Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Question

Dimensions of Spline Spaces and Commutative Algebra

Michael DiPasquale

Towson University Colloquium

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions

Part I: Background and Central Questions

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions

Spline

A piecewise polynomial function, continuously differentiable to some order.

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions

Spline

A piecewise polynomial function, continuously differentiable to some order.

Low degree splines are used in Calc 1 to approximate integrals.

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Question

Spline

A piecewise polynomial function, continuously differentiable to some order.

Low degree splines are used in Calc 1 to approximate integrals.

Graph of a function

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Question

Spline

A piecewise polynomial function, continuously differentiable to some order.

Low degree splines are used in Calc 1 to approximate integrals.

Trapezoid Rule

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Question

Spline

A piecewise polynomial function, continuously differentiable to some order.

Low degree splines are used in Calc 1 to approximate integrals.

Simpson's Rule

Univariate Splines

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions Most widely studied case: approximation of a function f(x) over an interval $\Delta = [a, b] \subset \mathbb{R}$ by C^r piecewise polynomials.

Univariate Splines

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough? 1

Semi-Algebraic Splines

Open Questions Most widely studied case: approximation of a function f(x) over an interval $\Delta = [a, b] \subset \mathbb{R}$ by C^r piecewise polynomials.

• Subdivide
$$\Delta = [a, b]$$
 into subintervals:
 $\Delta = [a_0, a_1] \cup [a_1, a_2] \cup \cdots \cup [a_{n-1}, a_n]$

Find a basis for the vector space C^r_d(Δ) of C^r piecewise polynomial functions on Δ with degree at most d (B-splines!)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Find best approximation to f(x) in $C_d^r(\Delta)$

Two Subintervals

Dimensions of Spline Spaces

Δ

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Question

$$= [a_0, a_1] \cup [a_1, a_2] \text{ (assume WLOG } a_1 = 0)$$
$$(f_1, f_2) \in C_d^r(\Delta) \iff f_1^{(i)}(0) = f_2^{(i)}(0) \text{ for } 0 \le i \le r$$
$$\iff x^{r+1} | (f_2 - f_1)$$
$$\iff (f_2 - f_1) \in \langle x^{r+1} \rangle$$

ヘロト ヘヨト ヘヨト ヘヨト

Two Subintervals

Dimensions of Spline Spaces

Δ

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions

$$= [a_0, a_1] \cup [a_1, a_2] \text{ (assume WLOG } a_1 = 0)$$
$$(f_1, f_2) \in C_d^r(\Delta) \iff f_1^{(i)}(0) = f_2^{(i)}(0) \text{ for } 0 \le i \le r$$
$$\iff x^{r+1} | (f_2 - f_1)$$
$$\iff (f_2 - f_1) \in \langle x^{r+1} \rangle$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Even more explicitly:

•
$$f_1(x) = b_0 + b_1 x + \dots + b_d x^d$$

•
$$f_2(x) = c_0 + c_1 x + \dots + c_d x^d$$

• $(f_0, f_1) \in C'_d(\Delta) \iff b_0 = c_0, \ldots, b_r = c_r.$

Two Subintervals

Dimensions of Spline Spaces

Δ

1

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough

Semi-Algebraic Splines

Open Questions

$$= [a_0, a_1] \cup [a_1, a_2] \text{ (assume WLOG } a_1 = 0)$$
$$(f_1, f_2) \in C_d^r(\Delta) \iff f_1^{(i)}(0) = f_2^{(i)}(0) \text{ for } 0 \le i \le r$$
$$\iff x^{r+1} | (f_2 - f_1)$$
$$\iff (f_2 - f_1) \in \langle x^{r+1} \rangle$$

Even more explicitly:

•
$$f_1(x) = b_0 + b_1 x + \dots + b_d x^d$$

•
$$f_2(x) = c_0 + c_1 x + \dots + c_d x^d$$

•
$$(f_0, f_1) \in C_d^r(\Delta) \iff b_0 = c_0, \ldots, b_r = c_r.$$

$$\dim C^r_d(\Delta) = \begin{cases} d+1 & \text{if } d \leq r \\ (d+1) + (d-r) & \text{if } d > r \end{cases}$$

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions Let $\Delta \subset \mathbb{R}^n$ be

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions Let $\Delta \subset \mathbb{R}^n$ be

• a polytopal complex

- pure *n*-dimensional
- a pseudomanifold

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions Let $\Delta \subset \mathbb{R}^n$ be

- a polytopal complex
- pure *n*-dimensional
- a pseudomanifold

A polytopal complex ${\mathcal Q}$

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions Let $\Delta \subset \mathbb{R}^n$ be

