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Univariate Splines

Most widely studied case: approximation of a function f (x)
over an interval ∆ = [a, b] ⊂ R by C r piecewise polynomials.

Subdivide ∆ = [a, b] into subintervals:
∆ = [a0, a1] ∪ [a1, a2] ∪ · · · ∪ [an−1, an]
Find a basis for the vector space C r

d (∆) of C r piecewise
polynomial functions on ∆ with degree at most d
(B-splines!)
Find best approximation to f (x) in C r

d (∆)
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Two Subintervals

∆ = [a0, a1] ∪ [a1, a2] (assume WLOG a1 = 0)

(f1, f2) ∈ C r
d (∆) ⇐⇒ f (i)

1 (0) = f (i)
2 (0) for 0 ≤ i ≤ r

⇐⇒ x r+1|(f2 − f1)

⇐⇒ (f2 − f1) ∈ 〈x r+1〉

Even more explicitly:
f1(x) = b0 + b1x + · · ·+ bdxd

f2(x) = c0 + c1x + · · ·+ cdxd

(f0, f1) ∈ C r
d (∆) ⇐⇒ b0 = c0, . . . , br = cr .

dimC r
d (∆) =

{
d + 1 if d ≤ r
(d + 1) + (d − r) if d > r

Note: dimC r
d (∆) is polynomial in d for d > r .
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Higher Dimensions

Let ∆ ⊂ Rn be

a polytopal complex
pure n-dimensional
a pseudomanifold H-1,-1L H1,-1L

H1,1LH-1,1L

H-2,-2L H2,-2L

H2,2LH-2,2L

A polytopal complex Q
(Algebraic) Spline Criterion:

If τ ∈ ∆n−1, lτ = affine form vanishing on affine span of τ
Collection {Fσ}σ∈∆n glue to F ∈ C r (∆) ⇐⇒ for every
pair of adjacent facets σ1, σ2 ∈ ∆n with
σ1 ∩ σ2 = τ ∈ ∆n−1, l r+1

τ | (Fσ1 − Fσ2)
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The dimension question

Key Fact: C r
d (∆) is a finite dimensional real vector space.

A basis for C0
1 (Q)

is shown at right.

dimRC0
1 (Q) = 4

-x

y

x

-y

1 x

x

x

x

x

y

y

y

y

y 1

1

1

1

1

Two central problems in approximation theory:
1 Determine dimC r

d (∆)
2 Construct a ‘local’ basis of C r

d (∆), if possible
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Who Cares?

1 Computation of dimC r
d (∆) for higher dimensions initiated

by [Strang ‘75] in connection with finite element method
2 Data fitting in approximation theory
3 Computer Aided Geometric Design (CAGD) - building

surfaces by splines [Farin ‘97]
4 Toric Geometry: Equivariant Chow cohomology rings of

toric varieties are rings of continuous splines on the fan
(under appropriate conditions) [Payne ‘06]
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Continuous Splines in Two Dimensions

(2, 0)

(0, 2)

(−2,−2)

(0, 0)

(F1,F2,F3) ∈ C0(∆) ⇐⇒
∃f1, f2, f3 so that

F1 − F2 = f1x
F2 − F3 = f2(x − y)
F3 − F1 = f3y
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y
x

x − y
Three splines in C0(∆):

1
1
1

0
x

y
0

x2
y2

In fact, every spline F ∈ C0(∆) can be written uniquely as
a polynomial combination of these three splines.
We say C0(∆) is a free R[x , y ]-module, generated in
degrees 0, 1, 2
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Freeness and Dimension Computation

C0(∆) is a free R[x , y ]-module generated in degrees 0,1,2.

C0
d (∆) ∼= R[x , y ]≤d (1, 1, 1)⊕ R[x , y ]≤d−1(0, x , y)⊕

R[x , y ]≤d−2(0, x2, y2).

dimC0
d (∆) =

(
d + 2
2

)
+
(

d + 1
2

)
+
(

d
2

)
= 3

2d2 + 3
2d + 1 for d ≥ 1

In general, employ a coning construction ∆→ ∆̂ to
homogenize and consider dimC r (∆̂)d .



Dimensions of
Spline Spaces

Michael
DiPasquale

Background
and Central
Questions

Freeness

How Big is
Big Enough?

