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Piecewise Polynomials

Spline

A piecewise polynomial function, continuously differentiable to
some order.

Notation:

P : subdivision of an n-ball Ω ⊂ Rn

C r (P) : all splines F : Ω→ R continuously differentiable
of order r

Degree of a spline: max degree of polynomials it restricts
to

C r
d(P) : splines of degree ≤ d on P
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Application: Approximation

Splines are a cornerstone of approximation theory - used to
approximate complicated functions.

Low degree splines are used in Calc 1 to approximate integrals.
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Splines are a cornerstone of approximation theory - used to
approximate complicated functions.
Low degree splines are used in Calc 1 to approximate integrals.
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Application: Approximation

Splines are a cornerstone of approximation theory - used to
approximate complicated functions.
Low degree splines are used in Calc 1 to approximate integrals.

Graph of piecewise linear function



Jumping
Dimensions

and Projecting
Polytopes

Michael
DiPasquale

Intro and
Applications

Building and
Counting
Splines

Vector Spaces

Dimensions of
Spline Spaces

Where to
now?

Application: Approximation

Splines are a cornerstone of approximation theory - used to
approximate complicated functions.
Low degree splines are used in Calc 1 to approximate integrals.

Trapezoid Rule
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Application: Approximation

Splines are a cornerstone of approximation theory - used to
approximate complicated functions.
Low degree splines are used in Calc 1 to approximate integrals.

Graph of piecewise quadratic function
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Application: Approximation

Splines are a cornerstone of approximation theory - used to
approximate complicated functions.
Low degree splines are used in Calc 1 to approximate integrals.

Simpson’s Rule
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Application: Computer-Aided Design

Term spline originated in shipbuilding - referred to flexible
wooden strips anchored at several points.
Today, splines are used extensively to create models by
interpolating datapoints.



Jumping
Dimensions

and Projecting
Polytopes

Michael
DiPasquale

Intro and
Applications

Building and
Counting
Splines

Vector Spaces

Dimensions of
Spline Spaces

Where to
now?

Application: Computer-Aided Design

Term spline originated in shipbuilding - referred to flexible
wooden strips anchored at several points.
Today, splines are used extensively to create models by
interpolating datapoints.
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Calculus Exercise: I

For what value of c is the following function continuous?

f (x) =

{
x2 + x + c −1 ≤ x < 0
2x + 1 0 ≤ x ≤ 1

Answer: c = 1

With c = 1, f (x) is a C 0 spline on the subdivision
I = [−1, 0] ∪ [0, 1] of [−1, 1].

Notation: f ∈ C 0
2 (I )

-1 0 1
x

1

2

3

y

Graph of f
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Calculus Exercise II

For what value of b is the following function differentiable?

g(x) =

{
x2 + bx + 1 −1 ≤ x < 0
2x + 1 0 ≤ x ≤ 1

Answer: b = 2

With b = 2, g(x) is a C 1 spline on I = [−1, 0] ∪ [0, 1].

Notation: g ∈ C 1
2 (I )

-1 0 1
x

1

2

3

y

Graph of g
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Counting Univariate Splines

I = [−1, 0] ∪ [0, 1]

h(x) =

{
ax + b −1 ≤ x < 0
cx + d 0 ≤ x ≤ 1

Which of the coefficients a, b, c , d can be chosen freely if h(x)
is required to be continuous?

Must have b = d

So free to determine a, b, c

C 0
1 (I ) is a three dimensional vector space
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Counting Bivariate Splines

∆ = union of three triangles below

H0, 0L

H-1, -1L

H0, 1L

H1, 0LT1

T2

T3

∆

Continuity =⇒

b = e
c = f = i
d = g

a + b = g + h

a, b, c , d determine
e, f , g , h, i
=⇒ C 0

1 (∆) is
4-dim vector space
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Counting Bivariate Splines

∆ = union of three triangles below

F1=ax+by+c

F2=dx+ey+f

F3=gx+hy+i

x=0

y=0

x=y

Candidate for F ∈ C 0
1 (∆)

Continuity =⇒

b = e
c = f = i
d = g

a + b = g + h

a, b, c , d determine
e, f , g , h, i
=⇒ C 0

1 (∆) is
4-dim vector space
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Interlude: Vector Spaces

A vector space V over the real numbers looks like Rn

You can add vectors and multiply them by scalars.