- a polytopal complex
- pure *n*-dimensional
- a pseudomanifold

A polytopal complex ${\mathcal Q}$

(Algebraic) Spline Criterion:

- If $au \in \Delta_{n-1}$, $I_{ au}$ = affine form vanishing on affine span of au
- Collection $\{F_{\sigma}\}_{\sigma \in \Delta_n}$ glue to $F \in C^r(\Delta) \iff$ for every pair of adjacent facets $\sigma_1, \sigma_2 \in \Delta_n$ with $\sigma_1 \cap \sigma_2 = \tau \in \Delta_{n-1}, \ l_{\tau}^{r+1}| (F_{\sigma_1} - F_{\sigma_2})$

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions

Key Fact: $C_d^r(\Delta)$ is a finite dimensional real vector space.

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions Key Fact: $C_d^r(\Delta)$ is a finite dimensional real vector space.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A basis for $C_1^0(Q)$ is shown at right.

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions Key Fact: $C_d^r(\Delta)$ is a finite dimensional real vector space.

A basis for $C_1^0(\mathcal{Q})$ is shown at right.

 $\dim_{\mathbb{R}} C_1^0(\mathcal{Q}) = 4$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions

A basis for $C_1^0(\mathcal{Q})$ is shown at right.

$$\dim_{\mathbb{R}} C_1^0(\mathcal{Q}) = 4$$

Two central problems in approximation theory:

- **1** Determine dim $C_d^r(\Delta)$
- Construct a 'local' basis of $C_d^r(\Delta)$, if possible

Who Cares?

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough

Semi-Algebraic Splines

Open Questions

- Computation of dim $C_d^r(\Delta)$ for higher dimensions initiated by [Strang '75] in connection with finite element method
- ② Data fitting in approximation theory
- Computer Aided Geometric Design (CAGD) building surfaces by splines [Farin '97]
- Toric Geometry: Equivariant Chow cohomology rings of toric varieties are rings of continuous splines on the fan (under appropriate conditions) [Payne '06]

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions

Part II: Freeness and (mostly) Continuous Splines

Continuous Splines in Two Dimensions

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Continuous Splines in Two Dimensions

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Continuous Splines in Two Dimensions

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions

Three splines in $C^0(\Delta)$:

ヘロト 人間ト 人間ト 人間ト

æ

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions

ヘロト ヘ週ト ヘヨト ヘヨト

æ

Michael DiPasquale

Background and Central Questions

Freeness

- How Big is Big Enough
- Semi-Algebraic Splines

Open Questions

 In fact, every spline F ∈ C⁰(Δ) can be written uniquely as a polynomial combination of these three splines.

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

- How Big is Big Enough
- Semi-Algebraic Splines

Open Questions

- In fact, every spline $F \in C^0(\Delta)$ can be written uniquely as a polynomial combination of these three splines.
- We say C⁰(∆) is a free ℝ[x, y]-module, generated in degrees 0, 1, 2

Freeness and Dimension Computation

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Question

$C^{0}(\Delta)$ is a free $\mathbb{R}[x, y]$ -module generated in degrees 0,1,2.

Freeness and Dimension Computation

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions $\begin{array}{l} C^0(\Delta) \text{ is a free } \mathbb{R}[x,y] \text{-module generated in degrees 0,1,2.} \\ \bullet \ C^0_d(\Delta) \cong \mathbb{R}[x,y]_{\leq d}(1,1,1) \oplus \mathbb{R}[x,y]_{\leq d-1}(0,x,y) \oplus \\ \mathbb{R}[x,y]_{\leq d-2}(0,x^2,y^2). \end{array}$

• dim
$$C_d^0(\Delta) = \begin{pmatrix} d+2\\ 2 \end{pmatrix} + \begin{pmatrix} d+1\\ 2 \end{pmatrix} + \begin{pmatrix} d\\ 2 \end{pmatrix}$$
$$= \frac{3}{2}d^2 + \frac{3}{2}d + 1 \text{ for } d \ge 1$$

Freeness and Dimension Computation

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions $\begin{array}{l} C^0(\Delta) \text{ is a free } \mathbb{R}[x,y] \text{-module generated in degrees 0,1,2.} \\ \bullet \ C^0_d(\Delta) \cong \mathbb{R}[x,y]_{\leq d}(1,1,1) \oplus \mathbb{R}[x,y]_{\leq d-1}(0,x,y) \oplus \\ \mathbb{R}[x,y]_{\leq d-2}(0,x^2,y^2). \end{array}$

