Jumping
Dimensions and Projecting

Polytopes
Michael
DiPasquale

Intro and
Applications
Building and
Counting Splines

Vector Spaces
Dimensions of Spline Spaces

Jumping Dimensions and Projecting Polytopes

Michael DiPasquale University of Illinois at Urbana-Champaign
Bradley University Mathematics Colloquium

December 4, 2014

Table of Contents

Jumping Dimensions and Projecting Polytopes

Michae DiPasquale

Intro and Applications

Building and Counting Splines

Vector Spaces
Dimensions of Spline Spaces

Where to now?
(1) Intro and Applications
(2) Building and Counting Splines
(3) Vector Spaces
(4) Dimensions of Spline Spaces
(5) Where to now?

Piecewise Polynomials

Jumping
Dimensions and Projecting Polytopes

Michael DiPasquale

Intro and
Applications
Building and
Counting
Splines
Vector Spaces
Dimensions of Spline Spaces

Where to
now?

Spline

A piecewise polynomial function, continuously differentiable to some order.

Piecewise Polynomials

Jumping
Dimensions and Projecting

Polytopes
Michael DiPasquale

Intro and Applications

Building and
Counting Splines

Vector Spaces
Dimensions of Spline Spaces

Where to now?

Spline

A piecewise polynomial function, continuously differentiable to some order.

Notation:

- \mathcal{P} : subdivision of an n-ball $\Omega \subset \mathbb{R}^{n}$
- $C^{r}(\mathcal{P})$: all splines $F: \Omega \rightarrow \mathbb{R}$ continuously differentiable of order r
- Degree of a spline: max degree of polynomials it restricts to
- $C_{d}^{r}(\mathcal{P})$: splines of degree $\leq d$ on \mathcal{P}

Application: Approximation

Jumping
Dimensions and Projecting Polytopes

Michael DiPasquale

Intro and Applications

Building and Counting Splines

Vector Spaces
Dimensions of Spline Spaces

Where to now?

Splines are a cornerstone of approximation theory - used to approximate complicated functions.

Application: Approximation

Jumping
Dimensions and Projecting

Polytopes
Michael
DiPasquale

Intro and
Applications
Building and
Counting
Splines
Vector Spaces
Dimensions of Spline Spaces

Where to now?

Splines are a cornerstone of approximation theory - used to approximate complicated functions.
Low degree splines are used in Calc 1 to approximate integrals.

Application: Approximation

Jumping
Dimensions and Projecting

Polytopes
Michael
DiPasquale

Intro and
Applications
Building and
Counting
Splines
Vector Spaces
Dimensions of Spline Spaces

Where to now?

Splines are a cornerstone of approximation theory - used to approximate complicated functions.
Low degree splines are used in Calc 1 to approximate integrals.

Graph of piecewise linear function

Application: Approximation

Jumping
Dimensions and Projecting

Polytopes
Michael
DiPasquale

Intro and
Applications
Building and
Counting
Splines
Vector Spaces
Dimensions of Spline Spaces now?

Splines are a cornerstone of approximation theory - used to approximate complicated functions.
Low degree splines are used in Calc 1 to approximate integrals.

Trapezoid Rule

Application: Approximation

Jumping
Dimensions and Projecting

Polytopes
Michael
DiPasquale

Intro and
Applications
Building and
Counting
Splines
Vector Spaces
Dimensions of Spline Spaces

Splines are a cornerstone of approximation theory - used to approximate complicated functions.
Low degree splines are used in Calc 1 to approximate integrals.

Graph of piecewise quadratic function

Application: Approximation

Jumping
Dimensions and Projecting

Polytopes
Michael
DiPasquale

Intro and
Applications
Building and
Counting
Splines
Vector Spaces
Dimensions of Spline Spaces now?

Splines are a cornerstone of approximation theory - used to approximate complicated functions.
Low degree splines are used in Calc 1 to approximate integrals.

Simpson's Rule

Application: Computer-Aided Design

Jumping Dimensions and Projecting Polytopes

Michael DiPasquale

Intro and Applications

Building and Counting Splines

Vector Spaces
Dimensions of Spline Spaces

Where to now?

Term spline originated in shipbuilding - referred to flexible wooden strips anchored at several points. Today, splines are used extensively to create models by interpolating datapoints.

