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Introduction

This book is a polished version of my course notes for Math 6283, Several Complex
Variables, given in Spring 2014, Spring 2016, Spring 2019, and Fall 2023 semesters at
the Oklahoma State University. There is more material than can fit in a one semester
class to allow for several different versions of the course. In fact, I did it somewhat
differently each semester I ran it. Quite a few exercises of various difficulty are
sprinkled throughout the text, and I hope a reader is at least attempting or thinking
about most of them. Many are required later in the text. The reader should attempt
exercises in sequence; earlier exercises can help or even be required to solve later
ones.

The prerequisites are a decent knowledge of vector calculus, basic real analysis,
and a working knowledge of complex analysis in one variable. Measure theory
(Lebesgue integral and its convergence theorems) is useful, but it is not essential
except in a couple of places later in the book. The first two chapters and most of the
third are accessible to beginning graduate students after one semester of a standard
single-variable complex analysis graduate course. From time to time (e.g. proof of
Baouendi-Tréves in chapter 3, and most of chapter 4, and chapter 5), basic knowledge
of differential forms is useful, and in chapter 6 we use some basic ring theory from
algebra. By design, it can replace the second semester of complex analysis.

This book is not intended as an exhaustive reference. It is simply a whirlwind tour
of several complex variables. See the end of the book for a list of books for reference
and further reading. There are also appendices for a list of one-variable results, an
overview of differential forms, some basic algebra, measure theory, and other bits
and pieces of analysis. See appendix B, appendix C, appendix D, and appendix E.

Changes in edition 4: The major addition of this edition is the greatly expanded
chapter on the d-problem, chapter 4. Many minor changes and additions throughout,
especially in chapters 1 and 2, resulted in some renumberings, including some
renumbering of exercises. Finally, I've added a short appendix listing some useful
results from analysis, including the very basics of measure theory. See the detailed
listing of changes on the book website: https://www.jirka.org/scv/.
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6 INTRODUCTION

0.1 | Motivation, single variable, and Cauchy’s formula

We start with some standard notation. We use C for complex numbers, R for real
numbers, Z for integers, N = {1,2,3, ...} for natural numbers, i = V-1. Throughout
this book, the standard terminology of domain means a connected open set. We try
to avoid using it if connectedness is not needed, but sometimes we use it just for
simplicity.

As complex analysis deals with complex numbers, perhaps we should begin with
vV—=1. Start with the real numbers, R, and add V-1 into our field. Call this square
root i, and write the complex numbers, C, by identifying C with R? using

z=x+1y,

where z € C and (x, y) € R2. A subtle philosophical issue is that there are two square
roots of —1. Two chickens are running around in our yard, and because we like to
know which is which, we catch one and write “i” on it. If we happened to have
caught the other chicken, we would have got an exactly equivalent theory, which we
could not tell apart from the original.

Given a complex number z, its “opposite” is the complex conjugate of z and is
defined as

_ def

zZ = x-—1y.

The size of z is measured by the so-called modulus, which is just the Euclidean distance:

def —
2| S VzZ = \[x2 + 2.

If z=x+iy € Cfor x,y € R, then x is called the real part and y is called the
imaginary part. We write

Z;Z:x, Imz:Im(x+iy):Zz_iZ:y.

A function f: U ¢ R" — C for an open set U is said to be continuously
differentiable, or C! if the first (real) partial derivatives exist and are continuous.
Similarly, it is C¥ or Ck-smooth if the first k partial derivatives all exist and are
differentiable. Finally, a function is said to be C* or simply smooth* if it is infinitely
differentiable, or in other words, if it is C kforall k € N.

Rez = Re(x + iy) =

Complex analysis is the study of holomorphic (or complex-analytic) functions.
Holomorphic functions are a generalization of polynomials, and to get there one
leaves the land of algebra to arrive in the realm of analysis. One can do an awful lot
with polynomials, but sometimes they are just not enough. For example, there is no
nonzero polynomial function that solves the simplest of differential equations, f’ = f.
We need the exponential function, which is holomorphic.

*While C* is a common definition of smooth, not everyone always means the same thing by the
word smooth. I have seen it mean differentiable, C!, piecewise-C!, C*, holomorphic, . . .
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We start with polynomials. A polynomial in z is an expression of the form

d

P(z) = Z cx 2%,

k=0

where ¢ € C and ¢4 # 0. The number 4 is called the degree of the polynomial P. We
can plug in some number z and compute P(z), to obtain a function P: C — C.
We try to write

(©e]

f@)=) ez

k=0

and all is very fine until we wish to know what f(z) is for some number z € C. We
usually mean

o0 d
¢z = lim cr z.
Aslong as the limit exists, we have a function. You know all this; it is your one-variable
complex analysis. We typically start with the functions and prove that we can expand
into series.
Let U c C be open. A function f: U — C is holomorphic (or complex-analytic) if it
is complex-differentiable at every point, that is, if

)= tim [EFO-FE)

exists forall z € U.
£eC—0 5

Importantly, the limit is taken with respect to complex . Another vantage point is to
start with a continuously differentiable* f, and say f = u + i v is holomorphic if it
satisfies the Cauchy—Riemann equations:

Ju Jdvu ou dv

"3y Ay ax
The so-called Wirtinger operators,

dawl(d 9y dwl(d .o
dz  2\dx ‘dy)’ 9z  2\ox ady)’
provide an easier way to understand the Cauchy—Riemann equations. These operators
are determined by insisting on

d a d d

—_—z = 7 = —_— = —_:1‘
5227l 577700 5z2=0, =22

*Holomorphic functions end up being infinitely differentiable anyway, so this hypothesis is not
overly restrictive.
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The function f is holomorphic if and only if

o _

0z =0.

That seems a far nicer statement of the Cauchy-Riemann equations; it is just one
complex equation. It says a function is holomorphic if and only if it depends on z but
not on z (perhaps that does not make a whole lot of sense at first glance). We check:

3_f_1 9_f+l,9_f 1 8u+.8v ou  Jv _1 ou Jdv +£ 8_v+8_u
dz  2\dx dy S 2 2\dx  ady)’

ox lﬁﬂay Ay

T2 dx dy
This expression is zero if and only if the real parts and the imaginary parts are zero.
In other words,

a—u—a—v:O, and a—v+a—u:0.
ax dy dx dy
That is, the Cauchy-Riemann equations are satisfied.
If f is holomorphic, the derivative in z is the standard complex derivative you

know and love: 3 £
a—jZE(Zo) = f'(z0) = Clglg(l) flzo é) — f(ZO).

That is because

A LT PN Y TR
dz 2\dx Jdy| 2\dx Jdy) JIx Idx OIx
L2
i\dy ody) dliy)

A function on C is a function defined on R? as identified above, and so it is a
function of x and y. Writing x = Z&% and y = 5%, think of it as a function of two
complex variables, z and z. Pretend for a moment as if Z did not depend on z. The

Wirtinger operators work as if z and Z really were independent variables. For instance:

d d
— [2223 + zlo] =2z7% +102° and — [2223 + zw] = z%(32%) + 0.
Jz Jz
A holomorphic function is a function “not depending on z.”

The most important theorem in one variable is the Cauchy integral formula.

Theorem 0.1.1 (Cauchy integral formula). Let U C C be a bounded domain where the
boundary U is a piecewise smooth simple closed path (a Jordan curve). Let f: U — C
be a continuous function, holomorphic in U. Orient dU positively (going around counter-
clockwise). Then

1
f(z):ﬁ aug(TC)ZdC forall z € U.
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The Cauchy formula is the essential ingredient we need from one complex variable.
It follows from Green’s theorem* (Stokes’ theorem in two dimensions). You can look
forward to Theorem 4.1.1 for a proof of a more general formula, the Cauchy—Pompeiu
integral formula.

As a differential form, dz = dx + i dy. If you are uneasy about differential forms,
you possibly defined the path integral above directly using the Riemann-Stieltjes
integral in your one-complex-variable class. Let us write down the formula in terms
of the standard Riemann integral in a special case. Take the unit disc

Ddéf{zeC:|z|<1}.

The boundary is the unit circle dD = {z eC:|z| = 1} oriented positively, that is,
counterjclockwise. Parametrize dD by elt where t goes from 0 to 2rt. If C = el then
dC = ie'tdt, and

2n ity ,it
PRSI o (GRS W o (o

= — . dt.
oo C—z 2 Jo et —z

If you are not completely comfortable with path integrals, try to think about how
you would parametrize the path, and write the integral as an integral any calculus
student would recognize.

I venture a guess that 90% of what you learned in a one-variable complex analysis
course (depending on who taught it) is more or less a straightforward consequence of
the Cauchy integral formula. An important theorem from one variable that follows
from the Cauchy formula is the maximum modulus principle (or just the maximum
principle). Let us give its simplest version.

Theorem 0.1.2 (Maximum modulus principle). Suppose U C C is a domain and
f: U — Cis holomorphic. If for some zg € U

sup | f(2)| = |f(z0)l,

zel
then f is constant, that is, f = f(zo).

That is, if the supremum is attained in the interior of the domain, then the function
must be constant. Another way to state the maximum principle is to say: If f extends
continuously to the boundary of a domain, then the supremum of |f(z)| is attained
on the boundary. In one variable you learned that the maximum principle is really a
property of harmonic functions.

*If you wish to feel inadequate, note that this theorem, on which all of complex analysis (and all of
physics) rests, was proved by George Green, who was the son of a miller and had one year of formal
schooling.
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Theorem 0.1.3 (Maximum principle). Let U C C be a domain and h: U — R harmonic,
that is,
2 2
v = O O

— =0.
ox2 oy?

If for some zp € U

sup h(z) = h(zo) or inf h(z) = h(zp),
zel zel

then h is constant, that is, h = h(zg).

In one variable, if f = u + iv is holomorphic for real-valued u and v, then u and v
are harmonic. Similarly, log|f| is harmonic. Locally, a harmonic function is the real
(or imaginary) part of a holomorphic function, so in one complex variable, studying
harmonic functions is almost equivalent to studying holomorphic functions. Things
are decidedly different in two or more variables.

Holomorphic functions admit a power series representation in z at each point a:

o

f) =) alz-a)
k=0
_. . Af
No Z is necessary, since == = 0.
Let us see the proof using the Cauchy integral formula, as we will require this
computation in several variables as well. Given a € C and p > 0, define the disc of
radius p around a

Ap(a) def {zeC:|z—a| <p}.
Suppose U C Cis open, f: U — C is holomorphic, a € U, and Ay(a) C U (that is,

the closure of the disc is in U, and so its boundary dA,(a) is also in U).
For z € Ap(a) and C € dA,(a),

z-ajl_ |z — a| <1
C—a p
In fact, if |z —a| < p’ < p, then |Z=7| < % < 1. Therefore, the geometric series
i(z—a)k_ 1 C-a
= =
D\ -z C-z

converges uniformly absolutely for (z, C) € Ay(a)xdA,(a) (thatis, Yy |75 |k converges
uniformly).
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Let y be the path going around dA,(a) once in the positive direction. Compute

f(C)
f()—2 i

_ f(C)C—a
_Zni ,C—al~z

f(0) i(z_a)de
C—a

dC

T 2ni ), C—a L&
S f(0) k
;0 (Zm u)k+1 dC) (z—a)"

In the last equality, we may interchange the limit on the sum with the integral either
via Fubini’s theorem or via uniform convergence: z is fixed and if M is the supremum

WTC” on dA,(a), then

f(O) (z —a)k

k
C—a\T=a SM('Z al)/ and |2 a|<1.

p p

The key point is writing the Cauchy kernel é as

1 1 C-a
C-z C-aC-z’
and then using the geometric series.
Not only have we proved that f has a power series, but we computed that the

radius of convergence is at least R, where R is the maximum R such that Ar(a) c U.
We also obtained a formula for the coefficients

1 f(Q)
- 2mi J, (- )t

For a set K, denote the supremum norm:

def

Ifllx = suplf(2)].
zeK
By a brute force estimation, we obtain the very useful Cauchy estimates:
1 f(©) ||f||y ”f”)/
ekl = 271 k+1 2 k+1 ¢l =
i J, (C - a) T pk

We differentiate Cauchy’s formula k times (using the ertmger operator),

_f 1 / KIF(Q)

fO@) = 57 @) = 5 o
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and therefore

k
kick = fP(a) = %(a).

Hence, we can control derivatives of f by the size of the function:

ok k!
_f(a) < ”f”)/.
ozk Pk

f ¥ @) =

This estimate is one of the key properties of holomorphic functions, and the reason
why the correct topology for the set of holomorphic functions is the same as the
topology for continuous functions. Consequently, obstructions to solving problems
in complex analysis are often topological in character.

For a further review of one-variable results, see appendix B.



1 | Holomorphic Functions in Several
Variables

1.1 Onto several variables

n times

Let C" = C X C X - -- X C denote the n-dimensional complex Euclidean space. Denote
by z = (z1,22,...,2,) the coordinates of C". Let x = (x1,x2,...,x,) and y =
(Y1, Y2, - - ., yn) denote the coordinates in R”. Identify C" with R2" by letting z = x+iy,
that is, zx = xx + iyx for every k. As in one complex variable, write z = x — iy. We
call z the holomorphic coordinates and z the antiholomorphic coordinates.

Definition 1.1.1. For p = (p1, p2,..., pn) Where px > 0 and a € C", define a polydisc

Ap(a) def {zeC": |z —ar| <prfork=1,2,...,n}.

Call a the center and p the polyradius or simply the radius of the polydisc A,(a). If
p > 0is a number, then

Ap(a) def {z e C": |z — ag| <pf0rk:1,2,...,n}.

In two variables, a polydisc is sometimes called a bidisc. As there is the unit disc D in
one variable, so is there the unit polydisc in several variables:

D"=DXDxX---xD=A1(0)={z€C": |z| <1lfork=1,2,...,n}.

In more than one complex dimension, it is difficult to draw exact pictures for lack
of real dimensions on our paper. We visualize the unit polydisc in two variables
(bidisc) as in Figure 1.1 by plotting against the modulus of the variables.