• dim
$$C_d^0(\Delta) = \begin{pmatrix} d+2\\ 2 \end{pmatrix} + \begin{pmatrix} d+1\\ 2 \end{pmatrix} + \begin{pmatrix} d\\ 2 \end{pmatrix}$$

= $\frac{3}{2}d^2 + \frac{3}{2}d + 1$ for $d \ge 1$

In general, employ a *coning* construction $\Delta \to \widehat{\Delta}$ to homogenize and consider dim $C^r(\widehat{\Delta})_d$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Coning Construction

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Coning Construction

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions

 $\widehat{\Delta}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

C^r(Â) is always a graded module over ℝ[x₀,...,x_n]
 C^r_d(A) ≅ C^r(Â)_d [Billera-Rose '91]

Δ

Consequences of Freeness

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Question • Freeness of $C^r(\widehat{\Delta}) \implies$ straightforward computation of dim $C^r_d(\Delta)$.

Consequences of Freeness

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions

- Freeness of $C^r(\widehat{\Delta}) \implies$ straightforward computation of dim $C^r_d(\Delta)$.
- Many widely-used planar partitions Δ actually satisfy the property that C^r(Â) is free (type I and II triangulations, cross-cut partitions, rectangular meshes) [Schenck '97]
Consequences of Freeness

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions

- Freeness of $C^r(\widehat{\Delta}) \implies$ straightforward computation of dim $C^r_d(\Delta)$.
- Many widely-used planar partitions Δ actually satisfy the property that C^r(Â) is free (type I and II triangulations, cross-cut partitions, rectangular meshes) [Schenck '97]
- Freeness of $C^{r}(\widehat{\Delta})$ is highly studied:
 - via localization [Billera-Rose '92]
 - via sheaves on posets [Yuzvinsky '92]
 - via dual graphs [Rose '95]
 - via homologies of a chain complex [Schenck '97] (Δ simplicial)

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Question

Basis for $C_1^0(\Delta)$ is 'Courant functions' or 'Tent functions'

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Question

Basis for $C_1^0(\Delta)$ is 'Courant functions' or 'Tent functions'

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Question

Basis for $C^0_1(\Delta)$ is 'Courant functions' or 'Tent functions'

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Question

Basis for $C_1^0(\Delta)$ is 'Courant functions' or 'Tent functions'

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Question

Basis for $C_1^0(\Delta)$ is 'Courant functions' or 'Tent functions'

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Question

Basis for $C_1^0(\Delta)$ is 'Courant functions' or 'Tent functions'

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Question

Basis for $C_1^0(\Delta)$ is 'Courant functions' or 'Tent functions'

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Question

Basis for $C_1^0(\Delta)$ is 'Courant functions' or 'Tent functions'

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Question

Basis for $C^0_1(\Delta)$ is 'Courant functions' or 'Tent functions'

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions

Basis for $C_1^0(\Delta)$ is 'Courant functions' or 'Tent functions'

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• dim $C_1^0(\Delta) =$ number of vertices of Δ

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions

Basis for $C_1^0(\Delta)$ is 'Courant functions' or 'Tent functions'

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- dim $C_1^0(\Delta) =$ number of vertices of Δ
- C⁰(Δ) is generated as an algebra by tent functions [Billera-Rose '92]

Face rings of simplicial complexes

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions

Face Ring of Δ

 Δ a simplicial complex.

$$\mathcal{A}_\Delta = \mathbb{R}[x_{m{v}}|m{v} ext{ a vertex of } \Delta]/I_\Delta,$$

where \textit{I}_{Δ} is the ideal generated by monomials corresponding to non-faces.

Face rings of simplicial complexes

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Question

Face Ring of Δ

 Δ a simplicial complex.

$$\mathcal{A}_\Delta = \mathbb{R}[x_{m{v}}|m{v} ext{ a vertex of } \Delta]/I_\Delta,$$

where I_{Δ} is the ideal generated by monomials corresponding to non-faces.

(日) (四) (日) (日) (日)

Face rings of simplicial complexes

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions

Face Ring of Δ

 Δ a simplicial complex.

$$\mathcal{A}_\Delta = \mathbb{R}[x_{m{v}}|m{v} ext{ a vertex of } \Delta]/I_\Delta,$$

where I_{Δ} is the ideal generated by monomials corresponding to non-faces.

• Nonfaces are $\{1, 2, 3, 4\}, \{2, 3, 4\}$

•
$$I_{\Delta} = \langle x_2 x_3 x_4 \rangle$$

• $A_{\Delta} = \mathbb{R}[x_1, x_2, x_3, x_4]/I_{\Delta}$

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Question

C^0 for Simplicial Splines [Billera-Rose '92]

 $C^0(\widehat{\Delta}) \cong A_{\Delta}$, the face ring of Δ .

