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Intertwining Ladder
Representations for SU(p, q) into
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ABSTRACT The positive spin ladder representations for G = SU(p, q) may be
realized in a Fock space, in Dolbeault cohomology over G/S(U(p, q − 1)×U(1)), and
as certain holomorphic sections of a vector bundle over G/S(U(p)×U(q)). A Penrose
transform, also referred to as a double fibration transform, intertwines the Dolbeault
model into the vector bundle model. By passing through the Fock space realization of
the ladder representations, we invert the Penrose transform, and thus intertwine the
ladder representations into Dolbeault cohomology.

Introduction

An important discovery in modern physics was the existence of various sym-
metry groups such as the Lorentz group and the conformal group which pre-
serve (up to unitary or conformal equivalence) the Minkowski norm on four-
dimensional space-time. These groups commute with the differential equations
of mathematical physics, and so spaces of solutions to these equations cor-
respond to invariant subspaces of certain vector spaces on which the group in
question acts. This leads to an interest in constructing explicit models of unitary
representations of various non-compact Lie groups and intertwining operators
between various versions of these models. Desirable models might be ones on
which the group acts in a natural, geometric way (i.e., by substitutions rather
than an integral), on which the inner product may be computed explicitly, or in
which the solutions to the corresponding differential equation of mathematical
physics are exhibited explicitly.
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Here we consider the ladder representations of SU(p, q). The group SU(2, 2)
is locally isomorphic to the conformal group, mentioned above, and has a one-
parameter family of irreducible representations, indexed by a half-integer called
the spin, which occur on spaces of solutions to the massless field equations.
These equations include the wave equation with spin 0 and Maxwell’s equations
with spin ±1. The term “ladder representations” for this family may refer to
the fact that the K-types of each such representation lie on a half-line, each
occuring with multiplicity one. We index these representations by an integer
equal to twice the spin, and we consider this family of representations for all of
the groups SU(p, q).

Unitarity of the ladder representations of SU(2, 2) was first proved by [JV].
Later constructions by Sternberg and Wolf [SW] and Blattner and Rawnsley
[BR], expanding on earlier work of Carmona [C], identified these representa-
tions. The Hilbert space of indefinite harmonic forms appearing in the L2-
cohomology constructions of [C] and [BR] is essentially a Fock space (see [F]
and [B]). The [BR] realization was used in [M] to give a geometric construction
of the ladder representations of G = SU(p, q) on sections of vector bundles
over G/K, where K = S(U(p) × U(q)) is the maximal compact subgroup
of G. An alternative construction by Davidson [D] realizes all of the highest
weight modules for SU(p, q) as vector-valued functions over G/K. At about the
same time, the inner product on indefinite harmonic forms first constructed
by Carmona in [C] was generalized by Rawnsley, Schmid, and Wolf [RSW] to
give a geometric construction of a much broader class of representations in
Dolbeault cohomology over a homogeneous space G/H. Independently, Patton
and Rossi [PR] constructed the ladder representations of SU(p, q) in Dolbeault
cohomology over a homogeneous space G/H, where H = S(U(p, q− 1)×U(1)),
giving an alternative and more elementary proof of a special case of the result in
[RSW]. More recently, D-module methods have been used to construct a broad
class of representations of a real, reductive Lie group as solutions of a family of
invariant, linear differential equations on a manifold on which the group acts
(see [KS]).

An important method for constructing intertwining operators between var-
ious models of Lie group representations is a double fibration transform, also
called a Penrose transform. One of the first instances of this transform was used
to construct solutions of Maxwell’s equations in [EPW] (see also [BE], [E], [N],
and [Z]). For G = SU(p, q), the transform Φ constructed in [M] from the Fock
model to sections over G/K, though not based on a double fibration, is a direct-
image mapping inspired by the Penrose transform. Patton and Rossi ([P], [PR])

Fock space on Cp+q

Ψ↙ Φ−1 ↖↘ Φ

cohomology on G/H P−→ sections over G/K

construct transforms Ψ, mapping the Fock space into Dolbeault cohomology
over G/H, and P , a Penrose transform mapping cohomology over G/H into
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sections over G/K. Further, they show that P is one-to-one and that the
diagram above commutes.

Here the inverse transform Φ−1 was constructed in [L1] and [L2] and used
to explicitly describe inner product structures on the disk model of the ladder
representations. This construction, however, is less than optimal, containing
an ad hoc differential operator that is not G-equivariant. An alternative study
of inner product structures on G/K for all but finitely many of the ladder
representations was done in [DS]. Our goal in this work is to construct a
transform P−1 in two steps. In the first step, we use [M] and analytical results
from [L1] and [L2] to pull the disk realization back to the Fock realization. This
step is completed for all but finitely many ladder representations, using a more
natural and G-equivariant version of Φ−1 inspired by ideas of [DS]. Then, in
the second step, we use the results of [P] and [PR] to map the Fock realization
into Dolbeault cohomology. Once the transform is constructed, we verify that
it inverts the Penrose transform on the disk realization, and that it annihilates
K-finite vectors which are “outside” the image of the Penrose transform. It is
important to emphasize that we invert P on the disk realization of the ladder
representations, which is contained within, but is not equal to, the entire image
of P .

The structure of the paper is as follows: in section 1, we describe the Fock
space model of the ladder representations. In section 2 we introduce the sections
over G/K, with G/K realized in the bounded model as a generalized unit disk,
and describe the Fock-disk transform. In section 3 we describe the cohomology
over G/H and introduce the Penrose transform. Our main results are contained
in section 4, where we invert the Penrose transform.

The second-named author would like to thank the organizers for the invitation
to attend this conference, and she would like to thank Professor Carmona for
years of inspiration and fond mathematical memories — his paper [C] was
the first paper in representation theory that she ever read! She is grateful to
Oklahoma State University for sabbatical support while some of this work was
done. The second and third authors would also like to thank the Mathematical
Sciences Research Institute.

1 The Fock model for ladder representations

In this section we give a brief overview of the Fock realization for the oscil-
lator representation of G = SU(p, q), and of how the oscillator representation
decomposes into G-isotypic components. These isotypic components, which are
of multiplicity one, are the ladder representations of SU(p, q). For more details,
one may refer to [B],[BR],[D], or [M].

