Normal form for codimension two Levi-flat CR singular submanifolds

Jiří Lebl¹, Xianghong Gong²

¹Department of Mathematics, Oklahoma State University ²Department of Mathematics, University of Wisconsin-Madison

May 21, 2014

Bishop surfaces

 $M \subset \mathbb{C}^2$, CR singular submanifold of codimension two with a nondegenerate complex tangent:

$$w=zar{z}+\gamma(z^2+ar{z}^2)+O(3)$$

if $\gamma \in [0,\infty)$ and for $\gamma = \infty$ we have

$$w=z^2+\bar{z}^2+O(3).$$

 $\gamma < rac{1}{2}$ is elliptic, $\gamma = rac{1}{2}$ is parabolic, and $\gamma > rac{1}{2}$ is hyperbolic.

▲母▼▲目▼▲目▼ 目 めんの

If $0 < \gamma < rac{1}{2}$, Moser-Webster found the normal form

$$w=zar{z}+ig(\gamma+\delta(\operatorname{Re}w)^sig)(z^2+ar{z}^2)$$

 $\delta = \pm 1, 0, \text{ and } s \in \mathbb{N}.$

* 3 * < 3</p>

If $0 < \gamma < \frac{1}{2}$, Moser-Webster found the normal form

$$w=zar{z}+ig(\gamma+\delta(\operatorname{Re}w)^sig)(z^2+ar{z}^2)$$

 $\delta = \pm 1, 0, \text{ and } s \in \mathbb{N}.$

In the other cases, things (especially convergence) become more difficult, but are now fairly well understood. (Huang, Huang-Krantz, Moser, Gong, Huang-Yin, Coffman, Kenig-Webster, ...)

If $0 < \gamma < \frac{1}{2}$, Moser-Webster found the normal form

$$w=zar{z}+ig(\gamma+\delta(\operatorname{Re}w)^sig)(z^2+ar{z}^2)$$

 $\delta = \pm 1, 0, \text{ and } s \in \mathbb{N}.$

In the other cases, things (especially convergence) become more difficult, but are now fairly well understood. (Huang, Huang-Krantz, Moser, Gong, Huang-Yin, Coffman, Kenig-Webster, ...)

When $\gamma = 0$,

$$w=zar{z},\qquad w=zar{z}+z^s+ar{z}^s+O(s+1),$$

there are infinitely many formal biholomorphic invariants (Moser, Huang-Krantz, Huang-Yin).

Let $M \subset \mathbb{C}^{n+1}$ be a codimension 2 real-analytic submanifold with a nondegenerate complex tangent. Let M_{CR} be the set of CR points.

Let $M \subset \mathbb{C}^{n+1}$ be a codimension 2 real-analytic submanifold with a nondegenerate complex tangent. Let M_{CR} be the set of CR points.

In \mathbb{C}^2 , M_{CR} has "no CR structure"; i.e. M_{CR} is totally real.

Let $M \subset \mathbb{C}^{n+1}$ be a codimension 2 real-analytic submanifold with a nondegenerate complex tangent. Let M_{CR} be the set of CR points.

In \mathbb{C}^2 , M_{CR} has "no CR structure"; i.e. M_{CR} is totally real.

In \mathbb{C}^3 , M_{CR} has CR invariants in \mathbb{C}^3 . Normal form for M will be at least as hard (probably harder) than a local normal form for CR submanifolds.

▲母 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q (>

Let $M \subset \mathbb{C}^{n+1}$ be a codimension 2 real-analytic submanifold with a nondegenerate complex tangent. Let M_{CR} be the set of CR points.

In \mathbb{C}^2 , M_{CR} has "no CR structure"; i.e. M_{CR} is totally real.

In \mathbb{C}^3 , M_{CR} has CR invariants in \mathbb{C}^3 . Normal form for M will be at least as hard (probably harder) than a local normal form for CR submanifolds.

Various cases of codimension two CR singular manifolds have been studied by Huang-Yin, Dolbeault-Tomassini-Zaitsev, Burcea, Coffman, Slapar, ...

・ロット 4日 マ・エット 4日 うらつ

No CR invariants

. . .

A codimension 2 submanifold with "trivial CR structure" in \mathbb{C}^{n+1} ?

No CR invariants

A codimension 2 submanifold with "trivial CR structure" in \mathbb{C}^{n+1} ?