Application: Computer-Aided Design

Jumping Dimensions and Projecting Polytopes

Michael DiPasquale

Intro and Applications

Building and Counting Splines

Vector Spaces
Dimensions of Spline Spaces Where to now?

Term spline originated in shipbuilding - referred to flexible wooden strips anchored at several points.
Today, splines are used extensively to create models by interpolating datapoints.

Calculus Exercise: I

Jumping
Dimensions and Projecting Polytopes

Michael DiPasquale

Intro and

Applications
Building and Counting
Splines
Vector Spaces
Dimensions of Spline Spaces

Where to now?

For what value of c is the following function continuous?

$$
f(x)= \begin{cases}x^{2}+x+c & -1 \leq x<0 \\ 2 x+1 & 0 \leq x \leq 1\end{cases}
$$

Calculus Exercise: I

Jumping
Dimensions and Projecting Polytopes

Michael DiPasquale

Intro and
Applications
Building and Counting
Splines
Vector Spaces
Dimensions of Spline Spaces

Where to now?

For what value of c is the following function continuous?

$$
f(x)= \begin{cases}x^{2}+x+c & -1 \leq x<0 \\ 2 x+1 & 0 \leq x \leq 1\end{cases}
$$

- Answer: $c=1$
- With $c=1, f(x)$ is a C^{0} spline on the subdivision $I=[-1,0] \cup[0,1]$ of $[-1,1]$.
- Notation: $f \in C_{2}^{0}(I)$

Calculus Exercise: I

Jumping
Dimensions and Projecting Polytopes

Michael DiPasquale

Intro and Applications

Building and Counting Splines

Vector Spaces
Dimensions of Spline Spaces
Where to now?

For what value of c is the following function continuous?

$$
f(x)= \begin{cases}x^{2}+x+c & -1 \leq x<0 \\ 2 x+1 & 0 \leq x \leq 1\end{cases}
$$

- Answer: $c=1$
- With $c=1, f(x)$ is a C^{0} spline on the subdivision $I=[-1,0] \cup[0,1]$ of $[-1,1]$.
- Notation: $f \in C_{2}^{0}(I)$

Graph of f

Calculus Exercise II

Jumping
Dimensions and Projecting Polytopes

Michael DiPasquale

Intro and

Applications
Building and Counting
Splines
Vector Spaces
Dimensions of Spline Spaces

Where to now?

For what value of b is the following function differentiable?

$$
g(x)= \begin{cases}x^{2}+b x+1 & -1 \leq x<0 \\ 2 x+1 & 0 \leq x \leq 1\end{cases}
$$

Calculus Exercise II

Jumping
Dimensions and Projecting Polytopes

Michael DiPasquale

Intro and
Applications
Building and Counting
Splines
Vector Spaces
Dimensions of Spline Spaces
Where to now?

For what value of b is the following function differentiable?

$$
g(x)= \begin{cases}x^{2}+b x+1 & -1 \leq x<0 \\ 2 x+1 & 0 \leq x \leq 1\end{cases}
$$

- Answer: $b=2$
- With $b=2, g(x)$ is a C^{1} spline on $I=[-1,0] \cup[0,1]$.
- Notation: $g \in C_{2}^{1}(I)$

Calculus Exercise II

Jumping
Dimensions and Projecting Polytopes

Michael DiPasquale

Intro and
Applications
Building and Counting Splines

Vector Spaces
Dimensions of Spline Spaces now?

For what value of b is the following function differentiable?

$$
g(x)= \begin{cases}x^{2}+b x+1 & -1 \leq x<0 \\ 2 x+1 & 0 \leq x \leq 1\end{cases}
$$

- Answer: $b=2$
- With $b=2, g(x)$ is a C^{1} spline on $I=[-1,0] \cup[0,1]$.
- Notation: $g \in C_{2}^{1}(I)$

Graph of g

Counting Univariate Splines

Jumping
Dimensions and Projecting

Polytopes
Michael DiPasquale

Intro and
Applications
Building and Counting
Splines
Vector Spaces
Dimensions of Spline Spaces

Where to now?

$$
I=[-1,0] \cup[0,1]
$$

$$
h(x)= \begin{cases}a x+b & -1 \leq x<0 \\ c x+d & 0 \leq x \leq 1\end{cases}
$$

Which of the coefficients a, b, c, d can be chosen freely if $h(x)$ is required to be continuous?