Semi-
Algebraic
Splines

Open
Questions

Freeness and Dimension Computation

C0(∆) is a free R[x , y ]-module generated in degrees 0,1,2.
C0

d (∆) ∼= R[x , y ]≤d (1, 1, 1)⊕ R[x , y ]≤d−1(0, x , y)⊕
R[x , y ]≤d−2(0, x2, y2).

dimC0
d (∆) =

(
d + 2
2

)
+
(

d + 1
2

)
+
(

d
2

)
= 3

2d2 + 3
2d + 1 for d ≥ 1

In general, employ a coning construction ∆→ ∆̂ to
homogenize and consider dimC r (∆̂)d .



Dimensions of
Spline Spaces

Michael
DiPasquale

Background
and Central
Questions

Freeness

How Big is
Big Enough?

Semi-
Algebraic
Splines

Open
Questions

Freeness and Dimension Computation

C0(∆) is a free R[x , y ]-module generated in degrees 0,1,2.
C0

d (∆) ∼= R[x , y ]≤d (1, 1, 1)⊕ R[x , y ]≤d−1(0, x , y)⊕
R[x , y ]≤d−2(0, x2, y2).

dimC0
d (∆) =

(
d + 2
2

)
+
(

d + 1
2

)
+
(

d
2

)
= 3

2d2 + 3
2d + 1 for d ≥ 1

In general, employ a coning construction ∆→ ∆̂ to
homogenize and consider dimC r (∆̂)d .



Dimensions of
Spline Spaces

Michael
DiPasquale

Background
and Central
Questions

Freeness

How Big is
Big Enough?

Semi-
Algebraic
Splines

Open
Questions

Coning Construction

∆̂ ⊂ Rn+1 denotes the cone over ∆ ⊂ Rn.

∆ ∆̂

C r (∆̂) is always a graded module over R[x0, . . . , xn]
C r

d (∆) ∼= C r (∆̂)d [Billera-Rose ‘91]
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Consequences of Freeness

Freeness of C r (∆̂) =⇒ straightforward computation of
dimC r

d (∆).

Many widely-used planar partitions ∆ actually satisfy the
property that C r (∆̂) is free (type I and II triangulations,
cross-cut partitions, rectangular meshes) [Schenck ‘97]
Freeness of C r (∆̂) is highly studied:

via localization [Billera-Rose ‘92]
via sheaves on posets [Yuzvinsky ‘92]
via dual graphs [Rose ‘95]
via homologies of a chain complex [Schenck ‘97] (∆
simplicial)
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C 0 simplicial splines

Basis for C0
1 (∆) is ‘Courant functions’ or ‘Tent functions’

dimC0
1 (∆) = number of vertices of ∆

C0(∆) is generated as an algebra by tent functions
[Billera-Rose ‘92]
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Face rings of simplicial complexes

Face Ring of ∆
∆ a simplicial complex.

A∆ = R[xv |v a vertex of ∆]/I∆,

where I∆ is the ideal generated by monomials corresponding to
non-faces.

2

3

4

1

Nonfaces are
{1, 2, 3, 4}, {2, 3, 4}
I∆ = 〈x2x3x4〉
A∆ =
R[x1, x2, x3, x4]/I∆
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C 0 simplicial splines

C0 for Simplicial Splines [Billera-Rose ‘92]

C0(∆̂) ∼= A∆, the face ring of ∆.

Why is this an isomorphism?
Send tent function at vertex v to xv .
Product of tent functions is zero if correspond to nonface.

Consequences:
C0(∆̂) is entirely combinatorial!

dimC0
d (∆) =

n∑
i=0

fi
(

d − 1
i

)
for d > 0, where

fi = #i-faces of ∆.
If ∆ is homeomorphic to a disk, then C0(∆̂) is free as a
S = R[x0, . . . , xn] module.
If ∆ is shellable, then degrees of free generators for C0(∆̂)
as S-module can be read off the h-vector of ∆.
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Cautionary Tale I

Nonfreeness for Polytopal Complexes [D. ‘12]

C0(∆̂) need not be free if ∆ has nonsimplicial faces [D. ‘12].
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Cross-Cut Partitions

A partition of a domain D is called a cross-cut partition if the
union of its two-cells are the complement of a line arrangement.

Basis for C r
d (∆) and dimC r

d (∆) [Chui-Wang ‘83]
C r (∆̂) is free for any r [Schenck ‘97]
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Cautionary Tale II: Ziegler’s Pair

Cross-cut partitions fail to be free in R3!

