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Piecewise Polynomials

I P : subdivision of a domain Ω ⊂ Rn

I C r (P) : all functions F : Ω→ R, continuously differentiable
of order r , whose restriction to each part of the subdivision P
is a polynomial. F is called an r -spline (or just a spline).

I Degree of a spline: max degree of polynomials it restricts to
on each piece of the subdivision.

I C r
d(P) : r -splines of degree ≤ d on P

Partition P of an octagonal
domain ⊂ R2

Graph of the Zwart-
Powell element: a spline
in C 1

2 (P)
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Splines in One Dimension

I = subdivision of a connected interval into subintervals, with e
edges, v vertices, v0 interior vertices

Subdivision with v = 5, e = 4, v0 = 3

Low degree splines are used in Calc 1 to approximate integrals.
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Splines in One Dimension

I = subdivision of a connected interval into subintervals, with e
edges, v vertices, v0 interior vertices

Subdivision with v = 5, e = 4, v0 = 3

Low degree splines are used in Calc 1 to approximate integrals.
C 0
2 (I ) = continuous piecewise quadratic functions:

Simpson’s Rule!



Who Cares about splines?

Splines are used extensively in:

I Aerospace engineering - airfoil design (Boeing)

I Computer aided geometric design (CAGD). Ever use bezier
curves on a drawing program? Those are splines!

I Approximating solutions to partial differential equations (finite
element method)

I pure mathematics (equivariant cohomology)

I ... the list goes on
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Univariate Piecewise Linear Functions

The PL functions C 0
1 (I ) in one variable are easy!

PL function determined uniquely by its value on the vertices of
the subdivision (two points determine a line).

C 0
1 (I ) has the structure of a real vector space: if F ,G ∈ C 0

1 (I )
then so is aF + bG .

1. aF + bG is piecewise linear - sum of linear functions is linear

2. aF + bG is continuous - sum of continuous functions is
continuous

Basis for C 0
1 (I ):‘Courant functions’ or ‘tent functions’ which are 1

at a chosen vertex and 0 at all others.
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Tent Functions 1

Univariate Courant functions:

This basis gives an isomorphism C 0
1 (I ) ∼= Rv =⇒ dimC 0

1 (I ) = v .
Can generalize this dimension formula for all r , d :

dimR C r
d(I ) =

{
d + 1 d ≤ r

e(d + 1)− v0(r + 1) d > r

There are nice algorithms due to Casteljau and de Boor to
compute bases of C r

d(I ) called B-splines.
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Onward to 2 dimensions

I In R2, restrict to simply-connected domains (no holes - think
solid disk).

I Have many more choices for a subdivision

I Maybe the most natural choice: Triangulate!

I ∆ = triangulation of a disk, with v vertices, e edges, f faces
(triangles), v0 internal vertices, and e0 internal edges

A triangulation ∆ with v = 8, e = 15, f = 8, v0 = 2, and e0 = 9

What kinds of PL functions are there on ∆?
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Again, a continuous piecewise linear function on ∆ is uniquely
determined by its value on the vertices (3 points determine a
plane!).

Just as in the 1D case, C 0
1 (∆) is a vector space.

Again, a basis for C 0
1 (∆) is given by the ‘Courant functions’ which

are 1 at a chosen vertex and 0 on all other vertices.
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Tent Functions 2

Bivariate Courant functions:

This gives an isomorphism C 0
1 (∆) ∼= Rv , so dimC 0

1 (∆) = v .
This dimension formula extends to higher degrees:

dimC 0
d (∆) = f

(d + 2)(d + 1)

2
− e0(d + 1) + v0

Plugging in d = 0 gives 1, plugging in d = 1 gives v . (this takes a
little work)
There is no reference to the geometry of ∆! All that matters is
the number of faces, edges, and vertices.
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I don’t like triangles
Another way to make life more difficult (and interesting!) is to
consider subdivisions of a simply connected domain by polygons.

I P denotes a subdivision of a disk by polygons

I Call this a polygonal graph or polygonal framework

I f , e, v , e0, v0 stay the same

H-1,-1L H1,-1L

H1,1LH-1,1L

H-2,-2L H2,-2L

H2,2LH-2,2L

A polygonal framework P1 with
f = 5, e = 12, v = 8, e0 = 4, v0 = 4

What kinds of PL functions are there on P?
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A polygonal framework P1 with
f = 5, e = 12, v = 8, e0 = 4, v0 = 4

What kinds of PL functions are there on P?
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I A trivial PL function is one which restricts to the same linear
function on each face.