Example: R2

Add vectors: (a, b) + (c , d) = (a + c, b + d)

Multiply vectors by scalars:r(a, b) = (ra, rb), where r is a
real number.

A linear combination of vectors v1, . . . , vk is a sum

r1v1 + · · ·+ rkvk ,

where r1, . . . , rk are real numbers.
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Basis and Dimension

Basis: v1, . . . , vk ∈ V is a basis if any vector can be written
uniquely as a linear combination of v1, . . . , vk .

Example:

Standard basis of R2 : {(1, 0), (0, 1)}
Different basis of R2 : {(1,−1), (1, 1)}
Not a basis of R2 : {(1, 0), (0, 1), (1, 1)}

Dimension of the vector space V is the number of vectors in a
basis. For example:

dimR2 = 2

dimRn = n

Notation: dimV means dimension of V .
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Vector Spaces of Splines

For any subdivision P and any choice of r and d , C r
d(P) is a

vector space.

Reason: Adding splines and multiplying them by scalars does
not effect their degree or existence of derivatives.
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Main Question

Given P a subdivision of ball in Rn.

Main Questions

Q1 What is dimC r
d(P) in terms of r and the data of the

subdivision?

Q2 Can we find a basis for C r
d(P)?

Known results:

If I is a subdivision of an interval in R then Q1 and Q2 are
standard results

If ∆ is a triangulation in R2 and d ≥ 3r + 2, Q1 and Q2
are known [Alfeld-Schumaker ‘90]

If P is a polygonal subdivision in R2, Q1 is known for
large d [McDonald-Schenck ‘09]

If ∆ is a triangulation in R2, dimC 1
3 (∆) is not known in

general.
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When r = 0, d = 1 (piecewise linear) we’ll see:

Nice answers for Q1 and Q2 if P is subdivision I of an
interval in R1

Nice answer for Q1 and Q2 if P is a triangulation ∆ in R2

No simple answer for Q1 or Q2 if P is a polygonal
subdivision in R2 (dimensions may jump for certain
configurations)
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Univariate Piecewise Linear Functions

Theorem

If I is a subdivision of an interval with v vertices, then

1 dimC 0
1 (I ) = v

2 A basis for C 0
1 (I ) is given by ‘tent’ functions

Proof of part 1: PL function determined uniquely by value on
vertices
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Tent Functions 1

‘Courant functions’ or ‘tent functions’ are 1 at a chosen vertex
and 0 at all others:
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Onward to 2 dimensions

Have many more choices for a subdivision of a 2-ball

A natural choice: Triangulations!

Important: Only allow triangles to meet along full edges

∆ = triangulation of a 2-ball, with v vertices, e edges, f
faces (triangles)

A triangulation ∆ with v = 8, e = 15, f = 8

What kinds of PL functions are there on ∆?
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Theorem

If ∆ ⊂ R2 is a subdivision of a disk with v vertices, then

1 dimC 0
1 (∆) = v

2 A basis for C 0
1 (∆) is given by ‘tent’ functions

Proof of part 1: PL function on ∆ uniquely determined by
value at vertices.
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Tent Functions 2

Just as before, Courant functions are 1 at a chosen vertex and
0 on other vertices.

Note: dimC 0
1 (I ) and dimC 0

1 (∆) only depended on
number of vertices.

No dependence on geometry!
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Polygons

What if we use a subdivision P consisting of convex polygons
instead of triangles?

