
Several variables

Often we have not only one, but several variables in a problem. The issues that come up are somewhat
more complex than for one variable. Let us first start with vector spaces and linear functions.

While it is common to use ~x or x for elements of Rn, especially in the applied sciences, we will just use
x, which is common in mathematics. That is x ∈ Rn is a vector which means that x = (x1, x2, . . . , xn) is
an n-tuple of real numbers. We will use upper indices for identifying component. That leaves us the lower
index for sequences of vectors. That is we can have vectors x1 and x2 in Rn and then x1 = (x11, x

2
1, . . . , x

n
1 )

and x2 = (x12, x
2
2, . . . , x

n
2 ). It is common to write vectors as column vectors, that is

x = (x1, x2, . . . , xn) =


x1

x2

...
xn

 ,
and we will do so when convenient. We will use this notation with square brackets and use round brackets
for just an n-tuple of numbers. We will call real numbers scalars to distinguish them from vectors.

Definition: A set X together with operations +: X ×X → X and · : R×X → X (where we will just
write ax instead of a · x) is called a vector space (or a real vector space) if the following conditions are
satisfied:

(i) (Addition is associative) If u, v, w ∈ X, then u+ (v + w) = (u+ v) + w.
(ii) (Addition is commutative) If u, v ∈ X, then u+ v = v + u.
(iii) (Additive identity) There is a 0 ∈ X such that v + 0 = v for all v ∈ X.
(iv) (Additive inverse) For every v ∈ X, there is a −v ∈ X, such that v + (−v) = 0.
(v) (Distributive law) If a ∈ R, u, v ∈ X, then a(u+ v) = au+ av.
(vi) (Distributive law) If a, b ∈ R, v ∈ X, then (a+ b)v = av + bv.

(vii) (Multiplication is associative) If a, b ∈ R, v ∈ X, then (ab)v = a(bv).
(viii) (Multiplicative identity) 1v = v for all v ∈ X.

Elements of a vector space are usually called vectors, even if they are not elements of Rn (vectors in the
“traditional” sense).

In short X is an Abelian group with respect to the addition, and equipped with multiplication by scalars.
An example vector space is Rn, where addition and multiplication by a constant is done componentwise.

We will mostly deal with vector spaces as subsets of Rn, but there are other vector spaces that are useful
in analysis. For example, the space C([0, 1],R) of continuous functions on the interval [0, 1] is a vector
space. The functions L1(X,µ) is also a vector space.

A trivial example of a vector space (the smallest one in fact) is just X = {0}. The operations are defined
in the obvious way. You always need a zero vector to exist, so all vector spaces are nonempty sets.

It is also possible to use other fields than R in the definition (for example it is common to use C), but
let us stick with R. 1

Definition: If we have vectors x1, . . . , xk ∈ Rn and scalars a1, . . . , ak ∈ R, then

a1x1 + a2x2 + · · ·+ akxk

is called a linear combination of the vectors x1, . . . , xk.
Note that if x1, . . . , xk are in a vector space X, then any linear combination of x1, . . . , xk is also in X.
If Y ⊂ Rn is a set then the span of Y , or in notation span(Y ), is the set of all linear combinations of

some finite number of elements of Y . We also say that Y spans span(Y ).

Example: Let Y = {(1, 1)} ⊂ R2. Then

span(Y ) = {(x, x) ∈ R2 : x ∈ R},
or in other words the line through the origin and the point (1, 1).

1If you want a funky vector space over a different field, R is an infinite dimensional vector space over the rational numbers.
1
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Example: Let Y = {(1, 1), (0, 1)} ⊂ R2. Then

span(Y ) = R2,

as any point (x, y) ∈ R2 can be written as a linear combination

(x, y) = x(1, 1) + (y − x)(0, 1).

Since a sum of two linear combinations is again a linear combination, and a scalar multiple of a linear
combination is a linear combination, we see that:

Proposition: A span of a set Y ⊂ Rn is a vector space.

If Y is already a vector space then span(Y ) = Y .

Definition: A set of vectors {x1, x2, . . . , xk} is said to be linearly independent, if the only solution to

a1x1 + · · ·+ akxk = 0

is the trivial solution a1 = · · · = ak = 0. Here 0 is the vector of all zeros. A set that is not linearly
independent, is linearly dependent.

Note that if a set is linearly dependent, then this means that one of the vectors is a linear combination
of the others.

A linearly independent set B of vectors that span a vector space X is called a basis of X.
If a vector space X contains a linearly independent set of d vectors, but no linearly independent set of

d+ 1 vectors then we say the dimension or dimX = d. If for all d ∈ N the vector space X contains a set
of d linearly independent vectors, we say X is infinite dimensional and write dimX =∞.

Note that we have dim{0} = 0. So far we have not shown that any other vector space has a finite
dimension. We will see in a moment that any vector space that is a subset of Rn has a finite dimension,
and that dimension is less than or equal to n.

Proposition: If B = {x1, . . . , xk} is a basis of a vector space X, then every point y ∈ X has a unique
representation of the form

y =
k∑
j=1

αjxj

for some numbers α1, . . . , αk.

Proof. First, every y ∈ X is a linear combination of elements of B since X is the span of B. For uniqueness
suppose

y =
k∑
j=1

αjxj =
k∑
j=1

βjxj

then
k∑
j=1

(αj − βj)xj = 0

so by linear independence of the basis αj = βj for all j. �

For Rn we define

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, 0, 0, . . . , 1),

and call this the standard basis of Rn. We use the same letters ej for any Rn, and what space Rn we are
working in is understood from context. A direct computation shows that {e1, e2, . . . , en} is really a basis
of Rn; it is easy to show that it spans Rn and is linearly independent. In fact,

x = (x1, . . . , xn) =
n∑
j=1

xjej.
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Proposition (Theorems 9.2 and 9.3 in Rudin): Suppose that X is a vector space.

(i) If X is spanned by d vectors, then dimX ≤ d.
(ii) dimX = d if and only if X has a basis of d vectors (and so every basis has d vectors).
(iii) In particular, dimRn = n.
(iv) If Y ⊂ X is a vector space and dimX = d, then dimY ≤ d.
(v) If dimX = d and a set T of d vectors spans X, then T is linearly independent.
(vi) If dimX = d and a set T of m vectors is linearly independent, then there is a set S of d−m vectors

such that T ∪ S is a basis of X.

Proof. Let us start with (i). Suppose that S = {x1, . . . , xd} span X. Now suppose that T = {y1, . . . , ym}
is a set of linearly independent vectors of X. We wish to show that m ≤ d. Write

y1 =
d∑

k=1

αk1xk,

which we can do as S spans X. One of the αk1 is nonzero (otherwise y1 would be zero), so suppose without
loss of generality that this is α1

1. Then we can solve

x1 =
1

α1
1

y1 −
d∑

k=2

αk1
α1
1

xk.

In particular {y1, x2, . . . , xd} span X, since x1 can be obtained from {y1, x2, . . . , xd}. Next,

y2 = α1
2y1 +

d∑
k=2

αk2xk,

As T is linearly independent, we must have that one of the αk2 for k ≥ 2 must be nonzero. Without loss of
generality suppose that this is α2

2. Proceed to solve for

x2 =
1

α2
2

y2 −
α1
2

α2
2

y1 −
d∑

k=3

αk2
α2
2

xk.

In particular {y1, y2, x3, . . . , xd} spans X. The astute reader will think back to linear algebra and notice
that we are row-reducing a matrix.

We continue this procedure. Either m < d and we are done. So suppose that m ≥ d. After d steps we
obtain that {y1, y2, . . . , yd} spans X. So any other vector v in X is a linear combination of {y1, y2, . . . , yd},
and hence cannot be in T as T is linearly independent. So m = d.