At = union of hyperplanes defined by the vanishing of the
forms (t is considered a parameter):

x x+y+z 2x+y+z
y 2x+3y+z 2x+3y+4z
z (1+t)x+(3+t)z (1+t)x+(2+t)y+(3+t)z

At has six triple lines (where three planes intersect), which lie
on a non-degenerate conic if and only if t = 0,−5.

Let ∆t be the polytopal complex formed by closures of
connected components of [−1, 1]× [−1, 1]× [−1, 1] \ At .
(there are 62 polytopes)
C0(∆t) is free if and only if t 6= −5, 0!
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Part III: How Big is Big Enough?



Dimensions of
Spline Spaces

Michael
DiPasquale

Background
and Central
Questions

Freeness

How Big is
Big Enough?

Semi-
Algebraic
Splines

Open
Questions

The Hilbert polynomial

From commutative algebra
dimC r

d (∆) = dimC r (∆̂)d is a polynomial in d for d � 0
This is the Hilbert polynomial of C r (∆̂), denoted
HP(C r (∆̂), d)

Main questions:
What is a formula for HP(C r (∆̂), d)?
How large must d be so that dimC r

d (∆) = HP(C r (∆̂), d)?
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Different approaches for computing dimC r
d(∆)

Analytic Techniques:
Find upper and lower bounds for dimC r

d (∆) by explicitly
representing polynomials on each polygon and deriving
rank conditions on coefficients
For triangulations, upper and lower bounds agree for
d ≥ 3r + 1 [Alfeld-Schumaker ‘90]

Algebraic Techniques:
Find the polynomial HP(C r (∆̂), d) using Euler
characteristic of the Billera-Schenck-Stillman chain
complex R/J [Billera ‘89, Schenck-Stillman ‘97]
Find when dimC r

d (∆) = HP(C r (∆̂), d) by
Analyzing homologies of R/J (done for triangulations in
[Mourrain-Villamizar ‘13])
Bounding regularity of C r (∆̂) [Schenck-Stiller ‘02, D. ‘16]
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Planar simplicial splines of large degree

Planar Simplicial Dimension [Alfeld-Schumaker ‘90]
If ∆ ⊂ R2 is a simply connected triangulation and d ≥ 3r + 1,

dimC r
d (∆) =

(
d + 2
2

)
+
(

d − r + 1
2

)
f 0
1

−
((

d + 2
2

)
−
(

r + 2
2

))
f 0
0 + σ,

f 0
i is the number of interior i-dimensional faces.
σ =

∑
σi .

σi =
∑

j max{(r + 1 + j(1− n(vi ))), 0}.
n(vi ) = # distinct slopes at an interior vertex vi .
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Morgan-Scot triangulation

dimC1
2 (T ) = 7

dimC1
2 (T ′) = 6

dimC1
d (T ) = dimC1

d (T ′) if d 6= 2!

Conjecture [Schenck]
Alfeld-Schumaker formula for dimC r

d (∆) holds for d ≥ 2r + 1.
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Planar non-simplicial splines of large degree

Planar non-simplicial dimension [McDonald-Schenck ‘09]
If ∆ ⊂ R2 is a simply connected polytopal complex,

dimC r
d (∆) = f2

(
d + 2
2

)
+ f 0

1

((
d + 2
2

)
−
(

d − r + 1
2

))
− σ,

f 0
i is the number of interior i-dimensional faces.
σi = contribution from vertices of ∆ (and possibly some
non-vertices!)
σ =

∑
σi
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Bad behavior in non-simplicial case

Disagreement in high degree [D. ‘14]
If ∆ ⊂ R2 is not simplicial, may have
dimC r

d (∆) 6= HP(C r (∆̂), d) for d as high as
(F − 1)(r + 1)− 2, where F is maximum number of edges in
the boundary of a 2-cell.
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Disagreement in high degree [D. ‘14]
If ∆ ⊂ R2 is not simplicial, may have
dimC r

d (∆) 6= HP(C r (∆̂), d) for d as high as
(F − 1)(r + 1)− 2, where F is maximum number of edges in
the boundary of a 2-cell.

dimC0
d (∆̂) = 5

2d2 − 1
2d + 1 for d ≥ 2
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dimC r

d (∆) 6= HP(C r (∆̂), d) for d as high as
(F − 1)(r + 1)− 2, where F is maximum number of edges in
the boundary of a 2-cell.