. . .

How about Levi-flat!

No CR invariants

A codimension 2 submanifold with "trivial CR structure" in \mathbb{C}^{n+1} ?

How about Levi-flat!

. . .

A CR submanifold is Levi-flat if the Levi-form (Levi-map?) vanishes.

It is standard that such a (real-analytic) submanifold is locally

$$\operatorname{Im} z_1 = 0, \qquad \operatorname{Im} z_2 = 0.$$

There are no holomorphic invariants.

In \mathbb{C}^2 the notions coincide.

Foliation of Levi-flats

Take M to be

$$\operatorname{Im} z_1 = 0, \qquad \operatorname{Im} z_2 = 0.$$

M is foliated by complex submanifolds: fix z_1 and z_2 at some real-value. (The Levi-foliation)

Foliation of Levi-flats

Take M to be

$$\operatorname{Im} z_1 = 0, \qquad \operatorname{Im} z_2 = 0.$$

M is foliated by complex submanifolds: fix z_1 and z_2 at some real-value. (The Levi-foliation)

The foliation extends (uniquely) to a holomorphic foliation of a neighborhood: leaves are obtained by fixing z_1 and z_2 .

Our class of submanifolds

Let $M \subset \mathbb{C}^{n+1}$, $n \geq 2$, be a real-analytic CR singular submanifold with a nondegenerate complex tangent at 0, such that M_{CR} is Levi-flat.

We want the normal form for such manidolds.

Our class of submanifolds

Let $M \subset \mathbb{C}^{n+1}$, $n \geq 2$, be a real-analytic CR singular submanifold with a nondegenerate complex tangent at 0, such that M_{CR} is Levi-flat.

We want the normal form for such manidolds.

Take $(z, w) \in \mathbb{C}^n \times \mathbb{C}$. Write M as

$$w=
ho(z,ar z)$$

for a real-analytic complex-valued function ρ vanishing to second order at the origin. (It is really two real equations).

▲母▼▲目▼▲目▼ 目 めんの

Detour: mixed-holomorphic submanifolds

For a holomorphic f take $X \subset \mathbb{C}^m$ given by

$$f(z_1,\ldots,z_{m-1},\bar{z}_m)=0.$$

X is codimension 2. (We can think of it as a complex analytic subvariety, thinking of \bar{z}_m as another holomorphic coordinate, but then our automorphism group is different).

Detour: mixed-holomorphic submanifolds

For a holomorphic f take $X \subset \mathbb{C}^m$ given by

$$f(z_1,\ldots,z_{m-1},\bar{z}_m)=0.$$

X is codimension 2. (We can think of it as a complex analytic subvariety, thinking of \bar{z}_m as another holomorphic coordinate, but then our automorphism group is different).

If X is a submanifold, it is Levi-flat at all CR points, and it can clearly be CR singular.

Detour: mixed-holomorphic submanifolds

For a holomorphic f take $X \subset \mathbb{C}^m$ given by

$$f(z_1,\ldots,z_{m-1},\bar{z}_m)=0.$$

X is codimension 2. (We can think of it as a complex analytic subvariety, thinking of \bar{z}_m as another holomorphic coordinate, but then our automorphism group is different).

If X is a submanifold, it is Levi-flat at all CR points, and it can clearly be CR singular.

Exercise, suppose m = 2: Classify all such submanifolds locally up to local biholomorphisms.

→ □ → → □ → → □ → ○ ○ ○

Quadratic parts

In the following let $M \subset \mathbb{C}^{n+1}$, $n \geq 2$, be a germ of a real-analytic real codimension 2 submanifold, CR singular at the origin, written in coordinates $(z, w) \in \mathbb{C}^n \times \mathbb{C}$ as

$$w=A(z,ar{z})+B(ar{z},ar{z})+O(3),$$

for quadratic A and B, where $A + B \neq 0$ (nondegenerate complex tangent). Suppose M is Levi-flat (that is M_{CR} is Levi-flat).