Recall the Euclidean inner product on C":

def _ _ _
(z,w) = z1W1 + 20Wy + -+ - + 2, Wy,.

The inner product gives us the standard Euclidean norm on C":

def

Izl T V(z,2) = V|z12 + 222 + - - + |z 2.
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22|

oD?
|D2

> |z1]

Figure 1.1: The bidisc.

This norm agrees with the standard Euclidean norm on R?". Define balls as in R*":

def

By(a) = {z€C": |z -al <p},

And the unit ball,

B, € B1(0) = {z e C": [zl < 1}.

A ball centered at the origin can also be pictured by plotting against the modulus
of the variables, since the inequality defining the ball only depends on the moduli
of the variables. Not every domain can be drawn like this, but if it can, it is called a
Reinhardt domain, more on this later. A picture of By is in Figure 1.2.

22|

dB;

> |z1]

Figure 1.2: The ball B, as a Reinhardt domain.

Definition 1.1.2. Let U C C" be open. A function f: U — C is holomorphic if it is
locally bounded* and holomorphic in each variable separately. That s, f is holomorphic
if it is locally bounded and complex-differentiable in each variable separately:

lim fzi,..zk+ &, ,zn) — f(2)
£eC—0 é

existsforallze Uand allk =1,2,...,n.

*For every p € U, there is a neighborhood N of p such that f|y is bounded. Equivalently, f is
bounded on compact subsets of U. It is a deep result of Hartogs that we might in fact just drop “locally
bounded” from the definition and obtain the same set of functions.
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In this book, the words “differentiable” and “derivative” (without the “complex-")
refer to plain-vanilla real differentiability.

As in one variable, we define the Wirtinger operators

8d_ef1(8 .8) 8d_ef1(& 8)

An alternative definition is to say that a continuously differentiable function f: U — C
is holomorphic if it satisfies the Cauchy—Riemann equations

d
Tf=0 fork=1,2,...,n.

0z k
For holomorphic functions, using the natural definition for partial derivatives obtains

the Wirtinger %k. Namely, if f is holomorphic, then

af . fzi,..zk+&, ..., zn) — f(2)
8_21((2)_53({20 3 '

Due to the following proposition, the alternative definition using the Cauchy-
Riemann equations is just as good as the definition we gave.

Proposition 1.1.3. Let U C C" be an open set and suppose f: U — C is holomorphic.
Then f is infinitely differentiable.

Proof. Suppose A = Ap(a) = Ay X -+ X Ay is a polydisc centered at a, where each A

is a disc, and suppose A C U, that is, f is holomorphic on a neighborhood of the
closure of A. Let z be in A. Orient JA; positively and apply the Cauchy formula (after
all f is holomorphic in z1):

dcy.

fz) = 1 f(Ci, 22, ,2n)

T 2mi E CG1—2z1

Apply it again on the second variable, again orienting JA; positively:

— 1 / f(Cl/ CZ/Z3I"'IZTZ)
2mi)? Joa, Jon, (C1—z1)(C2 — 22)

Applying the formula n times, we obtain

1 f(C1,Copn, Ca)
flz)= (2mi)" /3A1 /aAz /a (G =z1)(C2—22) -+ (Cp — zp) ACu---dCadCr. (L1)

As f is bounded on the compact set dA; X - - - X dA,, we find that f is continuous in
A, and hence on U. We may differentiate underneath the integral via the standard
Leibniz rule, because the integrand and its partial derivatives with respect to x; and
Yk, where zy = xi + iy, are all continuous, as long as z is a positive distance away
from dA; X - - - X dA,. We may differentiate as many times as we wish. O

f(z) dCrdC;.
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In (1.1) above, we derived the Cauchy integral formula in several variables. To
write the formula more concisely, we apply Fubini’s theorem to write it as a single
integral. We will write it down using differential forms. If you are unfamiliar with
differential forms, think of the integral as the iterated integral above, and you can read
the next few paragraphs a little lightly. It is enough to understand real differential
forms; we simply allow complex coefficients here. See appendix C for an overview of
differential forms, or Rudin [R1] for an introduction with all the details.

Given real coordinates x = (x1,...,X;), a one-form dxy is a linear functional on
t_angent Ve.ctors such that dxk(a%k) =1land dxk(aixg) =0if k # {. As zx = xx + iyx and
Zk = Xk — Yk,

dzy = dxi +idyg, Azy = dxp — i dyx.

Let 61‘2 be the Kronecker delta, that is, 6£ =1,and (Si = 0if k # {. Then, as expected,

)\ o ) d ()
de (82(1) = 6k’ de (32@) O, dzk (32@) O, dzk (82@) = 6k'

One-forms are the objects
n

Z ax dzi + Prdz,

k=1
where a and By are functions (of z). Two-forms are combinations of wedge products,
w A 1, of one-forms. A wedge of a two-form and a one-form is a three-form, etc.
An m-form is an object that can be integrated on a so-called m-chain, for example,
a m-dimensional surface. The wedge product takes care of the orientation as it is
anticommutative on one-forms: For one-forms w and 1, we have w A1 = —n A w.

At this point, we need to talk about orientation in C”, that is, the ordering of the

real coordinates. There are two natural real-linear isomorphisms of C" and R?". We
identify z = x + iy as either

(x,y)=(X1,-.., X0, Y1,---, Yn) or (x1, 1, %2, Y2, - -, Xn, Yn)-

If we take the natural orientation of R?", it is possible (if 1 is even) that we obtain
two opposite orientations on C" (if n is even, the real linear map that takes one
ordering to the other has determinant —1). The orientation we take as the natural
orientation of C" (in this book) corresponds to the second ordering above, that is,
(x1,Y1,.-.,Xn, Yn). Either isomorphism may be used in computation as long as it is
used consistently, and the underlying orientation is kept in mind.

Theorem 1.1.4 (Cauchy integral formula). Let A ¢ C" be a polydisc. Suppose f: A — C
is a continuous function holomorphic in A. WriteI' = dA1X- - - X dA,, oriented appropriately
(each dAy oriented positively). Then for z € A

(Cl,Cz,.. ,Cn)
(2 1) /(Cl —z21) (o —22) - (Ca Zn)dCU\dCz/\---/\an,
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We stated a more general result where f is only continuous on A and holomorphic
in A. The proof of this slight generalization is contained within the next two exercises.

Exercise 1.1.1: Suppose f: D2 — C is continuous and holomorphic on D?. For every
0 € R, prove

gu&) = f(&, %)  and  g(&) = f(e'%,€)

are holomorphic in D.

Exercise 1.1.2: Prove the theorem above, that is, the slightly more general Cauchy integral
formula where f is only continuous on A and holomorphic in A.

The Cauchy integral formula shows an important and subtle point about holomor-
phic functions in several variables: The value of the function f on A is completely
determined by the values of f on the set I', which is much smaller than the boundary
of the polydisc JA. In fact, I'is of real dimension 7, while the boundary of the polydisc
is of real dimension 2n — 1. The setI' = dA; X - -- X dA,, is called the distinguished
boundary. See Figure 1.3 for the distinguished boundary of the bidisc.

A I'=0D x JdD
|22] o~

oD?
DZ

> |z1]

Figure 1.3: The distinguished boundary of D?.

The set I is a 2-dimensional torus, like the surface of a donut. Whereas the set
dD? = (D x D) U (D x dD) is the union of two filled donuts, or more precisely, it is
both the inside and the outside of the donut put together, and these two things meet
on the surface of the donut. So the set I is quite small in comparison to the entire
boundary dD?.

Exercise 1.1.3: Suppose A is a polydisc, T its distinguished boundary, and f: A — C is
continuous on A and holomorphic on A. Prove | f(z)| achieves its maximum on I

Exercise 1.1.4: A ball and is different from a polydisc. Prove that for every p € dB,, there
exists a continuous f: B, — C, holomorphic on By, such that |f(z)| achieves a strict
maximum at p.
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Exercise 1.1.5: Show that in the real setting, differentiable in each variable separately does
not imply differentiable even if the function is locally bounded. Let f(x,y) = xeTyyz outside
the origin and f(0,0) = 0. Prove that f is a locally bounded function in R?, which is
differentiable in each variable separately (all partial derivatives exist at every point), but f

is not even continuous. There is something very special about the holomorphic category.

Exercise 1.1.6: Suppose U C C" is open. Prove that f : U — C is holomorphic if and only
if f is locally bounded and for every a, b € C", the function C +— f(Ca + b) is holomorphic
on the open set {L € C: Ca+b e U}.

Exercise 1.1.7: Prove a several complex variables version of Morera’s theorem (see
Theorem B.4). A triangle T C C" is the closed convex hull of three points, so in-
cluding the inside. Orient T in some way and orient dT accordingly. A triangle T lies
in a complex line if its vertices a, b, c satisfy C(b — a) = ¢ — a for some C € C. Suppose
UcCtisopenand f: U — C is continuous. Prove that f is holomorphic if and only if

f(Z) de =0
aT

for every triangle T C U that lies in a complex line, and every k = 1,2, ...,n. Hint: The
previous exercise may be useful.

Exercise 1.1.8: Let f: D2\ {0} — C be continuous and holomorphic on D? \ {0}.
a) Prove that f is bounded. Hint: Consider the functions & = f(&,a)and & +— f(a, &)
for different a.
b) Using the Riemann extension in one variable, prove that there exists a continuous

F:D2 — C, holomorphic on D2, such that f=Fon W\ {0}.

1.2 | Power series representation

As you noticed, writing out all the components can be a pain. Just as we write vectors
as z instead of (z1, z2, . . ., z,), we similarly define the so-called multi-index notation to
deal with more complicated formulas such as the ones above.

Let a € Nj be a vector of nonnegative integers (where No = N U {0}). We write

def def
28 E M0z g0, |2 = |z z2]%2 - - |2,
1 def 1 Z def (21 2Z2 Zn
= lez...zn, w wllwzl-.-,wn 4

def
= dz:edzl/\dzz/\---/\dzn,

def def
ol = a1 +ax+---+ay, al = arlag!---ay!.



1.2. POWER SERIES REPRESENTATION 19

We can also make sense of this notation, especially the notation z¢, if a € Z", that
is, if it includes negative integers. Although usually, a is assumed to be in Nj.
Furthermore, when we use 1 as a vector, it means (1,1, ...,1). If z € C", then

a1+1
1

a+l _

1 1
1-z=0-21,1-22,...,1=2z2y), or > — 5 ar+l | an+l

29z

It goes without saying that when using this notation it is important to be careful to

always realize which symbol lives where, and most of all, to not get carried away. For

instance, we can interpret % in different ways depending on whether we interpret 1

as a vector or not, and whether we expect a vector or a number. Best to just keep to

the limited set of cases as given above, and only use it when it is clear what is meant.
In this notation, the Cauchy formula becomes the perhaps deceptively simple

_ 1 f©
2mi)" JrC—z

f(2) C.

Let us move on to power series. For simplicity, we start with power series at the
origin. Using the multi-index notation, we write such a series as

Z caz”.

n
aeNO

You must admit that the above is far nicer to write than writing, for example, in C3,

i i i ckgmzll‘zgz;”, (1.2)

k=0 ¢=0 m=0

which is not even exactly the definition of the series sum (see below). When it is
clear from context that we are talking about a power series and all the powers are
nonnegative, we write simply

Z caz”.

o

It is important to note what this means. The sum does not have a natural ordering.
We are summing over « € N, and there is no natural ordering of Nj. It makes no
sense to talk about conditional convergence. When we say the series converges, we
mean absolutely. Fortunately, power series converge absolutely, so the ordering does
not matter. If you want to write the limit in terms of partial sums, you pick some
ordering of the multi-indices, a(1), @(2), ..., and then

m

a_ 1
Z oz = 1111_1)20 Ca(k)Z

a k=1

a(k)

By the Fubini theorem (for sums) this limit is equal to the iterated sum such as (1.2).
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A power series )}, c,z® converges uniformly absolutely for z € X when ) ,|c,z“]
converges uniformly for z € X. The geometric series in several variables is the series
2.0 2% For z € D" (unit polydisc),

1 1 N N N
1-2 = 1-2z1)1=-22)---(1—-2,) = (Zz1k) (ZZZk)--~(Zan)

k=0 k=0 k=0
[Se) [Se) [Se]
=33 (Zlklznkz...znkn) =3
k1=0 k=0 k=0 a

The series converges uniformly absolutely on all compact subsets of the unit polydisc:
Any compact set in the unit polydisc is contained in a closed polydisc A centered at
0 of radius 1 — € for some € > 0. The convergence is uniformly absolute on A. This
claim follows by simply noting the same fact for each factor is true in one dimension.
Holomorphic functions are precisely those that allow a power series expansion:

Theorem 1.2.1. Let A = Ay(a) C C" be a polydisc. Suppose f : A — C is a continuous
function holomorphic in A. Then on A, f is equal to a power series converging uniformly
absolutely on compact subsets of A:

flz) = Z calz — )" (1.3)

[24

Conversely, if f: A — C is defined by (1.3) converging uniformly absolutely on compact
subsets of A, then f is holomorphic on A.

The hypothesis that f is continuous on A is not necessary. We will prove in a
moment that the power series is unique and hence we could have used an arbitrary
smaller polydisc centered at a for the development.

