are 62 polytopes)

Cautionary Tale II: Ziegler's Pair

Cross-cut partitions fail to be free in \mathbb{R}^{3} !
$\mathcal{A}_{t}=$ union of hyperplanes defined by the vanishing of the forms (t is considered a parameter):

$$
\begin{array}{lll}
x & x+y+z & 2 x+y+z \\
y & 2 x+3 y+z & 2 x+3 y+4 z \\
z & (1+t) x+(3+t) z & (1+t) x+(2+t) y+(3+t) z
\end{array}
$$

\mathcal{A}_{t} has six triple lines (where three planes intersect), which lie on a non-degenerate conic if and only if $t=0,-5$.

- Let Δ_{t} be the polytopal complex formed by closures of connected components of $[-1,1] \times[-1,1] \times[-1,1] \backslash \mathcal{A}_{t}$. (there are 62 polytopes)
- $C^{0}\left(\Delta_{t}\right)$ is free if and only if $t \neq-5,0$!

Dimensions of
Spline Spaces
Michael
DiPasquale

Background
and Central Questions

Freeness
How Big is
Big Enough?
Semi
Algebraic
Splines
Open
Questions

Part III: How Big is Big Enough?

The Hilbert polynomial

Dimensions of
Spline Spaces

Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi-
Algebraic
Splines
Open
Questions

From commutative algebra

- $\operatorname{dim} C_{d}^{r}(\Delta)=\operatorname{dim} C^{r}(\widehat{\Delta})_{d}$ is a polynomial in d for $d \gg 0$
- This is the Hilbert polynomial of $C^{r}(\widehat{\Delta})$, denoted $H P\left(C^{r}(\widehat{\Delta}), d\right)$

The Hilbert polynomial

Dimensions of
Spline Spaces
Michael
DiPasquale

Background and Central Questions

Freeness
How Big is Big Enough?

Semi
Algebraic Splines

Open Questions

From commutative algebra

- $\operatorname{dim} C_{d}^{r}(\Delta)=\operatorname{dim} C^{r}(\widehat{\Delta})_{d}$ is a polynomial in d for $d \gg 0$
- This is the Hilbert polynomial of $C^{r}(\widehat{\Delta})$, denoted $H P\left(C^{r}(\widehat{\Delta}), d\right)$
Main questions:
- What is a formula for $\operatorname{HP}\left(C^{r}(\widehat{\Delta}), d\right)$?
- How large must d be so that $\operatorname{dim} C_{d}^{r}(\Delta)=\operatorname{HP}\left(C^{r}(\widehat{\Delta}), d\right)$?

Different approaches for computing $\operatorname{dim} C_{d}^{r}(\Delta)$

Dimensions of Spline Spaces

Michael
DiPasquale

Background and Central Questions

Freeness
How Big is Big Enough?

Semi
Algebraic Splines

Open Questions

Analytic Techniques:

- Find upper and lower bounds for $\operatorname{dim} C_{d}^{r}(\Delta)$ by explicitly representing polynomials on each polygon and deriving rank conditions on coefficients
- For triangulations, upper and lower bounds agree for $d \geq 3 r+1$ [Alfeld-Schumaker '90]

Different approaches for computing $\operatorname{dim} C_{d}^{r}(\Delta)$

Analytic Techniques:

- Find upper and lower bounds for $\operatorname{dim} C_{d}^{r}(\Delta)$ by explicitly representing polynomials on each polygon and deriving rank conditions on coefficients
- For triangulations, upper and lower bounds agree for $d \geq 3 r+1$ [Alfeld-Schumaker '90]
Algebraic Techniques:
- Find the polynomial $\operatorname{HP}\left(C^{r}(\widehat{\Delta}), d\right)$ using Euler characteristic of the Billera-Schenck-Stillman chain complex $\mathcal{R} / \mathcal{J}$ [Billera '89, Schenck-Stillman '97]
- Find when $\operatorname{dim} C_{d}^{r}(\Delta)=H P\left(C^{r}(\widehat{\Delta}), d\right)$ by
- Analyzing homologies of $\mathcal{R} / \mathcal{J}$ (done for triangulations in [Mourrain-Villamizar '13])
- Bounding regularity of $C^{r}(\widehat{\Delta})$ [Schenck-Stiller '02, D. '16]