Let us look at (ii). First notice that if we have a set T of k linearly independent vectors that do not
span X, then we can always choose a vector v ∈ X \ span(T ). The set T ∪ {v} is linearly independent
(exercise). If dimX = d, then there must exist some linearly independent set of d vectors T , and it must
span X, otherwise we could choose a larger set of linearly independent vectors. So we have a basis of d
vectors. On the other hand if we have a basis of d vectors, it is linearly independent and spans X. By (i)
we know there is no set of d+ 1 linearly independent vectors, so dimension must be d.

For (iii) notice that {e1, . . . , en} is a basis of Rn.
To see (iv), suppose that Y is a vector space and Y ⊂ X, where dimX = d. As X cannot contain d+ 1

linearly independent vectors, neither can Y .
For (v) suppose that T is a set of m vectors that is linearly dependent and spans X. Then one of the

vectors is a linear combination of the others. Therefore if we remove it from T we obtain a set of m − 1
vectors that still span X and hence dimX ≤ m− 1.

For (vi) suppose that T = {x1, . . . , xm} is a linearly independent set. We follow the procedure above in
the proof of (ii) to keep adding vectors while keeping the set linearly independent. As the dimension is d
we can add a vector exactly d−m times. �
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Definition: A mapping A : X → Y of vector spaces X and Y is said to be linear (or a linear transfor-
mation) if for every a ∈ R and x, y ∈ X we have

A(ax) = aA(x) A(x+ y) = A(x) + A(y).

We will usually just write Ax instead of A(x) if A is linear.
If A is one-to-one an onto then we say A is invertible and we define A−1 as the inverse.
If A : X → X is linear then we say A is a linear operator on X.
We will write L(X, Y ) for the set of all linear transformations from X to Y , and just L(X) for the set

of linear operators on X. If a, b ∈ R and A,B ∈ L(X, Y ) then define the transformation aA+ bB

(aA+ bB)(x) = aAx+ bBx.

It is not hard to see that aA+ bB is linear.
If A ∈ L(Y, Z) and B ∈ L(X, Y ), then define the transformation AB as

ABx = A(Bx).

It is trivial to see that AB ∈ L(X,Z).
Finally denote by I ∈ L(X) the identity, that is the linear operator such that Ix = x for all x.

Note that it is obvious that A0 = 0.

Proposition: If A : X → Y is invertible, then A−1 is linear.

Proof. Let a ∈ R and y ∈ Y . As A is onto, then there is an x such that y = Ax, and further as it is also
one-to-one A−1(Az) = z for all z ∈ X. So

A−1(ay) = A−1(aAx) = A−1(A(ax)) = ax = aA−1(y).

Similarly let y1, y2 ∈ Y , and x1, x2 ∈ X such that Ax1 = y1 and Ax2 = y2, then

A−1(y1 + y2) = A−1(Ax1 + Ax2) = A−1(A(x1 + x2)) = x1 + x2 = A−1(y1) + A−1(y2).

�

Proposition: If A : X → Y is linear then it is completely determined by its values on a basis of X.
Furthermore, if B is a basis, then any function Ã : B → Y extends to a linear function on X.

Proof. For infinite dimensional spaces, the proof is essentially the same, but a little trickier to write, so
let’s stick with finitely many dimensions. Let {x1, . . . , xn} be a basis and suppose that A(xj) = yj. Then
every x ∈ X has a unique representation

x =
n∑
j=1

bjxj

for some numbers b1, . . . , bn. Then by linearity

Ax = A
n∑
j=1

bjxj =
n∑
j=1

bjAxj =
n∑
j=1

bjyj.

The “furthermore” follows by defining the extension Ax =
∑n

j=1 b
jyj, and noting that this is well defined

by uniqueness of the representation of x. �

Theorem 9.5: If X is a finite dimensional vector space and A : X → X is linear, then A is one-to-one
if and only if it is onto.
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Proof. Let {x1, . . . , xn} be a basis for X. Suppose that A is one-to-one. Now suppose
n∑
j=1

cjAxj = A

n∑
j=1

cjxj = 0.

As A is one-to-one, the only vector that is taken to 0 is 0 itself. Hence,

0 =
n∑
j=1

cjxj

and so cj = 0 for all j. Therefore, {Ax1, . . . , Axn} is linearly independent. By an above proposition and
the fact that the dimension is n, we have that {Ax1, . . . , Axn} span X. As any point x ∈ X can be written
as

x =
n∑
j=1

ajAxj = A

n∑
j=1

ajxj,

so A is onto.
Now suppose that A is onto. As A is determined by the action on the basis we see that every element

of X has to be in the span of {Ax1, . . . , Axn}. Suppose that

A
n∑
j=1

cjxj =
n∑
j=1

cjAxj = 0.

By the same proposition as {Ax1, . . . , Axn} span X, the set is independent, and hence cj = 0 for all j.
This means that A is one-to-one. If Ax = Ay, then A(x− y) = 0 and so x = y. �

Let us start measuring distance. If X is a vector space, then we say a real valued function ‖·‖ is a norm
if:

(i) ‖x‖ ≥ 0, with ‖x‖ = 0 if and only if x = 0.
(ii) ‖cx‖ = |c| ‖x‖ for all c ∈ R and x ∈ X.

(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X.

Let x = (x1, . . . , xn) ∈ Rn. Define

‖x‖ =
√

(x1)2 + (x2)2 + · · ·+ (xn)2

be the Euclidean norm. Then d(x, y) = ‖x− y‖ is the standard distance function on Rn that we used
when we talked about metric spaces. In fact we proved last semester that the Euclidean norm is a norm.
On any vector space X, once we have a norm, we can define a distance d(x, y) = ‖x− y‖ that makes X a
metric space.

Let A ∈ L(X, Y ). Define

‖A‖ = sup{‖Ax‖ : x ∈ X with ‖x‖ = 1}.
The number ‖A‖ is called the operator norm. We will see below that indeed it is a norm (at least for finite
dimensional spaces). By linearity we get

‖A‖ = sup{‖Ax‖ : x ∈ X with ‖x‖ = 1} = sup
x∈X
x 6=0

‖Ax‖
‖x‖

.

This implies that
‖Ax‖ ≤ ‖A‖ ‖x‖ .

It is not hard to see from the definition that ‖A‖ = 0 if and only if A = 0, that is, if A takes every
vector to the zero vector.

For finite dimensional spaces ‖A‖ is always finite as we will prove below. For infinite dimensional spaces
this need not be true. For a simple example, take the vector space of continuously differentiable functions
on [0, 1] and as the norm use the uniform norm. Then for example the functions sin(nx) have norm 1, but
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the derivatives have norm n. So differentiation (which is a linear operator) has unbounded norm on this
space. But let us stick to finite dimensional spaces now.

Proposition (Theorem 9.7 in Rudin):

(i) If A ∈ L(Rn,Rm), then ‖A‖ <∞ and A is uniformly continuous (Lipschitz with constant ‖A‖).
(ii) If A,B ∈ L(Rn,Rm) and c ∈ R, then

‖A+B‖ ≤ ‖A‖+ ‖B‖ , ‖cA‖ = |c| ‖A‖ .
In particular L(Rn,Rm) is a metric space with distance ‖A−B‖.

(iii) If A ∈ L(Rn,Rm) and B ∈ L(Rm,Rk), then

‖BA‖ ≤ ‖B‖ ‖A‖ .

Proof. For (i), let x ∈ Rn. We know that A is defined by its action on a basis. Write

x =
n∑
j=1

cjej.

Then

‖Ax‖ =

∥∥∥∥∥
n∑
j=1

cjAej

∥∥∥∥∥ ≤
n∑
j=1

∣∣cj∣∣ ‖Aej‖ .
If ‖x‖ = 1, then it is easy to see that |cj| ≤ 1 for all j, so

‖Ax‖ ≤
n∑
j=1

∣∣cj∣∣ ‖Aej‖ ≤ n∑
j=1

‖Aej‖ .

The right hand side does not depend on x and so we are done, we have found a finite upper bound. Next,

‖A(x− y)‖ ≤ ‖A‖ ‖x− y‖
as we mentioned above. So if ‖A‖ <∞, then this says that A is Lipschitz with constant ‖A‖.

