Continuous Piecewise Polynomials and Static Equilibrium

Michael DiPasquale
University of Illinois at Urbana-Champaign
Rose-Hulman Institute of Technology
Mathematics Colloquium

October 1, 2014

Piecewise Polynomials

- \mathcal{P} : subdivision of a domain $\Omega \subset \mathbb{R}^{n}$

Piecewise Polynomials

- \mathcal{P} : subdivision of a domain $\Omega \subset \mathbb{R}^{n}$
- $C^{r}(\mathcal{P})$: all functions $F: \Omega \rightarrow \mathbb{R}$, continuously differentiable of order r, whose restriction to each part of the subdivision \mathcal{P} is a polynomial. F is called an r-spline (or just a spline).

Piecewise Polynomials

- \mathcal{P} : subdivision of a domain $\Omega \subset \mathbb{R}^{n}$
- $C^{r}(\mathcal{P})$: all functions $F: \Omega \rightarrow \mathbb{R}$, continuously differentiable of order r, whose restriction to each part of the subdivision \mathcal{P} is a polynomial. F is called an r-spline (or just a spline).
- Degree of a spline: max degree of polynomials it restricts to on each piece of the subdivision.
- $C_{d}^{r}(\mathcal{P})$: r-splines of degree $\leq d$ on \mathcal{P}

Piecewise Polynomials

- \mathcal{P} : subdivision of a domain $\Omega \subset \mathbb{R}^{n}$
- $C^{r}(\mathcal{P})$: all functions $F: \Omega \rightarrow \mathbb{R}$, continuously differentiable of order r, whose restriction to each part of the subdivision \mathcal{P} is a polynomial. F is called an r-spline (or just a spline).
- Degree of a spline: max degree of polynomials it restricts to on each piece of the subdivision.
- $C_{d}^{r}(\mathcal{P})$: r-splines of degree $\leq d$ on \mathcal{P}

Partition \mathcal{P} of an octagonal domain $\subset \mathbb{R}^{2}$

Piecewise Polynomials

- \mathcal{P} : subdivision of a domain $\Omega \subset \mathbb{R}^{n}$
- $C^{r}(\mathcal{P})$: all functions $F: \Omega \rightarrow \mathbb{R}$, continuously differentiable of order r, whose restriction to each part of the subdivision \mathcal{P} is a polynomial. F is called an r-spline (or just a spline).
- Degree of a spline: max degree of polynomials it restricts to on each piece of the subdivision.
- $C_{d}^{r}(\mathcal{P})$: r-splines of degree $\leq d$ on \mathcal{P}

Partition \mathcal{P} of an octagonal domain $\subset \mathbb{R}^{2}$
Graph of the ZwartPowell element: a spline in $C_{2}^{1}(\mathcal{P})$

Splines in One Dimension

$I=$ subdivision of a connected interval into subintervals, with e edges, v vertices, v^{0} interior vertices

Splines in One Dimension

$I=$ subdivision of a connected interval into subintervals, with e edges, v vertices, v^{0} interior vertices

$$
\text { Subdivision with } v=5, e=4, v^{0}=3
$$

Splines in One Dimension

$I=$ subdivision of a connected interval into subintervals, with e edges, v vertices, v^{0} interior vertices

Subdivision with $v=5, e=4, v^{0}=3$
Low degree splines are used in Calc 1 to approximate integrals.

Splines in One Dimension

$I=$ subdivision of a connected interval into subintervals, with e edges, v vertices, v^{0} interior vertices

Subdivision with $v=5, e=4, v^{0}=3$
Low degree splines are used in Calc 1 to approximate integrals. $C_{1}^{0}(I)=$ continuous piecewise linear (PL) functions:

Graph of PL function on I

Splines in One Dimension

$I=$ subdivision of a connected interval into subintervals, with e edges, v vertices, v^{0} interior vertices

Subdivision with $v=5, e=4, v^{0}=3$
Low degree splines are used in Calc 1 to approximate integrals. $C_{1}^{0}(I)=$ continuous piecewise linear (PL) functions:

Trapezoid Rule!

Splines in One Dimension

$I=$ subdivision of a connected interval into subintervals, with e edges, v vertices, v^{0} interior vertices

Subdivision with $v=5, e=4, v^{0}=3$
Low degree splines are used in Calc 1 to approximate integrals. $C_{2}^{0}(I)=$ continuous piecewise quadratic functions:

Graph of piecewise quadratic function on I

Splines in One Dimension

$I=$ subdivision of a connected interval into subintervals, with e edges, v vertices, v^{0} interior vertices

Subdivision with $v=5, e=4, v^{0}=3$
Low degree splines are used in Calc 1 to approximate integrals. $C_{2}^{0}(I)=$ continuous piecewise quadratic functions:

Simpson's Rule!