Planar simplicial splines of large degree

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi-
Algebraic Splines

Open
Questions

Planar Simplicial Dimension [Alfeld-Schumaker '90]

If $\Delta \subset \mathbb{R}^{2}$ is a simply connected triangulation and $d \geq 3 r+1$,

$$
\begin{aligned}
\operatorname{dim} C_{d}^{r}(\Delta)=\binom{d+2}{2} & +\binom{d-r+1}{2} f_{1}^{0} \\
& -\left(\binom{d+2}{2}-\binom{r+2}{2}\right) f_{0}^{0}+\sigma
\end{aligned}
$$

- f_{i}^{0} is the number of interior i-dimensional faces.
- $\sigma=\sum \sigma_{i}$.
- $\sigma_{i}=\sum_{j} \max \left\{\left(r+1+j\left(1-n\left(v_{i}\right)\right)\right), 0\right\}$.
- $n\left(v_{i}\right)=\#$ distinct slopes at an interior vertex v_{i}.

Morgan-Scot triangulation

Morgan-Scot triangulation

Dimensions of
Spline Spaces
Michael
DiPasquale
Background and Central Questions

Freeness
How Big is Big Enough?
Semi-
Algebraic
Splines
Open
Questions

$\operatorname{dim} C_{2}^{1}(\mathcal{T})=7$

$\operatorname{dim} C_{2}^{1}\left(\mathcal{T}^{\prime}\right)=6$

Morgan-Scot triangulation

Dimensions of
Spline Spaces
Michael
DiPasquale
Background and Central Questions

Freeness
How Big is Big Enough?
Semi-
Algebraic
Splines
Open
Questions

$\operatorname{dim} C_{2}^{1}(\mathcal{T})=7$

$\operatorname{dim} C_{2}^{1}\left(\mathcal{T}^{\prime}\right)=6$

Morgan-Scot triangulation

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness
How Big is Big Enough?

Semi-
Algebraic
Splines
Open
Questions

$\operatorname{dim} C_{2}^{1}(\mathcal{T})=7$

$\operatorname{dim} C_{2}^{1}\left(\mathcal{T}^{\prime}\right)=6$

Morgan-Scot triangulation

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness
How Big is Big Enough?

Semi-

Algebraic
Splines
Open
Questions

$\operatorname{dim} C_{2}^{1}(\mathcal{T})=7$

$\operatorname{dim} C_{2}^{1}\left(\mathcal{T}^{\prime}\right)=6$ $\operatorname{dim} C_{d}^{1}(\mathcal{T})=\operatorname{dim} C_{d}^{1}\left(\mathcal{T}^{\prime}\right)$ if $d \neq 2$!

Morgan-Scot triangulation

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi-
Algebraic
Splines
Open
Questions

$\operatorname{dim} C_{2}^{1}(\mathcal{T})=7$

$\operatorname{dim} C_{2}^{1}\left(\mathcal{T}^{\prime}\right)=6$

$$
\operatorname{dim} C_{d}^{1}(\mathcal{T})=\operatorname{dim} C_{d}^{1}\left(\mathcal{T}^{\prime}\right) \text { if } d \neq 2!
$$

Conjecture [Schenck]

Alfeld-Schumaker formula for $\operatorname{dim} C_{d}^{r}(\Delta)$ holds for $d \geq 2 r+1$.

Planar non-simplicial splines of large degree

Dimensions of
Spline Spaces
Michael
DiPasquale

Background and Central Questions

Freeness
How Big is Big Enough?