1.1 Notation

The following notation will be used in the sequel.
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Definition 1.1. (a) For r ∈ N, let N0 denote the set of nonnegative integers
and let Nr

0 denote the set of r-tuples of nonnegative integers.
(b) If m = (m1,m2, . . . ,mr) ∈ Nr

0, then m! := m1!m2! · · ·mr! and |m| :=
m1 +m2 + · · ·+mr. If z ∈ Cr, then zm := zm1

1 zm2
2 · · · zmr

r .
(c) We have a partial order ≤ on Nr

0 given by α ≤ β if αi ≤ βi for all i ∈
{1, . . . , r}.
(d) For r ∈ N and m ∈ N0, let Nr

0(m) denote the elements of Nr
0 of length m.

(e) For p, q ∈ N, z ∈ Cp+q, let zR := (z1, . . . , zp) and zS := (zp+1, . . . , zp+q).

1.2 The Fock Space

Definition 1.2. For positive integers p and q, put

F = {f : Cp+q → C | f holomorphic in (zR, z̄S)

and
∫
Cp+q

|f(z)|2e−|z|
2
dm(z) <∞},

where m is Lebesgue measure normalized so that∫
Cp+q

e−|z|
2
dm(z) = 1.

We assign an inner product 〈·, ·〉F to F defined by

〈f, g〉F =
∫
Cp+q

f(z)g(z)e−|z|
2
dm(z). (1.1)

The Hilbert space F is often referred to as a Fock space, on which V. Fock
realized solutions to certain quantum mechanical systems (see [F]). One observes
that the collection of polynomials in zR, z̄S is dense in F . Also, given monomials
f(z) = zα

Rz̄
β
S and g(z) = zγ

Rz̄
ν
S in F , repeated integration by parts gives∫

Cp+q

f(z)g(z)e−|z|
2
dm(z) = δαγδβνα!β!. (1.2)

Thus we have the following lemma.

Lemma 1.3. The collection of monomials {zα
Rz̄

β
S | α ∈ Np

0, β ∈ Nq
0} forms an

orthogonal basis for F .

Lemma 1.3 admits two useful corollaries, both of which may be proved by first
using Lemma 1.3 to expand everything in sight into series, and then applying
(1.1).

Corollary 1.4. Suppose f ∈ F has series expansion

f(z) =
∑

α∈Np
0 ,β∈Nq

0

aα,βz
α
Rz̄

β
S .
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Then
〈f, f〉F =

∑
α∈Np

0 ,β∈Nq
0

|aα,β |2α!β!.

Corollary 1.5. The function B : Cp+q ×Cp+q → C defined by

B(z, w) = ez∗RwR+w∗SzS

is a reproducing kernel for F .

1.3 The Oscillator Representation

We define a unitary representation of G = SU(p, q) on the Fock space F , called
the oscillator representation, and show how it decomposes into isotypic com-
ponents. For details regarding the construction of the oscillator representation,
see [BR] or [D].

Let 〈〈·, ·〉〉 denote the nondegenerate hermitian form on Cp+q of signature
(p, q) determined by the matrix

Ip,q =
(
Ip 0
0 −Iq

)
,

and recall that G is the subgroup of SL(p+ q,C) which preserves 〈〈·, ·〉〉.

Theorem 1.6. [BR],[D] Given g =
(
A B
C D

)
∈ G and f ∈ F , the formula

[σ(g)f ](z) = det(D̄)
∫
Cp+q

f(g−1w)ew∗RzR+z∗SwSe
1
2 |g

−1w|2e
1
2 |w|

2
dm(w)

defines a continuous unitary representation of G on F , called the oscillator
representation.

The oscillator representation may be decomposed into isotypic components
using a dual pairs argument. Observe that U(1) acts on F by right translation,
and that this action commutes with the action of G. The isotypic components
for G are given by decomposing F under the U(1)-action.

Theorem 1.7. The Fock space F decomposes into isotypic components of
multiplicity one as

F =
⊕
k∈Z

Fk,

where Fk = {f ∈ F | f(e−iθz) = eikθf(z)}.

The representations Fk are called the ladder representations for G, since the
highest weights for their K-types lie on a line in the weight lattice. Observe
that the elements of Fk are S1-homogeneous of degree k. In the sequel, when
we speak of homogeneity, we mean S1-homogeneity.
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2 Realizing ladder representations over G/K

In this section we realize the ladder representations of G over G/K, where

K =
{
g =

(
A 0
0 D

)
| g ∈ G

}
∼= S(U(p)×U(q))

is a maximal compact subgroup of G. This is accomplished via an intertwining
integral transform constructed in [M].

2.1 The Generalized Unit Disk and G/K

We introduce a bounded model for G/K, called the generalized unit disk. We
also give a natural action of G on polynomial-valued functions on G/K.

Definition 2.1. For positive integers p and q, put

Dp,q = {ζ ∈ Cp×q | Iq − ζ∗ζ � 0}.

The set Dp,q, called the generalized unit disk, is a bounded domain in Cp×q

and is a Siegel domain of genus II. In case p = 1 or q = 1, Dp,q is simply a unit
ball. Observe that Dp,q parametrizes the set Mq of negative q-planes in Cp+q

via

ζ ∈ Dp,q 7→ col span
(
ζ
Iq

)
∈Mq.

In turn, by Witt’s theorem (see [La]) G acts transitively on Mq while the
negative plane corresponding to 0 ∈ Dp,q is stabilized by K. Thus Mq

∼= G/K,
and so Dp,q parametrizes G/K. In the sequel, we use Dp,q as our preferred
model for G/K.

Now we work toward defining an action of G on polynomial-valued functions
on G/K, culminating in Definition 2.4. First, we note that the canonical action
ofG onG/K induces an action ofG onDp,q by fractional linear transformations.

Namely, if g =
(
A B
C D

)
∈ G and ζ ∈ Dp,q, then

g.ζ = (Aζ +B)(Cζ +D)−1. (2.1)

Definition 2.2. Let P̄(k,Cq) denote the set of antiholomorphic polynomials
on Cq that are homogeneous of degree k and let O(G/K, P̄(k,Cq)) denote the
set of functions holomorphic on Dp,q taking values in P̄(k,Cq). Furthermore,
for φ ∈ O(G/K, P̄(k,Cq)), we put

φ(ζ, v) := [φ(ζ)](v),

where ζ ∈ Dp,q and v ∈ Cq.
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Definition 2.3. For k ≥ 0 we define Jk : U(p, q)×Dp,q → GL(P̄(k,Cq)) by

Jk(g, ζ)f(v) := det[Cζ +D] f
(
[Cζ +D]∗v

)
for g =

(
A B
C D

)
, ζ ∈ Dp,q and v ∈ Cq.