Proof. Suppose a continuous f: A — C is holomorphic on A. Let T = dA; X - X A,
be oriented positively. Take z € A and C € I'. As in one variable, write the Cauchy

kernel as
1 1 1 1 z—a\"
C—z:C—a(l—%):C—aZa:(C—a) '

Interpret the formulas as csz =

andz%‘; =

1 1 - __ 1
(C1—z1)+(Cu—zu)” C-a (Cr=a1)-(Cu=an)
). The multivariable geometric series is a product of the geometric

Z1—a Zpn—0n
Ci—ar’ "7 Cy—ay

series in one variable, and the geometric series in one variable is uniformly absolutely
convergent on compact subsets of the unit disc. So the series above converges
uniformly absolutely for (z, C) € K X I for every compact subset K of A.
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For z € A,

1 f(C)d
Ceri)t JrC-z

1 f(0) z—a\”

- Qnri)" rC—ﬂZa:(C—ﬂ) ac

~ 1 f(©) _ a
‘Za:((zm‘)” r(C—a)**! dc) e

The last equality follows by Fubini or uniform convergence just as it does in one
variable. Uniform absolute convergence (as z moves) on compact subsets of the final
series follows from the uniform absolute convergence of the geometric series. It is
also a direct consequence of the Cauchy estimates below. We have shown that

_ 1 f(0)
@ni)" Jr (C-a)*

f(2) C

f(z) = Z ca(z —a)*, where ¢,

[24

Notice how strikingly similar the computation is to one variable.

Let us prove the converse statement. The limit of the series is continuous, as it
is a uniform-on-compact-sets limit of continuous functions, and hence it is locally
bounded in A. Next, we restrict to each variable in turn (fixing the others),

Zi Z co(z —a)”.
o

This one-variable function is holomorphic as it is a uniform limit on compact subsets
of holomorphic functions. Thus f is holomorphic by definition. O

The converse statement also follows by applying the Cauchy-Riemann equations
to the series termwise. We leave that as an exercise. First, one must show that
the term-by-term derivative series also converges uniformly absolutely on compact
subsets. Then one applies the theorem from real analysis about derivatives of limits:
If a sequence of functions and the sequences of its derivatives converge uniformly,
then the derivatives converge to the derivative of the limit.

Exercise 1.2.1: Prove the claim above that if a power series converges uniformly absolutely
on compact subsets of a polydisc A, then the term-by-term derivative converges. Do the
proof without using the analogous result for single-variable series.

A third way to prove the converse statement of the theorem is to note that
partial sums are holomorphic and write them using the Cauchy formula. Uniform
convergence shows that the limit also satisfies the Cauchy formula, and differentiating
under the integral obtains the result.
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Exercise 1.2.2: Follow the logic above to prove the converse of the theorem without using
the analogous result for single-variable series. Hint: Let A” C A" C A be polydiscs with
the same center a such that A” C A" and A’ C A. Apply Cauchy formula on A’ for z € A”.

Exercise 1.2.3: Suppose that A C C" is a possibly unbounded polydisc centered at a € C",
where by possibly unbounded we mean that some of the factors can be all of C (that is, some
components of the polyradius are allowed to be o). Prove that if f: A — C is holomorphic,
then there is a power series representation )., c,(z — a)* converging uniformly on compact
subsets to f on A.

Exercise 1.2.4: One can also do a Laurent series expansion. Suppose a € C" and
U=A X XA XA X XA, € C where each Ay is a disc centered at ay or
C, and A, = A} \ {ar}. Prove that if f: U — C is holomorphic, then there is a series
representation )., co(z — a)®, where ay41, . .., a0y now range over all integers, converging
uniformly on compact subsets to f on U.

Proposition 1.2.2. Let A = Ay(a) C C" be a polydisc, and T its distinguished boundary.
Suppose f: A — C is a continuous function holomorphic in A. Then, for z € A,

dlalf 1 alf(Q)
dz% () = @2nri)" Jr (¢ - z)** .

In particular, if f is given by (1.3), then

1 9lelf

a! Jz«

(a),

and we have the Cauchy estimates:

[y

lca| < T

Consequently, the coefficients of the power series depend only on the derivatives
of f at a (and so on the values of f in an arbitrarily small neighborhood of 4) and not
the specific polydisc used in the theorem.

Proof. By the Leibniz rule, if z € A (not on the boundary), we can differentiate under
the integral in the Cauchy formula. We are talking regular real partial differentiation,
and we use it to apply the Wirtinger operator. The point is that

ERIE! ]: k
9ze [ (C—z0) | (Co—zp)!
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Let us do a single derivative to get the idea:

f Jd f(C1/C2/---/Cn)
821( ) 821 l(ZﬂZ) /(Cl_zl)(CZ_ZZ)"'(Cn _Zn) dCl /\dCZ/\ /\an

_ 1 f(C1, 8., Cn)
@ni)" Jr (€1 — 21)*(Ca = 22) -+ - (T — 2zn)

ACLANdC A --- NdT,.

How about we do it a second time:

82f 1 2f(c1/ CZ/---/CH)

ACiNdC A+~ ANdC,.
(92 2) = 2ni)" Jr (G = 21)%(Ca = z2) - (T — 23) cinde ‘

Notice the 2 before the f. Next derivative, a 3 is coming out. After m derivatives in z1,
you get the constant m!. It is exactly the same thing that happens in one variable. A
moment’s thought will convince you that the following formula is correct for & € N

'“'f( ) o 1 a! £(Q)

dz« @2ni)" Jr (¢ - z)*™ ac.

Therefore,

Ialf
a o

(a).

alcy =

We obtain the Cauchy estimates as before:
ol f

1 al f(0) al|f(0)] al
9z (a)'_ (zm')”/r(c—a)“+1 | 2n)" / patl |C|SP“”f|lr' N

As in one-variable theory, the Cauchy estimates prove the following proposition.

Proposition 1.2.3. Let U C C" be an open set. Suppose the sequence fy: U — C converges

uniformly on compact subsetsto f : U — C. Ifevery fy is holomorphic, then f is holomorphic

olal fi olal f
and the sequence { azaf} converges to —

uniformly on compact subsets.

‘ Exercise 1.2.5: Prove the proposition above.

Given a power series, let W C C" be the set of all points where the series converges
absolutely. The interior of W is called the domain of convergence of the series. In one
variable, every domain of convergence is a disc and hence is described with a single
number (the radius). In several variables, the domain of convergence is not as easy to
describe. For the multivariable geometric series, the domain of convergence is the
unit polydisc, but in general, the domain of convergence is more complicated.
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Example 1.2.4: In C?, the series

o]

S

k=0
converges absolutely exactly on the set

{zeC: |z <1}u{zeC?:z =0}

This set is not quite a polydisc. It is neither an open set nor a closed set, and its closure
is not the closure of the domain of convergence, which is the set {z € C?: |z < 1}.

Example 1.2.5: The series
2,55
k=0
converges absolutely exactly on the set
{z€C?:|z1z0| < 1}.

The picture is definitely more complicated than a polydisc. See Figure 1.4.

22|

vy

|z1]

ko k

Figure 1.4: Domain of convergence of }; z;z,.

Exercise 1.2.6: Find the domain of convergence of 3 , %z’l‘ zé and draw the corresponding

picture.

Exercise 1.2.7: Find the domain of convergence of 3’y ckgzll‘ zg and draw the corresponding
picture if cgp = 2k coe = cxo = 1 and cip = 0 otherwise.

Exercise 1.2.8: Suppose a power series in two variables can be written as a sum of a power
series in z1 and a power series in z. Show that the domain of convergence is a polydisc.
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A domain U c C" is a Reinhardt domain if whenever z € U and |zx| = |wk| for all
k, then w € U. The domains we were drawing so far are Reinhardt domains. They
are exactly the domains that you can draw by plotting what happens for the moduli
of the variables. A domain is a complete Reinhardt domain if z € U, then m cu
where v = (r1,...,1,) and r¢ = |z for all k. So a complete Reinhardt domain is a
union (possibly infinite) of polydiscs centered at the origin.

Proposition 1.2.6. Let ), c,z® be a convergent power series. Prove that its domain of
convergence is a complete Reinhardt domain.

Exercise 1.2.9: Prove Proposition 1.2.6.

Theorem 1.2.7 (Identity theorem). Let U C C" be a domain (connected open set) and let
f: U — C be holomorphic. If f|n = 0 for a nonempty open subset N C U, then f = 0.

Proof. Let Z be the set where all derivatives of all orders of f are zero; then N C Z,
so Z is nonempty. The set Z is closed in U as all derivatives are continuous. Take an
arbitrary a € Z. Expand f in a power series around a converging to f in a polydisc
Ap(a) C U. As the coefficients are given by derivatives of f, the power series is the
zero series. Hence, f is identically zero in A,(a). Therefore, Z is open. As Z is also
closed and nonempty, and U is connected, we have Z = U. m|

The theorem is often used to show that if two holomorphic functions f and g
are equal on a small open set, then f = ¢. In one variable (see Theorem B.7), the
hypothesis that N has a limit pointin U (rather than being open) is sufficient. In several
variables, things are not so simple: f(z1,z2) = z1 is zero on the set {z € C?:z; =0},
all of whose points are its limit points. When n > 2, zeros are never isolated, see
Exercise 1.2.21. For now, let us move on.

Theorem 1.2.8 (Maximum principle). Let U C C" be a domain. Let f: U — C be

holomorphic and suppose |f (z)| attains a local maximum at some a € U. Then f = f(a).

Proof. Suppose |f(z)| attains a local maximum at 4 € U. Consider a polydisc
A=A x--- XA, CcU centered at a. The function

Zl Hf(zllab---/an)

is holomorphic on the disc A; and its modulus attains the maximum at the cen-
ter. Therefore, it is constant by the maximum principle in one variable, that is,
f(z1,a2,...,a,) = f(a) for all z; € A;. For any fixed z; € A1, consider the function

z2 > f(z1,22,43,...,4,).

This function, holomorphic on the disc A, again attains its maximum modulus at
the center of A and hence is constant on A. Iterating this procedure, we obtain that
f(z) = f(a) for all z € A. The identity theorem says that f(z) = f(a) forallz € U. O
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Exercise 1.2.10: Let V be the volume measure on R*" and hence on C". Suppose A
centered at a € C", and f is a function holomorphic on a neighborhood of A. Prove

1
fla) = m/Af(C) dv(Q),

where V(A) is the volume of A and dV is the volume measure. That is, f(a) is an average
of the values on a polydisc centered at a.

Exercise 1.2.11: Prove the maximum principle by using the Cauchy formula instead. Hint:
Use the previous exercise.

Exercise 1.2.12: Prove a several variables analogue of the Schwarz’s lemma: Suppose f

is holomorphic in a neighborhood of B,,, f(0) = 0, and for some k € N we have aa‘j{ 0)=0

whenever || < k. Further suppose for all z € By, |f(z)| < M for some M. Show that

If(z)| < M|z||*  forallz € B,.

Exercise 1.2.13: Apply the one-variable Liouville’s theorem to prove it for several variables.
That is, suppose f: C" — C is holomorphic and bounded. Prove f is constant.

Exercise 1.2.14: Improve Liouville’s theorem slightly in C2. A complex line though the
origin is the image of a linear map L: C — C".

a) Prove that for every collection of finitely many complex lines through the origin, there
exists an entire nonconstant holomorphic function (n > 2) bounded (hence constant)
on these complex lines.

b) Prove that if an entire holomorphic function in C? is bounded on countably many
distinct complex lines through the origin, then it is constant.

¢) Find a nonconstant entire holomorphic function in C? that is bounded on countably
many distinct complex lines through the origin.

Exercise 1.2.15: Prove the several variables version of Montel’s theorem: Suppose { fi }
is a uniformly bounded sequence of holomorphic functions on an open set U C C". Show
that there exists a subsequence { f;} that converges uniformly on compact subsets to some
holomorphic function f. Hint: Mimic the one-variable proof.

Exercise 1.2.16: Prove a several variables version of Hurwitz’s theorem: Suppose { fi}
is a sequence of nowhere zero holomorphic functions on a domain U C C" converging
uniformly on compact subsets to a function f. Show that either f is identically zero or that
f is nowhere zero. Hint: Feel free to use the one-variable result.
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Exercise 1.2.17: Suppose p € C" is a point and D C C" is a ball centered at p € D. A
holomorphic function f: D — C can be analytically continued along a path y: [0,1] —
C", y(0) = p, if for every t € [0, 1] there exists a ball D; centered at y(t), where Dy = D,
and a holomorphic function fi: Dy — C, where fo = f, and for each to € [0, 1] there is an
€ > 0 such that if |t — to| < €, then f; = f;, in Dy N Dy,. Prove a several variables version
of the Monodromy theorem: If U C C" is a simply connected domain, D C U a ball, and
f: D — C a holomorphic function that can be analytically continued from p € D to every
q € U, then there exists a unique holomorphic function F: U — C such that F|p = f.

Definition 1.2.9. Let U C C" be an open set. Define O(U) to be the ring of holomorphic
functions f: U — C. The letter O is used to recognize the fundamental contribution
to several complex variables by Kiyoshi Oka*.

The set 6(U) really is a commutative ring under pointwise addition and mul-
tiplication (exercise below). For us, O(U) will always mean the set of C-valued
functions, however, in the literature the notation is sometimes used to simply denote
holomorphicity no matter the codomain.

Exercise 1.2.18: Prove that O(U) is actually a commutative ring with the operations

(f+8)2) = f(2) +g(z),  (f&)(2) = f(2)8(2).

Exercise 1.2.19: Show that O(U) is an integral domain (has no zero divisors) if and only
if U is connected. That is, show that U being connected is equivalent to showing that if
h(z) = f(z)g(z) is identically zero for f, g € O(U), then either f or g is identically zero.

A function F defined on a dense open subset of U is meromorphic if locally near
every p € U, F = f/g for f and g holomorphic in some neighborhood of p. It is from
a deep result of Oka that, for domains U c C", every meromorphic function can be
represented as f/g globally. That is, the ring of meromorphic functions is the field of
fractions of ©(U). This problem is the so-called Poincaré problem, and its solution is
no longer positive once one generalizes U to complex manifolds. The points of U
through which F does not extend holomorphically are called the poles of F. Namely,
poles are the points where ¢ = 0 for every possible representation f/g. Unlike in one
variable, in several variables, poles are never isolated points. There is also a new type
of singular point for meromorphic functions in more than one variable:

Exercise 1.2.20: In two variables, one can no longer think of a meromorphic function F
having the value co when the denominator vanishes. Show that F(z, w) = %/w achieves all
values of C in every neighborhood of the origin. We call the origin a point of indeterminacy.