Semi-
Algebraic
Splines
Open
Questions

Planar non-simplicial dimension [McDonald-Schenck '09]

If $\Delta \subset \mathbb{R}^{2}$ is a simply connected polytopal complex,

$$
\operatorname{dim} C_{d}^{r}(\Delta)=f_{2}\binom{d+2}{2}+f_{1}^{0}\left(\binom{d+2}{2}-\binom{d-r+1}{2}\right)-\sigma
$$

- f_{i}^{0} is the number of interior i-dimensional faces.
- $\sigma_{i}=$ contribution from vertices of Δ (and possibly some non-vertices!)
- $\sigma=\sum \sigma_{i}$

Bad behavior in non-simplicial case

Dimensions of
Spline Spaces
Michael
DiPasquale

Background
and Central Questions

Freeness
How Big is
Big Enough?
Semi-
Algebraic
Splines
Open
Questions

Disagreement in high degree [D. '14]
If $\Delta \subset \mathbb{R}^{2}$ is not simplicial, may have $\operatorname{dim} C_{d}^{r}(\Delta) \neq \operatorname{HP}\left(C^{r}(\widehat{\Delta}), d\right)$ for d as high as
$(F-1)(r+1)-2$, where F is maximum number of edges in the boundary of a 2 -cell.

Bad behavior in non-simplicial case

Dimensions of Spline Spaces

Michael
DiPasquale

Background
and Central Questions

Freeness
How Big is Big Enough?

Semi-
Algebraic
Splines
Open
Questions

Disagreement in high degree [D. '14]

If $\Delta \subset \mathbb{R}^{2}$ is not simplicial, may have $\operatorname{dim} C_{d}^{r}(\Delta) \neq \operatorname{HP}\left(C^{r}(\widehat{\Delta}), d\right)$ for d as high as
$(F-1)(r+1)-2$, where F is maximum number of edges in the boundary of a 2 -cell.

$$
\operatorname{dim} C_{d}^{0}(\widehat{\Delta})=\frac{5}{2} d^{2}-\frac{1}{2} d+1 \text { for } d \geq 2
$$

Bad behavior in non-simplicial case

Dimensions of
Spline Spaces
Michael
DiPasquale

Background and Central Questions

Freeness
How Big is Big Enough?

Semi
Algebraic Splines

Open
Questions

Disagreement in high degree [D. '14]

If $\Delta \subset \mathbb{R}^{2}$ is not simplicial, may have $\operatorname{dim} C_{d}^{r}(\Delta) \neq H P\left(C^{r}(\widehat{\Delta}), d\right)$ for d as high as
$(F-1)(r+1)-2$, where F is maximum number of edges in the boundary of a 2 -cell.

$$
\operatorname{dim} C_{d}^{0}(\widehat{\Delta})=\frac{6}{2} d^{2}-\frac{4}{2} d+1 \text { for } d \geq 3
$$

Bad behavior in non-simplicial case

Dimensions of
Spline Spaces
Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi-
Algebraic Splines

Open
Questions

Disagreement in high degree [D. '14]

If $\Delta \subset \mathbb{R}^{2}$ is not simplicial, may have $\operatorname{dim} C_{d}^{r}(\Delta) \neq H P\left(C^{r}(\widehat{\Delta}), d\right)$ for d as high as
$(F-1)(r+1)-2$, where F is maximum number of edges in the boundary of a 2 -cell.

$$
\operatorname{dim} C_{d}^{0}(\widehat{\Delta})=\frac{7}{2} d^{2}-\frac{7}{2} d+1 \text { for } d \geq 4
$$

Bad behavior in non-simplicial case

Dimensions of
Spline Spaces
Michael
DiPasquale

Background and Central Questions

Freeness
How Big is Big Enough?

Semi
Algebraic Splines

Open
Questions

Disagreement in high degree [D. '14]

If $\Delta \subset \mathbb{R}^{2}$ is not simplicial, may have $\operatorname{dim} C_{d}^{r}(\Delta) \neq H P\left(C^{r}(\widehat{\Delta}), d\right)$ for d as high as
$(F-1)(r+1)-2$, where F is maximum number of edges in the boundary of a 2 -cell.

$$
\operatorname{dim} C_{d}^{0}(\widehat{\Delta})=\frac{8}{2} d^{2}-\frac{10}{2} d+1 \text { for } d \geq 5
$$

Agreement for non-simplicial splines

Dimensions of Spline Spaces

Michael
DiPasquale

Background
and Central Questions

Freeness
How Big is Big Enough?