Counting Univariate Splines

Jumping
Dimensions and Projecting

Polytopes
Michael DiPasquale

Intro and Applications

Building and Counting
Splines
Vector Spaces
Dimensions of Spline Spaces

$$
I=[-1,0] \cup[0,1]
$$

$$
h(x)= \begin{cases}a x+b & -1 \leq x<0 \\ c x+d & 0 \leq x \leq 1\end{cases}
$$

Which of the coefficients a, b, c, d can be chosen freely if $h(x)$ is required to be continuous?

- Must have $b=d$
- So free to determine a, b, c
- $C_{1}^{0}(I)$ is a three dimensional vector space

Counting Bivariate Splines

Jumping
Dimensions and Projecting Polytopes

Michael DiPasquale

Intro and

 ApplicationsBuilding and Counting Splines

Vector Spaces
Dimensions of Spline Spaces

Where to
now?
$\Delta=$ union of three triangles below

Δ

Counting Bivariate Splines

Jumping
Dimensions and Projecting Polytopes

Michael DiPasquale

Intro and Applications

Building and Counting Splines

Vector Spaces
Dimensions of Spline Spaces

Where to now?
$\Delta=$ union of three triangles below

Candidate for $F \in C_{1}^{0}(\Delta)$

Counting Bivariate Splines

Jumping
Dimensions and Projecting Polytopes

Michael DiPasquale

Intro and
Applications
Building and Counting Splines

Vector Spaces
Dimensions of Spline Spaces

Where to now?
$\Delta=$ union of three triangles below

Continuity \Longrightarrow

$$
\begin{gathered}
b=e \\
c=f=i \\
d=g \\
a+b=g+h
\end{gathered}
$$

Candidate for $F \in C_{1}^{0}(\Delta)$

Counting Bivariate Splines

Jumping
Dimensions and Projecting Polytopes

Michael DiPasquale

Intro and

Applications

Building and Counting Splines

Vector Spaces
Dimensions of Spline Spaces

Where to now?
$\Delta=$ union of three triangles below

Continuity \Longrightarrow

$$
\begin{gathered}
b=e \\
c=f=i \\
d=g \\
a+b=g+h
\end{gathered}
$$

a, b, c, d determine
e, f, g, h, i
$\Longrightarrow C_{1}^{0}(\Delta)$ is
4-dim vector space
Candidate for $F \in C_{1}^{0}(\Delta)$

Interlude: Vector Spaces

Polytopes
Michael
DiPasquale

Intro and Applications

Building and Counting Splines

Vector Spaces
Dimensions of Spline Spaces

Where to now?

A vector space V over the real numbers looks like \mathbb{R}^{n} You can add vectors and multiply them by scalars.

Example: \mathbb{R}^{2}

- Add vectors: $(a, b)+(c, d)=(a+c, b+d)$
- Multiply vectors by scalars: $r(a, b)=(r a, r b)$, where r is a real number.

A linear combination of vectors v_{1}, \ldots, v_{k} is a sum

$$
r_{1} v_{1}+\cdots+r_{k} v_{k}
$$

where r_{1}, \ldots, r_{k} are real numbers.

Basis and Dimension

Michael DiPasquale

Intro and Applications

Building and Counting Splines

Vector Spaces
Dimensions of Spline Spaces

Where to now?

Basis: $v_{1}, \ldots, v_{k} \in V$ is a basis if any vector can be written uniquely as a linear combination of v_{1}, \ldots, v_{k}.

Example:

- Standard basis of $\mathbb{R}^{2}:\{(1,0),(0,1)\}$
- Different basis of $\mathbb{R}^{2}:\{(1,-1),(1,1)\}$
- Not a basis of $\mathbb{R}^{2}:\{(1,0),(0,1),(1,1)\}$

Dimension of the vector space V is the number of vectors in a basis. For example:

- $\operatorname{dim} \mathbb{R}^{2}=2$
- $\operatorname{dim} \mathbb{R}^{n}=n$

Notation: $\operatorname{dim} V$ means dimension of V.

Vector Spaces of Splines

Jumping Dimensions and Projecting Polytopes

Michael
DiPasquale

Intro and
Applications
Building and Counting
Splines
Vector Spaces
Dimensions of
Spline Spaces
Where to
now?

Vector Spaces of Splines

Jumping
Dimensions and Projecting

Polytopes
Michael
DiPasquale

Intro and
Applications
Building and
Counting
Splines
Vector Spaces
Dimensions of Spline Spaces

For any subdivision \mathcal{P} and any choice of r and $d, C_{d}^{r}(\mathcal{P})$ is a vector space.