*See https://en.wikipedia.org/wiki/Kiyoshi_Oka.
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Exercise 1.2.21: Prove that zeros are never isolated in C" for n > 2. Hint: Consider
z1 = f(z1,22,...,2n) as you move zy, . . ., z, around, and use, perhaps, Hurwitz.

1.3 Derivatives

Given a function f = u + iv, the complex conjugate is f = u — iv, defined simply
by z = % When f is holomorphic, then f is called an antiholomorphic function.
An antiholomorphic function is a function that depends on z but not on z. So if we
write the variable, we write f as f(Z). Let us see why this makes sense. Using the
definitions of the Wirtinger operators,

of _of of _(9f
—==—==0, — ===, forall{ =1,...,n.
dzy  0Zy 0Zy 0z¢ ora "
For functions that are neither holomorphic or antiholomorphic, we pretend they
depend on both z and z. Since we want to write functions in terms of z and Zz, let us

tigure out how the chain rule works for Wirtinger derivatives, rather than writing
derivatives in terms of x and y.

Proposition 1.3.1 (Complex chain rule). Suppose U C C" and V. C C™ are open, and
suppose f: U — V and g: V — C are (real) differentiable mappings. Write the variables
asz=(z1,...,zp) eU CcC'andw = (wy,..., wy) €V CC". Thenfort =1,...,n,

0 B z 8g 3fk (9g 8fk

wlgofl=) 722k 28 2h),

9 . dg dfy g If (4
g k g k

2 o= (22, 23k

p dwy dZy  Jdwy 0Zy

Proof. Write f = u +1iv,z = x +iy, w = s + it, and let f be a function of z, and g be a
function of w. The composition plugs in f for w, and so it plugs in u for s, and v for ¢.
Using the standard chain rule,

g duy  9g Jvy .(8g%+ 8g%))

2 (mm

(8g l(auk .8uk) g 1 (90k .8vk))

Ik 2\ox oy

8_gc9uk + (9_g8vk
dsy dzy Oty dzy )



1.3. DERIVATIVES 29

Fork=1,...,m,

9 _0,0 o _ (2 3
sk B owr 0wy’ otk - Jwy 0wy
Continuing:
J _ N\ (98 dux | 98 vy

7289 1= 2\ 552z, * 9ty 2z
_i dg 8uk+ g duy i dg dvx  dg Juk
- pa Jwy dzy Wy dzy Jwy dzy  JdWk Izy
_ i 3g 8uk +iavk + 8g auk _ i&vk
B pa Jdwy \ dzp 0zy 0wy \ dzy 0zy
-3 (28 %k, 98 o
B dwy dzp 0wy dzy )

k=1
The z derivative works similarly. O

Because of the proposition, when we deal with a possibly nonholomorphic
function f, we often write f(z,z) and treat f as a function of z and Z.

Remark 1.3.2. It is good to notice the subtlety of what we just said. Formally it seems
as if z and z are independent variables when taking derivatives, but in reality, they
are not independent if we actually wish to evaluate the function. Under the hood, a
smooth function that is not necessarily holomorphic is really a function of the real
variables x and y, where z = x + iy.

Remark 1.3.3. We could have swapped z and Z, by flipping the bars everywhere.
There is no difference between the two, they are twins in effect. We just need to know
which one is which. After all, it all starts with taking the two square roots of —1 and
deciding which one is i (remember the chickens?). There is no “natural choice” for
that, but once we make that choice we must be consistent. And once we picked which
root is i, we also picked what is holomorphic and what is antiholomorphic. This is a
subtle philosophical as much as a mathematical point.

Definition 1.3.4. Let U C C" be open. A mapping f: U — C™ is said to be
holomorphic if each component is holomorphic. That is, if f = (f1,..., fu), then each
fx is a holomorphic function.

As in one variable, the composition of holomorphic functions (mappings) is
holomorphic.

Theorem 1.3.5. Let U C C" and V C C™ be open sets, and suppose f: U — V and
g: V. — C1 are both holomorphic. Then the composition g o f is holomorphic.
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Proof. The proof is almost trivial by chain rule. Again let ¢ be a function of w € V
and f be a functionof z€ U. For{ =1,...,nandv =1,...,q, compute

0 0
2 O ag, afd gl |
Q_Zf[gvof]_kzz; aw](/zgﬁ‘;%a—zg =0. O

For holomorphic mappings the chain rule simplifies, and it formally looks like
the familiar vector calculus rule. Suppose again U C C" and V c C™ are open, and
f:U — Vand g: V — C are holomorphic. Name the variables z = (z1,...,2z,) €
UcC'"andw = (w1, ..., wy) € V C C™. In formula (1.4) for the z; derivative, the
wy derivative of g is zero and the z; derivative of fk is also zero because f and g are
holomorphic. Therefore, for ¢ =1,...,n,

Exercise 1.3.1: Using only the Wirtinger derivatives, prove that a holomorphic function
that is real-valued must be constant.

Exercise 1.3.2: Let f be a holomorphic function on C". When we write f we mean the
function z +— f(z), and we usually write f(Z) as the function is antiholomorphic. However,

if we write f(z) we really mean z — f (2), that is, composing both the function and the
argument with conjugation. Prove z — f(z) is holomorphic, and prove f is real-valued on

R" (when y = 0) if and only if f(z) = f(z) forall z € C.

For a U c C", a holomorphic mapping f: U — C", and a point p € U, define the
holomorphic derivative, sometimes called the (holomorphic) Jacobian matrix,

def | 9fk
Df()* | )| -

The notation f’(p) = D f(p) is also used. Unless otherwise stated, if the mapping is
holomorphic, Jacobian will refer to the holomorphic Jacobian.

Exercise 1.3.3: Suppose U C C" is open, R" is naturally embedded in C". Consider a
holomorphic mapping f: U — C™ and suppose that f|ynrs maps into R™ c C™. Prove
that given p € U N R", the real Jacobian matrix at p of the map f|unr: U NR" — R™
is equal to the holomorphic Jacobian matrix of the map f at p. In particular, D f(p) is a
matrix with real entries.

By the holomorphic chain rule above, as in the theory of real functions, the
derivative of the composition is the composition of derivatives (multiplied as matrices).
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Proposition 1.3.6 (Chain rule for holomorphic mappings). Let U c C" and V c C"
be open sets. Suppose f: U — V and g: V — CF are both holomorphic, and p € U. Then

D(g o f)(p) = Dg(f(p)) Df(p).
In shorthand, we often simply write D(g o f) = DgDf.

Exercise 1.3.4: Prove the proposition.

Suppose U ¢ C", p € U, and f: U — C™ is differentiable at p. Since C" is
identified with R?", the mapping f takes U C R?" to R?". The normal vector-
calculus Jacobian at p of this mapping (a 2m X 2n real matrix) is called the real Jacobian,
and we write it as Dr f(p).

Proposition 1.3.7. Let U c C" be open, p € U, and f: U — C" be holomorphic. Then

|det Df (p)|* = det Dg f (p)-

The expression det D f (p) is called the (holomorphic) Jacobian determinant and clearly
it is important to know if we are talking about the holomorphic Jacobian determinant
or the standard real Jacobian determinant det D f(p). Recall from vector calculus
that if the real Jacobian determinant det Dr f (p) of a smooth mapping is positive,
then the mapping preserves orientation. In particular, the proposition says that
holomorphic mappings preserve orientation.

Proof. Write f as (Re f1,Im f1,...,Re f,,Im f,) as a function of (x1,y1,...,Xn, Yn),
using our identification of C" and R?". The statement is about the two Jacobians at p,
that is, the derivatives at p. Hence, we can assume that p = 0 and f is complex linear,
f(z) = Az for some n X n matrix A. It is just a statement about matrices. The matrix
A is the (holomorphic) Jacobian matrix of f. Let B be the real Jacobian matrix of f.
We change the basis of B to be (z,z) using z = x + iy and Z = x — iy on both
the target and the source. The change of basis is some invertible complex matrix M
such that M~!BM (the real Jacobian matrix B in this new basis) is a matrix of the
derivatives of (f1, ... ,fn,fl, e ,fn) in terms of (z1,...,2u,21,...,2Zy). Thatis,
1 1A 0
M™'BM = l 0 gl .

Thus

det(B) = det(M'MB) = det(M~'BM)
= det(A) det(A) = det(A) det(A) = |det(A)|*. O
The regular (real) implicit function theorem and the chain rule give that the
implicit function theorem holds in the holomorphic setting. The main thing to

check is to verify that the solution given by the standard implicit function theorem is
holomorphic, which follows by the chain rule.
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Theorem 1.3.8 (Implicit function theorem). Let U C C" x C™ be an open set, let
(z,w) € C" x C™ be our coordinates, and let f: U — C™ be a holomorphic mapping. Let
(z°, w®) € U be a point such that f(z°,w®) = 0 and such that the m x m matrix

e

aZUg Y,

is invertible. Then there exists an open set V. C C" with z° € V, open set W c C™ with
w® € W, VX W c U, and a holomorphic mapping g: V. — W, with ¢(z°) = w° such that
for every z € V, the point g(z) is the unique point in W such that

f(z,g(z)) =0.

Exercise 1.3.5: Prove the holomorphic implicit function theorem above. Hint: Check that
the normal implicit function theorem for C* functions applies, and then show that the g
you obtain is holomorphic.

Exercise 1.3.6: State and prove a holomorphic version of the inverse function theorem.

Exercise 1.3.7: Suppose U C C" is a domain and f: U — C™ a holomorphic mapping.
a) Prove the vector-valued version of the maximum principle: If || f(z)|| achieves a (local)
maximum at p € U, then f is constant.
b) Find a counterexample to a vector-valued mimimum principle: Find an f such that
|| f (z)|| achieves a nonzero minimum, but where f is not constant.

1.4 | Inequivalence of ball and polydisc

Definition 1.4.1. Two domains U C C" and V c C" are said to be biholomorphic or
biholomorphically equivalent if there exists a one-to-one and onto holomorphic map
f: U — V such that the inverse f': V — U is holomorphic. The mapping f is said
to be a biholomorphic map or a biholomorphism.

As function theory on two biholomorphic domains is the same, one of the
main questions in complex analysis is to classify domains up to biholomorphic
transformations. In one variable, there is the rather striking theorem due to Riemann:

Theorem 1.4.2 (Riemann mapping theorem). If U C C is a nonempty simply connected
domain such that U # C, then U is biholomorphic to D.

In one variable, a topological property on U is enough to classify a whole class of
domains. It is one of the reasons why studying the disc is so important in one variable,
and why many theorems are stated for the disc only. There is no such theorem in
several variables. We will show momentarily that the unit ball and the polydisc,

Bn:{zeC”:||z||<1} and D”:{ZGC”:|Zk|<1fork:1,...,n},
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are not biholomorphically equivalent. Both are simply connected (have no holes), and
they are the two most obvious generalizations of the disc to several variables. They
are homeomorphic, that is, topology does not see any difference.

Exercise 1.4.1: Prove that there exists a homeomorphism f: B, — D", that is, f isa
bijection, and both f and f~ are continuous.

Let us stick with n = 2. Instead of proving that B, and D? are biholomorphically
inequivalent we will prove a stronger theorem. First a definition.

Definition 1.4.3. Suppose f: X — Y is a continuous map between two topological
spaces. Then f is a proper map if for every compact K CC Y, the set f ~!(K) is compact.

The notation “CC” is a common notation for a relatively compact subset, that
is, the closure is compact in the relative (subspace) topology. Often the distinction
between compact and relatively compact is not important. For instance, in the
definition above we can replace compact with relatively compact. So the notation is
sometimes used if “compact” is meant.

Vaguely, “proper” means that “boundary goes to the boundary.” As a continuous
map, f pushes compacts to compacts; a proper map is one where the inverse does
so too. If the inverse is a continuous function, then clearly f is proper, but not
every proper map is invertible. For example, the map f: D — D given by f(z) = z?
is proper, but not invertible. The codomain of f is important. If we replace f by
g: D — C, still given by g(z) = z2, then the map is no longer proper. Let us state the
main result of this section.

Theorem 1.4.4 (Rothstein 1935). There exists no proper holomorphic mapping of the unit
bidisc D? = D x D c C2 to the unit ball B, c C2.

As a biholomorphic mapping is proper, the unit bidisc is not biholomorphically
equivalent to the unit ball in C2. The inequivalence of the ball and the polydisc
was first proved by Poincaré by computing the automorphism groups of D? and By,
although his proof assumed the maps extended past the boundary. The first complete
proof was by Henri Cartan in 1931, though the theorem is popularly attributed to
Poincaré. It seems standard practice that any general audience talk about several
complex variables contains a mention of Poincaré, and often the reference is to this
exact theorem.

We need some lemmas before we get to the proof of the result. First, a certain
one-dimensional object plays an important role in the geometry of several complex
variables. It allows us to apply one-variable results in several variables. It is especially
important in understanding the boundary behavior of holomorphic functions. It also
prominently appears in complex geometry.
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Definition 1.4.5. A nonconstant holomorphic mapping ¢: D — C" is called an
analytic disc. If the mapping ¢ extends continuously to the closed unit disc D, then
the mapping ¢: D — C" is called a closed analytic disc.

Often we call the image A = ¢(D) the analytic disc rather than the mapping. For a
closed analytic disc we write A = ¢(dD) and call it the boundary of the analytic disc.

In some sense, analytic discs play the role of line segments in C". It is important
to always keep in mind that there is a mapping defining the disc, even if we are more
interested in the set. Obviously for a given image, the mapping ¢ is not unique.

Consider the boundaries of the unit bidisc D x D c C? and the unit ball B, c C2.
Notice the boundary of the unit bidisc contains analytic discs {p} X D and D x {p} for
p € dD. That is, through every point in the boundary, except for the distinguished
boundary dD X dD, there exists an analytic disc lying entirely inside the boundary.
On the other hand, the ball contains no analytic discs in its boundary.