Definition 2.4. Suppose g ∈ G and φ ∈ O(G/K, P̄(k,Cq)). Define ωk(g)φ by

(ωk(g)φ)(ζ, v) = Jk(g−1, ζ)−1φ(g−1.ζ, v)

for ζ ∈ Dp,q and v ∈ Cq.

Observe that the representation ωk is natural in the sense that it corresponds
to the natural geometric action of G on sections of the vector bundle Ek =
Dp,q × P̄(k,Cq) via the factor of automorphy Jk (see [M]).

2.2 The Fock-disk Transform

In [M], a geometric construction of the positive spin ladder representations Fk

is given via an integral transform Φk. We briefly explain the transform Φk and
some of its properties. Further details may be found in [M].

Theorem 2.5. [M] For k ∈ Z, the mapping Φk : Fk → O(G/K, P̄(k,Cq))
given by

(Φkf)(ζ, v) =
∫
Cq

f(ζw,w)ev∗we−|w|
2
dm(w)

is well-defined and depends holomorphically on ζ ∈ Dp,q.

The transform Φk is essentially given by restriction to a negative q-plane
followed by a Bargmann projection operator, giving rise to a kind of L2-version
of the Penrose transform. It should be pointed out that Φk is a trivialized
version of the transform constructed in [M]. Specifically, we have used the global
trivialization of the vector bundle in [M] with the multiplier action ωk. Also,
we have used the Fock space representation Fk instead of the L2-cohomology
realization of Blattner and Rawnsley (see [BR]).

Several properties of Φk will be particularly useful. We present the continuity
and G-equivariant properties of Φk below.

Theorem 2.6. [M] The mapping Φk is injective for k ≥ 0 and identically zero
for k < 0. Furthermore, for all f ∈ Fk, g ∈ G, and k ≥ 0, the mapping Φk

satisfies
ωk(g)(Φkf) = Φk(σ(g)f).

Lemma 2.7. [M] Fix k ∈ Z and ζ ∈ Dp,q. The mapping of Fk into P̄(k,Cq)
given by

f 7→ (Φkf)(ζ, ·)

is continuous.
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3 Realizing ladder representations over G/H and the
Penrose transform

In this section, we describe how the ladder representations Fk (section 2) for
G = SU(p, q) may be realized in Dolbeault cohomology over a homogeneous
space G/H of negative lines in Cp+q with coefficients in line bundles E(−k−q).
This is achieved by applying intertwining mappings Ψk constructed by Patton
and Rossi (see [P] or [PR]). Along the way, we introduce a special case of the
Penrose transform, denoted by P , which intertwines the Dolbeault cohomology
realization of the ladder representations with those realized over G/K in section
3. This leads to the following commutative diagram.

Fk

Ψk↙ ↘ Φk

H0,q−1(G/H,E(−k − q)) P−→ O(G/K, P̄(k,Cq))
(3.1)

3.1 Preliminaries

Since we will be constructing cohomology from complexes of differential forms,
we begin with some notation pertaining to our particular setting.

Definition 3.1. For M a complex manifold and V a holomorphic vector bundle
over M , let Er,s(M,V) represent the space of smooth V-valued (r, s)-forms.

For our purposes, we will be working with E(−k−q)-valued (r, s)-forms on the
complex manifold M1, where M1 consists of negative lines in Cp+q with respect
to the indefinite metric 〈〈·, ·〉〉, and E(−k− q) is the (k+ q)-th symmetric power
of the tautological line bundle E(−1) over M1. Observe that G acts transitively
on M1, and that the line [(0, . . . , 0, 1)] is stabilized by

H =
{(

A 0
0 d

)
∈ G | A ∈ U(p, q − 1), d ∈ U(1)

}
∼= S(U(p, q − 1)×U(1)).

Therefore M1 is the homogeneous space G/H. Further, we note that E(−k− q)
is a G-homogeneous bundle, and the smooth sections of E(−k − q) are C×-
homogeneous of degree −(k + q).

Finally, we put
Cp+q
− := {z ∈ Cp+q | 〈〈z, z〉〉 < 0}, (3.2)

and we let π denote the canonical mapping from Cp+q
− onto M1.

3.2 E(−k − q)-valued forms and cohomology over G/H

We give the Dolbeault model for Hr(M1,O(E(−k − q))) as sheaf cohomology,
where O(E(−k − q)) denotes the sheaf of holomorphic sections of E(−k − q).
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Then, using the natural mapping π : Cp+q
− →M1, we pull Dolbeault cohomol-

ogy back to cohomology over Cp+q
− , into which the Patton-Rossi mappings Ψk

will intertwine.
We first address the Dolbeault cohomology spaces over M1. Put n = p+q. For

k ∈ Z and 0 ≤ r ≤ n− 1, consider the space E0,r(M1, E(−k− q)) of E(−k− q)-
valued forms with associated ∂̄-operator given by ∂̄ = 1E(−k−q) ⊗ ∂̄M1 . Here
∂̄M1 is the del-bar operator for complex-valued forms on M1, where the complex
structure on M1 is the one it inherits as an open G-orbit of Pn−1. We then
obtain a complex

0 i−→ E0,0(M1, E(−k − q)) ∂̄−→ · · · ∂̄−→ E0,n−1(M1, E(−k − q)) ∂̄−→ 0 (3.3)

which determines Dolbeault cohomology.

Definition 3.2. For k ∈ Z and 0 ≤ r ≤ n − 1 we define the Dolbeault
cohomology spaces by

H0,r
−k−q =

Ker{∂̄ : E0,r(M1, E(−k − q)) → E0,r+1(M1, E(−k − q))}
Im{∂̄ : E0,r−1(M1, E(−k − q)) → E0,r(M1, E(−k − q))}

,

where E0,−1(Pn−1, E(−k − q)) := 0 and

∂̄ : E0,−1(M1, E(−k − q)) → E0,0(M1, E(−k − q))

is the inclusion mapping. For r = n, we put H0,n
−k−q = 0.