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions

C⁰ for Simplicial Splines [Billera-Rose '92]

 $C^0(\widehat{\Delta}) \cong A_{\Delta}$, the face ring of Δ .

Why is this an isomorphism?

- Send tent function at vertex v to x_v .
- Product of tent functions is zero if correspond to nonface.

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough

Semi-Algebraic Splines

Open Questions

C^0 for Simplicial Splines [Billera-Rose '92]

 $C^0(\widehat{\Delta}) \cong A_{\Delta}$, the face ring of Δ .

Why is this an isomorphism?

- Send tent function at vertex v to x_v .
- Product of tent functions is zero if correspond to nonface. Consequences:
 - $C^0(\widehat{\Delta})$ is entirely combinatorial!
 - dim $C_d^0(\Delta) = \sum_{i=0}^n f_i \begin{pmatrix} d-1\\ i \end{pmatrix}$ for d > 0, where $f_i = \#i$ -faces of Δ .
 - If Δ is homeomorphic to a disk, then $C^0(\widehat{\Delta})$ is free as a $S = \mathbb{R}[x_0, \dots, x_n]$ module.
 - If Δ is shellable, then degrees of free generators for C⁰(Â) as S-module can be read off the h-vector of Δ.

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Question

Nonfreeness for Polytopal Complexes [D. '12]

 $C^{0}(\widehat{\Delta})$ need not be free if Δ has nonsimplicial faces [D. '12].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Question

Nonfreeness for Polytopal Complexes [D. '12]

 $C^{0}(\widehat{\Delta})$ need not be free if Δ has nonsimplicial faces [D. '12].

$$(-2,2)$$
 (2,2)
 $(-2,-2)$ (2,2)
 $(-2,-2)$ (2,-2)
 $(-2,-2)$ (2,-2)
 $C^{0}(\hat{\Delta})$ is a **free** $\mathbb{R}[x,y,z]$ -module

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Question

Nonfreeness for Polytopal Complexes [D. '12]

 $C^{0}(\widehat{\Delta})$ need not be free if Δ has nonsimplicial faces [D. '12].

$$(-2,3)$$
 $(2,3)$
 $(-1,1)$ $(1,1)$
 $(-1,-1)(1,-1)$
 $(-2,-2)$ $(2,-2)$

 $C^0(\widehat{\Delta})$ is **not** a free $\mathbb{R}[x, y, z]$ -module

Cross-Cut Partitions

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Question A partition of a domain D is called a *cross-cut partition* if the union of its two-cells are the complement of a line arrangement.

Cross-Cut Partitions

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Question A partition of a domain D is called a *cross-cut partition* if the union of its two-cells are the complement of a line arrangement.

Cross-Cut Partitions

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions A partition of a domain D is called a *cross-cut partition* if the union of its two-cells are the complement of a line arrangement.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Basis for C^r_d(Δ) and dim C^r_d(Δ) [Chui-Wang '83]
C^r(Â) is free for any r [Schenck '97]

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Question

Cross-cut partitions fail to be free in \mathbb{R}^3 !

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions Cross-cut partitions fail to be free in \mathbb{R}^{3} ! \mathcal{A}_{t} = union of hyperplanes defined by the vanishing of the forms (*t* is considered a parameter):

> x x+y+z 2x+y+zy 2x+3y+z 2x+3y+4zz (1+t)x+(3+t)z (1+t)x+(2+t)y+(3+t)z

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions Cross-cut partitions fail to be free in \mathbb{R}^3 ! $\mathcal{A}_t =$ union of hyperplanes defined by the vanishing of the forms (*t* is considered a parameter):

х	x+y+z	2x+y+z
у	2x+3y+z	2x+3y+4z
z	(1+t)x+(3+t)z	(1+t)x+(2+t)y+(3+t)z

 A_t has six triple lines (where three planes intersect), which lie on a non-degenerate conic if and only if t = 0, -5.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions Cross-cut partitions fail to be free in \mathbb{R}^3 ! \mathcal{A}_t = union of hyperplanes defined by the vanishing of the forms (*t* is considered a parameter):

х	x+y+z	2x+y+z
у	2x+3y+z	2x+3y+4z
z	(1+t)x+(3+t)z	(1+t)x+(2+t)y+(3+t)z

 A_t has six triple lines (where three planes intersect), which lie on a non-degenerate conic if and only if t = 0, -5.