Proposition 1.4.6. The unit sphere S*"~! = 9B, C C" contains no analytic discs.

Proof. Suppose there is a holomorphic function g: D — C”" such that the image g(D)
is inside the unit sphere. In other words, for all z € D,

1817 = 1g12)1* + |22 + - - + |gu(2)]* = 1.

Without loss of generality (after composing with a unitary matrix), assume that
2(0)=(1,0,0,...,0). Consider the first component and notice that g1(0) = 1. Ifa sum
of positive numbers is less than or equal to 1, then they all are, and hence |g1(z)| < 1.
The maximum principle says that g1(z) = 1 for all z € D. But then gx(z) = 0 for all
k=2,...,nand all z € D. Therefore, g is constant and thus not an analytic disc. O

The fact that the sphere contains no analytic discs is the most important geometric
distinction between the boundary of the polydisc and the sphere.

Exercise 1.4.2: Modify the proof to show some stronger results.
a) Let A be an analytic disc and A 0 dB,, # 0. Prove A contains points not in B,,.
b) Let A be an analytic disc. Prove that A N dB,, is nowhere dense in A.
c) Find an analytic disc in C?, such that (1,0) € A, ANB, = 0, and locally near
(1,0) € 9By, the set A N IB, is the curve defined by Imz; = 0, Imz; = 0,
(Rez1)* + (Rezp)* = 1.

Before we prove the theorem, let us make the statement about proper maps taking
boundary to boundary precise.

Lemma 1.4.7. Let U c R" and V. Cc R™ be bounded domains and let f: U — V
be continuous. Then f is proper if and only if for every sequence {py} in U such that
pr — p € U, the set of limit points of {f (pi)} lies in V.
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Proof. Suppose f is proper. Let {pr} be a sequence in U such that py — p € JU.
Take any convergent subsequence {f(px,)} of {f(px)} converging to some q € V.
Consider E = { f (pk[)} as a set. Let E be the closure of E in V (subspace topology).
If g € V, then E=EU {g} and E is compact. Otherwise, if g ¢ V, then E =E and
E is not compact. The inverse image f~!(E) is not compact (it contains a sequence
going to p € dU) and hence E is not compact either as f is proper. Thus q ¢ V, and
hence g € V. As we took an arbitrary convergent subsequence of {f(px)}, 4 was an
arbitrary limit point. Therefore, all limit points are in JV'.

Let us prove the converse. Suppose that for every sequence {px} in U such that
pk — p € dU, the set of limit points of {f(pk)} lies in JV. Take a closed set E C V
(subspace topology) and suppose f 1(E) is not compact. Then there exists a sequence
{pr} in f71(E) such that py — p € dU, because f1(E) is closed (in U), bounded, but
not compact. The hypothesis then says that the limit points of { fp k)} are in JV.
Hence E has limit points in dV and is not compact. m]

Exercise 1.4.3: Let U ¢ R" and V C R™ be bounded domains and let f: U — V be
continuous. Suppose f(U) C V,and g: U — V is defined by g(x) = f(x) forall x € U.
Prove that g is proper if and only if f(dU) C IV.

Exercise 1.4.4: Let f: X — Y be a continuous function of locally compact Hausdorff
topological spaces. Let Xoo and Yoo be the one-point compactifications of X and Y. Then f
is a proper map if and only if it extends as a continuous map fo: Xoo — Yoo by letting

feolx = f and foo(e0) = co.

We now have all the lemmas needed to prove the theorem of Rothstein.

Proof of Theorem 1.4.4. Suppose there is a proper holomorphic map f: D? — B,. Fix
some ¢'? in the boundary of the disc D. Take a sequence wy € D such that wy — €.
The functions gx(C) = f(C, wx) map the unit disc into B,. By Montel’s theorem
and by passing to a subsequence, assume that the sequence of functions converges
(uniformly on compact subsets) to a limit g: D — B,. As (C, wi) = (C,e'f) e dD?,
then by Lemma 1.4.7, ¢(D) C dBy, and hence g is constant by Proposition 1.4.6.

Let g, denote the derivative (we differentiate each component). The functions g,
converge to ¢’ = 0. So for an arbitrary fixed C € D, %(C, wy) — 0. This limit holds
for all e'? and some subsequence of an arbitrary sequence {wy} where wy — e'%. The
holomorphic mapping w +— g—Zfl(C, w), therefore, extends continuously to the closure
D and is zero on dD. We apply the maximum principle or the Cauchy formula and

the fact that C was arbitrary to find 5_51 = 0. By symmetry 5—22 = 0. Therefore, f is
constant, which is a contradiction as f was proper.

The proof is illustrated in Figure 1.5. In the picture, on the left-hand side is the
bidisc, and we restrict f to the horizontal gray lines (where the second component is
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fixed to be wy) and take a limit to produce an analytic disc in the boundary of B,. We

then show that 5 f = 0 on the vertical gray line (where the first component is fixed to
be C). The r1ght-hand side shows the disc where z; = C is fixed, which corresponds

to the vertical gray line on the left. |
|zo| 4 (C,e'?)
$(C, wi)
i0
(€ w2) ‘
(T, w)
~|z1]

Figure 1.5: The proof of Rothstein’s theorem.

The proof says that the reason why there is not even a proper mapping is the
fact that the boundary of the polydisc contains analytic discs, while the sphere does
not. The proof extends easily to higher dimensions as well, and the proof of the
generalization is left as an exercise.

Theorem 1.4.8. Let U =U’'xU” c C"x Ck, n,k >1,and V c C", m > 1, be bounded
domains such that dV contains no analytic discs. Then there exist no proper holomorphic
mapping f: U — V.

Exercise 1.4.5: Prove Theorem 1.4.8.

The key takeaway from this section is that in several variables, to see if two
domains are equivalent, the geometry of the boundaries makes a difference, not just
the topology of the domains.

The following is a fun exercise in one dimension about proper maps of discs:

Exercise 1.4.6: Let f: D — D be a proper holomorphic map. Then

3

f(Z) — ei@

where 6 € R and ay € D (that is, f is a finite Blaschke product). Hint: Consider f~1(0).
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In several variables, when D is replaced by a ball, this question (what are the
proper maps) becomes far more involved, and if the dimensions of the balls are
different, it is not solved in general.

Exercise 1.4.7: Suppose f: U — D be a proper holomorphic map where U C C" is a
nonempty domain. Prove that n = 1. Hint: Consider the same idea as in Exercise 1.2.21.

Exercise 1.4.8: Suppose f: B, — C™ is a nonconstant continuous map such that f|g,
is holomorphic and || f(z)|| = 1 whenever ||z|| = 1. Prove that f|g, maps into B, and
furthermore that this map is proper.

1.5 | Cartan’s uniqueness theorem

The following theorem is another analogue of Schwarz’s lemma to several variables.
It says that for a bounded domain, it is enough to know that a self mapping is the
identity at a single point to show that itis the identity everywhere. As there are quite a
few theorems named for Cartan, this one is often referred to as the Cartan’s uniqueness
theorem. It is useful in computing the automorphism groups of certain domains. An
automorphism of U is a biholomorphic map from U onto U. Automorphisms form a
group under composition, called the automorphism group. As exercises, you will use
the theorem to compute the automorphism groups of B, and D".

Theorem 1.5.1 (Cartan). Suppose U C C" is a bounded domain,a € U, f: U — U isa
holomorphic mapping, f(a) = a, and D f(a) is the identity. Then f(z) = z forall z € U.

Exercise 1.5.1: Find a counterexample to the theorem if U is unbounded. Hint: For
simplicity take a = 0 and U = C".

Before we get into the proof, we write the Taylor series of a function in a nicer way;,
splitting it up into parts of different degree. A polynomial P: C" — C is homogeneous
of degree d if

P(sz) = s?P(z)

forall s € Cand z € C". A homogeneous polynomial of degree d is a polynomial
whose every monomial is of total degree d. For instance, z?w — iz® + 9zw? is
homogeneous of degree 3 in the variables (z, w) € C?. A polynomial vector-valued
mapping is homogeneous of degree d if each component is. If f is holomorphic near
a € C", then write the power series of f at a as

i fm(z - Ll),
m=0
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where f,, is a homogeneous polynomial of degree m. The f,, is called the degree m
homogeneous part of f at a. The f,, would be vector-valued if f is vector-valued, such
as in the statement of the theorem. In the proof, we will require the vector-valued
Cauchy estimates (exercise below)*.

Exercise1.5.2: Prove a vector-valued version of the Cauchy estimates. Suppose f: A,(a) —
C™ is continuous function holomorphic on a polydisc A.(a) C C". Let I denote the
distinguished boundary of A. Show that for every multi-index

| alalf

Jdz“
Proof of Cartan’s uniqueness theorem. Without loss of generality, assume a = 0. Write f
as a power series at the origin, written in homogeneous parts:

@) < S suplf@

zel

f(z)=z+ fi(z) + i fm(z) = z + fr(z) + higher order terms,

m=k+1

where k > 2 is an integer such that f2(z), f3(z), ..., fk-1(z) is zero. The degree-one
homogeneous part is simply the vector z, because the derivative of f at the origin is
the identity. Compose f with itself ¢ times:

fe(Z):fofo"'of(Z)-
— ———
{ times

As f(U) c U, then f*is a holomorphic map of U to U. As U is bounded, there is
an M such that ||z|| < M for all z € U. Therefore, ||f(z)|| < M for all z € U, and
If{(z)|| < M forall z € U.

Note that

fi(f(2)) = fi(z + higher order terms) = fi(z) + higher order terms.

Therefore,

A(z) = f(f(z)) = f(2) + f(f(z)) + higher order terms

= z + 2f(z) + higher order terms.
Continuing this procedure,

fY(2) = z + i (z) + higher order terms.

*The normal Cauchy estimates could also be used in the proof of Cartan by applying them
componentwise.
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Suppose A;(0) is a polydisc whose closure is in U. Via Cauchy estimates, for every
multi-index a with |a| = k,

(9Ia|ff
0z%

3|alf

=/
Jz%

(0)

(0)

al
—M >
VCY

The inequality holds for all ¢ € N, and so %lb:{ (0) = 0. Therefore, fy = 0. On the
domain of convergence of the expansion, we get f(z) = z, as there is no other nonzero
homogeneous part in the expansion of f. As U is connected, then the identity

theorem says f(z) = z forall z € U. O

As an application, let us classify all biholomorphisms of all bounded circular
domains that fix a point. A circular domain is a domain U C C" such thatif z € U,
then e’z € U forall 6 € R.

Corollary 1.5.2. Suppose U,V C C" are bounded circular domains with 0 € U, 0 € V,
and f: U — V is a biholomorphic map such that f(0) = 0. Then f is linear.

For example, B, is circular and bounded. So a biholomorphism of B, (an
automorphism) that fixes the origin is linear. Similarly, a polydisc centered at zero is
also circular and bounded. In fact, every Reinhardt domain is circular.

Proof. The map g(z) = (e f(¢'%z)) is an automorphism of U and via the chain
rule, ¢’(0) = I. Therefore, Cartan says that f -1 (e‘ie f (eiez)) = z, or in other words,

f(eiez) = eigf(z).

Write f near zero as f(z) = },-_; fu(z) where f,, are homogeneous polynomials of
degree m (notice fo = 0). Then

S e @ =S fue) = 3 Sl = S M),
m=1 m=1 m=1 m=1

By the uniqueness of the Taylor expansion, e fu(z) = €™M0 £,(2), or fu(z) =
el(m_l)efm(z), for all m, all z, and all 6. If m # 1, we obtain that f,, = 0, which
proves the claim. O

Exercise 1.5.3: Show that every automorphism f of D" (that is, a biholomorphism
f: D" — D") is given as

_plein FLT A1 ig, 22~ 2 i0, %n — 4n
f(z)="P|e — ¢ ... _
1-ad1z1 1—drzo 1-ad,z,

for O € R", a € D", and a permutation matrix P.
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Exercise 1.5.4: Given a € B,,, define the linear map P,z = %a ifa # 0and Ppz = 0.

Let s, = /1 — ||a||?>. Show that every automorphism f of B, (that is, a biholomorphism
f: B, — B,) can be written as

a—P,z—s,(I-P,)z
1- <Z,11>

fla)=U

for a unitary matrix U and some a € B,,.

Exercise 1.5.5: Using the previous two exercises, show that D" and B, n > 2, are not
biholomorphic via a method more in the spirit of what Poincaré used: Show that the groups
of automorphisms of the two domains are different groups when n > 2.

Exercise 1.5.6: Suppose U C C" is a bounded open set, a € U, and f: U — U isa
holomorphic mapping such that f(a) = a. Show that every eigenvalue A of the matrix
D f(a) satisfies |A| < 1.

Exercise 1.5.7 (Tricky): For any n, find a domain U C C" such that the only biholomor-
phism f: U — U is the identity f(z) = z. Hint: Take the polydisc (or the ball) and remove
some number of points (be careful in how you choose them). Then show that f extends to a
biholomorphism of the polydisc. Then see what happens to those points you took out.

Exercise 1.5.8:

a) Show that Cartan’s uniqueness theorem is not true in the real case, even for rational
functions. That is, find a rational function R(t) of a real variable t, such that R that
takes (—1,1) to (=1,1), R’(0) = 1, and R(t) is not the identity. You can even make
R bijective.

b) Show that Exercise 1.5.6 is not true in the real case. For every a € R, find a rational
function R(t) of a real variable t, such that R takes (—1,1) to (=1,1) and R’(0) = «.

Exercise 1.5.9: Suppose U C C" is an open set, a € U, f: U — U is a holomorphic
mapping, f(a) = a, and suppose that |A| < 1 for every eigenvalue A of D f(a). Prove that
there exists a neighborhood W of a, such that limy_,e, f'(z) = a forall z € W.

Exercise 1.5.10: Let U C C" be a bounded open set and a € U. Show that the mapping
Q= ((p(a), D(p(a)) from the set Aut(U) of automorphisms of U to C" X c" is injective.