Following [PR], we proceed to pull the Dolbeault cohomology spaces described
in Definition 3.2 back to Cp+q

− . To begin, let

Γ := z1
∂

∂z1
+ · · ·+ zn

∂

∂zn
(3.4)

be the Euler vector field over Cp+q
− . Since Tπ(m)(M1) = Tm(Cp+q

− )/CΓ, pull-
backs of forms in Er,s(M1, E(−k−q)) to Er,s(Cp+q

− ) must vanish in the direction
of the vector field Γ and must satisfy a homogeneity condition determined by
the bundle E(−k − q). Thus we define

Er,s
−k−q = {α ∈ Er,s(Cp+q

− ) | ι(Γ)α = ι(Γ̄)α = 0, ι(Γ̄)dα = 0,

and ι(Γ)dα = (−k − q)α},
(3.5)

where ι(Γ) denotes interior multiplication by Γ. We then produce a complex
and resulting cohomology spaces over Cp+q

− (with complex structure inherited
from Cp+q) as follows.

Proposition 3.3. [PR] The complex

0 i−→ E0,0
−k−q

∂̄−→ E0,1
−k−q

∂̄−→ · · · ∂̄−→ E0,n
−k−q

∂̄−→ 0
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is well-defined, and the corresponding cohomology spaces

H0,r
−k−q =

Ker{∂̄ : E0,r
−k−q → E0,r+1

−k−q}
Im{∂̄ : E0,r−1

−k−q → E0,r
−k−q}

satisfy H0,r
−k−q

∼= H0,r
−k−q for 0 ≤ r ≤ (p+ q).

3.3 Mapping into cohomology

Now that we have a suitable description of Dolbeault cohomology over M1 =
G/H, we are ready to present an intertwining mapping of Fk into cohomology
following Patton and Rossi (see [P] or [PR]). Since the maximal dimension of
compact subvarieties in M1 is q − 1, we expect the cohomology spaces H0,r

−k−q

to be nonvanishing in degree q− 1 (see [Z]). Hence we look to realize Fk within
H0,q−1
−k−q .

Definition 3.4. Given f ∈ Fk and z ∈ Cp+q
− , put

f̃(z) =
∫
C×

wk|w|2(q−1)f(wz)e−|zS |2|w|2 dm(w).

Definition 3.5. Define Ψk : Fk → E0,q−1(Cp+q
− ) by

[Ψk(f)](z) =
f̃(z)

(k + q − 1)!
η̄,

where

η =
q∑

j=1

(−1)j+1zp+jdzp+1 ∧ · · · ∧ d̂zp+j ∧ · · · ∧ dzp+q.

Theorem 3.6. [PR] If k ≥ 0, then Ψk(Fk) ⊂ E0,q−1
−k−q . Furthermore, if ω ∈

Ψk(Fk), then ∂̄ω = 0, and hence the mapping Ψk : Fk → E0,q−1
−k−q induces a

mapping [Ψk] of Fk into the Dolbeault cohomology space H0,q−1
−k−q .

Note that we have not yet asserted that the mapping [Ψk] intertwines the
ladder representations into cohomology. This requires the Penrose transform,
which will be addressed in the next subsection.

3.4 Penrose transform

We introduce a special case of the Penrose transform and see that the diagram
given in (3.1) commutes. As a consequence, the mappings [Ψk] intertwine the
ladder repesentations Fk into cohomology. Readers desiring further knowledge
of the Penrose transform may refer to [BE], [E], [EPW], [N], or [Z], to name a
few.
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In order to introduce the Penrose transform, we must first briefly discuss the
mappings Ψk in the compact case G = SU(q) (that is, p = 0). In this case,
Fk consists of antiholomorphic homogeneous polynomials on Cq of degree k
(so that Fk = P̄(k,Cq)), and G acts irreducibly and unitarily on P̄(k,Cq) by
left translation. Meanwhile, the cohomology space H0,q−1

−k−q is finite dimensional
over the compact, complex manifold M1 = Pq−1, and it “pulls back” to the
cohomology space H0,q−1

−k−q over Cq
× as described above in Proposition 3.3. By

appealing to the Borel-Weil-Bott theorem, we know that P̄(k,Cq) and H0,q−1
−k−q

are equivalent irreducible representations of SU(q). Mappings between these
representations are induced by the mappings Ψk,c : P̄(k,Cq) → E0,q−1

−k−q defined
by

Ψk,cf(z) =
f(z)

|z|2(k+q)
η̄, (3.6)

where η is as in Definition 3.5. In fact the Ψk,c are exactly the mappings of
Definition 3.5 in case p = 0. The following proposition is readily verified.

Proposition 3.7. (a) For k ≥ 0, the mapping Ψk,c : P̄(k,Cq) → E0,q−1
−k−q is

nonzero and SU(q)-equivariant, where the action of SU(q) on E0,q−1
−k−q is the

natural action on forms induced by left translation.

(b) If f ∈ P̄(k,Cq), then Ψk,c(f) is harmonic.

The proposition indicates that Ψk,c induces an intertwining mapping of Fk

into H0,q−1
−k−q , while the Hodge theorem together with the proposition imply that

the induced mapping is nonzero. Thus we have:

Corollary 3.8. The mapping [Ψk,c] : P̄(k,Cq) → H0,q−1
−k−q induced by Ψk,c is a

G-equivariant isomorphism.

We are now ready to describe the Penrose transform in the setting G =
SU(p, q) as described in [PR]. Let [ω] be a cohomology class in H0,q−1

−k−q rep-
resented by the form ω ∈ E0,q−1

−k−q , let ζ ∈ Dp,q, and let V (ζ) be the negative

q-plane in Cp+q spanned by the columns of I(ζ) =
(
ζ
Iq

)
. Note that V (ζ) ∼=

Cq as vector spaces via the coordinate mapping for V (ζ) with respect to
the columns of I(ζ). Thus we may regard ω|V (ζ) as member of E0,q−1(Cq

×),
and in fact ω|V (ζ) ∈ E0,q−1

−k−q . Now, by appealing to Corollary 3.8, we see that
[Ψk,c]−1([ω|V (ζ)]) ∈ P̄(k,Cq). Thus we have associated a cohomology class [ω]
with an element of O(G/K, P̄(k,Cq)) whose value at ζ is [Ψk,c]−1([ω|V (ζ)]).
This mapping H0,q−1

−k−q → O(G/K, P̄(k,Cq)) sending [ω] 7→ [Ψk,c]−1([ω|V (ζ)]) is
the essence of the Penrose transform. However, to understand the geometry of
the mapping, one must trace the definition through a double fibration of G/H
and G/K, as described in [Z].