Let Δ_t be the polytopal complex formed by closures of connected components of [-1,1] × [-1,1] × [-1,1] \ A_t. (there are 62 polytopes)

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions Cross-cut partitions fail to be free in \mathbb{R}^3 ! \mathcal{A}_t = union of hyperplanes defined by the vanishing of the forms (*t* is considered a parameter):

х	x+y+z	2x+y+z
у	2x+3y+z	2x+3y+4z
z	(1+t)x+(3+t)z	(1+t)x+(2+t)y+(3+t)z

 A_t has six triple lines (where three planes intersect), which lie on a non-degenerate conic if and only if t = 0, -5.

Let Δ_t be the polytopal complex formed by closures of connected components of [-1,1] × [-1,1] × [-1,1] \ A_t. (there are 62 polytopes)

• $C^0(\Delta_t)$ is free if and only if $t \neq -5, 0!$

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions

Part III: How Big is Big Enough?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The Hilbert polynomial

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions

From commutative algebra

• dim $C_d^r(\Delta) = \dim C^r(\widehat{\Delta})_d$ is a polynomial in d for $d \gg 0$

This is the Hilbert polynomial of C^r(Â), denoted HP(C^r(Â), d)

The Hilbert polynomial

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions

From commutative algebra

- dim $C_d^r(\Delta) = \dim C^r(\widehat{\Delta})_d$ is a polynomial in d for $d \gg 0$
- This is the Hilbert polynomial of C^r(Â), denoted HP(C^r(Â), d)

Main questions:

- What is a formula for $HP(C^r(\widehat{\Delta}), d)$?
- How large must d be so that dim $C_d^r(\Delta) = HP(C^r(\widehat{\Delta}), d)$?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Different approaches for computing dim $C_d^r(\Delta)$

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions

Analytic Techniques:

 Find upper and lower bounds for dim C^r_d(Δ) by explicitly representing polynomials on each polygon and deriving rank conditions on coefficients

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 For triangulations, upper and lower bounds agree for *d* ≥ 3*r* + 1 [Alfeld-Schumaker '90]

Different approaches for computing dim $C_d^r(\Delta)$

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions

Analytic Techniques:

- Find upper and lower bounds for dim C^r_d(Δ) by explicitly representing polynomials on each polygon and deriving rank conditions on coefficients
- For triangulations, upper and lower bounds agree for *d* ≥ 3*r* + 1 [Alfeld-Schumaker '90]

Algebraic Techniques:

- Find the polynomial HP(C^r(Â), d) using Euler characteristic of the Billera-Schenck-Stillman chain complex R/J [Billera '89, Schenck-Stillman '97]
- Find when dim $C^r_d(\Delta) = HP(C^r(\widehat{\Delta}), d)$ by
 - Analyzing homologies of \mathcal{R}/\mathcal{J} (done for triangulations in [Mourrain-Villamizar '13])
 - Bounding *regularity* of $C^r(\widehat{\Delta})$ [Schenck-Stiller '02, D. '16]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Planar simplicial splines of large degree

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Question

Planar Simplicial Dimension [Alfeld-Schumaker '90]

If $\Delta \subset \mathbb{R}^2$ is a simply connected triangulation and $d \geq 3r + 1$,

$$\dim C_d^r(\Delta) = \binom{d+2}{2} + \binom{d-r+1}{2} f_1^0 \\ - \left(\binom{d+2}{2} - \binom{r+2}{2}\right) f_0^0 + \sigma,$$

*f*⁰_i is the number of interior *i*-dimensional faces. *σ* = ∑ *σ*_i.

•
$$\sigma_i = \sum_j \max\{(r+1+j(1-n(v_i))), 0\}.$$

• $n(v_i) = \#$ distinct slopes at an interior vertex v_i .
Dimensions of Spline Spaces

Michael DiPasquale

Background and Centra Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Question

dim $C_2^1(\mathcal{T}) = 7$

Dimensions of Spline Spaces

Michael DiPasquale

Background and Centra Questions

Freeness

How Big is Big Enough?

Semi-Algebraid Splines

Open Question

 $\dim C_2^1(\mathcal{T}) = 7$

 $\dim C_2^1(\mathcal{T}') = 6$

Dimensions of Spline Spaces

Michael DiPasquale

Background and Centra Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions

Dimensions of Spline Spaces

Michael DiPasquale

Background and Centra Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions

 $\dim C_2^1(\mathcal{T}) = 7$

 $\dim C_2^1(\mathcal{T}') = 6$

Michael DiPasquale

Background and Centra Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Question

dim $C_d^1(\mathcal{T}) = \dim C_d^1(\mathcal{T}')$ if $d \neq 2!$

Dimensions of

Freeness

How Big is Big Enough?