Reason: Adding splines and multiplying them by scalars does not effect their degree or existence of derivatives.

Main Question

Jumping
Dimensions and Projecting

Polytopes
Michael
DiPasquale

Intro and
Applications
Building and Counting Splines

Vector Spaces
Dimensions of Spline Spaces

Given \mathcal{P} a subdivision of ball in \mathbb{R}^{n}.
Main Questions
Q1 What is $\operatorname{dim} C_{d}^{r}(\mathcal{P})$ in terms of r and the data of the subdivision?
Q2 Can we find a basis for $C_{d}^{r}(\mathcal{P})$?

Main Question

Jumping
Dimensions and Projecting

Polytopes
Michael
DiPasquale

Intro and
Applications
Building and
Counting Splines

Vector Spaces
Dimensions of Spline Spaces
Where to now?

Given \mathcal{P} a subdivision of ball in \mathbb{R}^{n}.

Main Questions

Q1 What is $\operatorname{dim} C_{d}^{r}(\mathcal{P})$ in terms of r and the data of the subdivision?
Q2 Can we find a basis for $C_{d}^{r}(\mathcal{P})$?
Known results:

- If I is a subdivision of an interval in \mathbb{R} then Q1 and Q2 are standard results
- If Δ is a triangulation in \mathbb{R}^{2} and $d \geq 3 r+2$, Q1 and Q2 are known [Alfeld-Schumaker '90]
- If \mathcal{P} is a polygonal subdivision in $\mathbb{R}^{2}, \mathrm{Q} 1$ is known for large d [McDonald-Schenck '09]

Main Question

Jumping
Dimensions and Projecting

Polytopes
Michael
DiPasquale

Intro and
Applications
Building and Counting Splines

Vector Spaces
Dimensions of Spline Spaces
Where to now?

Given \mathcal{P} a subdivision of ball in \mathbb{R}^{n}.

Main Questions

Q1 What is $\operatorname{dim} C_{d}^{r}(\mathcal{P})$ in terms of r and the data of the subdivision?
Q2 Can we find a basis for $C_{d}^{r}(\mathcal{P})$?
Known results:

- If I is a subdivision of an interval in \mathbb{R} then Q1 and Q2 are standard results
- If Δ is a triangulation in \mathbb{R}^{2} and $d \geq 3 r+2$, Q1 and Q2 are known [Alfeld-Schumaker '90]
- If \mathcal{P} is a polygonal subdivision in $\mathbb{R}^{2}, \mathrm{Q} 1$ is known for large d [McDonald-Schenck '09]
If Δ is a triangulation in $\mathbb{R}^{2}, \operatorname{dim} C_{3}^{1}(\Delta)$ is not known in general.

When $r=0, d=1$ (piecewise linear) we'll see:

- Nice answers for Q1 and Q2 if \mathcal{P} is subdivision I of an interval in \mathbb{R}^{1}
- Nice answer for Q 1 and Q 2 if \mathcal{P} is a triangulation Δ in \mathbb{R}^{2}
- No simple answer for Q1 or Q2 if \mathcal{P} is a polygonal subdivision in \mathbb{R}^{2} (dimensions may jump for certain configurations)

Univariate Piecewise Linear Functions

Jumping
Dimensions and Projecting Polytopes

Michael DiPasquale

Intro and
Applications
Building and Counting Splines

Vector Spaces
Dimensions of Spline Spaces

Where to now?

Theorem

If I is a subdivision of an interval with v vertices, then
(1) $\operatorname{dim} C_{1}^{0}(I)=v$
(2) A basis for $C_{1}^{0}(I)$ is given by 'tent' functions

Univariate Piecewise Linear Functions

Jumping
Dimensions and Projecting

Polytopes
Michael
DiPasquale

Intro and
Applications
Building and
Counting Splines

Vector Spaces
Dimensions of Spline Spaces now?