1.6 | Riemann extension, zero sets, and injective maps

In one dimension, if a function is holomorphic in U \ {p} and locally bounded* in U,
in particular bounded near p, then the function extends holomorphically to U (see

*f: U\ X — Cislocally bounded in U if for every p € U, there is a neighborhood W of p such
that f is bounded on W N (U \ X).
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Proposition B.22 (i)). In several variables, the same theorem holds, and the analogue
of a single point is the zero set of a holomorphic function.

Theorem 1.6.1 (Riemann extension theorem). Let U C C" be a domain, g € O(U), and
¢ is not identically zero. Let N = ¢1(0) be the zero set of g. If f € 6(U \ N) is locally
bounded in U, then there exists a unique F € O(U) such that F|y\n = f.

The proof is an application of the Riemann extension theorem from one dimension.
And just as in one dimension, if the function is not bounded, we do not expect an
extension. For instance, —— is not bounded near N and indeed does not extend

8(2)
through N.

Proof. Take any p € N, and let L be a complex line through p. That is, L is an image
of an affine mapping ¢ : C — C" defined by ¢(&) = a& + p, for a vector a € C". The
composition g o ¢ is a holomorphic function of one variable, and it is either identically
zero, or the zero at £ = 0 is isolated. The function g is not identically zero in any
neighborhood of p by the identity theorem. So there is some line L such that g o ¢ is
not identically zero, or in other words, p is an isolated point of L N N.

Write 2’ = (z1,...,2z,-1) and z = (2/, z,,). Without loss of generality, p = 0 and L is
the line obtained by z’ = 0. So g o ¢ is & > g(0, &). There is a small r > 0 such that g
is nonzero on the set given by |z, | = ¥ and z’ = 0. By continuity, g is nonzero on the
set given by |z,| = r and ||z’|| < € for some € > 0. In particular, for any fixed s € C",
with ||s|| < €, setting z’ = s, the zeros of £ = g(s, &) are isolated. See Figure 1.6.

Figure 1.6: Good neighborhood of the origin with respect to the zero set of g.

For ||Z’|| < € and |z,| < 7, write

1 f(Z,¢) ac.

F(Z', = -
(z',2n) 27t IE|=r E—2zn

The function & — f(z’, &) is bounded and thus extends holomorphically to the entire
disc of radius r by the Riemann extension from one dimension. By Cauchy integral
formula, F is equal to f at the points where they are both defined. By differentiating
under the integral, the function F is holomorphic in all variables.
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In a neighborhood of each point of N, F is continuous (holomorphic in fact). A
continuous extension of f must be unique on the closure of U \ N in the subspace

topology, (U \ N) N U. Due to the identity theorem, the set N has empty interior, so
(U\N)NU = U. Hence, F is the unique continuous extension of f to U. O

Exercise 1.6.1: Let F be a meromorphic function on an open set U C C". Show that if
p € U is a pole (near p, F = f[g, and F does not extend through p), then there exists a
sequence {py} converging to p such that F(pyx) — oco. Namely, F is unbounded near p.

Exercise 1.6.2: Suppose that U C C" is open and N C U is a closed set such that for
every C € C, theset {z € U : z, = C} N N is countable. Suppose that f: U\ N — C is
holomorphic and locally bounded in U. Then f uniquely extends to a holomorphic function
of U. Hint: Every countable closed subset of C has isolated points.

Exercise 1.6.3: Suppose U = {z € D? : z; # Oand zo # 0}. Compute the group of
automorphisms Aut(U). Hint: See Exercise 1.5.3.

The set of zeros of a holomorphic function has a nice structure at most points.

Theorem 1.6.2. Let U C C" be a domain and f € O(U) and f is not identically zero. Let
N = f7Y(0). Then there exists an open and dense (subspace topology) subset Nyee C N such
that at each p € Ny, after possibly reordering variables, N can be locally (that is, in some
neighborhood) written as

zn = g(z1, ..., 2Zn-1)

for a holomorphic function g.

Proof. If N is locally a graph at p, then it is a graph for every point of N near p. So
Nieq is open. If for every point pg € N and every neighborhood W of py, we show
that N N W has a regular point, then N is dense. Replacing N with N N W, it thus
suffices to show N, is nonempty.

Since f is not identically zero, then not all derivatives (of arbitrary order) of f
vanish identically on N. If some first order derivative of f does not vanish identically
on N, let h = f. Otherwise, suppose k is such that a derivative of f of order k
does not vanish identically on N, and all derivatives of f order less than k vanish
identically on N. Let I be one of the derivatives of order k — 1. We obtain a function
h: U — C, holomorphic, vanishing on N, and such that without loss of generality
the z, derivative does not vanish identically on N. Then there is some point p € N
such that %(p) # 0. We apply the implicit function theorem at p to find g such that

h(z].l o IZVl—ll 8(21/ R4 Z?’l—l)) = OI

and z, = g(z1,...,2zu-1) is the unique solution to & = 0 near p.
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The zero set of I contains N, the zero set of f. We must show equality near p. That
is, we need to show that near p, every zero of h is also a zero of f. Write p = (p’, pn).
Then the function

&P f(p, &)

has an isolated zero in a small disc A around p,, and is nonzero on the circle JA. By
Rouché’s theorem, & — f(z’, &) must have a zero for all z’ sufficiently close to p’
(close enough to make |f(p’, &) — f(2/,&)| < |f(p’, &)| for all £ € JA). Since g(z’) is
the unique solution z, to h(z’,z,) = 0 near p and the zero set of f is contained in the
zero set of i, we are done. O

The zero set N of a holomorphic function is an example of a so-called subvariety
or an analytic set, although the general definition of a subvariety is more complicated.
See chapter 6. Points where N is a graph of a holomorphic mapping are called reqular
points, and we write them as N, as above. In particular, since N is a graph of a
single holomorphic function, they are called regular points of (complex) dimension
n — 1, or (complex) codimension 1. The set of regular points is what is called an
(n —1)-dimensional complex submanifold. It is also a real submanifold of real dimension
2n — 2. The points on a subvariety that are not regular are called singular points.

To wit, one of important consequences of the theorem is that the zero set of a
holomorphic function is always quite large when n > 2.
Example 1.6.3: For U = C?, let f(z) = z? — zZ and consider X = f71(0). As
Vf =(2z1,2z3) # 0 outside of the origin, we can solve for z; or z; and so all points
of X \ {0} are regular. In fact, z; = z; and z; = —z; are the two possibilities. In no
neighborhood of the origin, however, is there a way to uniquely solve for either z; or
23, since you always get two possible solutions: If you could solve z; = g(z2), then
both zy = g(z2) and —z2 = g(z2) must be true, a contradiction for any nonzero z;.
Similarly, we cannot solve for z;. So the origin is a singular point.

To see that you may have needed to use derivatives of the function in the proof of

the theorem, notice that the function ¢(z) = (zf — z%)2 has the same zero set X, but
both 37(’) and g—(’) vanish on X. Using h = 5—(’) orh = g—(’) in the proof will work.
1 Z Z1 Zn

Similarly, (z) = (z1 - 25)*(z1 + z2) has the same zero set X, and h = Y will work

at regular points where z; = -z, but h = g—i orh = 3—i must be used where z1 = z5.

Example 1.6.4: The theorem is not true in the nonholomorphic setting. The set where
x2 + x5 = 0in R? is only the origin, clearly not a graph of any function of one variable.
The first part of the theorem works, but the / you find is either 2x; or 2x;, and its
zero set is too big.

Exercise 1.6.4: Find all the regular points of the subvariety X = {z € C? : 23 = z3}
Hint: The trick is showing that you've found all of them.
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Exercise 1.6.5: Suppose U c C" is a domain and f € ©O(U). Show that the complement
of the zero set, U \ f~1(0), is connected.

Exercise 1.6.6: Suppose U C C" is a domain and f € 6(U). Show that the zero set f~1(0)
is not compact if it is nonempty. Hint: A compact set has a point farthest from the origin.

Remark 1.6.5. It is rather surprising that by a famous theorem of Whitney, any closed
set whatsoever in R" is the zero set of a C*-smooth function.

Let us now prove that a one-to-one holomorphic mapping is biholomorphic, a
result definitely not true in the smooth setting: x +— x3 is smooth, one-to-one, onto
map of R to R, but the inverse is not differentiable.

Theorem 1.6.6. Suppose U C C" is an open set and f: U — C" is holomorphic and
one-to-one. Then the Jacobian determinant is never equal to zero on U.

In particular, if a holomorphic map f: U — V is one-to-one and onto for two open sets
U,v c C", then f is biholomorphic.

The function f is locally biholomorphic, in particular f~! is holomorphic, on the
set where the Jacobian determinant

Jr(z) = detDf(z) = det lg—g(z)l .

is not zero. This follows from the inverse function theorem, which is just a special
case of the implicit function theorem. The trick to prove the theorem above is to
prove that J; is nowhere zero.

In one complex dimension, every holomorphic function f can, in the proper
local holomorphic coordinates (and up to adding a constant), be written as z? for
d=0,1,2,...: Near a zg € C, there exists a constant ¢ and a local biholomorphic g
with g(zo) = 0 such that f(z) = ¢ + ( g(z))d. So f is one-to-one precisely if d = 1. Such
a simple result does not hold in several variables in general, but if the mapping is
locally one-to-one, then the present theorem says that such a mapping can be locally
written as the identity.

Proof of the theorem. We proceed by induction. We know the theorem for n = 1.
Suppose n > 1 and suppose we know the theorem is true for dimension n — 1.
Suppose for contradiction that J; = 0 somewhere. First suppose that Jf is not
identically zero. Find a regular point g of the zero set of . Write the zero set of J¢
near 4 as
Zp = g(Zl, e Zn-1)

for some holomorphic g. If we prove the theorem near g, we are done. Without loss
of generality assume g = 0. The biholomorphic (near the origin) map

\P(le e /Zn) = (le 22,/ Zpn-1,2n — g(zll s /Zn—l))
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takes the zero set of Jf to the set given by z, = 0. By considering f o W' instead of
f, we may assume that /s = 0 on the set given by z, = 0. We may also assume that
£(0) = 0.

If Jf vanishes identically, then there is no need to do anything other than a
translation. In either case, we may assume that 0 € U, f(0) = 0, and J; = 0 when
zn = 0. Really, all we need is for the set where |y = 0 to be a sufficiently large set.

We wish to show that all the derivatives of f in the z1,...,z,-1 variables
vanish whenever z, = 0. This would clearly contradict f being one-to-one, as
f(z1,...,2n-1,0) would be constant. So for any point on z, = 0, consider one of
the components of f and one of the derivatives of that component. Without loss of

generality, suppose the point is 0, and for contradiction suppose 3—2(0) # 0. The map

G(z1,...,2zn) = (fi(2), 22, ..., Zn)

is biholomorphic on a small neighborhood of the origin. The function f o G™! is
holomorphic and one-to-one on a small neighborhood. By the definition of G,

fo G lws,...,wy) = (wl, h(w)),

where 1 is a holomorphic mapping taking a neighborhood of the origin in C" to C"~!.
The mapping

p(wa, ..., wy) =h0,wy, ..., wy,)
is a one-to-one holomorphic mapping of a neighborhood of the origin in C"~! to C"~1.

By the induction hypothesis, the Jacobian determinant of ¢ is nowhere zero.
If we differentiate f o G™!, we notice D(f o G™!) = Df o D(G™}). So at the origin

detD(f o G™') = (detDf)(det D(G™)) = 0.
We obtain a contradiction, as at the origin
detD(f o G™1) = det D¢ # 0. O

The theorem is no longer true if the dimensions of the domain and range of the
mapping are not equal.

Exercise 1.6.7: Tuake the subvariety X = {z € C? : z2 = z3}. Find a one-to-one
holomorphic mapping f: C — X. Note that the derivative of f vanishes at a certain point.

So Theorein 1.6.6 has no analogue when the domain and range have different dimension.

Exercise 1.6.8: Find a continuous function f: R — R? that is one-to-one but such that
the inverse f~': f(R) — R is not continuous.
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This is an appropriate place to state a well-known and as yet unsolved conjecture
(and most likely ridiculously hard to solve): the Jacobian conjecture. This conjecture is
a converse to the theorem above in a special case: Suppose F: C" — C" is a polynomial
map (each component is a polynomial) and the Jacobian derivative Jr is never zero, then F is
invertible with a polynomial inverse. Clearly F would be locally one-to-one, but proving
(or disproving) the existence of a global polynomial inverse is the content of the
conjecture.

Exercise 1.6.9: Prove the Jacobian conjecture for n = 1. That is, prove that if F: C — C
is a polynomial such that F' is never zero, then F has an inverse, which is a polynomial.

Exercise 1.6.10: Let F: C" — C" be an injective polynomial map. Prove [r is a nonzero
constant.

Exercise 1.6.11: Prove that the Jacobian conjecture is false if “polynomial” is replaced with
“entire holomorphic,” even for n = 1.

Exercise 1.6.12: Prove that if a holomorphic f: C — C is injective, then it is onto, and
therefore f(z) = az + b for a # 0.

We remark that while every injective holomorphic map of f: C — C is onto,
the same is not true in higher dimensions. In C", n > 2, there exist so-called
Fatou—Bieberbach domains, that is, proper subsets of C" that are biholomorphic to C".



2 | Convexity and Pseudoconvexity

2.1 | Domains of holomorphy & holomorphic extension

It turns out that not every domain in C" is a natural domain for holomorphic functions.

Definition 2.1.1. Let U c C" be a domain' (connected open set). The set U is a domain
of holomorphy if there do not exist nonempty open sets V.and W, withV c U nW,
W ¢ U, and W connected, such that for every f € O(U) there exists an F € 6(W) with
f(z) =F(z) forall z € V. See Figure 2.1.

Figure 2.1: Definition of domain of holomorphy.

The idea is that if a domain U is not a domain of holomorphy and V, W exist as in
the definition, then f “extends across the boundary” somewhere.