Semi-Algebraid Splines

Open Questions

Conjecture [Schenck]

Alfeld-Schumaker formula for dim $C_d^r(\Delta)$ holds for $d \ge 2r + 1$.

イロト イボト イヨト イヨト 三日

Planar non-simplicial splines of large degree

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions

Planar non-simplicial dimension [McDonald-Schenck '09]

If $\Delta \subset \mathbb{R}^2$ is a simply connected polytopal complex,

$$\dim C_d^r(\Delta) = f_2 \binom{d+2}{2} + f_1^0 \left(\binom{d+2}{2} - \binom{d-r+1}{2} \right) - \sigma,$$

- f_i^0 is the number of interior *i*-dimensional faces.
- σ_i = contribution from vertices of Δ (and possibly some non-vertices!)

•
$$\sigma = \sum \sigma_i$$

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions

Disagreement in high degree [D. '14]

If $\Delta \subset \mathbb{R}^2$ is not simplicial, may have dim $C_d^r(\Delta) \neq HP(C^r(\widehat{\Delta}), d)$ for d as high as (F-1)(r+1) - 2, where F is maximum number of edges in the boundary of a 2-cell.

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Question

Disagreement in high degree [D. '14]

If $\Delta \subset \mathbb{R}^2$ is not simplicial, may have dim $C_d^r(\Delta) \neq HP(C^r(\widehat{\Delta}), d)$ for d as high as (F-1)(r+1) - 2, where F is maximum number of edges in the boundary of a 2-cell.

dim $C_d^0(\widehat{\Delta}) = \frac{5}{2}d^2 - \frac{1}{2}d + 1$ for $d \ge 2$

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Question

Disagreement in high degree [D. '14]

If $\Delta \subset \mathbb{R}^2$ is not simplicial, may have dim $C_d^r(\Delta) \neq HP(C^r(\widehat{\Delta}), d)$ for d as high as (F-1)(r+1) - 2, where F is maximum number of edges in the boundary of a 2-cell.

dim $C_d^0(\widehat{\Delta}) = \frac{6}{2}d^2 - \frac{4}{2}d + 1$ for $d \geq 3$

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Question

Disagreement in high degree [D. '14]

If $\Delta \subset \mathbb{R}^2$ is not simplicial, may have dim $C_d^r(\Delta) \neq HP(C^r(\widehat{\Delta}), d)$ for d as high as (F-1)(r+1) - 2, where F is maximum number of edges in the boundary of a 2-cell.

dim $C_d^0(\widehat{\Delta}) = \frac{7}{2}d^2 - \frac{7}{2}d + 1$ for $d \ge 4$

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Question

Disagreement in high degree [D. '14]

If $\Delta \subset \mathbb{R}^2$ is not simplicial, may have dim $C_d^r(\Delta) \neq HP(C^r(\widehat{\Delta}), d)$ for d as high as (F-1)(r+1) - 2, where F is maximum number of edges in the boundary of a 2-cell.

dim $C_d^0(\widehat{\Delta}) = \frac{8}{2}d^2 - \frac{10}{2}d + 1$ for $d \ge 5$

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions

Theorem: Using McDonald-Schenck Formula [D. '16]

 $\Delta \subset \mathbb{R}^2$ a planar polytopal complex. Let F = maximum number of edges appearing in a polytope of Δ . Then dim $C_d^r(\Delta) = HP(C^r(\widehat{\Delta}), d)$ for $d \ge (2F - 1)(r + 1) - 1$.

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Question

Theorem: Using McDonald-Schenck Formula [D. '16]

 $\Delta \subset \mathbb{R}^2$ a planar polytopal complex. Let F = maximum number of edges appearing in a polytope of Δ . Then dim $C_d^r(\Delta) = HP(C^r(\widehat{\Delta}), d)$ for $d \ge (2F - 1)(r + 1) - 1$.

 $\dim C^0_d(\widehat{\Delta}) = \frac{5}{2}d^2 - \frac{1}{2}d + 1 \text{ for } d \ge 2$ (By Theorem must have agreement for $d \ge 6$)

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Question

Theorem: Using McDonald-Schenck Formula [D. '16]

 $\Delta \subset \mathbb{R}^2$ a planar polytopal complex. Let F = maximum number of edges appearing in a polytope of Δ . Then dim $C_d^r(\Delta) = HP(C^r(\widehat{\Delta}), d)$ for $d \ge (2F - 1)(r + 1) - 1$.