For (ii), let us note that

‖(A+B)x‖ = ‖Ax+Bx‖ ≤ ‖Ax‖+ ‖Bx‖ ≤ ‖A‖ ‖x‖+ ‖B‖ ‖x‖ = (‖A‖+ ‖B‖) ‖x‖ .
So ‖A+B‖ ≤ ‖A‖+ ‖B‖. Similarly

‖(cA)x‖ = |c| ‖Ax‖ ≤ (|c| ‖A‖) ‖x‖ .
So ‖cA‖ ≤ |c| ‖A‖. Next note

|c| ‖Ax‖ = ‖cAx‖ ≤ ‖cA‖ ‖x‖ .
So |c| ‖A‖ ≤ ‖cA‖.

That we have a metric space follows pretty easily, and is left to student.
For (iii) write

‖BAx‖ ≤ ‖B‖ ‖Ax‖ ≤ ‖B‖ ‖A‖ ‖x‖ .
�

As a norm defines a metric, we have defined a metric space topology on L(Rn,Rm) so we can talk about
open/closed sets, continuity, and convergence. Note that we have defined a norm only on Rn and not on
an arbitrary finite dimensional vector space. However, after picking bases, we can define a norm on any
vector space in the same way. So we really have a topology on any L(X, Y ), although the precise metric
would depend on the basis picked.

Theorem 9.8: Let U ⊂ L(Rn) be the set of invertible linear operators.

(i) If A ∈ U and B ∈ L(Rn), and

‖A−B‖ < 1

‖A−1‖
, (1)

then B is invertible.
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(ii) U is open and A 7→ A−1 is a continuous function on U .

The theorem says that U is an open set and A 7→ A−1 is continuous on U .
You should always think back to R1, where linear operators are just numbers a. The operator a is

invertible (a−1 = 1/a) whenever a 6= 0. Of course a 7→ 1/a is continuous. When n > 1, then there are other
noninvertible operators, and in general things are a bit more difficult.

Proof. Let us prove (i). First a straight forward computation

‖x‖ =
∥∥A−1Ax∥∥ ≤ ∥∥A−1∥∥ ‖Ax‖ ≤ ∥∥A−1∥∥ (‖(A−B)x‖+ ‖Bx‖) ≤

∥∥A−1∥∥ ‖A−B‖ ‖x‖+
∥∥A−1∥∥ ‖Bx‖ .

Now assume that x 6= 0 and so ‖x‖ 6= 0. Using (1) we obtain

‖x‖ < ‖x‖+
∥∥A−1∥∥ ‖Bx‖ ,

or in other words ‖Bx‖ 6= 0 for all nonzero x, and hence Bx 6= 0 for all nonzero x. This is enough to see
that B is one-to-one (if Bx = By, then B(x− y) = 0, so x = y). As B is one-to-one operator from Rn to
Rn it is onto and hence invertible.

Let us look at (ii). Let B be invertible and near A−1, that is (1) is satisfied. In fact, suppose that
‖A−B‖ ‖A−1‖ < 1/2. Then we have shown above (using B−1y instead of x)∥∥B−1y∥∥ ≤ ∥∥A−1∥∥ ‖A−B‖∥∥B−1y∥∥+

∥∥A−1∥∥ ‖y‖ ≤ 1/2
∥∥B−1y∥∥+

∥∥A−1∥∥ ‖y‖ ,
or ∥∥B−1y∥∥ ≤ 2

∥∥A−1∥∥ ‖y‖ .
So ‖B−1‖ ≤ 2 ‖A−1‖.

Now note that
A−1(A−B)B−1 = A−1(AB−1 − I) = B−1 − A−1,

and ∥∥B−1 − A−1∥∥ =
∥∥A−1(A−B)B−1

∥∥ ≤ ∥∥A−1∥∥ ‖A−B‖∥∥B−1∥∥ ≤ 2
∥∥A−1∥∥2 ‖A−B‖ .

�

Finally let’s get to matrices, which are a convenient way to represent finite-dimensional operators. If we
have bases {x1, . . . , xn} and {y1, . . . , ym} for vector spaces X and Y , then we know that a linear operator
is determined by its values on the basis. Given A ∈ L(X, Y ), define the numbers {aji} as follows

Axj =
m∑
i=1

aijyi,

and write them as a matrix

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 .
Note that the columns of the matrix are precisely the coefficients that represent Axj. We can represent xj
as a column vector of n numbers (an n× 1 matrix) with 1 in the jth position and zero elsewhere, and then

Ax =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn




0
...
1
...
0

 =


a1j
a2j
...
amj


When

x =
n∑
j=1

γjxj,
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then

Ax =
n∑
j=1

m∑
i=1

γjaijyi,=
m∑
i=1

(
n∑
j=1

γjaij

)
yi,

which gives rise to the familiar rule for matrix multiplication.
There is a one-to-one correspondence between matrices and linear operators in L(X, Y ). That is, once

we fix a basis in X and in Y . If we would choose a different basis, we would get different matrices. This
is important, the operator A acts on elements of X, the matrix is something that works with n-tuples of
numbers.

Note that if B is an r-by-m matrix with entries bjk, then we note that the matrix for BA has the i, kth
entry cik being

cik =
m∑
j=1

bjka
i
j.

Note how upper and lower indices line up.
Now suppose that all the bases are just the standard bases and X = Rn and Y = Rm. If we recall the

Schwarz inequality we note that

‖Ax‖2 =
m∑
i=1

(
n∑
j=1

γjaij

)2

≤
m∑
i=1

(
n∑
j=1

(γj)
2

)(
n∑
j=1

(aij)
2

)
=

m∑
i=1

(
n∑
j=1

(aij)
2

)
‖x‖2 .

In other words,

‖A‖ ≤

√√√√ m∑
i=1

n∑
j=1

(aij)
2
.

Hence if the entries go to zero, then ‖A‖ goes to zero. In particular, if the entries of A−B go to zero then
B goes to A in operator norm. That is in the metric space topology induced by the operator norm. We
have proved the first part of:

Proposition: If f : S → Rnm is a continuous function for a metric space S, then taking the components
of f as the entries of a matrix, f is a continuous mapping from S to L(Rn,Rm). Conversely if f : S →
L(Rn,Rm) is a continuous function then the entries of the matrix are continuous functions.

The proof of the second part is rather easy. Take f(x)ej and note that is a continuous function to Rm

with standard euclidean norm (Note ‖(A−B)ej‖ ≤ ‖A−B‖). Such a function recall from last semester
that such a function is continuous if and only if its components are continuous and these are the components
of the jth column of the matrix f(x).

The derivative
Recall that when we had a function f : (a, b)→ R, we defined the derivative as

lim
h→0

f(x+ h)− f(x)

h
.

In other words, there was a number a such that

lim
h→0

∣∣∣∣f(x+ h)− f(x)

h
− a
∣∣∣∣ = lim

h→0

∣∣∣∣f(x+ h)− f(x)− ah
h

∣∣∣∣ = lim
h→0

|f(x+ h)− f(x)− ah|
|h|

= 0.

Multiplying by a is a linear map in one dimension. That is, we can think of a ∈ L(R1,R1). So we can
use this definition to extend differentiation to more variables.

Definition: Let U ⊂ Rn be an open subset and f : U → Rm. Then we say f is differentiable at x ∈ U
if there exists an A ∈ L(Rn,Rm) such that

lim
h→0
h∈Rn

‖f(x+ h)− f(x)− Ah‖
‖h‖

= 0.
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and we say Df(x) = A, or f ′(x) = A and we say A is the derivative of f at x. When f is differentiable at
all x ∈ U , we say simply that f is differentiable.

Note that the derivative is a function from U to L(Rn,Rm).
The norms above must be in the right spaces of course. Normally it is just understood that h ∈ Rn and

so we won’t explicitly say so from now on.
We have again (as last semester) cheated somewhat as said that A is the derivative. We have of course

not shown yet that there is only one.