Semi-
Algebraic Splines

Open
Questions

Theorem: Using McDonald-Schenck Formula [D. '16]
$\Delta \subset \mathbb{R}^{2}$ a planar polytopal complex. Let $F=$ maximum number of edges appearing in a polytope of Δ. Then $\operatorname{dim} C_{d}^{r}(\Delta)=H P\left(C^{r}(\widehat{\Delta}), d\right)$ for $d \geq(2 F-1)(r+1)-1$.

Agreement for non-simplicial splines

Dimensions of Spline Spaces

Michael
DiPasquale

Background
and Central Questions

Freeness
How Big is Big Enough?

Semi-
Algebraic
Splines
Open
Questions

Theorem: Using McDonald-Schenck Formula [D. '16]

$\Delta \subset \mathbb{R}^{2}$ a planar polytopal complex. Let $F=$ maximum number of edges appearing in a polytope of Δ. Then $\operatorname{dim} C_{d}^{r}(\Delta)=H P\left(C^{r}(\widehat{\Delta}), d\right)$ for $d \geq(2 F-1)(r+1)-1$.

$$
\operatorname{dim} C_{d}^{0}(\widehat{\Delta})=\frac{5}{2} d^{2}-\frac{1}{2} d+1 \text { for } d \geq 2
$$

(By Theorem must have agreement for $d \geq 6$)

Agreement for non-simplicial splines

Dimensions of Spline Spaces

Michael
DiPasquale

Background and Central Questions

Freeness
How Big is Big Enough?

Semi-
Algebraic Splines

Open
Questions

Theorem: Using McDonald-Schenck Formula [D. '16]

$\Delta \subset \mathbb{R}^{2}$ a planar polytopal complex. Let $F=$ maximum number of edges appearing in a polytope of Δ. Then $\operatorname{dim} C_{d}^{r}(\Delta)=H P\left(C^{r}(\widehat{\Delta}), d\right)$ for $d \geq(2 F-1)(r+1)-1$.

$$
\operatorname{dim} C_{d}^{0}(\widehat{\Delta})=\frac{6}{2} d^{2}-\frac{4}{2} d+1 \text { for } d \geq 3
$$

(By Theorem must have agreement for $d \geq 8$)

Agreement for non-simplicial splines

Dimensions of Spline Spaces

Michael
DiPasquale

Background and Central Questions

Freeness
How Big is Big Enough?

Semi-
Algebraic Splines

Open
Questions

Theorem: Using McDonald-Schenck Formula [D. '16]

$\Delta \subset \mathbb{R}^{2}$ a planar polytopal complex. Let $F=$ maximum number of edges appearing in a polytope of Δ. Then $\operatorname{dim} C_{d}^{r}(\Delta)=H P\left(C^{r}(\widehat{\Delta}), d\right)$ for $d \geq(2 F-1)(r+1)-1$.

$$
\operatorname{dim} C_{d}^{0}(\widehat{\Delta})=\frac{7}{2} d^{2}-\frac{7}{2} d+1 \text { for } d \geq 4
$$

(By Theorem must have agreement for $d \geq 10$)

Agreement for non-simplicial splines

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness
How Big is Big Enough?