dimC0
d (∆̂) = 6

2d2 − 4
2d + 1 for d ≥ 3
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Bad behavior in non-simplicial case

Disagreement in high degree [D. ‘14]
If ∆ ⊂ R2 is not simplicial, may have
dimC r

d (∆) 6= HP(C r (∆̂), d) for d as high as
(F − 1)(r + 1)− 2, where F is maximum number of edges in
the boundary of a 2-cell.

dimC0
d (∆̂) = 7

2d2 − 7
2d + 1 for d ≥ 4
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Disagreement in high degree [D. ‘14]
If ∆ ⊂ R2 is not simplicial, may have
dimC r

d (∆) 6= HP(C r (∆̂), d) for d as high as
(F − 1)(r + 1)− 2, where F is maximum number of edges in
the boundary of a 2-cell.

dimC0
d (∆̂) = 8

2d2 − 10
2 d + 1 for d ≥ 5
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Agreement for non-simplicial splines

Theorem: Using McDonald-Schenck Formula [D. ‘16]
∆ ⊂ R2 a planar polytopal complex. Let F = maximum
number of edges appearing in a polytope of ∆. Then
dimC r

d (∆) = HP(C r (∆̂), d) for d ≥ (2F − 1)(r + 1)− 1.
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Agreement for non-simplicial splines

Theorem: Using McDonald-Schenck Formula [D. ‘16]
∆ ⊂ R2 a planar polytopal complex. Let F = maximum
number of edges appearing in a polytope of ∆. Then
dimC r

d (∆) = HP(C r (∆̂), d) for d ≥ (2F − 1)(r + 1)− 1.

dimC0
d (∆̂) = 5

2d2 − 1
2d + 1 for d ≥ 2

(By Theorem must have agreement for d ≥ 6)
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Agreement for non-simplicial splines

Theorem: Using McDonald-Schenck Formula [D. ‘16]
∆ ⊂ R2 a planar polytopal complex. Let F = maximum
number of edges appearing in a polytope of ∆. Then
dimC r

d (∆) = HP(C r (∆̂), d) for d ≥ (2F − 1)(r + 1)− 1.

dimC0
d (∆̂) = 6

2d2 − 4
2d + 1 for d ≥ 3

(By Theorem must have agreement for d ≥ 8)
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Agreement for non-simplicial splines

Theorem: Using McDonald-Schenck Formula [D. ‘16]
∆ ⊂ R2 a planar polytopal complex. Let F = maximum
number of edges appearing in a polytope of ∆. Then
dimC r

d (∆) = HP(C r (∆̂), d) for d ≥ (2F − 1)(r + 1)− 1.

dimC0
d (∆̂) = 7

2d2 − 7
2d + 1 for d ≥ 4

(By Theorem must have agreement for d ≥ 10)
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Agreement for non-simplicial splines

Theorem: Using McDonald-Schenck Formula [D. ‘16]
∆ ⊂ R2 a planar polytopal complex. Let F = maximum
number of edges appearing in a polytope of ∆. Then
dimC r

d (∆) = HP(C r (∆̂), d) for d ≥ (2F − 1)(r + 1)− 1.

dimC0
d (∆̂) = 8

2d2 − 10
2 d + 1 for d ≥ 5

(By Theorem must have agreement for d ≥ 12)
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Part IV: Semi-algebraic Splines
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Curved Partitions

More general problem: Compute dimC r
d (∆) where ∆ is a

partition whose arcs consist of irreducible algebraic curves.

(x − 1)2 + (y + 1)2 = 2x2 + (y − 1)2 = 1

x = 0

(0, 0)

Call functions in C r (∆) semi-algebraic splines since they are
defined over regions given by polynomial inequalities, or
semi-algebraic sets.
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More general problem: Compute dimC r
d (∆) where ∆ is a

partition whose arcs consist of irreducible algebraic curves.

