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Piecewise Polynomials

Spline

A piecewise polynomial function, continuously differentiable to some order.

The Zwart-Powell element, a C 1 spline of degree 2
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Univariate Splines

Most widely studied case: approximation of a function f (x) over an
interval ∆ = [a, b] ⊂ R by C r piecewise polynomials.

Subdivide ∆ = [a, b] into subintervals:
∆ = [a0, a1] ∪ [a1, a2] ∪ · · · ∪ [an−1, an]

Find a basis for the vector space C r
d(∆) of C r piecewise polynomial

functions on ∆ with degree at most d (B-splines!)

Find best approximation to f (x) in C r
d(∆)
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Two Subintervals

∆ = [a0, a1] ∪ [a1, a2] (assume WLOG a1 = 0)

(f1, f2) ∈ C r
d(∆) ⇐⇒ f

(i)
1 (0) = f

(i)
2 (0) for 0 ≤ i ≤ r

⇐⇒ x r+1|(f2 − f1)

⇐⇒ (f2 − f1) ∈ 〈x r+1〉

Even more explicitly:

f1(x) = b0 + b1x + · · ·+ bdx
d

f2(x) = c0 + c1x + · · ·+ cdx
d

(f0, f1) ∈ C r
d(∆) ⇐⇒ b0 = c0, . . . , br = cr .

dimC r
d(∆) =

{
d + 1 if d ≤ r
(d + 1) + (d − r) if d > r

Note: dimC r
d(∆) is polynomial in d for d > r .
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Higher Dimensions

More General Problem: Compute dimC r
d(∆) where ∆ ⊂ Rn is

a polytopal complex

pure n-dimensional

a pseudomanifold

A polytopal complex
(Algebraic) Spline Criterion:

If τ ∈ ∆n−1, lτ = affine form vanishing on affine span of τ

Collection {fσ}σ∈∆n glue to F ∈ C r (∆) ⇐⇒ for every pair of
adjacent facets σ1, σ2 ∈ ∆n with σ1∩σ2 = τ ∈ ∆n−1, l r+1

τ | (fσ1 − fσ2)
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Who Cares?

1 Computation of dimC r
d(∆) for higher dimensions initiated by

[Strang ‘73] in connection with finite element method

2 Data fitting in approximation theory

3 [Farin ‘97] Computer Aided Geometric Design (CAGD) - building
surfaces by splines.

4 [Payne ‘06] Toric Geometry - Equivariant cohomology rings of toric
varieties are rings of continuous splines on the fan (under appropriate
conditions).
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Part I: Continuous Splines and Freeness
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Continuous Splines

(2, 0)

(0, 2)

(−2,−2)

(0, 0)

(F1,F2,F3) ∈ C 0(∆) ⇐⇒
∃f1, f2, f3 so that

F1 − F2 = f1x
F2 − F3 = f2(x − y)
F3 − F1 = f3y
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Spline Matrix

F1

F2

F3

(F1,F2,F3) ∈ C 0(∆) ⇐⇒ there are
f1, f2, f3 so that

 1 −1 0 x 0 0
0 1 −1 0 x − y 0
−1 0 1 0 0 y




F1

F2

F3

−f1
−f2
−f3

 = 0

This matrix constructed in [Billera-Rose ‘91].
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Observations

C 0(∆), the kernel of this matrix, is a graded R[x , y ]− module
(matrix entries are homogeneous).

C 0(∆)d := splines of degree d

Every spline in C 0(∆) can be written uniquely as a polynomial
combination of the three splines pictured below:

1
1

1

−y
x − y

0

xy

0
0
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Observations, continued

C 0(∆) is a free R = R[x , y ]-module generated in degrees 0,1,2.
Record degrees as C 0(∆) ∼= R ⊕ R(−1)⊕ R(−2).

dimC 0(∆)d =

(
d + 1

1

)
+

(
(d + 1)− 1

1

)
+

(
(d + 1)− 2

1

)
= 3d for d ≥ 1

dimC 0
d (∆) =

dimC 0(∆̂)d =

(
d + 2

2

)
+

(
(d + 2)− 1

2

)
+

(
(d + 2)− 2

2

)
=

3

2
d2 +

3

2
d + 1 for d ≥ 0,

where ∆̂ is the cone over ∆.
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Coning Construction

∆̂ ⊂ Rn+1 denotes the cone over ∆ ⊂ Rn.

∆ ∆̂

C r (∆̂) is always a graded algebra over S = R[x0, . . . , xn]

C r
d(∆) ∼= C r (∆̂)d [Billera-Rose ‘91]
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Consequences of Freeness

Freeness of C r (∆̂) =⇒ straightforward computation of dimC r
d(∆).