Semi-
Algebraic Splines

Open
Questions

Theorem: Using McDonald-Schenck Formula [D. '16]

$\Delta \subset \mathbb{R}^{2}$ a planar polytopal complex. Let $F=$ maximum number of edges appearing in a polytope of Δ. Then $\operatorname{dim} C_{d}^{r}(\Delta)=H P\left(C^{r}(\widehat{\Delta}), d\right)$ for $d \geq(2 F-1)(r+1)-1$.

$$
\operatorname{dim} C_{d}^{0}(\widehat{\Delta})=\frac{8}{2} d^{2}-\frac{10}{2} d+1 \text { for } d \geq 5
$$

(By Theorem must have agreement for $d \geq 12$)

Dimensions of
Spline Spaces
Michael
DiPasquale

Background
and Central Questions

Freeness
How Big is
Big Enough?
Semi-
Algebraic
Splines
Open
Questions

Part IV: Semi-algebraic Splines

Curved Partitions

Dimensions of
Spline Spaces

Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi-
Algebraic
Splines
Open
Questions

More general problem: Compute $\operatorname{dim} C_{d}^{r}(\Delta)$ where Δ is a partition whose arcs consist of irreducible algebraic curves.

Curved Partitions

Dimensions of Spline Spaces

Michael
DiPasquale

Background and Central Questions

Freeness
How Big is Big Enough?

Semi-
Algebraic

More general problem: Compute $\operatorname{dim} C_{d}^{r}(\Delta)$ where Δ is a partition whose arcs consist of irreducible algebraic curves.

$$
x^{2}+(y-1)^{2}=1,
$$

Curved Partitions

Dimensions of Spline Spaces

Michael
DiPasquale

Background and Central Questions

Freeness
How Big is Big Enough?

More general problem: Compute $\operatorname{dim} C_{d}^{r}(\Delta)$ where Δ is a partition whose arcs consist of irreducible algebraic curves.

Call functions in $C^{r}(\Delta)$ semi-algebraic splines since they are defined over regions given by polynomial inequalities, or semi-algebraic sets.

Semi-algebraic Splines

Dimensions of
Spline Spaces

Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi-
Algebraic
Splines
Open
Questions

Work in semi-algebraic splines:

- First definitions made in [Wang '75] - algebraic criterion for splines carries over verbatim

Semi-algebraic Splines

Dimensions of
Spline Spaces
Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi-
Algebraic
Splines
Open
Questions

Work in semi-algebraic splines:

- First definitions made in [Wang '75] - algebraic criterion for splines carries over verbatim
- Studied using sheaf-theoretic techniques [Stiller '83]

Semi-algebraic Splines

Dimensions of
Spline Spaces
Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi-
Algebraic
Splines
Open
Questions

Work in semi-algebraic splines:

- First definitions made in [Wang '75] - algebraic criterion for splines carries over verbatim
- Studied using sheaf-theoretic techniques [Stiller '83]
- Recent work suggests semi-algebraic splines may be increasingly useful in finite element method [Davydov-Kostin-Saeed '16]

Linearizing

Dimensions of
Spline Spaces
Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi-
Algebraic
Splines
Open
Questions

- Focus on $\Delta \subset \mathbb{R}^{2}$ with single interior vertex at $(0,0)$.
- Let Δ_{L} be the subdivision formed by replacing curves by tangent rays at origin

Linearizing

Dimensions of
Spline Spaces
Michael
DiPasquale

Background and Central Questions

Freeness
How Big is Big Enough?

Semi-
Algebraic
Splines
Open
Questions

- Focus on $\Delta \subset \mathbb{R}^{2}$ with single interior vertex at $(0,0)$.
- Let Δ_{L} be the subdivision formed by replacing curves by tangent rays at origin

Δ

Linearizing

Dimensions of
Spline Spaces
Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi-
Algebraic
Splines
Open
Questions

- Focus on $\Delta \subset \mathbb{R}^{2}$ with single interior vertex at $(0,0)$.
- Let Δ_{L} be the subdivision formed by replacing curves by tangent rays at origin

Tangent Lines

Linearizing

Dimensions of
Spline Spaces
Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi-
Algebraic
Splines
Open
Questions

- Focus on $\Delta \subset \mathbb{R}^{2}$ with single interior vertex at $(0,0)$.
- Let Δ_{L} be the subdivision formed by replacing curves by tangent rays at origin