Quadratic parts

Theorem

(i) If M is a quadric, then M is locally biholomorphically equivalent to one and exactly one of the following:

$$egin{aligned} &(A.1) & w = ar{z}_1^2, \ &(A.2) & w = ar{z}_1^2 + ar{z}_2^2, \ &dots & dots &$$

Jiří Lebl, Xianghong Gong

May 21, 2014

3

Quadratic parts

Theorem

(ii) For general M

$$w=A(z,ar{z})+B(z,ar{z})+O(3)$$

the quadric

$$w=A(z,ar{z})+B(z,ar{z})$$

is Levi-flat, and can be put via a biholomorphic transformation into exactly one of the forms above.

<∃> ∃

Bishop-like

The quadrics

$$egin{array}{lll} ({
m A}.1) & w=ar{z}_1^{\,2}, \ ({
m B}.\gamma) & w=|z_1|^2+\gammaar{z}_1^{\,2}, \ \gamma\geq 0. \end{array}$$

These are of the form $N \times \mathbb{C}^{n-1}$ for a Bishop surface $N \subset \mathbb{C}^2$. Not every M with quadratic part of type A.1 or B. γ is of the form $N \times \mathbb{C}^{n-1}$.

Bishop-like

The quadrics

$$egin{array}{lll} ({
m A}.1) & w=ar{z}_1^{\,2}, \ ({
m B}.\gamma) & w=|z_1|^2+\gammaar{z}_1^{\,2}, \ \ \gamma\geq 0. \end{array}$$

These are of the form $N \times \mathbb{C}^{n-1}$ for a Bishop surface $N \subset \mathbb{C}^2$. Not every M with quadratic part of type A.1 or B. γ is of the form $N \times \mathbb{C}^{n-1}$.

If the Levi-foliation of M extends to a non-singular holomorphic foliation of a neighborhood of the origin, then M is either type A.1 or B. γ and can be written as $N \times \mathbb{C}^{n-1}$.

We consider C.1 the "nondegenerate case."

$$w = A(z, \overline{z}) + B(\overline{z}, \overline{z}).$$

The form A "represents the Levi-form." A can have rank at most 2 (actually 1) for M to be Levi-flat.

We consider C.1 the "nondegenerate case."

$$w = A(z, \overline{z}) + B(\overline{z}, \overline{z}).$$

The form A "represents the Levi-form." A can have rank at most 2 (actually 1) for M to be Levi-flat.

For type A.k, the form A = 0, and so we consider these degenerate. These can be considered as a generalization to higher dimension of Bishop surfaces with Bishop invariant $\gamma = \infty$.

We consider C.1 the "nondegenerate case."

$$w = A(z, \overline{z}) + B(\overline{z}, \overline{z}).$$

The form A "represents the Levi-form." A can have rank at most 2 (actually 1) for M to be Levi-flat.

For type A.k, the form A = 0, and so we consider these degenerate. These can be considered as a generalization to higher dimension of Bishop surfaces with Bishop invariant $\gamma = \infty$.

For type B. γ , the form A is real-valued and so we also consider it degenerate.

→ □ → → □ → → □ → ○ ○ ○

We consider C.1 the "nondegenerate case."

$$w = A(z, \overline{z}) + B(\overline{z}, \overline{z}).$$

The form A "represents the Levi-form." A can have rank at most 2 (actually 1) for M to be Levi-flat.

For type A.k, the form A = 0, and so we consider these degenerate. These can be considered as a generalization to higher dimension of Bishop surfaces with Bishop invariant $\gamma = \infty$.

For type B. γ , the form A is real-valued and so we also consider it degenerate.

Only C.x has a complex-valued A, and C.1 also has a nonzero B. These have no analogue in \mathbb{C}^2 .

・ロット 本語 マート キョット 日マ

Stability

Only C.1 and A.n are stable under perturbation (preserving Levi-flatness, and CR singularity)

CR singularities generally not isolated and can change in type from point to point:

Example:

$$w=\bar{z}_1^2+\bar{z}_1z_2z_3,$$

is type A.1 at the origin, but of type C.1 at nearby CR singular points.