Theorem

If I is a subdivision of an interval with v vertices, then
(1) $\operatorname{dim} C_{1}^{0}(I)=v$
(2) A basis for $C_{1}^{0}(I)$ is given by 'tent' functions

Proof of part 1: PL function determined uniquely by value on vertices

Univariate Piecewise Linear Functions

Jumping
Dimensions and Projecting

Polytopes
Michael
DiPasquale

Intro and
Applications
Building and Counting Splines

Vector Spaces
Dimensions of Spline Spaces

Theorem

If I is a subdivision of an interval with v vertices, then
(1) $\operatorname{dim} C_{1}^{0}(I)=v$
(2) A basis for $C_{1}^{0}(I)$ is given by 'tent' functions

Proof of part 1: PL function determined uniquely by value on vertices

Univariate Piecewise Linear Functions

Jumping
Dimensions and Projecting

Polytopes
Michael
DiPasquale

Intro and
Applications
Building and Counting Splines

Vector Spaces
Dimensions of Spline Spaces

Where to now?

Theorem

If I is a subdivision of an interval with v vertices, then
(1) $\operatorname{dim} C_{1}^{0}(I)=v$
(2) A basis for $C_{1}^{0}(I)$ is given by 'tent' functions

Proof of part 1: PL function determined uniquely by value on vertices

Tent Functions 1

Jumping
Dimensions and Projecting Polytopes

Michael
DiPasquale

Intro and
Applications
Building and Counting Splines

Vector Spaces
Dimensions of Spline Spaces

Where to

 now?'Courant functions' or 'tent functions' are 1 at a chosen vertex and 0 at all others:

Tent Functions 1

Jumping
Dimensions and Projecting Polytopes

Michael DiPasquale

Intro and Applications

Building and Counting Splines

Vector Spaces
Dimensions of Spline Spaces

Where to

now?
'Courant functions' or 'tent functions' are 1 at a chosen vertex and 0 at all others:

Tent Functions 1

Jumping
Dimensions and Projecting Polytopes

Michael DiPasquale

Intro and Applications

Building and Counting Splines

Vector Spaces
Dimensions of Spline Spaces

Where to

 now?'Courant functions' or 'tent functions' are 1 at a chosen vertex and 0 at all others:

Tent Functions 1

Jumping
Dimensions and Projecting Polytopes

Michael DiPasquale

Intro and Applications

Building and Counting Splines

Vector Spaces
Dimensions of Spline Spaces

Where to

 now?'Courant functions' or 'tent functions' are 1 at a chosen vertex and 0 at all others:

Tent Functions 1

Jumping
Dimensions and Projecting Polytopes

Michael
DiPasquale

Intro and
Applications
Building and Counting Splines

Vector Spaces
Dimensions of Spline Spaces
'Courant functions' or 'tent functions' are 1 at a chosen vertex and 0 at all others:

Onward to 2 dimensions

Jumping
Dimensions and Projecting Polytopes

Michael DiPasquale

Intro and
Applications
Building and
Counting Splines

Vector Spaces
Dimensions of Spline Spaces now?

- Have many more choices for a subdivision of a 2-ball
- A natural choice: Triangulations!
- Important: Only allow triangles to meet along full edges
- $\Delta=$ triangulation of a 2-ball, with v vertices, e edges, f faces (triangles)

A triangulation Δ with $v=8, e=15, f=8$

Onward to 2 dimensions

Jumping
Dimensions and Projecting

Polytopes
Michael DiPasquale

Intro and Applications

Building and Counting Splines

Vector Spaces
Dimensions of Spline Spaces
Where to now?

- Have many more choices for a subdivision of a 2-ball
- A natural choice: Triangulations!
- Important: Only allow triangles to meet along full edges
- $\Delta=$ triangulation of a 2-ball, with v vertices, e edges, f faces (triangles)

A triangulation Δ with $v=8, e=15, f=8$
What kinds of PL functions are there on Δ ?

Jumping
Dimensions and Projecting Polytopes

Michael DiPasquale

Intro and Applications

Building and Counting Splines

Vector Spaces
Dimensions of Spline Spaces

Where to

 now?
Theorem

If $\Delta \subset \mathbb{R}^{2}$ is a subdivision of a disk with v vertices, then
(1) $\operatorname{dim} C_{1}^{0}(\Delta)=v$
(2) A basis for $C_{1}^{0}(\Delta)$ is given by 'tent' functions

Jumping Dimensions and Projecting Polytopes

Michael DiPasquale

Intro and Applications

Building and Counting Splines

Vector Spaces
Dimensions of Spline Spaces

Where to now?

Theorem

If $\Delta \subset \mathbb{R}^{2}$ is a subdivision of a disk with v vertices, then
(1) $\operatorname{dim} C_{1}^{0}(\Delta)=v$
(2) A basis for $C_{1}^{0}(\Delta)$ is given by 'tent' functions

Proof of part 1: PL function on Δ uniquely determined by value at vertices.