 $\dim C^0_d(\widehat{\Delta}) = \frac{6}{2}d^2 - \frac{4}{2}d + 1 \text{ for } d \ge 3$ (By Theorem must have agreement for $d \ge 8$)

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Question

Theorem: Using McDonald-Schenck Formula [D. '16]

 $\Delta \subset \mathbb{R}^2$ a planar polytopal complex. Let F = maximum number of edges appearing in a polytope of Δ . Then dim $C_d^r(\Delta) = HP(C^r(\widehat{\Delta}), d)$ for $d \ge (2F - 1)(r + 1) - 1$.

 $\dim C^0_d(\widehat{\Delta}) = \frac{7}{2}d^2 - \frac{7}{2}d + 1 \text{ for } d \ge 4$ (By Theorem must have agreement for $d \ge 10$)

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Question

Theorem: Using McDonald-Schenck Formula [D. '16]

 $\Delta \subset \mathbb{R}^2$ a planar polytopal complex. Let F = maximum number of edges appearing in a polytope of Δ . Then dim $C_d^r(\Delta) = HP(C^r(\widehat{\Delta}), d)$ for $d \ge (2F - 1)(r + 1) - 1$.

 $\dim C^0_d(\widehat{\Delta}) = \frac{8}{2}d^2 - \frac{10}{2}d + 1 \text{ for } d \ge 5$ (By Theorem must have agreement for $d \ge 12$)

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions

Part IV: Semi-algebraic Splines

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Curved Partitions

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions More general problem: Compute dim $C_d^r(\Delta)$ where Δ is a partition whose arcs consist of irreducible algebraic curves.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Curved Partitions

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions More general problem: Compute dim $C_d^r(\Delta)$ where Δ is a partition whose arcs consist of irreducible algebraic curves.

$$x^{2} + (y - 1)^{2} = 1$$
(0,0)
(x - 1)^{2} + (y + 1)^{2} = 2
(x - 1)^{2} + (y + 1)^{2} = 2

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Curved Partitions

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough

Semi-Algebraic Splines

Open Questions More general problem: Compute dim $C_d^r(\Delta)$ where Δ is a partition whose arcs consist of irreducible algebraic curves.

Call functions in $C^r(\Delta)$ semi-algebraic splines since they are defined over regions given by polynomial inequalities, or semi-algebraic sets.

Semi-algebraic Splines

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions

Work in semi-algebraic splines:

• First definitions made in [Wang '75] - algebraic criterion for splines carries over verbatim

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Semi-algebraic Splines

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions

Work in semi-algebraic splines:

• First definitions made in [Wang '75] - algebraic criterion for splines carries over verbatim

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Studied using sheaf-theoretic techniques [Stiller '83]

Semi-algebraic Splines

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions

Work in semi-algebraic splines:

- First definitions made in [Wang '75] algebraic criterion for splines carries over verbatim
- Studied using sheaf-theoretic techniques [Stiller '83]
- Recent work suggests semi-algebraic splines may be increasingly useful in finite element method [Davydov-Kostin-Saeed '16]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions Focus on Δ ⊂ ℝ² with single interior vertex at (0,0).
Let Δ_L be the subdivision formed by replacing curves by tangent rays at origin

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions Focus on Δ ⊂ ℝ² with single interior vertex at (0,0).
Let Δ_L be the subdivision formed by replacing curves by tangent rays at origin

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Question Focus on Δ ⊂ ℝ² with single interior vertex at (0,0).
Let Δ_L be the subdivision formed by replacing curves by tangent rays at origin

Tangent Lines

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Question Focus on Δ ⊂ ℝ² with single interior vertex at (0,0).
Let Δ_L be the subdivision formed by replacing curves by tangent rays at origin

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions

Theorem: Linearizing dim $C_d^r(\Delta)$ [D.-Sottile-Sun '16]

Let Δ consist of *n* irreducible curves of degree d_1, \ldots, d_n meeting at (0,0) with distinct tangents and no common zero in $\mathbb{P}^2(\mathbb{C})$ other than (0,0). Then, for $d \gg 0$,

$$\dim C_d^r(\Delta) = \dim C_d^r(\Delta_L) + \sum_{i=1}^n \left(\binom{d+2-d_i(r+1)}{2} - \binom{d-r-1}{2} \right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions

Theorem: Linearizing dim $C_d^r(\Delta)$ [D.-Sottile-Sun '16]

Let Δ consist of *n* irreducible curves of degree d_1, \ldots, d_n meeting at (0,0) with distinct tangents and no common zero in $\mathbb{P}^2(\mathbb{C})$ other than (0,0). Then, for $d \gg 0$,

$$\dim C_d^r(\Delta) = \dim C_d^r(\Delta_L) + \sum_{i=1}^n \left(\binom{d+2-d_i(r+1)}{2} - \binom{d-r-1}{2} \right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Not true if tangents are not distinct!