Example 2.1.2: The unit ball B, C C" is a domain of holomorphy. Proof: Consider
U = B,, and suppose V, W as in the definition exist. As W is connected and open, it
is path connected. There are points in W that are not in B,;, so there is a path y in W
going from a point g € V to some p € JB, N W, and assume y \ {p} ¢ B,. Without
loss of generality (after composing with rotations, that is, unitary matrices), assume
p=(1,0,0,...,0). Consider f(z) = 1_121. The function F equals f on the component
of B, N W that contains 4. But that component contains p and so F blows up at p (so
it cannot be holomorphic). The contradiction shows that no V and W exist.

*Domain of holomorphy can make sense for disconnected sets (not domains), and some authors do
define it so.



48 CHAPTER 2. CONVEXITY AND PSEUDOCONVEXITY

In one dimension, this notion has no real content: Every domain in C is a domain
of holomorphy (exercise below).

Exercise 2.1.1 (Easy): In C, every domain is a domain of holomorphy.

Exercise 2.1.2: If U C C" are domains of holomorphy (possibly an infinite set of domains),
then the interior of (), Uk is either empty or every connected component is a domain of
holomorphy.

Exercise 2.1.3 (Easy): Show that a polydisc in C" is a domain of holomorphy.

Exercise 2.1.4: Suppose Uy C C', k =1, ..., are domains of holomorphy, show that
Uy X -+ - x Uy is a domain of holomorphy. In particular every cartesian product of domains
in C is a domain of holomorphy.

Exercise 2.1.5: Suppose U C C" is a domain of holomorphy and f € 6(U) is a function.
Show that U \ f~(U) is a domain of holomorphy.

Exercise 2.1.6:

a) Given p € dB,, find a function f holomorphic on B, C®-smooth on B, (all real
partial derivatives of all orders extend continuously to B,), that does not extend
past p as a holomorphic function. Hint: For the principal branch of /- the function
& e Ve s holomorphic for Re & > 0 and extends to be continuous (even smooth)
onall of Re & > 0.

b) Find a function f holomorphic on B, that does not extend past any point of dB,,.

Various notions of convexity will play a big role later on. A set S is geometrically
convex if tx + (1 —t)y € Sforall x,y € Sand ¢t € [0,1]. The exercise below says
that every geometrically convex domain is a domain of holomorphy. Domains of
holomorphy are often not geometrically convex (e.g. every domain in C is a domain
of holomorphy), so classical convexity is not the correct notion, but it is in the right
direction.

Exercise 2.1.7: Show that a geometrically convex domain in C" is a domain of holomorphy.

In the following, when we say f € O(U) extends holomorphically to V where
U c V, we mean that there exists a function F € 6(V) such that f = F on U.

Remark 2.1.3. The subtlety of the definition of a domain of holomorphy is that it
does not necessarily talk about functions extending to a larger set, since we must
take into account single-valuedness. For instance, let f be the principal branch of
the logarithm defined on the slit plane U = C \ {z € C:Imz = 0,Rez < 0}. We can
locally define an extension from one side through the boundary of the domain, but
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we cannot define an extension on a open set that contains U. This one-dimensional
example should be motivation for why we let V be a proper subset of U N W, and
why W need not contain all of U. This one dimensional intuition can be extended to
an actual example in C", see Exercise 2.1.15.

In dimension two or higher, not every domain is a domain of holomorphy. We
have the following theorem. The domain H in the theorem is called the Hartogs figure.

Theorem 2.1.4. Let (z,w) = (21, ..., 2Zm, W1, ..., W) € C" x CK be the coordinates. For
two numbers 0 < a,b < 1, define the set H ¢ D"** by

H={(z,w) e D™ :|zf| >afort=1,..., m}
U{(z,w)e[l])’””‘:lwﬂ <bfor€:1,...,k}.

If f € O(H), then f extends holomorphically to D™+,
In C%if m = 1 and k = 1, see Figure 2.2 (the ¢ will come up in the proof).

[wl In diagrams, the Hartogs figure
1] is often drawn as:

Figure 2.2: Hartogs figure.

Proof. Pickac € (a,1). Let
F:{ze[D)’”:|Zg|:cfor€:1,...,m}.

The set I' is the distinguished boundary of cD™, a polydisc centered at 0 of radius ¢

in C™. Define
1 f(& w) dc.

Fz w) = Qri)" Jr £-z

Clearly, F is well-defined on
cD™ x D*

as & only ranges through I and so as long as w € D then (&, w) € H.
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The function F is holomorphic in w as we can differentiate underneath the integral
and f is holomorphic in w on H. Furthermore, F is holomorphic in z as the kernel
é is holomorphic in z as long as z € cD™.

For any fixed w with |w¢| < b for all ¢, the Cauchy integral formula says F(z, w) =
f(z,w) for all z € cD™. Hence, F = f on the open set cD" x bD*, and so they are
equal on (cD™ x D¥) N H. Combining F and f, we obtain a holomorphic function on

D"*k that extends f. O

The theorem is used in many situations to extend holomorphic functions. We usu-
ally need to translate, scale, rotate (apply a unitary matrix), and even take more general
biholomorphic mappings of H, to place it wherever we need it. The corresponding
polydisc—or the image of the polydisc under the appropriate biholomorphic mapping
if one was used—to which all holomorphic functions on H extend is denoted by H
and is called the hull of H.

Let us state a simple but useful case of the so-called Hartogs phenomenon. You have
already proved a version of this result in Exercise 1.1.8, but let us prove it with the
Hartogs figure.

Corollary 2.1.5. Let U € C", n > 2, bean open set and p € U. Then every f € 6(U \ {p})
extends holomorphically to U.

Proof. Without loss of generality, by translating and scaling (those operations are
after all holomorphic), we assume that p = (O, ..., 0, %) and the unit polydisc D" is
contained in U. We fit a Hartogs figure H in U by letting m = n —1and k = 1, writing
C"=C"! xC!, and takinga =b = . Then H c U, and p € D" \ H. Theorem 2.1.4
says that f extends to be holomorphic through p. m]

This result provides (yet) another reason why holomorphic functions in several
variables have no isolated zeros (or poles). If a zero of f was isolated, then consider
1/f to obtain a contradiction. But the extension works in an even more surprising
fashion. We could take out a very large set, for example, any geometrically convex
compact subset:

Exercise 2.1.8: Suppose U C C", n > 2, be an open set and K cC U is a compact
geometrically convex subset. If f € O(U \ K), then f extends to be holomorphic in U. Hint:
Find a nice point on dK and try extending a little bit. Then make sure your extension is
single-valued.

Convexity of K is not needed; we only need that U \ K is connected, but the proof
is harder and we will get to it in section 4.3. The single-valuedness of the extension is
the key point that makes the general proof harder.

Notice the surprising consequence of the exercise: Every holomorphic function
on the shell

B, \ B1-¢(0) = {z eC':1-€e<|z|l < 1}
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for any € > 0 automatically extends to a holomorphic function of B,,. In fact, we
will show later that one can take this to the limit: A function only defined on a
sphere that satisfies the Cauchy—-Riemann equations on the sphere will also extend
holomorphically to the interior. We need n > 1. The extension result decisively does
not work in one dimension; consider 1/z. You have already shown in an exercise that
when n > 2, the zero sets of holomorphic functions is never compact, here is another
reason why. If n > 2 and f € 6(B,) has a nonempty zero set, then the zero set must
contain points arbitrarily close to the boundary. If the set of zeros were compact in
B, then we could try to extend the function 1/f.

Exercise 2.1.9 (Hartogs triangle): Let
T ={(z1,22) € D*: |z3] < |z1]}.
Show that T is a domain of holomorphy. Then show that if
T =T U B.(0)

for an arbitrarily small € > 0, then T is not a domain of holomorphy. In fact, every function
holomorphic on T extends to a holomorphic function of D?.

Exercise 2.1.10: Take the natural embedding of R* C C2. Suppose f € 6(C?\ R?). Show
that f extends holomorphically to all of C?. Hint: Change coordinates before using Hartogs.

Exercise 2.1.11: Suppose
U={(z,w) e D*:1/2 < |zl]}.
Draw U. Let y = {z € C : |z| = 3/4} oriented positively. If f € O(U), then show that the
function
1 [fEw)
F(z’w)‘zm'/y £z ¢

is well-defined in ((3/4)D) x D, holomorphic where defined, yet it is not necessarily true
that F = f on the intersections of their domains.

Exercise 2.1.12: Suppose U C C" is an open set such that for every z € C" \ {0}, there is
a A € Csuch that Az € U. Let f: U — C be holomorphic with f(Az) = f(z) whenever
zelU,AeCand Az € U.
a) (easy) Prove that f is constant.
b) (hard) Relax the requirement on f to being meromorphic: f = 8/h for holomorphic g
and h. Find a nonconstant example, and prove that such an f must be rational (that
is, g and h must be polynomials).

Exercise 2.1.13: Suppose

U={zeD’:12<|z1] or 1/2<|zl}.

Prove that every function f € 6(U) extends to D3. Compare to Exercise 2.1.11.
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Exercise 2.1.14: Suppose U = C" \ {z € C" : z1 = zp = 0}, n > 2. Show that every
f € 6(U) extends holomorphically to C".

Exercise 2.1.15: Construct an example domain U C C? that is not a domain of holomorphy,
but such that there is no domain W c C? with U C W such that every f € 6(U) extends
to W. Hint: Extending the example from Remark 2.1.3 will almost give you a U, but it will
be a domain of holomorphy, you need to modify it a little bit.

Example 2.1.6: By Exercise 2.1.10, U; = C? \ R? is not a domain of holomorphy. On
the other hand, U, = C?\ {z € C?: z, = 0} is a domain of holomorphy; the function
f(z) = Zl—z cannot extend. Therefore, U7 and U, are rather different as far as complex
variables are concerned, yet they are the same set if we ignore the complex structure.
They are both a 4-dimensional real vector space minus a 2-dimensional real vector
subspace. That is, U is the set where either Im z; # 0 or Im z, # 0, while Uy is the set
where either Rez> # 0 or Im z, # 0.

The condition of being a domain of holomorphy, requires something more than
just some real geometric condition on the set. Namely, we have shown that the image
of a domain of holomorphy via an orthonormal real-linear mapping (so preserving
distances, angles, straight lines, etc.) need not be a domain of holomorphy. In
particular, when we want to “rotate” in complex analysis we use a complex linear
mapping, a unitary matrix.

In fact, one does not need a whole Hartogs figure to extend a holomorphic
function, a sequence of discs suffices. We will see another version of this theorem
later, Theorem 2.5.2.

Theorem 2.1.7 (Kontinuitdtssatz—Continuity principle, first version®). Suppose U C
C" is open and there exists a sequence of closed analytic discs @: D — C" converging
(pointwise) to a closed analytic disc ¢, such that (pk(ﬁ) c U and @(dD) c U. Then there
exists an s such that for every f € 6(U) and for every p € @(D), there is an F € O(A(p))
where F = f on some open subset of U N As(p).

In particular, a U that possesses such discs where @ (D) does not lie entirely in U
is not a domain of holomorphy. The continuity principle is illustrated in Figure 2.3,
where analytic discs are drawn as lines and the boundaries as black dots. Note that
the conclusion is that F continues analytically past any point in ¢ (D). However, we do
not necessarily get single-valued extension to a whole neighborhood of ¢(D) without
a further hypothesis, see exercises below."

Proof. Via Montel and considering slightly smaller discs (restrictions to discs of radii
1 — €), we may assume that ¢} converge uniformly to ¢ on D. Fix some f € 6(U).

*Sometimes this (or similar) theorem is called Behnke-Sommer, although the first version of it
(where the discs are complex lines) were proved by Hartogs.

A counterexample can be found in S. Ivashkovich, Discrete and Continuous Versions of the Continuity
Principle, The Journal of Gemetric Analysis, 32 (2022), Paper No. 226.
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Figure 2.3: Continuity principle for extension of functions.

As ¢(dD) is compact, there exists an r > 0 such that for each z € @(dD), A,(z) Cc U,
meaning that the power series of f converges in A,(z). Pick a positive s < r. As ¢y
converge uniformly, for sufficiently high k,

) A
7€k (dD)

is a compact subset of U and hence f is bounded by some M on this set. Cauchy
estimates give that
2°f

550 (1)

Ma!
SO[

< (2.1)

for all g € gi(dD). By the maximum principle, (2.1) holds for all g € (pk(ﬁ), and
hence the power series for f at all g € (D) converges in As(g). Thus we get an F
defined by this power series on A;(g) which agrees with f in a neighborhood of 4.
By considering a large enough k, and a slightly smaller s, then for every p € ¢(D)
we can fit a Ay(p) € As(q) for some g € (pk(ﬁ) and where g € Ay(p). Since p must
be in the closure of U by necessity, then Ay (p) intersects U, and as it contains g, F
agrees with f on some open subset of Ay (p).

The s (and s’) only depends on the distance between the boundary of U and
@(dD), so it does not depend on f and moreover, the assumption to restrict to smaller
discs in the beginning of the proof is valid. m|

Exercise 2.1.16: Prove that given an analytic disc ¢: D — C" and a point p € ¢(D),
then for small enough € > 0, the set Ac(p) N (D) is connected. Hint: Pull back the
coordinate functions from C" to D.

Exercise 2.1.17: Prove that if furthermore @ is injective in the proof, then there exists an
entire neighborhood W of (D) and for every f € O(U), there is an F € O(W) such that
f = F on some open neighborhood of p(dD).

Exercise 2.1.18: Suppose that given an open U C C" and there exists a collection of closed
analytic discs A, C U such that | J, dA, cC U. Show that for every p in the closure
of Uy Ax (closure in C") there exists an analytic disc through p and a sequence of discs
converging to it that satisfy the hypotheses of the theorem.
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2.2 | Tangent vectors, the Hessian, and convexity

An exercise in the previous section showed that every convex domain is a domain of
holomorphy. However, classical convexity is too strong. By Exercise 2.1.4, for any
domains U € Cand V C C, the set U X V is a domain of holomorphy in C2. The
domains U and V, and hence U X V, can be spectacularly nonconvex. But we should
not discard convexity completely. There is a notion of pseudoconvexity, which vaguely
means “convexity in the complex directions” and is the correct notion to distinguish
domains of holomorphy. Let us figure out what classical convexity means locally for
a smooth boundary.