Quadrics in \mathbb{C}^{n+1}

Туре	CR singularity S	$\dim_{\mathbb{R}} S$	S
A.k	$z_1 = 0,\ldots,z_k = 0, \;w = 0$	2n-2k	complex
$B.\frac{1}{2}$	$z_1+\bar{z}_1=0,\ w=0$	2n - 1	Levi-flat
$B.\overline{\gamma}, \gamma \neq \frac{1}{2}$	$z_1=0,\ w=0$	2n - 2	complex
C.0	$z_2=0,\ w=0$	2n - 2	complex
C.1	$z_2+2ar{z}_1=$ 0, $w=rac{-z_2^2}{4}$	2n - 2	Levi-flat

Ξ.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Foliations and C.x

Theorem

Suppose $M \subset \mathbb{C}^{n+1}$, $n \geq 2$, is a real-analytic Levi-flat CR singular submanifold of type C.1 or C.0, that is,

 $w = ar{z}_1 z_2 + ar{z}_1^2 + O(3)$ or $w = ar{z}_1 z_2 + O(3).$

Then there exists a nonsingular real-analytic foliation defined on M that extends the Levi-foliation on M_{CR} , and consequently, there exists a CR real-analytic mapping $F: U \subset \mathbb{R}^2 \times \mathbb{C}^{n-1} \to \mathbb{C}^{n+1}$ such that F is a diffeomorphism onto $F(U) = M \cap U'$, for some neighborhood U' of 0.

Really a Nash blowup, see also a related paper by Garrity.

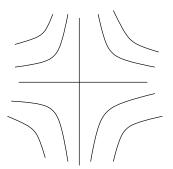
・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

Note that the Levi-foliation does not always extend (even to M only) for the other types.

Example: A.2:

$$w=ar{z}_1^2+ar{z}_2^2$$

The "leaf" of the foliation becomes singular at the origin.



Mixed-holomorphic C.1

For mixed holomorphic C.1, we completely understand the situation. In this case we can set things up to use implicit function theorem.

Theorem

Let $M \subset \mathbb{C}^{n+1}$, $n \geq 2$, be a real-analytic submanifold given by

$$w=ar{z}_1z_2+ar{z}_1^2+r(z_1,ar{z}_1,z_2,z_3,\ldots,z_n),$$

where r is O(3). Then M is Levi-flat and at the origin M is locally biholomorphically equivalent to the quadric $M_{C.1}$ submanifold

$$w=ar{z}_1z_2+ar{z}_1^2.$$

General normal form for C.1

Could things be really this simple in general?

э

General normal form for C.1

Could things be really this simple in general? No. There are in fact infinitely many formal invariants.

General normal form for C.1

Could things be really this simple in general? No. There are in fact infinitely many formal invariants.

Theorem

Let M be a real-analytic Levi-flat type C.1 submanifold in \mathbb{C}^3 . There exists a formal biholomorphic map transforming M into the image of

$$\hat{arphi}(z\,,ar{z}\,,\xi)=ig(z+A(z\,,\xi,w)w\eta,\xi,wig)$$

with $\eta = \overline{z} + \frac{1}{2}\xi$ and $w = \overline{z}\xi + \overline{z}^2$. Here A = 0, or A satisfies certain normalizing conditions. When $A \neq 0$ the formal automorphism group preserving the normal form is finite or 1 dimensional.

Automorphisms of the C.1 quadric

Suppose $M \subset \mathbb{C}^3$

$$w=\bar{z}_1z_2+\bar{z}_1^2,$$

and (F_1, F_2, G) is a local automorphism at the origin, then F_1 depends only on z_1 , F_2 and G depend only on z_2 and w, and F_1 completely determines F_2 and G.

On the other hand, given any F_1 with $F_1(0) = 0$, there exist unique F_2 and G that complete an automorphism.

Automorphisms of the C.1 quadric

Suppose $M \subset \mathbb{C}^3$

$$w=\bar{z}_1z_2+\bar{z}_1^2,$$

and (F_1, F_2, G) is a local automorphism at the origin, then F_1 depends only on z_1 , F_2 and G depend only on z_2 and w, and F_1 completely determines F_2 and G.

On the other hand, given any F_1 with $F_1(0) = 0$, there exist unique F_2 and G that complete an automorphism.

In higher dimensions the extra components of the mapping are arbitrary.

Involution on the C.1 quadric

The proofs use the following key fact:

For the C.1 quadric

$$w=ar{z}_1z_2+ar{z}_1^2$$

we have the involution

$$(z_1,z_2,\ldots,z_n,w)\mapsto (-ar z_2-z_1,\quad z_2,\quad\ldots,\quad z_n,\quad w)$$

э

Thank you!

2

・ロト ・四ト ・ヨト ・ヨト