Who Cares about splines?

Splines are used extensively in:

- Aerospace engineering - airfoil design (Boeing)

Who Cares about splines?

Splines are used extensively in:

- Aerospace engineering - airfoil design (Boeing)
- Computer aided geometric design (CAGD). Ever use bezier curves on a drawing program? Those are splines!

Who Cares about splines?

Splines are used extensively in:

- Aerospace engineering - airfoil design (Boeing)
- Computer aided geometric design (CAGD). Ever use bezier curves on a drawing program? Those are splines!
- Approximating solutions to partial differential equations (finite element method)

Who Cares about splines?

Splines are used extensively in:

- Aerospace engineering - airfoil design (Boeing)
- Computer aided geometric design (CAGD). Ever use bezier curves on a drawing program? Those are splines!
- Approximating solutions to partial differential equations (finite element method)
- pure mathematics (equivariant cohomology)

Who Cares about splines?

Splines are used extensively in:

- Aerospace engineering - airfoil design (Boeing)
- Computer aided geometric design (CAGD). Ever use bezier curves on a drawing program? Those are splines!
- Approximating solutions to partial differential equations (finite element method)
- pure mathematics (equivariant cohomology)
- ... the list goes on

Univariate Piecewise Linear Functions

The PL functions $C_{1}^{0}(I)$ in one variable are easy!

Univariate Piecewise Linear Functions

The PL functions $C_{1}^{0}(I)$ in one variable are easy! PL function determined uniquely by its value on the vertices of the subdivision (two points determine a line).

Univariate Piecewise Linear Functions

The PL functions $C_{1}^{0}(I)$ in one variable are easy! PL function determined uniquely by its value on the vertices of the subdivision (two points determine a line).

Univariate Piecewise Linear Functions

The PL functions $C_{1}^{0}(I)$ in one variable are easy! PL function determined uniquely by its value on the vertices of the subdivision (two points determine a line).

Univariate Piecewise Linear Functions

The PL functions $C_{1}^{0}(I)$ in one variable are easy! PL function determined uniquely by its value on the vertices of the subdivision (two points determine a line).

$C_{1}^{0}(I)$ has the structure of a real vector space: if $F, G \in C_{1}^{0}(I)$ then so is $a F+b G$.

Univariate Piecewise Linear Functions

The PL functions $C_{1}^{0}(I)$ in one variable are easy! PL function determined uniquely by its value on the vertices of the subdivision (two points determine a line).

$C_{1}^{0}(I)$ has the structure of a real vector space: if $F, G \in C_{1}^{0}(I)$ then so is $a F+b G$.

1. $a F+b G$ is piecewise linear - sum of linear functions is linear
2. $a F+b G$ is continuous - sum of continuous functions is continuous

Univariate Piecewise Linear Functions

The PL functions $C_{1}^{0}(I)$ in one variable are easy!
PL function determined uniquely by its value on the vertices of the subdivision (two points determine a line).
$C_{1}^{0}(I)$ has the structure of a real vector space: if $F, G \in C_{1}^{0}(I)$ then so is $a F+b G$.

1. $a F+b G$ is piecewise linear - sum of linear functions is linear
2. $a F+b G$ is continuous - sum of continuous functions is continuous

Basis for $C_{1}^{0}(I)$: 'Courant functions' or 'tent functions' which are 1 at a chosen vertex and 0 at all others.

Tent Functions 1

Univariate Courant functions:

This basis gives an isomorphism $C_{1}^{0}(I) \cong \mathbb{R}^{v} \Longrightarrow \operatorname{dim} C_{1}^{0}(I)=v$.

Tent Functions 1

Univariate Courant functions:

This basis gives an isomorphism $C_{1}^{0}(I) \cong \mathbb{R}^{v} \Longrightarrow \operatorname{dim} C_{1}^{0}(I)=v$.
Can generalize this dimension formula for all r, d :

$$
\operatorname{dim}_{\mathbb{R}} C_{d}^{r}(I)=\left\{\begin{array}{rl}
d+1 & d \leq r \\
e(d+1)-v^{0}(r+1) & d>r
\end{array}\right.
$$

Tent Functions 1

Univariate Courant functions:

This basis gives an isomorphism $C_{1}^{0}(I) \cong \mathbb{R}^{v} \Longrightarrow \operatorname{dim} C_{1}^{0}(I)=v$.
Can generalize this dimension formula for all r, d :

$$
\operatorname{dim}_{\mathbb{R}} C_{d}^{r}(I)=\left\{\begin{array}{rl}
d+1 & d \leq r \\
e(d+1)-v^{0}(r+1) & d>r
\end{array}\right.
$$

There are nice algorithms due to Casteljau and de Boor to compute bases of $C_{d}^{r}(I)$ called \mathbf{B}-splines.