Δ_{L}

Linearizing

Dimensions of
Spline Spaces
Michael
DiPasquale

Background
and Central Questions

Freeness
How Big is
Big Enough?
Semi-
Algebraic
Splines

Theorem: Linearizing $\operatorname{dim} C_{d}^{r}(\Delta)$ [D.-Sottile-Sun '16]
Let Δ consist of n irreducible curves of degree d_{1}, \ldots, d_{n} meeting at $(0,0)$ with distinct tangents and no common zero in $\mathbb{P}^{2}(\mathbb{C})$ other than $(0,0)$. Then, for $d \gg 0$,

$$
\operatorname{dim} C_{d}^{r}(\Delta)=\operatorname{dim} C_{d}^{r}\left(\Delta_{L}\right)
$$

$$
+\sum_{i=1}^{n}\left(\binom{d+2-d_{i}(r+1)}{2}-\binom{d-r-1}{2}\right)
$$

Linearizing

Dimensions of Spline Spaces

Michael
DiPasquale

Background and Central Questions

Freeness
How Big is Big Enough?

Semi-
Algebraic
Splines
Open
Questions

Theorem: Linearizing $\operatorname{dim} C_{d}^{r}(\Delta)$ [D.-Sottile-Sun '16]
Let Δ consist of n irreducible curves of degree d_{1}, \ldots, d_{n} meeting at $(0,0)$ with distinct tangents and no common zero in $\mathbb{P}^{2}(\mathbb{C})$ other than $(0,0)$. Then, for $d \gg 0$,

$$
\operatorname{dim} C_{d}^{r}(\Delta)=\operatorname{dim} C_{d}^{r}\left(\Delta_{L}\right)
$$

$$
+\sum_{i=1}^{n}\left(\binom{d+2-d_{i}(r+1)}{2}-\binom{d-r-1}{2}\right)
$$

- Not true if tangents are not distinct!

Linearizing

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness
How Big is Big Enough?

Semi-
Algebraic Splines

Open
Questions

Theorem: Linearizing $\operatorname{dim} C_{d}^{r}(\Delta)$ [D.-Sottile-Sun '16]
Let Δ consist of n irreducible curves of degree d_{1}, \ldots, d_{n} meeting at $(0,0)$ with distinct tangents and no common zero in $\mathbb{P}^{2}(\mathbb{C})$ other than $(0,0)$. Then, for $d \gg 0$,

$$
\operatorname{dim} C_{d}^{r}(\Delta)=\operatorname{dim} C_{d}^{r}\left(\Delta_{L}\right)
$$

$$
+\sum_{i=1}^{n}\left(\binom{d+2-d_{i}(r+1)}{2}-\binom{d-r-1}{2}\right)
$$

- Not true if tangents are not distinct!
- Proof uses saturation and toric degenerations (from commutative algebra)

Linearizing

Dimensions of Spline Spaces

Michael DiPasquale

Theorem: Linearizing $\operatorname{dim} C_{d}^{r}(\Delta)$ [D.-Sottile-Sun '16]
Let Δ consist of n irreducible curves of degree d_{1}, \ldots, d_{n} meeting at $(0,0)$ with distinct tangents and no common zero in $\mathbb{P}^{2}(\mathbb{C})$ other than $(0,0)$. Then, for $d \gg 0$,
$\operatorname{dim} C_{d}^{r}(\Delta)=\operatorname{dim} C_{d}^{r}\left(\Delta_{L}\right)$

$$
+\sum_{i=1}^{n}\left(\binom{d+2-d_{i}(r+1)}{2}-\binom{d-r-1}{2}\right)
$$

- Not true if tangents are not distinct!
- Proof uses saturation and toric degenerations (from commutative algebra)
- Bounds on d for when equality holds are also considered, using regularity

Dimensions of
Spline Spaces
Michael
DiPasquale

Background
and Central Questions

Freeness
How Big is
Big Enough?
Semi-
Algebraic
Splines
Open
Questions

Part V: Open Questions

Open Questions

Dimensions of
Spline Spaces

Michael
DiPasquale

- Long standing open question (planar triangulations): Compute $\operatorname{dim} C_{3}^{1}(\Delta)$