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions

Theorem: Linearizing dim $C_d^r(\Delta)$ [D.-Sottile-Sun '16]

Let Δ consist of *n* irreducible curves of degree d_1, \ldots, d_n meeting at (0,0) with distinct tangents and no common zero in $\mathbb{P}^2(\mathbb{C})$ other than (0,0). Then, for $d \gg 0$,

$$\dim C_d^r(\Delta) = \dim C_d^r(\Delta_L) + \sum_{i=1}^n \left(\binom{d+2-d_i(r+1)}{2} - \binom{d-r-1}{2} \right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Not true if tangents are not distinct!
- Proof uses saturation and toric degenerations (from commutative algebra)

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions

Theorem: Linearizing dim $C_d^r(\Delta)$ [D.-Sottile-Sun '16]

Let Δ consist of *n* irreducible curves of degree d_1, \ldots, d_n meeting at (0,0) with distinct tangents and no common zero in $\mathbb{P}^2(\mathbb{C})$ other than (0,0). Then, for $d \gg 0$,

$$\dim C_d^r(\Delta) = \dim C_d^r(\Delta_L) + \sum_{i=1}^n \left(\binom{d+2-d_i(r+1)}{2} - \binom{d-r-1}{2} \right)$$

- Not true if tangents are not distinct!
- Proof uses saturation and toric degenerations (from commutative algebra)
- Bounds on *d* for when equality holds are also considered, using regularity

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions

Part V: Open Questions

Open Questions

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions • Long standing open question (planar triangulations): Compute dim $C_3^1(\Delta)$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Open Questions

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions • Long standing open question (planar triangulations): Compute dim $C_3^1(\Delta)$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 More generally (planar triangulations): Compute dim C^r_d(Δ) for r + 1 ≤ d ≤ 3r + 1

Open Questions

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions

- Long standing open question (planar triangulations): Compute dim $C_3^1(\Delta)$
- More generally (planar triangulations): Compute dim C^r_d(Δ) for r + 1 ≤ d ≤ 3r + 1
- More generally (planar polytopal complexes): Compute dim C^r_d(Δ) for r + 1 ≤ d ≤ (2F − 1)(r + 1) (F maximum number of edges in a two-cell)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで
Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions

- Long standing open question (planar triangulations): Compute dim $C_3^1(\Delta)$
- More generally (planar triangulations): Compute dim C^r_d(Δ) for r + 1 ≤ d ≤ 3r + 1
- More generally (planar polytopal complexes): Compute dim C^r_d(Δ) for r + 1 ≤ d ≤ (2F − 1)(r + 1) (F maximum number of edges in a two-cell)
- If Δ ⊂ ℝ³, dim C^r_d(Δ) is not known for d ≫ 0 except for r = 1, d ≥ 8 on generic triangulations [Alfeld-Schumaker-Whitely '93]. (connects to unsolved problem in algebraic geometry - the Segre-Harbourne-Gimigliano-Hirschowitz conjecture)

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions • Bounds on dim $C_d^r(\Delta)$ for $\Delta \subset \mathbb{R}^3$ [Mourrain-Villamizar '15] (most recent). Improve these!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions

- Bounds on dim $C_d^r(\Delta)$ for $\Delta \subset \mathbb{R}^3$ [Mourrain-Villamizar '15] (most recent). Improve these!
- Characterize freeness C^r(Δ). Start with C⁰ splines on cross-cut partitions Δ in ℝ³.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Dimensions of Spline Spaces

Michael DiPasquale

Background and Central Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions

- Bounds on dim $C_d^r(\Delta)$ for $\Delta \subset \mathbb{R}^3$ [Mourrain-Villamizar '15] (most recent). Improve these!
- Characterize freeness C^r(Δ). Start with C⁰ splines on cross-cut partitions Δ in R³.

• Compute dim $C_d^1(\Delta)$ for semi-algebraic splines on partitions whose edge forms have low degree (e.g. line+conic)

Dimensions of Spline Spaces

Michael DiPasquale

Background and Centra Questions

Freeness

How Big is Big Enough?

Semi-Algebraic Splines

Open Questions

THANK YOU!

ヘロト ヘヨト ヘヨト ヘヨト

Ξ 9 Q (P