Proposition: Let U ⊂ Rn be an open subset and f : U → Rm. Suppose that x ∈ U and there exists an
A,B ∈ L(Rn,Rm) such that

lim
h→0

‖f(x+ h)− f(x)− Ah‖
‖h‖

= 0 and lim
h→0

‖f(x+ h)− f(x)−Bh‖
‖h‖

= 0.

Then A = B.

Proof.

‖(A−B)h‖
‖h‖

=
‖f(x+ h)− f(x)− Ah− (f(x+ h)− f(x)−Bh)‖

‖h‖

≤ ‖f(x+ h)− f(x)− Ah‖
‖h‖

+
‖f(x+ h)− f(x)−Bh‖

‖h‖
.

So ‖(A−B)h‖
‖h‖ goes to 0 as h→ 0. That is, given ε > 0 we have that for all h in some δ ball around the origin

ε >
‖(A−B)h‖
‖h‖

=

∥∥∥∥(A−B)
h

‖h‖

∥∥∥∥ .
For any x with ‖x‖ = 1 let h = δ/2x, then ‖h‖ < δ and h

‖h‖ = x and so ‖A−B‖ ≤ ε. So A = B. �

Example: If f(x) = Ax for a linear mapping A, then f ′(x) = A. This is easily seen:

‖f(x+ h)− f(x)− Ah‖
‖h‖

=
‖A(x+ h)− Ax− Ah‖

‖h‖
=

0

‖h‖
= 0.

Proposition: Let U ⊂ Rn be open and f : U → Rm be differentiable at x0. Then f is continuous at x0.

Proof. Another way to write the differentiability is to write

r(h) = f(x0 + h)− f(x0)− f ′(x0)h.

As ‖r(h)‖‖h‖ must go to zero as h→ 0, r(h) itself must go to zero. As h 7→ f ′(x0)h is continuous (it’s linear)

and hence also goes to zero, that means that f(x0 + h) must go to f(x0). That is, f is continuous at
x0. �

Theorem 9.15 (Chain rule): Let U ⊂ Rn be open and let f : U → Rm be differentiable at x0 ∈ U .
Let V ⊂ Rm be open, f(U) ⊂ V and let g : V → R` be differentiable at f(x0). Then

F (x) = g
(
f(x)

)
is differentiable at x0 and

F ′(x0) = g′
(
f(x0)

)
f ′(x0).

Without the points this is sometimes written as F ′ = g′f ′. The way to understand it is that the derivative
of the composition g

(
f(x)

)
is the composition of the derivatives of g and f . That is, if A = f ′(x0) and

B = g′
(
f(x0)

)
, then F ′(x0) = BA.
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Proof. Let A = f ′(x0) and B = g′
(
f(x0)

)
. Let h vary in Rn and write, y0 = f(x0), k = f(x0 + h)− f(x0).

Write
r(h) = f(x0 + h)− f(x0)− Ah = k − Ah.

Then

‖F (x0 + h)− F (x0)−BAh‖
‖h‖

=

∥∥g(f(x0 + h)
)
− g
(
f(x0)

)
−BAh

∥∥
‖h‖

=

∥∥g(y0 + k)− g(y0)−B
(
k − r(h)

)∥∥
‖h‖

≤ ‖g(y0 + k)− g(y0)−Bk‖
‖h‖

+ ‖B‖ ‖r(h)‖
‖h‖

=
‖g(y0 + k)− g(y0)−Bk‖

‖k‖
‖f(x0 + h)− f(x0)‖

‖h‖
+ ‖B‖ ‖r(h)‖

‖h‖
.

First, ‖B‖ is constant and f is differentiable at x0, so the term ‖B‖ ‖r(h)‖‖h‖ goes to 0. Next as f is continuous

at x0, we have that as h goes to 0, then k goes to 0. Therefore ‖g(y0+k)−g(y0)−Bk‖‖k‖ goes to 0 because g is

differentiable at y0. Finally

‖f(x0 + h)− f(x0)‖
‖h‖

≤ ‖f(x0 + h)− f(x0)− Ah‖
‖h‖

+
‖Ah‖
‖h‖

≤ ‖f(x0 + h)− f(x0)− Ah‖
‖h‖

+ ‖A‖ .

As f is differentiable at x0, the term ‖f(x0+h)−f(x0)‖
‖h‖ stays bounded as h goes to 0. Therefore, ‖F (x0+h)−F (x0)−BAh‖

‖h‖
goes to zero, and hence F ′(x0) = BA, which is what was claimed. �

There is another way to generalize the derivative from one dimension. We can simply hold all but one
variables constant and take the regular derivative.

Definition: Let f : U → R be a function on an open set U ⊂ Rn. If the following limit exists we write

∂f

∂xj
(x) = lim

h→0

f(x1, . . . , xj−1, xj + h, xj+1, . . . , xn)− f(x)

h
= lim

h→0

f(x+ hej)− f(x)

h
.

We call ∂f
∂xj

(x) the partial derivative of f with respect to xj. Sometimes we write Djf instead.

When f : U → Rm is a function, then we can write f = (f 1, f 2, . . . , fm), where fk are real-valued

functions. Then we can define ∂fk

∂xj
(or write it Djf

k).

Partial derivatives are easier to compute with all the machinery of calculus, and they provide a way to
compute the total derivative of a function.

Theorem 9.17: Let U ⊂ Rn be open and let f : U → Rm be differentiable at x0 ∈ U . Then all the
partial derivatives at x0 exist and in terms of the standard basis of Rn and Rm, f ′(x0) is represented by
the matrix 

∂f1

∂x1
(x0)

∂f1

∂x2
(x0) . . . ∂f1

∂xn
(x0)

∂f2

∂x1
(x0)

∂f2

∂x2
(x0) . . . ∂f2

∂xn
(x0)

...
...

. . .
...

∂fm

∂x1
(x0)

∂fm

∂x2
(x0) . . . ∂fm

∂xn
(x0)

 .
In other words

f ′(x0) ej =
m∑
k=1

∂fk

∂xj
(x0) ek.

If h =
∑n

j=1 c
jej, then

f ′(x0)h =
n∑
j=1

m∑
k=1

cj
∂fk

∂xj
(x0) ek.

Again note the up-down pattern with the indices being summed over. That is on purpose.
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Proof. Fix a j and note that∥∥∥∥f(x0 + hej)− f(x0)

h
− f ′(x0)ej

∥∥∥∥ =

∥∥∥∥f(x0 + hej)− f(x0)− f ′(x0)hej
h

∥∥∥∥ =
‖f(x0 + hej)− f(x0)− f ′(x0)hej‖

‖hej‖
.

As h goes to 0, the right hand side goes to zero by differentiability of f , and hence

lim
h→0

f(x0 + hej)− f(x0)

h
= f ′(x0)ej.

Note that f is vector valued. So represent f by components f = (f 1, f 2, . . . , fm), and note that taking a
limit in Rm is the same as taking the limit in each component separately. Therefore for any k the partial
derivative

∂fk

∂xj
(x0) = lim

h→0

fk(x0 + hej)− fk(x0)
h

exists and is equal to the kth component of f ′(x0)ej, and we are done. �

One of the consequences of the theorem is that if f is differentiable on U , then f ′ : U → L(Rn,Rm) is a

continuous function if and only if all the ∂fk

∂xj
are continuous functions.

When U ⊂ Rn is open and f : U → R is a differentiable function. We call the following vector the
gradient :

∇f(x) =
n∑
j=1

∂f

∂xj
(x) ej.

Note that the upper-lower indices don’t really match up. As a preview of Math 621, we note that we write

df =
n∑
j=1

∂f

∂xj
dxj

where dxj is really the standard bases (though we’re thinking of dxj to be in L(Rn,R) which is really
equivalent to Rn). But we digress.

Suppose that γ : (a, b) ⊂ R→ Rn is a differentiable function and γ
(
(a, b)

)
⊂ U . Write γ = (γ1, . . . , γn).

Then we can write

g(t) = f
(
γ(t)

)
.