Onward to 2 dimensions

- In \mathbb{R}^{2}, restrict to simply-connected domains (no holes - think solid disk).

Onward to 2 dimensions

- In \mathbb{R}^{2}, restrict to simply-connected domains (no holes - think solid disk).
- Have many more choices for a subdivision

Onward to 2 dimensions

- In \mathbb{R}^{2}, restrict to simply-connected domains (no holes - think solid disk).
- Have many more choices for a subdivision
- Maybe the most natural choice: Triangulate!

Onward to 2 dimensions

- In \mathbb{R}^{2}, restrict to simply-connected domains (no holes - think solid disk).
- Have many more choices for a subdivision
- Maybe the most natural choice: Triangulate!
- $\Delta=$ triangulation of a disk, with v vertices, e edges, f faces (triangles), v^{0} internal vertices, and e^{0} internal edges

Onward to 2 dimensions

- In \mathbb{R}^{2}, restrict to simply-connected domains (no holes - think solid disk).
- Have many more choices for a subdivision
- Maybe the most natural choice: Triangulate!
- $\Delta=$ triangulation of a disk, with v vertices, e edges, f faces (triangles), v^{0} internal vertices, and e^{0} internal edges

A triangulation Δ with $v=8, e=15, f=8, v^{0}=2$, and $e^{0}=9$

Onward to 2 dimensions

- In \mathbb{R}^{2}, restrict to simply-connected domains (no holes - think solid disk).
- Have many more choices for a subdivision
- Maybe the most natural choice: Triangulate!
- $\Delta=$ triangulation of a disk, with v vertices, e edges, f faces (triangles), v^{0} internal vertices, and e^{0} internal edges

A triangulation Δ with $v=8, e=15, f=8, v^{0}=2$, and $e^{0}=9$
What kinds of PL functions are there on Δ ?

Again, a continuous piecewise linear function on Δ is uniquely determined by its value on the vertices (3 points determine a plane!).

Again, a continuous piecewise linear function on Δ is uniquely determined by its value on the vertices (3 points determine a plane!).

Again, a continuous piecewise linear function on Δ is uniquely determined by its value on the vertices (3 points determine a plane!).

Again, a continuous piecewise linear function on Δ is uniquely determined by its value on the vertices (3 points determine a plane!).

Just as in the 1D case, $C_{1}^{0}(\Delta)$ is a vector space.

Again, a continuous piecewise linear function on Δ is uniquely determined by its value on the vertices (3 points determine a plane!).

Just as in the 1D case, $C_{1}^{0}(\Delta)$ is a vector space. Again, a basis for $C_{1}^{0}(\Delta)$ is given by the 'Courant functions' which are 1 at a chosen vertex and 0 on all other vertices.

Tent Functions 2

Bivariate Courant functions:

Tent Functions 2

Bivariate Courant functions:

Tent Functions 2

Bivariate Courant functions:

Tent Functions 2

Bivariate Courant functions:

Tent Functions 2

Bivariate Courant functions:

Tent Functions 2

Bivariate Courant functions:

Tent Functions 2

Bivariate Courant functions:

Tent Functions 2

Bivariate Courant functions:

Tent Functions 2

Bivariate Courant functions:

Tent Functions 2

Bivariate Courant functions:

This gives an isomorphism $C_{1}^{0}(\Delta) \cong \mathbb{R}^{v}$, so $\operatorname{dim} C_{1}^{0}(\Delta)=v$.

Tent Functions 2

Bivariate Courant functions:

This gives an isomorphism $C_{1}^{0}(\Delta) \cong \mathbb{R}^{v}$, so $\operatorname{dim} C_{1}^{0}(\Delta)=v$. This dimension formula extends to higher degrees:

$$
\operatorname{dim} C_{d}^{0}(\Delta)=f \frac{(d+2)(d+1)}{2}-e^{0}(d+1)+v^{0}
$$

Tent Functions 2

Bivariate Courant functions:

This gives an isomorphism $C_{1}^{0}(\Delta) \cong \mathbb{R}^{v}$, so $\operatorname{dim} C_{1}^{0}(\Delta)=v$. This dimension formula extends to higher degrees:

$$
\operatorname{dim} C_{d}^{0}(\Delta)=f \frac{(d+2)(d+1)}{2}-e^{0}(d+1)+v^{0}
$$