Convex: line segment joining any two points of the
polygon is also inside the polygon.
Call this a polygonal subdivision
f , e, v stay the same

H-1,-1L H1,-1L

H1,1LH-1,1L

H-2,-2L H2,-2L

H2,2LH-2,2L

A polygonal subdivision P with f = 5, e = 12, v = 8

Does dimC 0
1 (P) = v?
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Theorem

If P ⊂ R2 is a polygonal subdivision of a disk, dimC 0
1 (P)

depends on geometry of P.

dimC 0
1 (P) < v unless P is a triangulation

Lose tent functions!
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Proof by Example

H-1,-1L H1,-1L

H1,1LH-1,1L

H-2,-2L H2,-2L

H2,2LH-2,2L

H-1,-1L H1,-1L

H1,1LH-1,1L

H-2,-2L H2,-2L

H2,3L

H-2,2L

Q1 Q2

dimC 0
1 (Q1) = 4 dimC 0

1 (Q2) = 3
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Trivial PL Functions

A trivial PL function on P has the same linear function on
each face.

dim(trivial splines on P) = 3 always, with basis 1, x , y .

1 x y
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NonTrivial PL Functions

Nontrivial PL function on P has at least two different
polynomials on different faces.

One nontrivial PL function on Q1, whose graph is below:

When you move to Q2 you lose this function!
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Dependence on Geometry

More explicit: Polygonal subdivisions coming from polytopes
have special PL functions.

Now look in one of the faces:

The nontrivial PL function is a ‘deformed cube’
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Dependence on Geometry

More explicit: Polygonal subdivisions coming from polytopes
have special PL functions.

Here’s a cube

Now look in one of the faces:

The nontrivial PL function is a ‘deformed cube’
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Dependence on Geometry

More explicit: Polygonal subdivisions coming from polytopes
have special PL functions.

Make it transparent

Now look in one of the faces:

The nontrivial PL function is a ‘deformed cube’
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More explicit: Polygonal subdivisions coming from polytopes
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Make it transparent Now look in one of the faces:

The nontrivial PL function is a ‘deformed cube’
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Dependence on Geometry

More explicit: Polygonal subdivisions coming from polytopes
have special PL functions.

Make it transparent Now look in one of the faces:

The nontrivial PL function is a ‘deformed cube’
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More Interesting Example

Chop off cube corners

Look into an octagonal face:

Nontrivial PL function is ’deformed’ version of truncated cube
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Look into an octagonal face:

Nontrivial PL function is ’deformed’ version of truncated cube
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Where to now?

We’ve seen that dimC 0
1 (P) is subtle for polygonal

subdivisions.

What about dimC r
d(P), where r > 0, d > 1?

For fixed P and d large, dimC r
d(P) is a polynomial in d!

For small d , dimC r
d(P) may not agree with this

polynomial.
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We’ve seen that dimC 0
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What about dimC r
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d(P) is a polynomial in d!
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Some Dimension Formulas

I ⊂ R subdivision with v vertices, e edges, v0 interior vertices.

dimR C r
d(I ) =

{
d + 1 d ≤ r

e(d + 1)− v0(r + 1) d > r

∆ ⊂ R2 triangulation: f triangles, e0 interior edges, v0 interior
vertices.

dimC 0
d (∆) = f

(d + 2)(d + 1)

2
− e0(d + 1) + v0

for all d ≥ 0.
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Conclusion

Computations of dimC r
d(P) for r = 0, d = 1 can be

difficult for polygonal subdivisions

Dimension depends on combinatorial and geometric data
of subdivision

Two main approaches to compute dimC r
d(P) in general.

Analytic approach - deals explicitly with coefficients of
splines over triangulations

Used by Alfeld-Schumaker [Alfeld-Schumaker ‘90], others

Algebraic approach pioneered in [Billera ‘88] - uses tools
of homological and commutative algebra
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of homological and commutative algebra



Jumping
Dimensions

and Projecting
Polytopes

Michael
DiPasquale

Intro and
Applications

Building and
Counting
Splines

Vector Spaces

Dimensions of
Spline Spaces

Where to
now?

THANK YOU!
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