The function g is then a differentiable and the derivative is

g′(t) =
n∑
j=1

∂f

∂xj
(
γ(t)

)dγj
dt

(t) =
n∑
j=1

∂f

∂xj
dγj

dt
,

where we sometimes, for convenience, leave out the points at which we are evaluating. We notice that

g′(t) = (∇f)
(
γ(t)

)
· γ′(t) = ∇f · γ′.

The dot represents the standard scalar dot product.
We use this idea to define derivatives in a specific direction. A direction is simply a vector pointing in

that direction. So pick a vector u ∈ Rn such that ‖u‖ = 1. Fix x ∈ U . Then define

γ(t) = x+ tu.

It is easy to compute that γ′(t) = u for all t. By chain rule

d

dt

∣∣∣
t=0

[
f(x+ tu)

]
= (∇f)(x) · u,

where the notation d
dt
|t=0 represents the derivative evaluated at t = 0. We also just compute directly

d

dt

∣∣∣
t=0

[
f(x+ tu)

]
= lim

h→0

f(x+ hu)− f(x)

h
.
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We obtain what is usually called the directional derivative, sometimes denoted by

Duf(x) =
d

dt

∣∣∣
t=0

[
f(x+ tu)

]
,

which can be computed by one of the methods above.
Let us suppose that (∇f)(x) 6= 0. By Schwarz inequality we have

|Duf(x)| ≤ ‖(∇f)(x)‖ ,

and further equality is achieved when u is a scalar multiple of (∇f)(x). When

u =
(∇f)(x)

‖(∇f)(x)‖
,

we get Duf(x) = ‖(∇f)(x)‖. So the gradient points in the direction in which the function grows fastest,
that is, the direction in which Du is maximal.

Let us prove a “mean value theorem” for vector valued functions.

Theorem 5.19: If ϕ : [a, b]→ Rn is differentiable on (a, b) and continuous on [a, b], then there exists a
t such that

‖ϕ(b)− ϕ(a)‖ ≤ (b− a) ‖ϕ′(t)‖ .

Proof. By mean value theorem on the function
(
ϕ(b)− ϕ(a)

)
· ϕ(t) (the dot is the scalar dot product) we

obtain there is a t such that(
ϕ(b)− ϕ(a)

)
· ϕ(b)−

(
ϕ(b)− ϕ(a)

)
· ϕ(a) = ‖ϕ(b)− ϕ(a)‖2 =

(
ϕ(b)− ϕ(a)

)
· ϕ′(t)

where we treat ϕ′ as a simply a column vector of numbers by abuse of notation. Note that in this case, it
is not hard to see that ‖ϕ′(t)‖L(R,Rn) = ‖ϕ′(t)‖Rn (exercise).

By Schwarz inequality

‖ϕ(b)− ϕ(a)‖2 =
(
ϕ(b)− ϕ(a)

)
· ϕ′(t) ≤ ‖ϕ(b)− ϕ(a)‖ ‖ϕ′(t)‖ .

�

A set U is convex if whenever x, y ∈ U , the line segment from x to y lies in U . That is, if the convex
combination (1− t)x + ty is in U for all t ∈ [0, 1]. Note that in R, every connected interval is convex. In
R2 (or higher dimensions) there are lots of nonconvex connected sets. The ball B(x, r) is always convex
by the triangle inequality (exercise).

Theorem 9.19: Let U ⊂ Rn be a convex open set, f : U → Rm a differentiable function, and an M
such that

‖f ′(x)‖ ≤M

for all x ∈ U . Then f is Lipschitz with constant M , that is

‖f(x)− f(y)‖ ≤M ‖x− y‖

for all x, y ∈ U .

Note that if U is not convex this is not true. To see this, take the set

U = {(x, y) : 0.9 < x2 + y2 < 1.1} \ {(x, 0) : x < 0}.

Let f(x, y) be the angle that the line from the origin to (x, y) makes with the positive x axis. You can
even write the formula for f :

f(x, y) = 2 arctan

(
y

x+
√
x2 + y2

)
.

Think spiral staircase with room in the middle. See:
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(x, y)

θ = f(x, y)

In any case the function is differentiable, and the derivative is bounded on U , which is not hard to see,
but thinking of what happens near where the negative x-axis cuts the annulus in half, we see that the
conclusion cannot hold.

Proof. Fix x and y in U and note that (1− t)x+ ty ∈ U for all t ∈ [0, 1] by convexity. Next

d

dt

[
f
(
(1− t)x+ ty

)]
= f ′

(
(1− t)x+ ty

)
(y − x).

By mean value theorem above we get

‖f(x)− f(y)‖ ≤
∥∥∥∥ ddt[f((1− t)x+ ty

)]∥∥∥∥ ≤ ∥∥f ′((1− t)x+ ty
)∥∥ ‖y − x‖ ≤M ‖y − x‖ .

�

Let us solve the differential equation f ′ = 0.

Corollary: If U ⊂ Rn is connected and f : U → Rm is differentiable and f ′(x) = 0, for all x ∈ U , then
f is constant.

Proof. For any x ∈ U , there is a ball B(x, δ) ⊂ U . The ball B(x, δ) is convex. Since ‖f ′(y)‖ ≤ 0 for all
y ∈ B(x, δ) then by the theorem, ‖f(x)− f(y)‖ ≤ 0 ‖x− y‖ = 0, so f(x) = f(y) for all y ∈ B(x, δ).

This means that f−1(c) is open for any c ∈ Rm. Suppose that f−1(c) is nonempty. The two sets

U ′ = f−1(c), U ′′ = f−1(Rm \ {c}) =
⋃
a∈Rm

a6=c

f−1(a)

are open disjoint, and further U = U ′ ∪ U ′′. So as U ′ is nonempty, and U is connected, we have that
U ′′ = ∅. So f(x) = c for all x ∈ U . �

Definition: We say f : U ⊂ Rn → Rm is continuously differentiable, or C1(U) if f is differentiable and
f ′ : U → L(Rn,Rm) is continuous.

Theorem 9.21: Let U ⊂ Rn be open and f : U → Rm. The function f is continuously differentiable if
and only if all the partial derivatives exist and are continuous.

Note that without continuity the theorem does not hold. Just because partial derivatives exist doesn’t
mean that f is differentiable, in fact, f may not even be continuous. See the homework.

Proof. We have seen that if f is differentiable, then the partial derivatives exist. Furthermore, the partial
derivatives are the entries of the matrix of f ′(x). So if f ′ : U → L(Rn,Rm) is continuous, then the entries
are continuous, hence the partial derivatives are continuous.

To prove the opposite direction, suppose the partial derivatives exist and are continuous. Fix x ∈ U .
If we can show that f ′(x) exists we are done, because the entries of the matrix f ′(x) are then the partial
derivatives and if the entries are continuous functions, the matrix valued function f ′ is continuous.
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Let us do induction on dimension. First let us note that the conclusion is true when n = 1. In this case
the derivative is just the regular derivative (exercise: you should check that the fact that the function is
vector valued is not a problem).

Suppose that the conclusion is true for Rn−1, that is, if we restrict to the first n − 1 variables, the
conclusion is true. It is easy to see that the first n− 1 partial derivatives of f restricted to the set where
the last coordinate is fixed are the same as those for f . In the following we will think of Rn−1 as a subset
of Rn, that is the set in Rn where xn = 0. Let

A =


∂f1

∂x1
(x) . . . ∂f1

∂xn
(x)

...
. . .

...
∂fm

∂x1
(x) . . . ∂fm

∂xn
(x)

 , A1 =


∂f1

∂x1
(x) . . . ∂f1

∂xn−1 (x)
...

. . .
...

∂fm

∂x1
(x) . . . ∂fm

∂xn−1 (x)

 , v =


∂f1

∂xn
(x)
...

∂fm

∂xn
(x)

 .
Let ε > 0 be given. Let δ > 0 be such that for any k ∈ Rn−1 with ‖k‖ < δ we have

‖f(x+ k)− f(x)− A1k‖
‖k‖

< ε.