Jumping Dimensions and Projecting Polytopes

Michael DiPasquale

Intro and Applications

Building and Counting Splines

Vector Spaces
Dimensions of Spline Spaces

Where to now?

Theorem

If $\Delta \subset \mathbb{R}^{2}$ is a subdivision of a disk with v vertices, then
(1) $\operatorname{dim} C_{1}^{0}(\Delta)=v$
(2) A basis for $C_{1}^{0}(\Delta)$ is given by 'tent' functions

Proof of part 1: PL function on Δ uniquely determined by value at vertices.

Tent Functions 2

Jumping
Dimensions and Projecting Polytopes

Michael
DiPasquale

Intro and
Applications
Building and
Counting
Splines
Vector Spaces
Dimensions of Spline Spaces

Just as before, Courant functions are 1 at a chosen vertex and 0 on other vertices.

Tent Functions 2

Jumping
Dimensions and Projecting Polytopes

Michael
DiPasquale

Intro and
Applications
Building and
Counting
Splines
Vector Spaces
Dimensions of Spline Spaces

Just as before, Courant functions are 1 at a chosen vertex and 0 on other vertices.

Tent Functions 2

Jumping
Dimensions and Projecting Polytopes

Michael
DiPasquale

Intro and
Applications
Building and Counting Splines

Vector Spaces
Dimensions of Spline Spaces

Just as before, Courant functions are 1 at a chosen vertex and 0 on other vertices.

Tent Functions 2

Jumping
Dimensions and Projecting Polytopes

Michael
DiPasquale

Intro and
Applications
Building and
Counting Splines

Vector Spaces
Dimensions of Spline Spaces

Just as before, Courant functions are 1 at a chosen vertex and 0 on other vertices.

Tent Functions 2

Jumping
Dimensions and Projecting Polytopes

Michael
DiPasquale

Intro and
Applications
Building and Counting Splines

Vector Spaces
Dimensions of Spline Spaces

Just as before, Courant functions are 1 at a chosen vertex and 0 on other vertices.

Tent Functions 2

Jumping
Dimensions and Projecting Polytopes

Michael
DiPasquale

Intro and
Applications
Building and Counting Splines

Vector Spaces
Dimensions of Spline Spaces

Just as before, Courant functions are 1 at a chosen vertex and 0 on other vertices.

Tent Functions 2

Jumping
Dimensions and Projecting Polytopes

Michael
DiPasquale

Intro and
Applications
Building and Counting Splines

Vector Spaces
Dimensions of Spline Spaces

Just as before, Courant functions are 1 at a chosen vertex and 0 on other vertices.

Tent Functions 2

Jumping
Dimensions and Projecting Polytopes

Michael
DiPasquale

Intro and
Applications
Building and Counting Splines

Vector Spaces
Dimensions of Spline Spaces

Just as before, Courant functions are 1 at a chosen vertex and 0 on other vertices.

Tent Functions 2

Jumping
Dimensions and Projecting Polytopes

Michael
DiPasquale

Intro and
Applications
Building and Counting Splines

Vector Spaces
Dimensions of Spline Spaces

Just as before, Courant functions are 1 at a chosen vertex and 0 on other vertices.

Tent Functions 2

Jumping
Dimensions and Projecting

Polytopes
Michael
DiPasquale

Intro and
Applications
Building and
Counting Splines

Vector Spaces
Dimensions of Spline Spaces

Just as before, Courant functions are 1 at a chosen vertex and 0 on other vertices.

- Note: $\operatorname{dim} C_{1}^{0}(I)$ and $\operatorname{dim} C_{1}^{0}(\Delta)$ only depended on number of vertices.
- No dependence on geometry!

Polygons

Jumping
Dimensions and Projecting

Polytopes
Michael DiPasquale

Intro and Applications

Building and
Counting Splines

Vector Spaces
Dimensions of Spline Spaces
Where to now?

What if we use a subdivision \mathcal{P} consisting of convex polygons instead of triangles?

- Convex: line segment joining any two points of the polygon is also inside the polygon.
- Call this a polygonal subdivision
- f, e, v stay the same

A polygonal subdivision \mathcal{P} with $f=5, e=12, v=8$
Does $\operatorname{dim} C_{1}^{0}(\mathcal{P})=v ?$

Jumping
Dimensions and Projecting Polytopes

Michael
DiPasquale

Intro and
Applications
Building and
Counting Splines

Vector Spaces
Dimensions of Spline Spaces

Where to now?