(x − 1)2 + (y + 1)2 = 2x2 + (y − 1)2 = 1

x = 0

(0, 0)

Call functions in C r (∆) semi-algebraic splines since they are
defined over regions given by polynomial inequalities, or
semi-algebraic sets.
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Semi-algebraic Splines

Work in semi-algebraic splines:
First definitions made in [Wang ’75] - algebraic criterion
for splines carries over verbatim

Studied using sheaf-theoretic techniques [Stiller ‘83]
Recent work suggests semi-algebraic splines may be
increasingly useful in finite element method
[Davydov-Kostin-Saeed ‘16]
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Work in semi-algebraic splines:
First definitions made in [Wang ’75] - algebraic criterion
for splines carries over verbatim
Studied using sheaf-theoretic techniques [Stiller ‘83]

Recent work suggests semi-algebraic splines may be
increasingly useful in finite element method
[Davydov-Kostin-Saeed ‘16]
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Semi-algebraic Splines

Work in semi-algebraic splines:
First definitions made in [Wang ’75] - algebraic criterion
for splines carries over verbatim
Studied using sheaf-theoretic techniques [Stiller ‘83]
Recent work suggests semi-algebraic splines may be
increasingly useful in finite element method
[Davydov-Kostin-Saeed ‘16]
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Linearizing

Focus on ∆ ⊂ R2 with single interior vertex at (0, 0).
Let ∆L be the subdivision formed by replacing curves by
tangent rays at origin
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Focus on ∆ ⊂ R2 with single interior vertex at (0, 0).
Let ∆L be the subdivision formed by replacing curves by
tangent rays at origin

(x − 1)2 + (y + 1)2 = 2x2 + (y − 1)2 = 1

x = 0

∆
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Focus on ∆ ⊂ R2 with single interior vertex at (0, 0).
Let ∆L be the subdivision formed by replacing curves by
tangent rays at origin

Tangent Lines
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Focus on ∆ ⊂ R2 with single interior vertex at (0, 0).
Let ∆L be the subdivision formed by replacing curves by
tangent rays at origin

y = x

x = 0

y = 0

∆L
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Theorem: Linearizing dimC r
d (∆) [D.-Sottile-Sun ‘16]

Let ∆ consist of n irreducible curves of degree d1, . . . , dn
meeting at (0, 0) with distinct tangents and no common zero in
P2(C) other than (0, 0). Then, for d � 0,

dimC r
d (∆) = dimC r

d (∆L)

+
n∑

i=1

((
d + 2− di (r + 1)

2

)
−
(

d − r − 1
2

))

Not true if tangents are not distinct!
Proof uses saturation and toric degenerations (from
commutative algebra)
Bounds on d for when equality holds are also considered,
using regularity
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Open Questions

Long standing open question (planar triangulations):
Compute dimC1

3 (∆)

More generally (planar triangulations): Compute
dimC r

d (∆) for r + 1 ≤ d ≤ 3r + 1
More generally (planar polytopal complexes): Compute
dimC r

d (∆) for r + 1 ≤ d ≤ (2F − 1)(r + 1) (F maximum
number of edges in a two-cell)
If ∆ ⊂ R3, dimC r

d (∆) is not known for d � 0 except for
r = 1, d ≥ 8 on generic triangulations
[Alfeld-Schumaker-Whitely ‘93]. (connects to unsolved
problem in algebraic geometry - the
Segre-Harbourne-Gimigliano-Hirschowitz conjecture)
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Segre-Harbourne-Gimigliano-Hirschowitz conjecture)
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Long standing open question (planar triangulations):
Compute dimC1

3 (∆)
More generally (planar triangulations): Compute
dimC r

d (∆) for r + 1 ≤ d ≤ 3r + 1
More generally (planar polytopal complexes): Compute
dimC r

d (∆) for r + 1 ≤ d ≤ (2F − 1)(r + 1) (F maximum
number of edges in a two-cell)

If ∆ ⊂ R3, dimC r
d (∆) is not known for d � 0 except for

r = 1, d ≥ 8 on generic triangulations
[Alfeld-Schumaker-Whitely ‘93]. (connects to unsolved
problem in algebraic geometry - the
Segre-Harbourne-Gimigliano-Hirschowitz conjecture)
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Bounds on dimC r
d (∆) for ∆ ⊂ R3 [Mourrain-Villamizar

‘15] (most recent). Improve these!

Characterize freeness C r (∆). Start with C0 splines on
cross-cut partitions ∆ in R3.
Compute dimC1

d (∆) for semi-algebraic splines on
partitions whose edge forms have low degree (e.g.
line+conic)
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d (∆) for ∆ ⊂ R3 [Mourrain-Villamizar

‘15] (most recent). Improve these!
Characterize freeness C r (∆). Start with C0 splines on
cross-cut partitions ∆ in R3.

Compute dimC1
d (∆) for semi-algebraic splines on

partitions whose edge forms have low degree (e.g.
line+conic)
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