By continuity of the partial derivatives, suppose that δ is small enough so that∣∣∣∣∂f j∂xn
(x+ h)− ∂f j

∂xn
(x)

∣∣∣∣ < ε,

for all j and all h with ‖h‖ < δ.
Let h = h1 + ten be a vector in Rn where h1 ∈ Rn−1 such that ‖h‖ < δ. Then ‖h1‖ ≤ ‖h‖ < δ. Note

that Ah = A1h1 + tv.

‖f(x+ h)− f(x)− Ah‖ = ‖f(x+ h1 + ten)− f(x+ h1)− tv + f(x+ h1)− f(x)− A1h1‖
≤ ‖f(x+ h1 + ten)− f(x+ h1)− tv‖+ ‖f(x+ h1)− f(x)− A1h1‖
≤ ‖f(x+ h1 + ten)− f(x+ h1)− tv‖+ ε ‖h1‖ .

As all the partial derivatives exist then by the mean value theorem for each j there is some θj ∈ [0, t] (or
[t, 0] if t < 0), such that

f j(x+ h1 + ten)− f j(x+ h1) = t
∂f j

∂xn
(x+ h1 + θjen).

Note that if ‖h‖ < δ then ‖h1 + θjen‖ ≤ ‖h‖ < δ. So to finish the estimate

‖f(x+ h)− f(x)− Ah‖ ≤ ‖f(x+ h1 + ten)− f(x+ h1)− tv‖+ ε ‖h1‖

≤

√√√√ m∑
j=1

(
t
∂f j

∂xn
(x+ h1 + θjen)− t ∂f

j

∂xn
(x)

)2

+ ε ‖h1‖

≤
√
mε |t|+ ε ‖h1‖

≤ (
√
m+ 1)ε ‖h‖ .

�

Contraction mapping principle

Let us review the contraction mapping principle.

Definition: Let (X, d) and (X ′, d′) be metric spaces. f : X → X ′ is said to be a contraction (or a
contractive map) if it is a k-Lipschitz map for some k < 1, i.e. if there exists a k < 1 such that

d′
(
f(x), f(y)

)
≤ kd(x, y) for all x, y ∈ X.

If f : X → X is a map, x ∈ X is called a fixed point if f(x) = x.

Theorem 9.23 (Contraction mapping principle or Fixed point theorem): Let (X, d) be a
nonempty complete metric space and f : X → X a contraction. Then f has a fixed point.
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The words complete and contraction are necessary. For example, f : (0, 1)→ (0, 1) defined by f(x) = kx
for any 0 < k < 1 is a contraction with no fixed point. Also f : R → R defined by f(x) = x + 1 is not a
contraction (k = 1) and has no fixed point.

Proof. Pick any x0 ∈ X. Define a sequence {xn} by xn+1 := f(xn).

d(xn+1, xn) = d
(
f(xn), f(xn−1)

)
≤ kd(xn, xn−1) ≤ · · · ≤ knd(x1, x0).

Suppose m ≥ n, then

d(xm, xn) ≤
m−1∑
i=n

d(xi+1, xi)

≤
m−1∑
i=n

kid(x1, x0)

= knd(x1, x0)
m−n−1∑
i=0

ki

≤ knd(x1, x0)
∞∑
i=0

ki = knd(x1, x0)
1

1− k
.

In particular the sequence is Cauchy (why?). Since X is complete we let x := lim xn and we claim that x
is our unique fixed point.

Fixed point? Note that f is continuous because it is a contraction. Hence

f(x) = lim f(xn) = lim xn+1 = x.

Unique? Let y be a fixed point.

d(x, y) = d
(
f(x), f(y)

)
= kd(x, y).

As k < 1 this means that d(x, y) = 0 and hence x = y. The theorem is proved. �

Note that the proof is constructive. Not only do we know that a unique fixed point exists. We also know
how to find it.

We’ve used the theorem to prove Picard’s theorem last semester. This semester, we will prove the inverse
and implicit function theorems.

Do also note the proof of uniqueness holds even if X is not complete. If f is a contraction, then if it has
a fixed point, that point is unique.

Inverse function theorem

The idea of a derivative is that if a function is differentiable, then it locally “behaves like” the derivative
(which is a linear function). So for example, if a function is differentiable and the derivative is invertible,
the function is (locally) invertible.

Theorem 9.24: Let U ⊂ Rn be a set and let f : U → Rn be a continuously differentiable function. Also
suppose that x0 ∈ U , f(x0) = y0, and f ′(x0) is invertible. Then there exist open sets V,W ⊂ Rn such that
x0 ∈ V ⊂ U , f(V ) = W and f |V is one-to-one and onto. Furthermore, the inverse g(y) = (f |V )−1(y) is
continuously differentiable and

g′(y) =
(
f ′(x)

)−1
, for all x ∈ V , y = f(x).

Proof. Write A = f ′(x0). As f ′ is continuous, there exists an open ball V around x0 such that

‖A− f ′(x)‖ < 1

2 ‖A−1‖
for all x ∈ V .

Note that f ′(x) is invertible for all x ∈ V .
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Given y ∈ Rn we define ϕy : C → Rn

ϕy(x) = x+ A−1
(
y − f(x)

)
.

As A−1 is one-to-one, we notice that ϕy(x) = x (x is a fixed point) if only if y − f(x) = 0, or in other
words f(x) = y. Using chain rule we obtain.

ϕ′y(x) = I − A−1f ′(x) = A−1
(
A− f ′(x)

)
.

so for x ∈ V we have ∥∥ϕ′y(x)
∥∥ ≤ ∥∥A−1∥∥ ‖A− f ′(x)‖ < 1/2.

As V is a ball it is convex, and hence

‖ϕy(x1)− ϕy(x2)‖ ≤
1

2
‖x1 − x2‖ for all x1, x2 ∈ V .

In other words ϕy is a contraction defined on V , though we so far do not know what is the range of ϕy.
We cannot apply the fixed point theorem, but we can say that ϕy has at most one fixed point (note proof
of uniqueness in the contraction mapping principle). That is, there exists at most one x ∈ V such that
f(x) = y, and so f |V is one-to-one.

Let W = f(V ). We need to show that W is open. Take a y1 ∈ W , then there is a unique x1 ∈ V such
that f(x1) = y1. Let r > 0 be small enough such that the closed ball C(x1, r) ⊂ V (such r > 0 exists as
V is open).

Suppose y is such that

‖y − y1‖ <
r

2 ‖A−1‖
.

If we can show that y ∈ W , then we have shown that W is open. Define ϕy(x) = x + A−1
(
y − f(x)

)
as

before. If x ∈ C(x1, r), then

‖ϕy(x)− x1‖ ≤ ‖ϕy(x)− ϕy(x1)‖+ ‖ϕy(x1)− x1‖

≤ 1

2
‖x− x1‖+

∥∥A−1(y − y1)∥∥
≤ 1

2
r +

∥∥A−1∥∥ ‖y − y1‖
<

1

2
r +

∥∥A−1∥∥ r

2 ‖A−1‖
= r.

So ϕy takes C(x1, r) into B(x1, r) ⊂ C(x1, r). It is a contraction on C(x1, r) and C(x1, r) is complete
(closed subset of Rn is complete). Apply the contraction mapping principle to obtain a fixed point x, i.e.
ϕy(x) = x. That is f(x) = y. So y ∈ f

(
C(x1, r)

)
⊂ f(V ) = W . Therefore W is open.

Next we need to show that g is continuously differentiable and compute its derivative. First let us show
that it is differentiable. Let y ∈ W and k ∈ Rn, k 6= 0, such that y+ k ∈ W . Then there are unique x ∈ V
and h ∈ Rn, h 6= 0 and x + h ∈ V , such that f(x) = y and f(x + h) = y + k as f |V is a one-to-one and
onto mapping of V onto W . In other words, g(y) = x and g(y + k) = x + h. We can still squeeze some
information from the fact that ϕy is a contraction.