Plugging in $d=0$ gives 1 , plugging in $d=1$ gives v. (this takes a little work)

Tent Functions 2

Bivariate Courant functions:

This gives an isomorphism $C_{1}^{0}(\Delta) \cong \mathbb{R}^{v}$, so $\operatorname{dim} C_{1}^{0}(\Delta)=v$. This dimension formula extends to higher degrees:

$$
\operatorname{dim} C_{d}^{0}(\Delta)=f \frac{(d+2)(d+1)}{2}-e^{0}(d+1)+v^{0}
$$

Plugging in $d=0$ gives 1 , plugging in $d=1$ gives v. (this takes a little work)
There is no reference to the geometry of Δ ! All that matters is the number of faces, edges, and vertices.

I don't like triangles

Another way to make life more difficult (and interesting!) is to consider subdivisions of a simply connected domain by polygons.

I don't like triangles

Another way to make life more difficult (and interesting!) is to consider subdivisions of a simply connected domain by polygons.

- \mathcal{P} denotes a subdivision of a disk by polygons
- Call this a polygonal graph or polygonal framework
- f, e, v, e^{0}, v^{0} stay the same

I don't like triangles

Another way to make life more difficult (and interesting!) is to consider subdivisions of a simply connected domain by polygons.

- \mathcal{P} denotes a subdivision of a disk by polygons
- Call this a polygonal graph or polygonal framework
- f, e, v, e^{0}, v^{0} stay the same

A polygonal framework \mathcal{P}_{1} with

$$
f=5, e=12, v=8, e^{0}=4, v^{0}=4
$$

I don't like triangles

Another way to make life more difficult (and interesting!) is to consider subdivisions of a simply connected domain by polygons.

- \mathcal{P} denotes a subdivision of a disk by polygons
- Call this a polygonal graph or polygonal framework
- f, e, v, e^{0}, v^{0} stay the same

A polygonal framework \mathcal{P}_{1} with

$$
f=5, e=12, v=8, e^{0}=4, v^{0}=4
$$

What kinds of PL functions are there on \mathcal{P} ?

Things get complicated

$\operatorname{dim}_{\mathbb{R}} C_{1}^{0}(\mathcal{P})$ depends on the geometry of \mathcal{P} !

Things get complicated

 $\operatorname{dim}_{\mathbb{R}} C_{1}^{0}(\mathcal{P})$ depends on the geometry of \mathcal{P} !

Things get complicated

$\operatorname{dim}_{\mathbb{R}} C_{1}^{0}(\mathcal{P})$ depends on the geometry of \mathcal{P} !

Things get complicated

$\operatorname{dim}_{\mathbb{R}} C_{1}^{0}(\mathcal{P})$ depends on the geometry of \mathcal{P} !

Let's see why.

- A trivial PL function is one which restricts to the same linear function on each face.
- A trivial PL function is one which restricts to the same linear function on each face.
- $\operatorname{dim}($ trivial splines on $\mathcal{P})=3$ always, with basis $1, x, y$.
- A trivial PL function is one which restricts to the same linear function on each face.
- $\operatorname{dim}($ trivial splines on $\mathcal{P})=3$ always, with basis $1, x, y$.

1

- A trivial PL function is one which restricts to the same linear function on each face.
- $\operatorname{dim}($ trivial splines on $\mathcal{P})=3$ always, with basis $1, x, y$.

1
x

- A trivial PL function is one which restricts to the same linear function on each face.
- $\operatorname{dim}($ trivial splines on $\mathcal{P})=3$ always, with basis $1, x, y$.

1

x

y

- A trivial PL function is one which restricts to the same linear function on each face.
- $\operatorname{dim}($ trivial splines on $\mathcal{P})=3$ always, with basis $1, x, y$.

1

X

y

- A nontrivial PL function is one which restricts to at least two different polynomials on different faces.
- A trivial PL function is one which restricts to the same linear function on each face.
- $\operatorname{dim}($ trivial splines on $\mathcal{P})=3$ always, with basis $1, x, y$.

x

y
- A nontrivial PL function is one which restricts to at least two different polynomials on different faces.
- There is one nontrivial PL function on \mathcal{P}_{1}, whose graph is an Egyptian pyramid after some evil villain chops off the top:
- A trivial PL function is one which restricts to the same linear function on each face.
- $\operatorname{dim}($ trivial splines on $\mathcal{P})=3$ always, with basis $1, x, y$.

x

y
- A nontrivial PL function is one which restricts to at least two different polynomials on different faces.
- There is one nontrivial PL function on \mathcal{P}_{1}, whose graph is an Egyptian pyramid after some evil villain chops off the top:

- A trivial PL function is one which restricts to the same linear function on each face.
- $\operatorname{dim}($ trivial splines on $\mathcal{P})=3$ always, with basis $1, x, y$.