[Schenck-Stillman ‘97] Many widely-used partitions ∆ actually satisfy
the property that C r (∆̂) is free (type I and II triangulations, cross-cut
partitions, rectangular meshes, etc.)

[Billera-Rose ‘92] criteria for freeness in terms of localization

[Yuzvinsky ‘92] criteria for freeness in terms of sheaves on posets

[Schenck ‘97] criteria for freeness in terms of homologies of a chain
complex (∆ simplicial)
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Face Rings of Simplicial Complexes

Face Ring of ∆

∆ a simplicial complex.

A∆ = R[xv |v a vertex of ∆]/I∆,

where I∆ is the ideal generated by monomials corresponding to non-faces.

2

3

4

1

Nonfaces are
{1, 2, 3, 4}, {2, 3, 4}
I∆ = 〈x2x3x4〉
A∆ = R[x1, x2, x3, x4]/I∆
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Freeness for C 0 simplicial splines

C 0 for Simplicial Splines [Billera ‘89]

C 0(∆̂) ∼= A∆, the face ring of ∆.

dimC 0
d (∆) =

n∑
i=0

fi

(
d − 1

i

)
for d > 0, where fi = #i-faces of ∆.

Moreover, if ∆ is homeomorphic to a disk, then C 0(∆̂) is free.
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Nonsimplicial Case

Nonfreeness for Polytopal Complexes [D. ‘12]

C 0(∆̂) need not be free if ∆ has nonsimplicial faces.

(1,−1)

(1, 1)

(−1,−1)

(−1, 1)

(2,−2)

(2, 3)

(−2,−2)

(−2, 3)

C 0(∆̂) is not a free module over R[x , y , z ].
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Part II: Hilbert Polynomials and Regularity
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Some Graded Commutative Algebra

Given a finitely generated graded S = R[x1, . . . , xn]-module M (like
C r (∆̂)).

HF (M, d) := dimMd is the Hilbert function of M.

If d >> 0, HF (M, d) = HP(M, d), where HP(M, d) is the Hilbert
polynomial of M.

Upshot: dimC r
d(∆) = dimC r (∆̂)d is eventually polynomial in d (in

fact, linear combination of binomial coefficients)
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The Good News and the Bad News

Good news: HP(C r (∆̂), d) has been computed for ∆ ⊂ R2.

∆ simplicial: [Alfeld-Schumaker ‘90, Hong ‘91],
[Ibrahim-Schumaker ‘91]

∆ nonsimplicial: [McDonald-Schenck ‘09]

Bad news: dimC r
d(∆) is still a mystery for small d .

dimC 1
3 (∆) still unknown for ∆ ⊂ R2!
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Planar Hilbert Polynomials

Planar Simplicial Dimension [Alfeld-Schumaker ‘90]

If ∆ ⊂ R2 is a simply connected triangulation and d ≥ 3r + 1, then

dimC r
d(∆) =

(
d + 2

2

)
+

(
d − r + 1

2

)
f 0
1 −

((
d + 2

2

)
−
(
r + 2

2

))
f 0
0 +σ,

f 0
i is the number of interior i-dimensional faces.

n(vi ) = # distinct slopes at an interior vertex vi .

σi =
∑

j max{(r + 1 + j(1− n(vi ))), 0}.
σ =

∑
σi .

Conjecture [Schenck ‘97]

Above formula holds for d ≥ 2r + 1.
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n(vi ) = # distinct slopes at an interior vertex vi .

σi =
∑

j max{(r + 1 + j(1− n(vi ))), 0}.

σ =
∑
σi .

Conjecture [Schenck ‘97]

Above formula holds for d ≥ 2r + 1.

Michael DiPasquale Commutative Algebra and Approximation Theory 20 / 29



Planar Hilbert Polynomials

Planar Simplicial Dimension [Alfeld-Schumaker ‘90]

If ∆ ⊂ R2 is a simply connected triangulation and d ≥ 3r + 1, then

dimC r
d(∆) =

(
d + 2

2

)
+

(
d − r + 1

2

)
f 0
1 −

((
d + 2

2

)
−
(
r + 2

2

))
f 0
0 +σ,

f 0
i is the number of interior i-dimensional faces.

n(vi ) = # distinct slopes at an interior vertex vi .

σi =
∑

j max{(r + 1 + j(1− n(vi ))), 0}.
σ =

∑
σi .

Conjecture [Schenck ‘97]

Above formula holds for d ≥ 2r + 1.