ϕy(x+ h)− ϕy(x) = h+ A−1
(
f(x)− f(x+ h)

)
= h− A−1k.

So ∥∥h− A−1k∥∥ = ‖ϕy(x+ h)− ϕy(x)‖ ≤ 1

2
‖x+ h− x‖ =

‖h‖
2
.

By the inverse triangle inequality ‖h‖ − ‖A−1k‖ ≤ 1
2
‖h‖ so

‖h‖ ≤ 2
∥∥A−1k∥∥ ≤ 2

∥∥A−1∥∥ ‖k‖ .
In particular as k goes to 0, so does h.
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As x ∈ V , then f ′(x) is invertible. Let B =
(
f ′(x)

)−1
, which is what we think the derivative of g at y

is. Then

‖g(y + k)− g(y)−Bk‖
‖k‖

=
‖h−Bk‖
‖k‖

=

∥∥h−B(f(x+ h)− f(x)
)∥∥

‖k‖

=

∥∥B(f(x+ h)− f(x)− f ′(x)h
)∥∥

‖k‖

≤ ‖B‖ ‖h‖
‖k‖
‖f(x+ h)− f(x)− f ′(x)h‖

‖h‖

≤ 2 ‖B‖
∥∥A−1∥∥ ‖f(x+ h)− f(x)− f ′(x)h‖

‖h‖
.

As k goes to 0, so does h. So the right hand side goes to 0 as f is differentiable, and hence the left hand
side also goes to 0. And B is precisely what we wanted g′(y) to be.

We have that g is differentiable, let us show it is C1(W ). Now, g : W → V is continuous (it’s
differentiable), f ′ is continuous function from V to L(Rn), and X → X−1 is a continuous function.

g′(y) =
(
f ′
(
g(y)

))−1
is the composition of these three continuous functions and hence is continuous. �

Corollary: Suppose U ⊂ Rn is open and f : U → Rn is a continuously differentiable mapping such that
f ′(x) is invertible for all x ∈ U . Then given any open set V ⊂ U , f(V ) is open. (f is an open mapping).

Proof. WLOG suppose U = V . For each point y ∈ f(V ), we pick x ∈ f−1(y) (there could be more than
one such point), then by the inverse function theorem there is a neighbourhood of x in V that maps onto
an neighbourhood of y. Hence f(V ) is open. �

The theorem, and the corollary, is not true if f ′(x) is not invertible for some x. For example, the map
f(x, y) = (x, xy), maps R2 onto the set R2 \ {(0, y) : y 6= 0}, which is neither open nor closed. In fact
f−1(0, 0) = {(0, y) : y ∈ R}. Note that this bad behaviour only occurs on the y-axis, everywhere else the
function is locally invertible. In fact if we avoid the y-axis it is even one to one.

Also note that just because f ′(x) is invertible everywhere doesn’t mean that f is one-to-one globally. It
is definitely “locally” one-to-one. For an example, just take the map f : C \{0} → C defined by f(z) = z2.
Here we treat the map as if it went from R2 \ {0} to R2. For any nonzero complex number, there are
always two square roots, so the map is actually 2-to-1. It is left to student to show that f is differentiable
and the derivative is invertible (Hint: let z = x+ iy and write down what the real an imaginary part of f
is in terms if x and y).

Also note that the invertibility of the derivative is not a necessary condition, just sufficient for having a
continuous inverse and being an open mapping. For example the function f(x) = x3 is an open mapping
from R to R and is globally one-to-one with a continuous inverse.

Implicit function theorem:

The inverse function theorem is really a special case of the implicit function theorem which we prove
next. Although somewhat ironically we will prove the implicit function theorem using the inverse function
theorem. Really what we were showing in the inverse function theorem was that the equation x−f(y) = 0
was solvable for y in terms of x if the derivative in terms of y was invertible, that is if f ′(y) was invertible.
That is there was locally a function g such that x− f

(
g(x)

)
= 0.

OK, so how about we look at the equation f(x, y) = 0. Obviously this is not solvable for y in terms of x
in every case. For example, when f(x, y) does not actually depend on y. For a slightly more complicated
example, notice that x2 + y2 − 1 = 0 defines the unit circle, and we can locally solve for y in terms of x
when 1) we are near a point which lies on the unit circle and 2) when we are not at a point where the
circle has a vertical tangency, or in other words where ∂f

∂y
= 0.
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To make things simple we fix some notation. We let (x, y) ∈ Rn+m denote the coordinates (x1, . . . , xn, y1, . . . , ym).
A linear transformation A ∈ L(Rn+m,Rm) can then always be written as A = [Ax Ay] so that A(x, y) =
Axx+ Ayy, where Ax ∈ L(Rn,Rm) and Ay ∈ L(Rm).

Note that Rudin does things “in reverse” from what the statement is usually. I’ll do it in the usual order
as that’s what I am used to, where we are taking the derivatives of y, not x (but it doesn’t matter really
in the end). First a linear version of the implicit function theorem.

Proposition (Theorem 9.27): Let A = [Ax Ay] ∈ L(Rn+m,Rm) and suppose that Ay is invertible,

then let B = −(Ay)
−1Ax and note that

0 = A(x,Bx) = Axx+ AyBx.

The proof is obvious. We simply solve and obtain y = Bx. Let us therefore show that the same can be
done for C1 functions.

Theorem 9.28 (Implicit function theorem): Let U ⊂ Rn+m be an open set and let f : U → Rm be
a C1(U) mapping. Let (x0, y0) ∈ U be a point such that f(x0, y0) = 0. Write A = [Ax Ay] = f ′(x0, y0) and
suppose that Ay is invertible. Then there exists an open set W ⊂ Rn with x0 ∈ W and a C1(W ) mapping
g : W → Rm, with g(x0) = y0, and for all x ∈ W , we have (x, g(x)) ∈ U and

f
(
x, g(x)

)
= 0.

Furthermore,
g′(x0) = −(Ay)

−1Ax.

Proof. Define F : U → Rn+m by F (x, y) =
(
x, f(x, y)

)
. It is clear that F is C1, and we want to show that

the derivative at (x0, y0) is invertible.
Let’s compute the derivative. We know that

‖f(x0 + h, y0 + k)− f(x0, y0)− Axh− Ayk‖
‖(h, k)‖

goes to zero as ‖(h, k)‖ =
√
‖h‖2 + ‖k‖2 goes to zero. But then so does∥∥(h, f(x0 + h, y0 + k)− f(x0, y0)

)
− (h,Axh+ Ayk)

∥∥
‖(h, k)‖

=
‖f(x0 + h, y0 + k)− f(x0, y0)− Axh− Ayk‖

‖(h, k)‖
.

So the derivative of F ate (x0, y0) takes (h, k) to (h,Axh + Ayk). If (h,Axh + Ayk) = (0, 0), then h = 0,
and so Ayk = 0. As Ay is one-to-one, then k = 0. Therefore F ′(x0, y0) is one-to-one or in other words
invertible and we can apply the inverse function theorem.

That is, there exists some open set V ⊂ Rn+m with (x0, 0) ∈ V , and an inverse mapping G : V → Rn+m,
that is F (G(x, s)) = (x, s) for all (x, s) ∈ V (where x ∈ Rn and s ∈ Rm). Write G = (G1, G2) (the first n
and the second m components of G). Then

F
(
G1(x, s), G2(x, s)

)
=
(
G1(x, s), f(G1(x, s), G2(x, s))

)
= (x, s).

So x = G1(x, s) and f
(
G1(x, s), G2(x, s)) = f

(
x,G2(x, s)

)
= s. Plugging in s = 0 we obtain

f
(
x,G2(x, 0)

)
= 0.

Let W = {x ∈ Rn : (x, 0) ∈ V } and define g : W → Rm by g(x) = G2(x, 0). We obtain the g in the
theorem.