1

X

y

- A nontrivial PL function is one which restricts to at least two different polynomials on different faces.
- There is one nontrivial PL function on \mathcal{P}_{1}, whose graph is an Egyptian pyramid after some evil villain chops off the top:

- A trivial PL function is one which restricts to the same linear function on each face.
- $\operatorname{dim}($ trivial splines on $\mathcal{P})=3$ always, with basis $1, x, y$.

1

X

y

- A nontrivial PL function is one which restricts to at least two different polynomials on different faces.
- There is one nontrivial PL function on \mathcal{P}_{1}, whose graph is an Egyptian pyramid after some evil villain chops off the top:

When you move to \mathcal{P}_{2} you lose this PL function!

Generating Interesting Examples

Polygonal frameworks coming from a polytopes often have PL functions that are lost under small perturbations of the vertices.

Generating Interesting Examples

Polygonal frameworks coming from a polytopes often have PL functions that are lost under small perturbations of the vertices. Here's a cube

Generating Interesting Examples

Polygonal frameworks coming from a polytopes often have PL functions that are lost under small perturbations of the vertices. Make it transparent

Generating Interesting Examples

Polygonal frameworks coming from a polytopes often have PL functions that are lost under small perturbations of the vertices. Make it transparent Now look in one of the faces:

Generating Interesting Examples

Polygonal frameworks coming from a polytopes often have PL functions that are lost under small perturbations of the vertices.

Make it transparent Now look in one of the faces:

The nontrivial PL function is a 'deformed cube'

A more interesting example

Chop off cube corners

A more interesting example

Make it transparent

A more interesting example

 Make it transparent Look into an octagonal face:

A more interesting example

Make it transparent Look into an octagonal face:

We get a nontrivial PL function which is a 'deformed' version of the truncated cube

And now for something completely different

- Framework of bars and joints represented by edges and vertices of polygonal framework

And now for something completely different

- Framework of bars and joints represented by edges and vertices of polygonal framework
- Bar in tension or compression exerts force along the bar equal in magnitude but opposite in direction at endpoints

And now for something completely different

- Framework of bars and joints represented by edges and vertices of polygonal framework
- Bar in tension or compression exerts force along the bar equal in magnitude but opposite in direction at endpoints

And now for something completely different

- Framework of bars and joints represented by edges and vertices of polygonal framework
- Bar in tension or compression exerts force along the bar equal in magnitude but opposite in direction at endpoints

And now for something completely different

- Framework of bars and joints represented by edges and vertices of polygonal framework
- Bar in tension or compression exerts force along the bar equal in magnitude but opposite in direction at endpoints

Note: Arrows represent force, not movement

And now for something completely different

- Framework of bars and joints represented by edges and vertices of polygonal framework
- Bar in tension or compression exerts force along the bar equal in magnitude but opposite in direction at endpoints

Note: Arrows represent force, not movement
Between vertices p_{i}, p_{j} (thought of as vectors), represent tension or compression as a scalar $\omega_{i j}$.

- Force is $\omega_{i j}\left(p_{j}-p_{i}\right)$ at p_{i}
- Force is $\omega_{i j}\left(p_{i}-p_{j}\right)$ at p_{j}

And now for something completely different

- Framework of bars and joints represented by edges and vertices of polygonal framework
- Bar in tension or compression exerts force along the bar equal in magnitude but opposite in direction at endpoints

Note: Arrows represent force, not movement
Between vertices p_{i}, p_{j} (thought of as vectors), represent tension or compression as a scalar $\omega_{i j}$.

- Force is $\omega_{i j}\left(p_{j}-p_{i}\right)$ at $p_{i} \vee \omega_{i j}<0 \Longrightarrow$ tension
- Force is $\omega_{i j}\left(p_{i}-p_{j}\right)$ at $p_{j} \vee \omega_{i j}>0 \Longrightarrow$ compression

Self-Stress

A self-stress on a framework is an assignment of scalars $\omega_{i j}$ along the edges $e_{i j}$ satisfying

$$
\sum \quad \omega_{i j}\left(p_{j}-p_{i}\right)=0
$$

p_{j} adjacent to p_{i}

Self-Stress

A self-stress on a framework is an assignment of scalars $\omega_{i j}$ along the edges $e_{i j}$ satisfying

$$
\sum \quad \omega_{i j}\left(p_{j}-p_{i}\right)=0
$$

p_{j} adjacent to p_{i}
In other words, the forces are in static equilibrium at each vertex.