Theorem 3.9. [PR] The mapping P : H0,q−1
−k−q → E(G/K, P̄(k,Cq)) given by

(P [ω])(ζ) = [Ψk,c]−1([ω|V (ζ)])



406 Lorch, Mantini, Novak

for [ω] ∈ H0,q−1
−k−q and ζ ∈ Dp,q is well-defined. Furthermore, P is injective, P is

G-equivariant, and the diagram given in (3.1) commutes.

Now, the fact that the Patton-Rossi mapping intertwines the ladder repre-
sentations Fk into cohomology is an immediate corollary of Theorem 3.9:

Corollary 3.10. For k ≥ 0, the mapping [Ψk] of Theorem 3.6 induces a one-
to-one, G-equivariant mapping from Fk into H0,q−1

−k−q .

4 Inverting the Penrose transform

We intertwine the realizations of ladder representations over G/K (section 2)
into those in cohomology over G/H (section 3) in the case k ≥ 2(p + q) − 1
by explicitly constructing a G-equivariant mapping P−1 : Φk(Fk) → Ψk(Fk).
Furthermore, the mapping inverts the Penrose transform P in the sense that if
[ω] ∈ Ψk(Fk), then [P−1 ◦P ([ω])] = [ω]. Roughly speaking, the mapping P−1 is
constructed by passing through the Fock space Fk, that is, we pull elements in
Φk(Fk) back to Fk, and then send them into cohomology by using the mapping
Ψk.

4.1 K-types and highest weight vectors

From Theorem 1.6 and Corollary 1.5, we observe that K acts on Fk by left
translation. This action induces the following K-type decomposition.

Proposition 4.1. [SW] For k ≥ 0, the Fock space Fk decomposes into an
orthogonal direct sum of K-types

Fk =
∞⊕

s=0

(V p
−s ⊗ V q

k+s),

where
V p
−s = {f(zR) | f ∈ P(s,Cp)}

and
V q

k+s = {f(zS) | f ∈ P(k + s,Cq)}.

Here P(r,Cm) (resp. P̄(r,Cm)) stands for holomorphic (resp. antiholomorphic)
polynomials homogeneous of degree r on Cm.

With respect to the upper-triangular Borel subalgebra for kC := Lie(K)C,
highest weight vectors for the K-types V p

−s ⊗ V q
k+s are given by

fk,s := zs
pz̄

k+s
p+1 . (4.1)

By applying the intertwining mappings Φk and Ψk to fk,s (see Theorem 2.5 and
Definition 3.5), we obtain highest weight vectors for the corresponding K-types
over G/K and G/H, respectively.
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Proposition 4.2. If fk,s is as in (4.1), then [ωk,s] := [Ψk(fk,s)] and φk,s :=
Φk(fk,s) are kC highest weight vectors in Ψk(Fk) and Φk(Fk), respectively.
Furthermore,

ωk,s(z) =
(k + s+ q − 1)!

(k + q − 1)!
zk
p z̄

k+s
p+1

|zp+1|2(k+s+q)
η̄,

and

φk,s(ζ, v) =
(k + s)!
k!

ζs
p1v̄

k
1 ,

where z ∈ Cp+q
− , ζ = (ζij) ∈ Dp,q, and v ∈ Cq.

4.2 An orthogonal family of polynomials on G/K and norms of
highest weight vectors

Here we lay the analytical groundwork on G/K that is needed for the construc-
tion of P−1. We present a family of orthogonal polynomials on Dp,q constructed
in [L1] and compute their norms with respect to certain K-invariant inner
products. Further details may be found in [L1] and [L2].

We begin with notation.

Definition 4.3. (a) For α ∈ Np
0 and ρ ∈ Nq

0, let

M(ρ, α) = {γ ∈ Np×q
0 | c(γ) = α and r(γ) = ρ},

where c(γ) and r(γ) denote the column and row sums of γ. (Note that M(ρ, α)
is nonempty if and only if |α| = |ρ|).
(b) If γ ∈ Np×q

0 and ζ = (ζij) ∈ Dp,q, we write

ζγ =
p∏

i=1

q∏
j=1

ζ
γij

ij and γ! =
p∏

i=1

q∏
j=1

γij !

Definition 4.4. Fix p, q,m ∈ N, and suppose α ∈ Np
0 and ρ ∈ Nq

0 with
|α| = |ρ|. For ζ ∈ Cp×q, define

ϕρα(ζ) :=
∑

γ∈M(ρ,α)

1
γ!
ζγ ,

and put
Bm := {ϕρα | α ∈ Np

0(m), ρ ∈ Nq
0(m)}.

The polynomials ϕρα fit naturally into our framework in the following ways.
First, the ϕρα are weight vectors for the natural action of kC on the space
P(Dp,q) of holomorphic polynomials on Dp,q. Indeed, observe that the natural

action of G on Dp,q given in (2.1) restricts to K as
(
A 0
0 D

)
.ζ = AζD−1. This

action induces an action of K on P(Dp,q), which in turn determines an action
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L × R of gl(p,C) ⊕ gl(q,C) on P(Dp,q). For m ≥ 0, one may show that the
polynomial ζm

p1 is a highest weight vector for L×R, and that Bm forms a basis
of weight vectors for the irreducible gl(p,C)⊕gl(q,C)-module Vm with highest
weight vector ζm

p1. In fact, one may obtain the polynomials in Bm by applying
successive lowering operators to ζm

p1 (see [L1]). Second, one may express elements
in the image of the transform Φk in terms of the ϕρα. Specifically, given a basis
element fαβ = zα

Rz̄
β
S for Fk, one computes

Φkfαβ(ζ, v) =
∑

ε∈Nq
0(k)

ε≤β

(
α! β!ϕ(β−ε),α(ζ)

)
v̄ε

ε!
, (4.2)

where ζ ∈ Dp,q, v ∈ Cq, and the order ≤ is as in Notation 1.1. Finally, we
observe that the exponential function exp(

∑
ζij) on Dp,q may be expressed in

terms of the ϕρα.

Proposition 4.5. [L1] The mapping of Dp,q into C given by

ζ 7→ exp

 p∑
i=1

q∑
j=1

ζij


has series expansion

exp

 p∑
i=1

q∑
j=1

ζij

 =
∞∑

m=0

 ∑
ρ∈Nq

0(m)
α∈Np

0(m)

ϕρα(ζ)

 .