Next differentiate
x 7→ f

(
x, g(x)

)
,

at x0, which should be the zero map. The derivative is done in the same way as above. We get that for all
h ∈ Rn

0 = A
(
h, g′(x0)h

)
= Axh+ Ayg

′(x0)h,

and we obtain the desired derivative for g as well. �
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In other words, in the context of the theorem we have m equations in n+m unknowns.

f 1(x1, . . . , xn, y1, . . . , ym) = 0

...

fm(x1, . . . , xn, y1, . . . , ym) = 0

And the condition guaranteeing a solution is that this is a C1 mapping (that all the components are C1,
or in other words all the partial derivatives exist and are continuous), and the matrix

∂f1

∂y1
. . . ∂f1

∂ym

...
. . .

...
∂fm

∂y1
. . . ∂fm

∂ym


is invertible at (x0, y0).

Example: Consider the set x2 + y2 − (z + 1)3 = −1, ex + ey + ez = 3 near the point (0, 0, 0). The
function we are looking at is

f(x, y, z) = (x2 + y2 − (z + 1)3 + 1, ex + ey + ez − 3).

We find that

Df =

[
2x 2y −3(z + 1)2

ex ey ez

]
.

The matrix [
2(0) −3(0 + 1)2

e0 e0

]
=

[
0 −3
1 1

]
is invertible. Hence near (0, 0, 0) we can find y and z as C1 functions of x such that for x near 0 we have

x2 + y(x)2 − (z(x) + 1)3 = −1, ex + ey(x) + ez(x) = 3.

The theorem doesn’t tell us how to find y(x) and z(x) explicitly, it just tells us they exist. In other words,
near the origin the set of solutions is a smooth curve that goes through the origin.

Note that there are versions of the theorem for arbitrarily many derivatives. If f has k continuous
derivatives, then the solution also has k derivatives.

So it would be good to have an easy test for when is a matrix invertible. This is where determinants
come in. Suppose that σ = (σ1, . . . , σn) is a permutation of the integers (1, . . . , n). It is not hard to see
that any permutation can be obtained by a sequence of transpositions (switchings of two elements). Call
a permutation even (resp. odd) if it takes an even (resp. odd) number of transpositions to get from σ to
(1, . . . , n). It can be shown that this is well defined, in fact it is not hard to show that

sgn(σ) = sgn(σ1, . . . , σn) =
∏
p<q

sgn(σq − σp)

is −1 if σ is odd and 1 if σ is even. The symbol sgn(x) for a number is defined by

sgn(x) =


−1 if x < 0,

0 if x = 0,

1 if x > 0.

This can be proved by noting that applying a transposition changes the sign, which is not hard to prove
by induction on n. Then note that the sign of (1, 2, . . . , n) is 1.

Let Sn be the set of all permutations on n elements (the symmetric group). Let A = [aij] be a matrix.
Define the determinant of A

det(A) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

aiσi .
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Proposition (Theorem 9.34 and other observations):

(i) det(I) = 1.
(ii) det([x1x2 . . . xn]) where xj are column vectors is linear in each variable xj separately.

(iii) If two columns of a matrix are interchanged determinant changes sign.
(iv) If two columns of A are equal, then det(A) = 0.
(v) If a column is zero, then det(A) = 0.
(vi) A 7→ det(A) is a continuous function.

(vii) det [ a bc d ] = ad− bc and det[a] = a.

In fact, the determinant is the unique function that satisfies (i), (ii), and (iii). But we digress.

Proof. We go through the proof quickly, as you have likely seen this before.
(i) is trivial. For (ii) Notice that each term in the definition of the determinant contains exactly one

factor from each column.
Part (iii) follows by noting that switching two columns is like switching the two corresponding numbers

in every element in Sn. Hence all the signs are changed. Part (iv) follows because if two columns are equal
and we switch them we get the same matrix back and so part (iii) says the determinant must have been 0.

Part (v) follows because the product in each term in the definition includes one element from the zero
column. Part (vi) follows as det is a polynomial in the entries of the matrix and hence continuous. We
have seen that a function defined on matrices is continuous in the operator norm if it is continuous in the
entries. Finally, part (vii) is a direct computation. �

Theorem 9.35+9.36: If A and B are n×n matrices, then det(AB) = det(A) det(B). In particular, A
is invertible if and only if det(A) 6= 0 and in this case, det(A−1) = 1

det(A)
.

Proof. Let b1, . . . , bn be the columns of B. Then

AB = [Ab1 Ab2 · · · Abn].

That is, the columns of AB are Ab1, . . . , Abn.
Let bij denote the elements of B and aj the columns of A. Note that Aej = aj. By linearity of the

determinant as proved above we have

det(AB) = det([Ab1 Ab2 · · · Abn]) = det

([
n∑
j=1

bj1aj Ab2 · · · Abn

])

=
n∑
j=1

bj1 det([aj Ab2 · · · Abn])

=
∑

1≤j1,...,jn≤n

bj11 b
j2
2 · · · bjnn det([aj1 aj2 · · · ajn ])

=

 ∑
(j1,...,jn)∈Sn

bj11 b
j2
2 · · · bjnn sgn(j1, . . . , jn)

 det([a1 a2 · · · an]).

In the above, we note that we could go from all integers, to just elements of Sn by noting that the
determinant of the resulting matrix is just zero.

The conclusion follows by recognizing the determinant of B. Actually the rows and columns are swapped,
but a moment’s reflection will reveal that it does not matter. We could also just plug in A = I.

For the second part of the theorem note that ifA is invertible, thenA−1A = I and so det(A−1) det(A) = 1.
If A is not invertible, then the columns are linearly dependent. That is suppose that

n∑
j=1

cjaj = 0.
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Without loss of generality suppose that c1 6= 1. Then take

B =


c1 0 0 · · · 0
c2 1 0 · · · 0
c3 0 1 · · · 0
...

...
...

. . .
...

cn 0 0 · · · 1

 .
It is not hard to see from the definition that det(B) = c1 6= 0. Then det(AB) = det(A) det(B) = c1 det(A).
Note that the first column of AB is zero, and hence det(AB) = 0. Thus det(A) = 0. �

Proposition: Determinant is independent of the basis. In other words, if B is invertible then,

det(A) = det(B−1AB).

The proof is immediate. If in one basis A is the matrix representing a linear operator, then for another
basis we can find a matrix B such that the matrix B−1AB takes us to the first basis, apply A in the
first basis, and take us back to the basis we started with. Therefore, the determinant can be defined as a
function on the space L(Rn), not just on matrices. No matter what basis we choose, the function is the
same. It follows from the two propositions that

det : L(Rn)→ R
is a well defined and continuous function.

We can now test whether a matrix is invertible.

Definition: Let U ⊂ Rn and f : U → Rn be a differentiable mapping. Then define the Jacobian of f
at x as

Jf (x) = det
(
f ′(x)

)
Sometimes this is written as

∂(f 1, . . . , fn)

∂(x1, . . . , xn)
.

To the uninitiated this can be a somewhat confusing notation, but it is useful when you need to specify
the exact variables and function components used.

When f is C1, then Jf (x) is a continuous function.

The Jacobian is a real valued function, and when n = 1 it is simply the derivative. Also note that from
the chain rule it follows that:

Jf◦g(x) = Jf
(
g(x)

)
Jg(x).

We can restate the inverse function theorem using the Jacobian. That is, f : U → Rn is locally invertible
near x if Jf (x) 6= 0.

For the implicit function theorem the condition is normally stated as

∂(f 1, . . . , fn)

∂(y1, . . . , yn)
(x0, y0) 6= 0.

It can be computed directly that the determinant tells us what happens to area/volume. Suppose that
we are in R2. Then if A is a linear transformation, it follows by direct computation that the direct image of
the unit square A([0, 1]2) has area |det(A)|. Note that the sign of the determinant determines “orientation”.
If the determinant is negative, then the two sides of the unit square will be flipped in the image. We claim
without proof that this follows for arbitrary figures, not just the square.

Similarly, the Jacobian measures how much a differentiable mapping stretches things locally, and if it
flips orientation. We should see more of this geometry next semester.