Self-Stress

A self-stress on a framework is an assignment of scalars $\omega_{i j}$ along the edges $e_{i j}$ satisfying

$$
\sum \quad \omega_{i j}\left(p_{j}-p_{i}\right)=0
$$

p_{j} adjacent to p_{i}
In other words, the forces are in static equilibrium at each vertex. Trivial self-stress is the assignment of 0 along every edge.

Self-Stress

A self-stress on a framework is an assignment of scalars $\omega_{i j}$ along the edges $e_{i j}$ satisfying

$$
\sum \quad \omega_{i j}\left(p_{j}-p_{i}\right)=0
$$

p_{j} adjacent to p_{i}
In other words, the forces are in static equilibrium at each vertex. Trivial self-stress is the assignment of 0 along every edge.

A nontrivial self-stress on \mathcal{P}_{1}

Self-Stress

A self-stress on a framework is an assignment of scalars $\omega_{i j}$ along the edges $e_{i j}$ satisfying

$$
\sum \quad \omega_{i j}\left(p_{j}-p_{i}\right)=0
$$

p_{j} adjacent to p_{i}
In other words, the forces are in static equilibrium at each vertex. Trivial self-stress is the assignment of 0 along every edge.

By the way, what could this mean physically?

A nontrivial self-stress on \mathcal{P}_{1}

Maxwell's Observation

Nontrivial stresses are in 1-1 correspondence (almost) with nontrivial PL functions on \mathcal{P} which vanishes along the boundary!

Maxwell's Observation

Nontrivial stresses are in 1-1 correspondence (almost) with nontrivial PL functions on \mathcal{P} which vanishes along the boundary!

Start with graph

Maxwell's Observation

Nontrivial stresses are in 1-1 correspondence (almost) with nontrivial PL functions on \mathcal{P} which vanishes along the boundary!

Restrict to faces adjacent to a single edge e

Maxwell's Observation

Nontrivial stresses are in 1-1 correspondence (almost) with nontrivial PL functions on \mathcal{P} which vanishes along the boundary!

Restrict to faces adjacent to a single edge e
Take normals
$(z$-component $=1)$

Maxwell's Observation

Nontrivial stresses are in 1-1 correspondence (almost) with nontrivial PL functions on \mathcal{P} which vanishes along the boundary!

Restrict to faces adjacent to a single edge e
Take normals
$(z$-component $=1)$

Translate normals to ($0,0,-1$)

Maxwell's Observation

Nontrivial stresses are in 1-1 correspondence (almost) with nontrivial PL functions on \mathcal{P} which vanishes along the boundary!

Restrict to faces adjacent to a single edge e
Take normals
$(z$-component $=1)$

Translate normals to ($0,0,-1$)
Connect normal tips

Maxwell's Observation

Nontrivial stresses are in 1-1 correspondence (almost) with nontrivial PL functions on \mathcal{P} which vanishes along the boundary!

Restrict to faces adjacent to a single edge e
Take normals
$(z$-component $=1)$

Translate normals to ($0,0,-1$)
Connect normal tips
$\omega_{e}=+\frac{4}{2}=2$

Maxwell's Observation

Nontrivial stresses are in 1-1 correspondence (almost) with nontrivial PL functions on \mathcal{P} which vanishes along the boundary!

Restrict to faces adjacent to a single edge e
Take normals
$(z$-component $=1)$

Translate normals to ($0,0,-1$)
Connect normal tips
$\omega_{e}=+\frac{4}{2}=2$

Flipping Orientations

Restrict to faces adjacent to the edge e^{\prime}

Flipping Orientations

Restrict to faces adjacent to the edge e^{\prime}
Take normals
$(z$-component $=1)$

Flipping Orientations

Restrict to faces adjacent to the edge e^{\prime}
Take normals
$(z$-component $=1)$

Translate normals to ($0,0,-1$)

Flipping Orientations

Restrict to faces adjacent to the edge e^{\prime}
Take normals
$(z$-component $=1)$

Translate normals to ($0,0,-1$)
Connect normal tips

Flipping Orientations

Restrict to faces adjacent to the edge e^{\prime}
Take normals
$(z$-component $=1)$

Translate normals to ($0,0,-1$)
Connect normal tips
$\omega_{e^{\prime}}=-\frac{4}{4}=-1$

Summary

- Trivial PL functions (same linear function on every face) \leftrightarrow trivial stress (0 on all edges)

Summary

- Trivial PL functions (same linear function on every face) \leftrightarrow trivial stress (0 on all edges)
- Nontrivial piecewise linear functions \leftrightarrow nontrivial stresses

Summary

- Trivial PL functions (same linear function on every face) \leftrightarrow trivial stress (0 on all edges)
- Nontrivial piecewise linear functions \leftrightarrow nontrivial stresses
- This correspondence is unique, up to adding trivial PL functions on the left hand side.