We now discuss the norm and orthogonality properties of the polynomials
ϕαβ .

Definition 4.6. For λ ≥ (p+ q), define an inner product (·, ·)λ on P(Dp,q) by

(f, g)λ =
∫
Dp,q

f(ζ)g(ζ)dµλ(ζ),

where dµλ(ζ) = det(Iq − ζ∗ζ)[λ−(p+q)]dm(ζ).

Since K acts on Dp,q by linear automorphisms with determinant of modulus
one, we see that the inner products (·, ·)λ are K-invariant. Thus, any two
distinct polynomials ϕρα and ϕρ̃α̃ must be orthogonal with respect to (·, ·)λ,
as they are kC weight vectors in P(Dp,q) with distinct weights. It remains to
compute (ϕρα, ϕρα)λ. To do this, we first compute (ζm

p1, ζ
m
p1)λ using [H] and

[FK], obtaining

(ζm
p1, ζ

m
p1)λ =

ΓΩ(λ− pq
r )

ΓΩ(λ)
.

(λ− 1)!m!
(λ+m− 1)!

, (4.3)

If α = (0, . . . , 0, m) and ρ = (m, 0, . . . , 0), then ϕρα(ζ) = 1
m!

ζm
p1.
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where r = min(p, q) and ΓΩ(λ) =
∏r

j=1 Γ(λ − j + 1) is Gindikin’s gamma
function (see [FK]). Then, by using lowering operators, we may inductively
compute (ϕρα, ϕρα)λ for each ϕρα ∈ Bm, giving the following theorem.

Theorem 4.7. [L1] For λ ≥ (p+ q), the collection of ϕρα’s is orthogonal with
respect to (·, ·)λ. Furthermore, if m ≥ 0 and ϕρα ∈ Bm then

(ϕρα, ϕρα)λ =
ΓΩ(λ− pq

r )
ΓΩ(λ)

.
(λ− 1)!m!

(λ+m− 1)!
.

1
α!ρ!

.

4.3 Intertwining mapping into cohomology

We construct an intertwining mapping from the disk realization of the ladder
representations of G into Dolbeault cohomology. This mapping inverts the
Penrose transform on its domain of definition.

Definition 4.8. For k ≥ 2(p+ q)− 1, φ ∈ O(G/K, P̄(k,Cq)), and z ∈ Cp+q
− ,

define P−1φ ∈ E0,q−1(Cp+q
− ) by

(P−1φ)(z) = C

[∫
C

∫
Dp,q

φ(ζ, zS)|w|2(k+q−1)e|w|
2〈〈z,I(ζ)zS〉〉dµk+1(ζ) dm(w)

]
η̄

whenever the integral is defined, where ζ ∈ Dp,q, I(ζ) =
(
ζ
Iq

)
, 〈〈·, ·〉〉 is the

hermitian form of signature (p, q) on Cp+q, dµk+1 is as in Definition 4.6, η is
as in Definition 3.5, and

C =
1

(k + q − 1)!
.

ΓΩ(k + 1)
ΓΩ(k + 1− pq

min(p,q) )
.

Alternatively, observe that we express P−1 as an integral over G, giving

(P−1φ)(z) = C

[∫
C

∫
G

φ(g, zS)
|det g22|2(k+1)

× |w|2(k+q−1)e|w|
2〈〈z,I(g.0)zS〉〉dg dm(w)

]
η̄,

(4.4)

where g =
(
g11 g12
g21 g22

)
, and dg is an appropriate Haar measure on G.

In the next two lemmas, we show that P−1 is K-equivariant and has the
desired inversion property on highest weight vectors for K-types.

Lemma 4.9. Suppose φ is a K-finite vector in Φk(Fk) ⊂ O(G/K, P̄(k,Cq)).

Then P−1φ is defined, and given g0 =
(
A 0
0 D

)
∈ K,

P−1(ωk(g0)φ) = g0.(P−1φ),

where ωk is the G-action on O(G/K, P̄(k,Cq)) given in Definition 2.4.
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Proof. First, note that φ is K-finite if and only if φ is polynomial in ζ ∈ Dp,q,
and hence the integral in Definition 4.8 converges, giving that P−1φ is defined.

From Definition 2.4, we see that [ωk(g0)φ](ζ, v) = det(D̄)φ(g−1
0 .ζ,D−1v).

Thus, for z ∈ Cp+q
− , making the change of variable ζ 7→ g0.ζ gives

P−1(ωk(g0)φ)(z)

= det(D̄)C
[∫

C

∫
Dp,q

φ(g−1
0 .ζ,D−1zS)|w|2(k+q−1)e|w|

2〈〈z,I(ζ)zS〉〉

× dµk+1(ζ) dm(w)
]
η̄

= C

[∫
C

∫
Dp,q

φ(ζ,D−1zS)|w|2(k+q−1)e|w|
2〈〈z,I(g0.ζ)zS〉〉

× dµk+1(ζ) dm(w)
]

det(D̄)η̄

= C

[∫
C

∫
Dp,q

φ(ζ,D−1zS)|w|2(k+q−1)e|w|
2〈〈g−1

0 z,I(ζ)(g−1
0 z)S〉〉

× dµk+1(ζ) dm(w)
]
(g0.η̄)

= [g0.P−1φ](z),

concluding the proof. �

Lemma 4.10. For s ≥ 0 and k ≥ 2(p+ q)− 1, we have

P−1φk,s = ωk,s,

where φk,s and ωk,s are as in Proposition 4.2. Thus, by Proposition 4.2 and
Theorem 3.9, [P−1 ◦ P [ωk,s]] = [ωk,s] ∈ H0,q−1

−k−q .

Proof. In succession, we apply Proposition 4.2, Proposition 4.5, Theorem 4.7,
and Definitions 3.4 and 3.5 to obtain

P−1φk,s(z)

= C
(k + s)!
k!

[∫
C

∫
Dp,q

ζs
p1z̄

k
p+1|w|2(k+q−1)e|w|

2〈〈z,I(ζ)zS〉〉dµk+1(ζ) dm(w)

]
η̄

= C
(k + s)!
k!