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi-
Algebraic
Splines
Open
Questions

Open Questions

Dimensions of
Spline Spaces

Michael
DiPasquale

Background
and Central
Questions
Freeness
How Big is
Big Enough?
Semi-
Algebraic
Splines
Open
Questions

- Long standing open question (planar triangulations): Compute $\operatorname{dim} C_{3}^{1}(\Delta)$
- More generally (planar triangulations): Compute $\operatorname{dim} C_{d}^{r}(\Delta)$ for $r+1 \leq d \leq 3 r+1$

Open Questions

Dimensions of
Spline Spaces
Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi-
Algebraic Splines

Open
Questions

- Long standing open question (planar triangulations): Compute $\operatorname{dim} C_{3}^{1}(\Delta)$
- More generally (planar triangulations): Compute $\operatorname{dim} C_{d}^{r}(\Delta)$ for $r+1 \leq d \leq 3 r+1$
- More generally (planar polytopal complexes): Compute $\operatorname{dim} C_{d}^{r}(\Delta)$ for $r+1 \leq d \leq(2 F-1)(r+1)$ (F maximum number of edges in a two-cell)

Open Questions

- Long standing open question (planar triangulations): Compute $\operatorname{dim} C_{3}^{1}(\Delta)$
- More generally (planar triangulations): Compute $\operatorname{dim} C_{d}^{r}(\Delta)$ for $r+1 \leq d \leq 3 r+1$
- More generally (planar polytopal complexes): Compute $\operatorname{dim} C_{d}^{r}(\Delta)$ for $r+1 \leq d \leq(2 F-1)(r+1)$ (F maximum number of edges in a two-cell)
- If $\Delta \subset \mathbb{R}^{3}, \operatorname{dim} C_{d}^{r}(\Delta)$ is not known for $d \gg 0$ except for $r=1, d \geq 8$ on generic triangulations
[Alfeld-Schumaker-Whitely '93]. (connects to unsolved problem in algebraic geometry - the Segre-Harbourne-Gimigliano-Hirschowitz conjecture)

Open Questions

Dimensions of
Spline Spaces

Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
Big Enough?
Semi-
Algebraic
Splines
Open
Questions

- Bounds on $\operatorname{dim} C_{d}^{r}(\Delta)$ for $\Delta \subset \mathbb{R}^{3}$ [Mourrain-Villamizar '15] (most recent). Improve these!

Open Questions

Dimensions of
Spline Spaces

Michael
DiPasquale

Background and Central
Questions
Freeness
How Big is
Big Enough?
Semi-
Algebraic
Splines
Open
Questions

- Bounds on $\operatorname{dim} C_{d}^{r}(\Delta)$ for $\Delta \subset \mathbb{R}^{3}$ [Mourrain-Villamizar '15] (most recent). Improve these!
- Characterize freeness $C^{r}(\Delta)$. Start with C^{0} splines on cross-cut partitions Δ in \mathbb{R}^{3}.

Open Questions

Dimensions of
Spline Spaces
Michael
DiPasquale

Background and Central Questions

Freeness
How Big is Big Enough?

Semi-
Algebraic Splines

Open
Questions

- Bounds on $\operatorname{dim} C_{d}^{r}(\Delta)$ for $\Delta \subset \mathbb{R}^{3}$ [Mourrain-Villamizar '15] (most recent). Improve these!
- Characterize freeness $C^{r}(\Delta)$. Start with C^{0} splines on cross-cut partitions Δ in \mathbb{R}^{3}.
- Compute $\operatorname{dim} C_{d}^{1}(\Delta)$ for semi-algebraic splines on partitions whose edge forms have low degree (e.g. line+conic)

Dimensions of
Spline Spaces
Michael
DiPasquale

Background and Central Questions

Freeness
How Big is
THANK YOU!

Semi-
Algebraic
Splines
Open
Questions