Summary

- Trivial PL functions (same linear function on every face) \leftrightarrow trivial stress (0 on all edges)
- Nontrivial piecewise linear functions \leftrightarrow nontrivial stresses
- This correspondence is unique, up to adding trivial PL functions on the left hand side.
- A framework which only has the trivial stress is called independent.

Summary

- Trivial PL functions (same linear function on every face) \leftrightarrow trivial stress (0 on all edges)
- Nontrivial piecewise linear functions \leftrightarrow nontrivial stresses
- This correspondence is unique, up to adding trivial PL functions on the left hand side.
- A framework which only has the trivial stress is called independent.

\mathcal{P}_{1} is not independent

\mathcal{P}_{2} is independent

Summary

- Trivial PL functions (same linear function on every face) \leftrightarrow trivial stress (0 on all edges)
- Nontrivial piecewise linear functions \leftrightarrow nontrivial stresses
- This correspondence is unique, up to adding trivial PL functions on the left hand side.
- A framework which only has the trivial stress is called independent.

\mathcal{P}_{1} is not independent

\mathcal{P}_{2} is independent

Fact: If the domain is not simply connected, the above correspondence breaks down!

Where to now?

We've seen that $\operatorname{dim} C_{1}^{0}(\mathcal{P})$ can already be quite subtle. What about higher degrees?

Where to now?

We've seen that $\operatorname{dim} C_{1}^{0}(\mathcal{P})$ can already be quite subtle. What about higher degrees?

- Algebraically, useful to homogenize the polynomial functions defining the spline (make all the terms have the same degree by introducing a third variable)
- Geometrically, replace \mathcal{P} by the cone $\widehat{\mathcal{P}}$ over \mathcal{P} (the third variable records 'height')

Where to now?

We've seen that $\operatorname{dim} C_{1}^{0}(\mathcal{P})$ can already be quite subtle. What about higher degrees?

- Algebraically, useful to homogenize the polynomial functions defining the spline (make all the terms have the same degree by introducing a third variable)
- Geometrically, replace \mathcal{P} by the cone $\widehat{\mathcal{P}}$ over \mathcal{P} (the third variable records 'height')

\mathcal{P}_{1}

$\widehat{\mathcal{P}}_{1}$

Where to now?

We've seen that $\operatorname{dim} C_{1}^{0}(\mathcal{P})$ can already be quite subtle. What about higher degrees?

- Algebraically, useful to homogenize the polynomial functions defining the spline (make all the terms have the same degree by introducing a third variable)
- Geometrically, replace \mathcal{P} by the cone $\widehat{\mathcal{P}}$ over \mathcal{P} (the third variable records 'height')

\mathcal{P}_{1}

$\widehat{\mathcal{P}}_{1}$
- $C^{0}(\widehat{\mathcal{P}})$ is graded (every spline can be written as a sum of splines of uniform degree)
- $C_{d}^{0}(\mathcal{P})$ 'sits inside' $C^{r}(\widehat{\mathcal{P}})$ as the degree d 'slice.'

More Algebraic Structure

- Useful to consider algebraic structures on $C^{0}(\widehat{\mathcal{P}})$ in addition to vector space structure
- $F \in C^{0}(\widehat{\mathcal{P}}), f \in \mathbb{R}[x, y, z]$ a polynomial. Then $f \cdot F \in C^{0}(\widehat{\mathcal{P}})$.
- We say $C^{0}(\widehat{\mathcal{P}})$ is an $\mathbb{R}[x, y, z]$-module

More Algebraic Structure

- Useful to consider algebraic structures on $C^{0}(\widehat{\mathcal{P}})$ in addition to vector space structure
- $F \in C^{0}(\widehat{\mathcal{P}}), f \in \mathbb{R}[x, y, z]$ a polynomial. Then $f \cdot F \in C^{0}(\widehat{\mathcal{P}})$.
- We say $C^{0}(\widehat{\mathcal{P}})$ is an $\mathbb{R}[x, y, z]$-module

Why is this a useful perspective?

More Algebraic Structure

- Useful to consider algebraic structures on $C^{0}(\widehat{\mathcal{P}})$ in addition to vector space structure
- $F \in C^{0}(\widehat{\mathcal{P}}), f \in \mathbb{R}[x, y, z]$ a polynomial. Then $f \cdot F \in C^{0}(\widehat{\mathcal{P}})$.
- We say $C^{0}(\widehat{\mathcal{P}})$ is an $\mathbb{R}[x, y, z]$-module

Why is this a useful perspective?