Michael DiPasquale Commutative Algebra and Approximation Theory 20 / 29



Planar Hilbert Polynomials

Planar Simplicial Dimension [Alfeld-Schumaker ‘90]

If ∆ ⊂ R2 is a simply connected triangulation and d ≥ 3r + 1, then

dimC r
d(∆) =

(
d + 2

2

)
+

(
d − r + 1

2

)
f 0
1 −

((
d + 2

2

)
−
(
r + 2

2

))
f 0
0 +σ,

f 0
i is the number of interior i-dimensional faces.

n(vi ) = # distinct slopes at an interior vertex vi .

σi =
∑

j max{(r + 1 + j(1− n(vi ))), 0}.
σ =

∑
σi .

Conjecture [Schenck ‘97]

Above formula holds for d ≥ 2r + 1.

Michael DiPasquale Commutative Algebra and Approximation Theory 20 / 29



Planar Hilbert Polynomials

∆ ⊂ R2 a simply connected polytopal complex

[McDonald-Schenck ‘09] give formulas for coefficients of
HP(C r (∆̂), d)

HP(C 0(∆̂), d) =
5

2
d2 − 1

2
d + 2 HP(C 0(∆̂), d) =

5

2
d2 − 1

2
d + 1

How large does d have to be for dimC r
d(∆) = HP(C r (∆̂), d)?

In simplicial case, d ≥ 3r + 1 suffices.
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Large degree generators

Proposition [D. ‘14]

Given an n-polytope A ⊂ Rn and a choice of codimension 1 face
τ ∈ An−1, there is a polytopal complex P(A) having A as a facet so that

1 Every codimension 1 face of A except τ is interior to P(A)

2 There is a minimal generator of C r (P̂(A)) supported only on A.

x

A

B

C r (∆̂) has minimal generator of degree 4(r + 1)
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A Positive Result

Agreement of Hilbert Function and Polynomial [D. ‘14]

∆ ⊂ R2 a planar polytopal complex. Let F = maximum number of edges
of a polygon of ∆. Then

HP(C r (∆̂), d) = dimC r
d(∆) for d ≥ (2F − 1)(r + 1)− 1

This is the first such result for nonsimplicial complexes.

HP(C 0(∆̂), d)

=
5

2
d2 − 1

2
d + 2

F = 4

=⇒ dimC 0
d (∆) =

5

2
d2 − 1

2
d + 2 for d ≥ 6

Macaulay2:

dimC 0
d (∆) =

5

2
d2 − 1

2
d + 2 for d ≥ 1
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The Technique: Regularity

Set S = R[x1, . . . , xn]

A graded S-module M has a graded minimal free resolution:

0→ Fδ → Fδ−1 → · · ·F0 → M → 0, where Fi ∼=
⊕

j S(−aij)

Projective dimension pdim(M) := δ

Castelnuovo-Mumford Regularity reg(M) := max
i ,j

(aij − i)

Note: M ∼= ⊕jS(−aj) =⇒ reg(M) = max{aj}

reg(M) governs when HF (M, d) = HP(M, d) [Eisenbud ‘05]:

HF (M, d) = HP(M, d) for d ≥ reg(M) + pdim(M)− n + 1

Results on previous slide follow from bounding reg(C r (∆̂)).
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Obtaining the Regularity Bound

Two key properties:

1 Regularity of any module in 0→ A→ B → C → 0 can be bounded
by regularity of other two.

2 If A ⊂ B is a submodule and pdim(B) < codim(B/A), then
reg(B) ≤ reg(A).

Regularity bound obtained by finding an approximation
LS r ,1(∆̂) ⊂ C r (∆̂) satisfying property 2.

LS r ,1(∆̂) is the subalgebra of C r (∆̂) generated by splines supported
on the union of two adjacent facets.

Property 1 used to break bounding reg(LS r ,1(∆̂)) down into a local
problem by fitting into exact complexes.

Local problem solved directly
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Other Applications

Two other applications of algebraic techniques:

Analogue of basis with local support for nonsimplicial ∆ [D. ‘14]

Bounds on dimC r
d(∆), ∆ ⊂ R2,R3 simplicial

[Mourrain-Villamizar ‘13, Mourrain-Villamizar ‘14] - latter involves
problem of fat points in P2

Main Problem:
Planar case: Lower existing regularity bounds!
Planar simplicial case: Show dimC r

d(∆) = HP(C r (∆̂), d) for d ≥ 2r + 1.

Regularity techniques in [D. ‘14] give equality in simplicial case for
d ≥ 3r + 2 (one off from Alfeld-Schumaker result).

[Schenck-Stiller ‘02] use vector bundle techniques on projective space
to approach regularity of C r (∆̂).
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Thank You!
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