Theorem

If $\mathcal{P} \subset \mathbb{R}^{2}$ is a polygonal subdivision of a $\operatorname{disk}, \operatorname{dim} C_{1}^{0}(\mathcal{P})$ depends on geometry of \mathcal{P}.

- $\operatorname{dim} C_{1}^{0}(\mathcal{P})<v$ unless \mathcal{P} is a triangulation
- Lose tent functions!

Proof by Example

Jumping
Dimensions and Projecting Polytopes

Michael DiPasquale

Intro and Applications

Building and Counting Splines

Vector Spaces
Dimensions of Spline Spaces

Where to now?

Trivial PL Functions

Jumping
Dimensions and Projecting Polytopes

Michael DiPasquale

Intro and
Applications
Building and Counting Splines

Vector Spaces
Dimensions of Spline Spaces

Where to now?

- A trivial PL function on \mathcal{P} has the same linear function on each face.
- $\operatorname{dim}($ trivial splines on $\mathcal{P})=3$ always, with basis $1, x, y$.

NonTrivial PL Functions

Jumping
Dimensions and Projecting

Polytopes
Michael DiPasquale

Intro and
Applications
Building and Counting Splines

Vector Spaces
Dimensions of Spline Spaces

- Nontrivial PL function on \mathcal{P} has at least two different polynomials on different faces.
- One nontrivial PL function on \mathcal{Q}_{1}, whose graph is below:

When you move to \mathcal{Q}_{2} you lose this function!

Dependence on Geometry

Jumping
Dimensions and Projecting Polytopes

Michael DiPasquale

Intro and

Applications
Building and
Counting
Splines
Vector Spaces
Dimensions of Spline Spaces

Where to

now?

More explicit: Polygonal subdivisions coming from polytopes have special PL functions.

Dependence on Geometry

Jumping
Dimensions and Projecting Polytopes

Michael DiPasquale

Intro and
Applications
Building and
Counting
Splines
Vector Spaces
Dimensions of Spline Spaces

More explicit: Polygonal subdivisions coming from polytopes have special PL functions.

Here's a cube

Dependence on Geometry

Jumping
Dimensions and Projecting Polytopes

Michael DiPasquale

Intro and
Applications
Building and
Counting
Splines
Vector Spaces
Dimensions of Spline Spaces

More explicit: Polygonal subdivisions coming from polytopes have special PL functions.

Make it transparent

Dependence on Geometry

Jumping
Dimensions and Projecting Polytopes

Michael DiPasquale

Intro and
Applications
Building and
Counting Splines

Vector Spaces
Dimensions of Spline Spaces

More explicit: Polygonal subdivisions coming from polytopes have special PL functions.

Make it transparent
Now look in one of the faces:

Dependence on Geometry

Jumping
Dimensions and Projecting Polytopes

Michael DiPasquale

Intro and Applications

Building and Counting Splines

Vector Spaces
Dimensions of Spline Spaces

Where to now?

More explicit: Polygonal subdivisions coming from polytopes have special PL functions.

Make it transparent
Now look in one of the faces:

The nontrivial PL function is a 'deformed cube'

More Interesting Example

More Interesting Example

More Interesting Example

More Interesting Example

Jumping
Dimensions and Projecting Polytopes

Michael DiPasquale

Intro and Applications

Building and Counting Splines

Vector Spaces
Dimensions of Spline Spaces

Where to now?

Make it transparent Look into an octagonal face:

Nontrivial PL function is 'deformed' version of truncated cube

Where to now?

Jumping
Dimensions and Projecting
Polytopes
Michael DiPasquale

Intro and

Applications
Building and
Counting
Splines
Vector Spaces
Dimensions of Spline Spaces

Where to now?

- We've seen that $\operatorname{dim} C_{1}^{0}(\mathcal{P})$ is subtle for polygonal subdivisions.
- What about $\operatorname{dim} C_{d}^{r}(\mathcal{P})$, where $r>0, d>1$?

Where to now?

Intro and
Applications
Building and
Counting
Splines
Vector Spaces
Dimensions of Spline Spaces

Where to now?