- Graded modules over polynomial rings are a central object of study in commutative algebra and algebraic geometry.
- Loosely, these subjects formalize 'doing linear algebra with polynomials.'

More Algebraic Structure

- Useful to consider algebraic structures on $C^{0}(\widehat{\mathcal{P}})$ in addition to vector space structure
- $F \in C^{0}(\widehat{\mathcal{P}}), f \in \mathbb{R}[x, y, z]$ a polynomial. Then $f \cdot F \in C^{0}(\widehat{\mathcal{P}})$.
- We say $C^{0}(\widehat{\mathcal{P}})$ is an $\mathbb{R}[x, y, z]$-module

Why is this a useful perspective?

- Graded modules over polynomial rings are a central object of study in commutative algebra and algebraic geometry.
- Loosely, these subjects formalize 'doing linear algebra with polynomials.'
- Thanks to insights of Billera, we can use tools from homological algebra and algebraic topology.

More Algebraic Structure

- Useful to consider algebraic structures on $C^{0}(\widehat{\mathcal{P}})$ in addition to vector space structure
- $F \in C^{0}(\widehat{\mathcal{P}}), f \in \mathbb{R}[x, y, z]$ a polynomial. Then $f \cdot F \in C^{0}(\widehat{\mathcal{P}})$.
- We say $C^{0}(\widehat{\mathcal{P}})$ is an $\mathbb{R}[x, y, z]$-module

Why is this a useful perspective?

- Graded modules over polynomial rings are a central object of study in commutative algebra and algebraic geometry.
- Loosely, these subjects formalize 'doing linear algebra with polynomials.'
- Thanks to insights of Billera, we can use tools from homological algebra and algebraic topology.
- Homological algebra is as an algebraic formalization of the 'inclusion-exclusion' principle.

More Algebraic Structure

- Useful to consider algebraic structures on $C^{0}(\widehat{\mathcal{P}})$ in addition to vector space structure
- $F \in C^{0}(\widehat{\mathcal{P}}), f \in \mathbb{R}[x, y, z]$ a polynomial. Then $f \cdot F \in C^{0}(\widehat{\mathcal{P}})$.
- We say $C^{0}(\widehat{\mathcal{P}})$ is an $\mathbb{R}[x, y, z]$-module

Why is this a useful perspective?

- Graded modules over polynomial rings are a central object of study in commutative algebra and algebraic geometry.
- Loosely, these subjects formalize 'doing linear algebra with polynomials.'
- Thanks to insights of Billera, we can use tools from homological algebra and algebraic topology.
- Homological algebra is as an algebraic formalization of the 'inclusion-exclusion' principle.
- Algebraic topology detects 'holes'

Consequences of Algebraic Perspective

Here are a few things that can be done:

Consequences of Algebraic Perspective

Here are a few things that can be done:

- Calculating $\operatorname{dim} C_{d}^{r}(\mathcal{P})$ is equivalent to computing the Hilbert function of $C^{r}(\widehat{\mathcal{P}})$. There are standard approaches to this problem in computational commutative algebra, and efficient algorithms.

Consequences of Algebraic Perspective

Here are a few things that can be done:

- Calculating $\operatorname{dim} C_{d}^{r}(\mathcal{P})$ is equivalent to computing the Hilbert function of $C^{r}(\widehat{\mathcal{P}})$. There are standard approaches to this problem in computational commutative algebra, and efficient algorithms.
- Relation between PL functions and self-stresses generalizes to a correspondence between splines and syzygies, and dependence of this correspondence on \mathcal{P} being simply connected is completely clarified (thanks to Billera).

Consequences of Algebraic Perspective

Here are a few things that can be done:

- Calculating $\operatorname{dim} C_{d}^{r}(\mathcal{P})$ is equivalent to computing the Hilbert function of $C^{r}(\widehat{\mathcal{P}})$. There are standard approaches to this problem in computational commutative algebra, and efficient algorithms.
- Relation between PL functions and self-stresses generalizes to a correspondence between splines and syzygies, and dependence of this correspondence on \mathcal{P} being simply connected is completely clarified (thanks to Billera).
- Via some homological algebra, $\operatorname{dim} C_{1}^{0}(\mathcal{P})$ has consequences for freeness of $C^{0}(\widehat{\mathcal{P}})$ as an $\mathbb{R}[x, y, z]$-module. This in turn impacts how easy it is to calculate $\operatorname{dim} C_{d}^{0}(\mathcal{P})$ for $d \geq 1$.

THANK YOU!