[∫
C

|w|2(k+q−1)

(∫
Dp,q

ζs
p1z̄

k
p+1e

|w|2zt
RζzS dµk+1(ζ)

)

× e−|w|
2|zS |2 dm(w)

]
η̄
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= C
(k + s)!
k!s!

zs
pz̄

k+s
p+1

[∫
C

|w|2(k+s+q−1)

(∫
Dp,q

|ζp1|2s dµk+1(ζ)

)

× e−|w|
2|zS |2 dm(w)

]
η̄

= C
(k + s)!
k!s!

zs
pz̄

k+s
p+1

[∫
C

|w|2(k+s+q−1)

(
ΓΩ(k + 1− pq

r )
ΓΩ(k + 1)

.
k!s!

(k + s)!

)

× e−|w|
2|zS |2 dm(w)

]
η̄

=
1

(k + q − 1)!

[∫
C

wk|w|2(q−1)(wzp)s(wzp+1)k+se−|w|
2|zS |2 dm(w)

]
η̄

= [Ψkfk,s](z)

= ωk,s(z),

which is the desired result. �

Remarks 4.11. At the beginning of the section, it was asserted that P−1

is given by first passing to the Fock space, and then sending the result into
cohomology. This can be seen in the proof of Lemma 4.10. One observes in the
second through the fifth displayed lines that the inner integral over Dp,q has
the effect of sending the highest weight vector φk,s ∈ Φk(Fk) back to the cor-
responding highest weight vector fk,s ∈ Fk, using ideas from [DS] to eliminate
limit expressions found in [L1] and [L2]. Then, the remaining integral over C
is simply the Patton-Rossi mapping, which sends fk,s to cohomology.

Since a K-finite vector φ ∈ Φk(Fk) may be obtained by applying kC-lowering
operators to a finite collection of kC highest weight vectors, it follows from
Lemmas 4.9 and 4.10 that P−1 serves to invert the Penrose transform for K-
finite vectors in Φk(Fk). Of course, we have yet to show that P−1 is defined
and possesses the desired inversion property for generic elements of Φk(Fk).
This will require a convergence argument, amid which we will need to invoke
the Fubini theorem. The following lemmas, culminating in Lemma 4.14, will be
needed for this purpose.

Lemma 4.12. Suppose k ≥ 0 and λ ≥ k + p+ q + 1. Then

∑
α∈Np

0
β∈Nq

0
|β|−|α|=k

|α|!
(|α|+ λ− 1)!

|β|!
(|β| − k)!

<∞.
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Proof. Let S denote the sum in the statement of the theorem. Using the fact

that #(Nr
0(s)) =

(
r + s− 1

s

)
, we have

S =
∞∑

m=0

∑
α∈Np

0(m)
β∈Nq

0(m+k)

(m+ k)!
(m+ λ− 1)!

=
∞∑

m=0

#(Np
0(m))#(Nq

0(m+ k))
(m+ k)!

(m+ λ− 1)!

=
1

(p− 1)!(q − 1)!

∞∑
m=0

(m+ p− 1)!
m!

(m+ k + q − 1)!
(m+ λ− 1)!

≈
∞∑

m=0

mk+q+p−1−λ.

We note that the last series above converges since k + p+ q − 1− λ ≤ −2, by
hypothesis. �

Lemma 4.13. Suppose k+1 ≥ p+q, λ = 2(k+1)−(p+q), and φαβ = Φk(zα
Rz̄

β
S),

where |β| − |α| = k. Then, for v ∈ Cq,∫
Dp,q

|φαβ(ζ, v)| dµk+1(ζ) ≤ cα!β!
(

|α|!
(|α|+ λ− 1)!(|β| − k)!α!

) 1
2

,

where c is a positive constant which does not depend on α or β.

Proof. For fixed v ∈ Cq, we use (4.2) followed by the Schwarz inequality for
integrals and Theorem 4.7 to obtain∫

Dp,q

|φαβ(ζ, v)| dµk+1(ζ)

≤ c1

∫
Dp,q

α!β!
∣∣∣∣ ∑
ε∈Nq

0(k)
ε≤β

(
ϕ(β−ε),α(ζ)

)
det(Iq − ζ∗ζ)k+1−p−q

∣∣∣∣ dm(ζ)

≤ c2

(
(α!β!)2

∫
Dp,q

∣∣∣∣ ∑
ε∈Nq

0(k)
ε≤β

(
ϕ(β−ε),α(ζ)

)
det(Iq − ζ∗ζ)k+1−p−q

∣∣∣∣2 dm(ζ)
) 1

2
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= c2α!β!
(∫

Dp,q

∑
ε∈Nq

0(k)
ε≤β

|ϕ(β−ε),α(ζ)|2 det(Iq − ζ∗ζ)2(k+1−p−q) dm(ζ)
) 1

2

= c2α!β!
(∫

Dp,q

∑
ε∈Nq

0(k)
ε≤β

|ϕ(β−ε),α(ζ)|2 dµ[2(k+1)−(p+q)](ζ)
) 1

2

≤ c3α!β!
( ∑

ε∈Nq
0(k)

ε≤β

|α|!
(|α|+ λ− 1)!(β − ε)!α!

) 1
2

≤ c4α!β!
(

|α|!
(|α|+ λ− 1)!(|β| − k)!α!

) 1
2

,

giving the desired inequality. �

Lemma 4.14. Suppose k ≥ 2(p+ q)− 1 and f ∈ Fk with

f(z) =
∑

α∈Np
0

β∈Nq
0

|β|−|α|=k

aαβz
α
Rz̄

β
S .

Also, let φαβ be as in Lemma 4.13. Then∑
α∈Np

0
β∈Nq

0
|β|−|α|=k

∫
Dp,q

∣∣∣∣aαβφαβ(ζ, zS)ezt
RζzS

∣∣∣∣ dµk+1(ζ) <∞.

Proof. Fix z ∈ Cp+q. Using the fact that ezt
RζzS is bounded in modulus on

Dp,q together with the Schwarz inequality for sums, we obtain∑
α∈Np

0
β∈Nq

0
|β|−|α|=k

∫
Dp,q

∣∣∣∣aαβφαβ(ζ, zS)ezt
RζzS

∣∣∣∣ dµk+1(ζ)

≤ c1

( ∑
α∈Np

0
β∈Nq

0
|β|−|α|=k

|aαβ |2α!β!
) 1

2
( ∑

α∈Np
0

β∈Nq
0

|β|−|α|=k

1
α!β!

(∫
Dp,q

|φαβ(ζ, zS)| dµk+1(ζ)
)2) 1

2

.