I dim(trivial splines on P) = 3 always, with basis 1, x , y .

1 x y

I A nontrivial PL function is one which restricts to at least two
different polynomials on different faces.

I There is one nontrivial PL function on P1, whose graph is an
Egyptian pyramid after some evil villain chops off the top:

When you move to P2 you lose this PL function!
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Generating Interesting Examples

Polygonal frameworks coming from a polytopes often have PL
functions that are lost under small perturbations of the vertices.

Now look in one of the faces:

The nontrivial PL function is a ‘deformed cube’
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Chop off cube corners

Look into an octagonal face:

We get a nontrivial PL function which is a ’deformed’ version of
the truncated cube
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And now for something completely different

I Framework of bars and joints represented by edges and
vertices of polygonal framework

I Bar in tension or compression exerts force along the bar
equal in magnitude but opposite in direction at endpoints

Tension

Compression

Note: Arrows represent force, not movement

Between vertices pi , pj (thought of as vectors), represent tension or
compression as a scalar ωij .

I Force is ωij(pj −pi ) at pi
I Force is ωij(pi −pj) at pj

I ωij < 0 =⇒ tension

I ωij > 0 =⇒ compression
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Self-Stress

A self-stress on a framework is an assignment of scalars ωij along
the edges eij satisfying ∑

pj adjacent to pi

ωij(pj − pi ) = 0.

In other words, the forces are in static equilibrium at each vertex.
Trivial self-stress is the assignment of 0 along every edge.
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H2,2LH-2,2L -1
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A nontrivial self-stress on P1

By the way, what could
this mean physically?
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Maxwell’s Observation
Nontrivial stresses are in 1-1 correspondence (almost) with
nontrivial PL functions on P which vanishes along the boundary!

Restrict to faces adjacent
to a single edge e

Take normals
(z-component= 1)

Translate normals to
(0, 0,−1)

Connect normal tips

ωe = +
4

2
= 2

Sign of ωe depends on orientation.
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Summary

I Trivial PL functions (same linear function on every face) ↔
trivial stress (0 on all edges)

I Nontrivial piecewise linear functions ↔ nontrivial stresses
I This correspondence is unique, up to adding trivial PL

functions on the left hand side.
I A framework which only has the trivial stress is called

independent.

P1 is not independent P2 is independent

Fact: If the domain is not simply connected, the above
correspondence breaks down!
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Where to now?
We’ve seen that dimC 0

1 (P) can already be quite subtle. What
about higher degrees?

I Algebraically, useful to homogenize the polynomial functions
defining the spline (make all the terms have the same degree
by introducing a third variable)

I Geometrically, replace P by the cone P̂ over P (the third
variable records ‘height’)

P1 P̂1

I C 0(P̂) is graded (every spline can be written as a sum of
splines of uniform degree)

I C 0
d (P) ’sits inside’ C r (P̂) as the degree d ‘slice.’
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More Algebraic Structure

I Useful to consider algebraic structures on C 0(P̂) in addition
to vector space structure

I F ∈ C 0(P̂), f ∈ R[x , y , z ] a polynomial. Then f · F ∈ C 0(P̂).

I We say C 0(P̂) is an R[x , y , z ]-module

Why is this a useful perspective?

I Graded modules over polynomial rings are a central object of
study in commutative algebra and algebraic geometry.

I Loosely, these subjects formalize ‘doing linear algebra with
polynomials.’

I Thanks to insights of Billera, we can use tools from
homological algebra and algebraic topology.

I Homological algebra is as an algebraic formalization of the
’inclusion-exclusion’ principle.

I Algebraic topology detects ‘holes’
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homological algebra and algebraic topology.

I Homological algebra is as an algebraic formalization of the
’inclusion-exclusion’ principle.

I Algebraic topology detects ‘holes’
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Consequences of Algebraic Perspective

Here are a few things that can be done:

I Calculating dimC r
d(P) is equivalent to computing the Hilbert

function of C r (P̂). There are standard approaches to this
problem in computational commutative algebra, and efficient
algorithms.

I Relation between PL functions and self-stresses generalizes to
a correspondence between splines and syzygies, and
dependence of this correspondence on P being simply
connected is completely clarified (thanks to Billera).

I Via some homological algebra, dimC 0
1 (P) has consequences

for freeness of C 0(P̂) as an R[x , y , z ]-module. This in turn
impacts how easy it is to calculate dimC 0

d (P) for d ≥ 1.
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THANK YOU!
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