- We've seen that $\operatorname{dim} C_{1}^{0}(\mathcal{P})$ is subtle for polygonal subdivisions.
- What about $\operatorname{dim} C_{d}^{r}(\mathcal{P})$, where $r>0, d>1$?
- For fixed \mathcal{P} and d large, $\operatorname{dim} C_{d}^{r}(\mathcal{P})$ is a polynomial in d !
- For small $d, \operatorname{dim} C_{d}^{r}(\mathcal{P})$ may not agree with this polynomial.

Some Dimension Formulas

Jumping
Dimensions and Projecting Polytopes

Michael DiPasquale

Intro and
Applications
Building and
Counting
Splines
Vector Spaces
Dimensions of Spline Spaces

Where to now?
$I \subset \mathbb{R}$ subdivision with v vertices, e edges, v^{0} interior vertices.

$$
\operatorname{dim}_{\mathbb{R}} C_{d}^{r}(I)=\left\{\begin{array}{rl}
d+1 & d \leq r \\
e(d+1)-v^{0}(r+1) & d>r
\end{array}\right.
$$

Some Dimension Formulas

Jumping
Dimensions and Projecting Polytopes

Michael DiPasquale

Intro and Applications

Building and Counting Splines

Vector Spaces
Dimensions of Spline Spaces

Where to now?
$I \subset \mathbb{R}$ subdivision with v vertices, e edges, v^{0} interior vertices.

$$
\operatorname{dim}_{\mathbb{R}} C_{d}^{r}(I)=\left\{\begin{array}{rl}
d+1 & d \leq r \\
e(d+1)-v^{0}(r+1) & d>r
\end{array}\right.
$$

$\Delta \subset \mathbb{R}^{2}$ triangulation: f triangles, e^{0} interior edges, v^{0} interior vertices.

$$
\operatorname{dim} C_{d}^{0}(\Delta)=f \frac{(d+2)(d+1)}{2}-e^{0}(d+1)+v^{0}
$$

for all $d \geq 0$.

Conclusion

Jumping
Dimensions and Projecting Polytopes

Michael DiPasquale

Intro and
Applications
Building and
Counting
Splines
Vector Spaces
Dimensions of Spline Spaces

Where to now?

- Computations of $\operatorname{dim} C_{d}^{r}(\mathcal{P})$ for $r=0, d=1$ can be difficult for polygonal subdivisions
- Dimension depends on combinatorial and geometric data of subdivision

Conclusion

Jumping
Dimensions and Projecting Polytopes

Michael DiPasquale

Intro and Applications

Building and Counting Splines

Vector Spaces
Dimensions of Spline Spaces

Where to now?

- Computations of $\operatorname{dim} C_{d}^{r}(\mathcal{P})$ for $r=0, d=1$ can be difficult for polygonal subdivisions
- Dimension depends on combinatorial and geometric data of subdivision

Two main approaches to compute $\operatorname{dim} C_{d}^{r}(\mathcal{P})$ in general.

- Analytic approach - deals explicitly with coefficients of splines over triangulations
- Used by Alfeld-Schumaker [Alfeld-Schumaker '90], others
- Algebraic approach pioneered in [Billera '88] - uses tools of homological and commutative algebra

Intro and

Applications

THANK YOU!

Building and Counting Splines

Vector Spaces
Dimensions of Spline Spaces

Where to

 now?

References I

Jumping Dimensions and Projecting

Polytopes
Michael DiPasquale

Intro and Applications

Building and Counting Splines

Vector Spaces
Dimensions of Spline Spaces

Where to now?

1- P. Alfeld, L. Schumaker, On the dimension of bivariate spline spaces of smoothness r and degree $d=3 r+1$, Numer. Math. 57 (1990) 651-661.
國 L. Billera, Homology of Smooth Splines: Generic Triangulations and a Conjecture of Strang, Trans. Amer. Math. Soc. 310, 325-340 (1988).
(L. Billera, L. Rose, A Dimension Series for Multivariate Splines, Discrete Comput. Geom. 6, 107-128 (1991).
國 G. Farin, Curves and Surfaces for Computer Aided Geometric Design, 4th ed., Academic Press, Boston, 1997.
(D. Hong, Spaces of bivariate spline functions over triangulation, Approx. Theory Appl. 7 (1991), 56-75.
T. McDonald, H. Schenck, Piecewise Polynomials on Polyhedral Complexes, Adv. in Appl. Math. 42 , no. 1, 82-93 (2009).