By Corollary 1.4, the lefthand factor appearing in the last displayed line is
simply ||f ||Fk

, which is finite. On the other hand, due to Lemmas 4.12 and 4.13,
the righthand factor is finite when k ≥ 2(p+ q)− 1. �



414 Lorch, Mantini, Novak

Theorem 4.15. Suppose that k ≥ 2(p+ q)− 1 and f ∈ Fk with

f(z) =
∑

α∈Np
0

β∈Nq
0

|β|−|α|=k

aαβz
α
Rz̄

β
S .

Further, let φ = Φkf and ω = Ψkf . Then, for z ∈ Cp+q
− , P−1φ(z) = ω(z), and

hence P−1 induces an inversion for the Penrose transform P on Φk(Fk), where
P−1 is the mapping defined in Definition 4.8.

Proof. For α ∈ Np
0 and β ∈ Nq

0 with |β| − |α| = k, put φαβ = Φk(aαβz
α
Rz̄

β
S)

and ωαβ = Ψk(aαβz
α
Rz̄

β
S). From Lemma 2.7 and Definition 3.5, we have

φ(ζ, v) =
∑

α∈Np
0

β∈Nq
0

|β|−|α|=k

φαβ(ζ, v) and ω(z) =
∑

α∈Np
0

β∈Nq
0

|β|−|α|=k

ωαβ(z).

Since φαβ and ωαβ are K-finite vectors which, by Theorem 3.9, satisfy P [ωαβ ] =
φαβ , Lemmas 4.9 and 4.10 imply that P−1(φαβ) = ωαβ .

Therefore, using (4.4) and Lemma 4.14 to invoke the Fubini theorem, we
interchange integration and summation to obtain

P−1φ(z) =
( ∑

α∈Np
0

β∈Nq
0

|β|−|α|=k

P−1φαβ(z)
)

=
( ∑

α∈Np
0

β∈Nq
0

|β|−|α|=k

ωαβ(z)
)

= ω(z),

concluding the proof. �

4.4 The behavior of P−1 off the image of P ; connections with certain
differential operators

As a first step in considering an extension of P−1 to the entire image of
the Penrose transform, we conclude by showing that P−1 annihilates K-finite
vectors in O(G/K, P̄(k,Cq)) that are not in the image of P . In the process,
we see that our construction of P−1 is intimately related to a set of differential
operators which determine the image of P within O(G/K, P̄(k,Cq)).

Recall that
P (H0,q−1

−k−q ) ⊂ O(G/K, P̄(k,Cq)).

The K-finite elements of O(G/K, P̄(k,Cq)) are exactly those that have termi-
nating power series in ζ ∈ Dp,q; thus

P (H0,q−1
−k−q )K ⊂ P(G/K, P̄(k,Cq)).
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Furthermore, P (H0,q−1
−k−q )K is characterized within P(G/K, P̄(k,Cq)) by a set

of differential operators. Specifically, we remark that P (H0,q−1
−k−q )K is the kernel

of X in P(G/K, P̄(k,Cq)), where

X =

2× 2 minors of


∂

∂ζ11

∂
∂ζ12

. . . ∂
∂ζ1q

...
...

. . .
...

∂
∂ζp1

∂
∂ζp2

. . . ∂
∂ζpq

∂
∂v̄1

∂
∂v̄2

. . . ∂
∂v̄q


 , (4.5)

with (ζij) ∈ Dp,q and (v1, . . . , vq) ∈ Cq.
Observe from Theorem 3.9, or from [DES], that these same operators char-

acterize Φk(Fk)K as a subset of P(G/K, P̄(k,Cq)). In fact, there is an explicit
multiplicity-free K-type decomposition of P(G/K, P̄(k,Cq)) in which K-types
of Φk(Fk), whose highest weight vectors are described in Proposition 4.2, are
exactly the K-types of P(G/K, P̄(k,Cq)) that are annhiliated by the collection
X of differential operators. Such a K-type decomposition may be obtained
by first identifying P(G/K, P̄(k,Cq)) with P(Dp,q) ⊗ P̄(Cq), then applying
a theorem of Schmid in [S] to decompose P(Dp,q), and finally applying the
Littlewood Richardson rule to the tensor product.

Thus, from the discussion immediately following Definition 4.4, along with
Proposition 4.5, we see that the exponential kernel that appears in the definition
of P−1 (see Definition 4.8) is essentially compiled from weight vectors of these
distinguished K-types for P(G/K, P̄(k,Cq)), and as such is naturally designed
to detect elements of P(G/K, P̄(k,Cq)) that are killed by X , i.e., to detect
elements in P(H0,q−1

−k−q )K . Thus we expect that P−1 will annhiliate any element
of P(G/K, P̄(k,Cq)) that lies in the direct sum of the remaining K-types (that
is, K-types that are not killed by X ).

So, let V denote the direct sum of K-types of P(G/K, P̄(k,Cq)) that annhil-
iated by X , while letting W denoted the direct sum of the K-types that are
not killed by X . Then P(G/K, P̄(k,Cq)) = V +W , and we have the following
proposition.

Proposition 4.16. Suppose φ(ζ, v) ∈W . Then P−1φ = 0.

Proof. By linearity, we may assume that φ lies within a singleK-type, denoted
by M . Since φ(ζ, v) is polynomial in ζ, P−1φ will converge.

From the proof of Lemma 4.10, we see that for z ∈ Cp+q
− ,

P−1φ(z)

= C

[∫
C

|w|2(k+q−1)

(∫
Dp,q

φ(ζ, z̄S)e|w|
2zt

RζzS dµk+1(ζ)
)

× e−|w|
2|zS |2 dm(w)

]
η̄,
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and thus it suffices to show that∫
Dp,q

φ(ζ, z̄S)ezt
RζzS dµk+1(ζ) = 0.

Now, observe that the mapping from M to Fk given by

ψ(ζ, v) 7→
∫
Dp,q

ψ(ζ, z̄S)ezt
RζzS dµk+1(ζ) (4.6)

is well defined and K-equivariant, and so the mapping is either identically zero
or it gives an isomorphism of M onto a K-type within Fk. Since the K-types
of Fk are isomorphic to those in V via Φk, and M is not isomorphic to any
element of V , we conclude that the mapping (4.6) is identically zero. Therefore
P−1φ = 0 as claimed. �
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