Definition 2.2.1. Aset M C R"isa C¥-smooth hypersurfaceif ateach point p € M, there
exists a k-times continuously differentiable function r: V' — R with nonvanishing
derivative, defined in a neighborhood V of p suchthat M NV = {x eVi.r(x)= 0}.
The function 7 is called the defining function of M (at p).

An open set (or domain) U C R" with C*-smooth boundary is a set where 9U is a
Ck-smooth hypersurface, and at every p € dU there is a defining function r such that
r < 0 for points in U and r > 0 for points not in U. See Figure 2.4.

By simply smooth, we mean C*-smooth, that is, the r is infinitely differentiable.

Figure 2.4: Local defining function for a domain.

What we really defined is an embedded hypersurface. In particular, in this book the
topology on the set M will be the subset topology. Furthermore, in this book we
generally deal with smooth (that is, C*) functions and hypersurfaces. Dealing with
Ck-smooth functions for finite k introduces technicalities that make certain theorems
and arguments unnecessarily difficult.

As the derivative of r is nonvanishing, a hypersurface M is locally the graph of
one variable over the rest using the implicit function theorem. That is, M is a smooth
hypersurface if it is locally a set defined by xx = ¢(x1, ..., Xk-1, Xk+1, - . ., X5) for some
k and some smooth function ¢.

The definition of an open set with smooth boundary is not simply that the
boundary is a smooth hypersurface, that is not enough. It says that one side of that
hypersurface is in U and one side is not in U: As the derivative of r never vanishes, r
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has different signs on different sides of {x eV :r(x)= 0}. The verification of this
fact is left to the reader. (Hint: Look at where the gradient points.) We can, in fact,
find a single global defining function for every open set with smooth boundary, but
we have no need of this.

Same definition works for C", where we treat C" as R%". For example, the ball B,
is a domain with smooth boundary with defining function r(z, z) = ||z||> - 1. InC" a
hypersurface defined as above is a real hypersurface, to distinguish it from a complex
hypersurface that would be the zero set of a holomorphic function, although we may
leave out the word “real” if it is clear from context.

Definition 2.2.2. For a point p € R", the set of tangent vectors T,R" is given by

J p}.

d
T,R" = —‘ fees T
P SPalR {8x1 p Ixy

That is, a vector X, € T,R" is an object of the form

- 0
X, = —,
P ;akaxkp

for real numbers ax. For computations, X, could be represented by an n-vector
a=(ay,..., a,). However, if p # g, then T,R" and T;R" are distinct spaces. An object
aixk|p is a real linear functional* on the space of smooth functions: When applied to

a smooth function g, it gives ;—i|p. Therefore, Xy is also such a functional. It is the
directional derivative from calculus; it is computed as X, f = Vf|, - (a1,...,an).

Exercise 2.2.1: Suppose that X is a real linear functional on the set of real polynomials in n
variables such that X(fg) = (X f)g + f(Xg). Show that we can compute X by identifying
it with an element of X € ToR".

Definition 2.2.3. Let M C R” be a smooth hypersurface, p € M, and r is a defining
function at p, then a vector X, € T,R" is tangent to M at p if

n
ar
Xyr =0, in other word ar—/| =0.
p or in other words E kanp

The space of tangent vectors to M is denoted by T, M, and is called the tangent space
toM at p.

The space T,M is an (n — 1)-dimensional real vector space—it is a subspace of
an n-dimensional T,R" given by a single linear equation. Recall from calculus that
the gradient Vr|, is “normal” to M at p, and the tangent space is given by all the
n-vectors a that are orthogonal to the normal, that is, Vrlp -a =0.

*Linear real-valued function.
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We cheated in the terminology, and assumed without justification that T, M
depends only on M, not on r. Fortunately, the definition of T, M is independent of
the choice of r by the next two exercises.

Exercise 2.2.2: Suppose M C R" is a smooth hypersurface and r is a smooth defining
function for M at p.
a) Suppose @ is another smooth defining function of M on a neighborhood of p. Show that
there exists a smooth nonvanishing function g such that ¢ = gr (in a neighborhood
of p).
b) Now suppose ¢ is an arbitrary smooth function that vanishes on M (not necessarily
a defining function). Again show that ¢ = gr, but now g may possibly vanish.
Hint: First suppose r = x,, and find a g such that ¢ = x,g. Then find a local change of
variables to make M into the set given by x,, = 0. A useful calculus fact: If f(0) = 0 and f

is smooth, then s /01 f'(ts)dt = f(s), and /01 f’(ts) dt is a smooth function of s.

Exercise 2.2.3: Show that T, M is independent of the defining function: Prove that if r and
7 are defining functions for M at p, then ) ak;—;k|p =0 ifand only if ¥ ax-2L |p =0.

Ixy.

The tangent space T, M is the set of derivatives along M at p. If r is a defining
function of M, and f and h are two smooth functions such that f = h on M, then
Exercise 2.2.2 says that

f—-h=gr, or f=h+gr,
for some smooth ¢. Applying X, we find
Xpf = Xph + Xp(g7) = Xph + (Xp)r + §(Xpr) = Xph + (X, 9)r.

So X, f = X,h on M (where r = 0). In other words, X, f only depends on the values
of f on M.

This brings up a natural question about what is a smooth function on M. By
definition, a function f defined on M (or any other subset of R" that is not open) is
smooth if it is locally the restriction to M of a smooth function in an open neighborhood.
This extension of f is not unique, so the above calculation shows that differentiating
f via T,M is indepdendent on how f is extended to a neighborhood.

Example 2.2.4: If M C R" is given by x,, = 0, then T, M is given by derivatives of the

form
n—1
d
X, = — .

That is, derivatives along the first n — 1 variables only.
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Definition 2.2.5. The disjoint union

is called the tangent bundle. There is a natural identification R” X R" = TR":

n
(p,a) e R" xXR" - Zak— € TR".
k=1

The topology and smooth structure on TR" comes from this identification. The
wording “bundle” (a bundle of fibers) comes from the natural projection 7t: TR" —
R", where fibers are n~!(p) = T,R".

A smooth vector field in TR" is an object of the form

i d
X = aAk—=—,
= Ix
where a; are smooth functions. That is, X is a smooth function X: V ¢ R" —» TR”"
such that X(p) € T,R". Usually, we write X, rather than X(p). To be more fancy, say
X is a section of TR".

Similarly, the tangent bundle of M is

™ = | M.
pEM

A vector field X in TM is a vector field such that X}, € T,M for all p € M.

Before we move on, we note how smooth maps transform tangent spaces. Given
a smooth f: U C R" — R"™, the derivative at p is a linear mapping of the tangent
spaces: Df(p): T,R" — T, R™. If X, € T,R", then D f(p)X, should be in T, R™.
The vector D f (p) X, is defined by how it acts on smooth functions ¢ of a neighborhood
of f(p) in R™:

(Df(p)Xp)e = Xp(p o f).

It is the only reasonable way to put those three objects together. When the spaces are
C" and C™, we denote this derivative as D f to distinguish it from the holomorphic
derivative. As far as calculus computations are concerned, the linear mapping D f (p)
is the Jacobian matrix acting on vectors in the standard basis of the tangent space as
given above. This is why we use the same notation for the Jacobian matrix and the
derivative acting on tangent spaces. To verify this claim, it is enough to see where the

basis element -2-| goes, and the form of D f(p) as a matrix follows by the chain rule.

axk |p
For instance, the derivative of the mapping f(x1, x2) = (x1+2x2 + x%, 3x1 +4xp+ x1X2)
at the origin is given by the matrix [% i], and so the vector X, = aaixl|0 + baixz| o 8ets

taken to D f(0)Xp = (a + 2b) +(3a + 45)3%2

aiyl| 0 o where (11, y2) are the coordinates



58 CHAPTER 2. CONVEXITY AND PSEUDOCONVEXITY

on the target. You should check on some test function, such as ¢(y1, y2) = ay1 + By,
that the definition above is satisfied.

Suppose that for a smooth map f and a smooth hypersurfaces M and M’ you
have f(M) c M’. Then you get the same containment for the tangent spaces. Indeed,
suppose that r is a defining function for M near p and r’ is a defining function for M’
near f(p), and suppose that X, € T,M. Then r’ o f is zero on M, and hence

(DF(p)X,)r" = X,(r' o f) = X,(0) = 0.

If the map is a diffeomorphism (has an inverse), then f(M) is a smooth hypersurface
with defining function f~! o r, the derivative is an invertible linear map, and we get
that D f(p) restricts to an isomorphism of T, M and T, f (M). That is, we proved the
following proposition.

Proposition 2.2.6. Suppose U C R" isopen, M C U is a smooth hypersurface, f : U — R™
is a smooth function, M’ C R™ is a smooth hypersurface such that f(M) c M’, and p € M.
Then

Df(p)(TpM) C Tf(p)M/.

Moreover, if m = n and f is a diffeomorphism (bijective onto some open set U’ such that f1
is smooth), then f(M) is a smooth hypersurface and D f (p)(T, M) = T¢ ) f (M).

Now that we know what tangent vectors are and how they transform, let us define
convexity for domains with smooth boundary.

Definition 2.2.7. Suppose U C R" is an open set with smooth boundary, and r is a
defining function for JU at p € JU such thatr < 0 on U. If

- o°r < 0
E Ay >0, for all X, = E Ap— € T,0U,
WS OXkoOxLly e dxglp

then U is said to be convex at p. If the inequality above is strict for all nonzero
X, € T,dU, then U is said to be strongly convex at p.

A domain U is convex if it is convex at all p € JU. If U is bounded*, we say U is
strongly convex if it is strongly convex at all p € JU.

*r ‘
&xkan Plre

is the Hessian of r at p. So, U is convex at p € dU if the Hessian of r at p as a bilinear
form is positive semidefinite when restricted to Tpau. More concretely, let H be
the Hessian of r at p, and treat 2 € R" as a column vector. Then dU is convex at p
whenever

The matrix

a'Ha > 0, forall 2 € R” such that Vr|,-a =0.

*Matters are a little more complicated with the “strong” terminology if U is unbounded, so
sometimes strictly convex is used instead.
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This bilinear form given by the Hessian is the second fundamental form from
Riemannian geometry in mild disguise (or perhaps it is the other way around).

We cheated a little bit, since we have not proved that the notion of convexity is
well-defined. In particular, there are many possible defining functions.

Exercise 2.2.4: Show that the definition of convexity is independent of the defining function.
Hint: If 7 is another defining function near p, then there is a smooth function g > 0 such
that ¥ = gr.

Example 2.2.8: The unit disc in R? is strongly convex. Proof: Let (x,y) be the
coordinates and let 7(x, y) = x? + y? — 1 be the defining function. The tangent space
of the circle is one-dimensional, so we simply need to find a single nonzero tangent
vector at each point. Consider the gradient Vr = (2x,2y) to check that

is tangent to the circle, that is, Xr = X(x? + y> = 1) = (2x,2y) - (y, —x) = 0 on the
circle—by chance, Xr = 0 everywhere. The vector field X is nonzero on the circle, so
at each point it gives a basis of the tangent space. See Figure 2.5.

r>0

Figure 2.5: Tangent vector to a circle.

The Hessian matrix of r is

92 92
55% 8x5? _ 20
7 2= o 2|

dydx  9y?
Applying the vector (y, —x) gets us
12 O Y22 2 _
ly —x] lo 2] l_xl =2y* +2x* =2> 0.

So the domain given by r < 0 is strongly convex at all points.

d
W .
In higher dimensions, running through enough pairs of variables gets a basis of T M.

In general, to construct a tangent vector field for a curve in R2, consider ry ;—x — 7Ty



60 CHAPTER 2. CONVEXITY AND PSEUDOCONVEXITY

Exercise 2.2.5: Show that if an open set with smooth boundary is strongly convex at a
point p, then it is strongly convex for all points in some neighborhood of p. Then find an
example of an open set with smooth boundary that is convex at one point p, but not convex
at points arbitrarily near p.

Exercise 2.2.6: Show that the domain in R? defined by x* + y* < 1 is convex, but not
strongly convex. Find all the points where the domain is not strongly convex.

Exercise 2.2.7: Show that the domain in R defined by (x% + x%)2 < x3 is strongly convex
at all points except the origin, where it is just convex (but not strongly).

The right sort of changes of coordinates that preserve convexity are invertible real
affine linear mappings. It is rather clear for geometric convexity, as these are precisely
the maps that take lines to lines, but it takes a little bit of computation for convexity
at a point of a smooth boundary (exercise below). A useful analogy to keep in mind
(but not to go overboard with) is that holomorphic functions are sort of like affine
functions. And so it will be with convexity being replaced with pseudoconvexity in
just a little bit, and affine linear maps with holomorphic maps.

Exercise 2.2.8: Prove that translations and invertible linear maps (matrices) preserve
convexity and strong convexity at a point for a domain with smooth boundary.

In the following, we use the big-oh notation, although we use a perhaps less
standard shorthand*. A smooth function is O(f) at a point p (usually the origin), if
all its derivatives of order 0,1, ..., ¢ — 1 vanish at p. For example, if f is O(3) at the
origin, then f(0) = 0, and its first and second derivatives vanish at the origin.

For computations it is often useful to use a more convenient defining function,
that is, it is convenient to write M as a graph.

Proposition 2.2.9. Suppose M C R" is a smooth hypersurface, and p € M. Then after a
rotation (orthogonal matrix) and translation, p is the origin, and near the origin, M is given
by

y=opk),

where (x,y) € R"™1 x R are our coordinates and ¢ is a smooth function that is O(2) at the
origin, namely, ¢(0) = 0 and dp(0) = 0. Consequently,

2 2
pm(p}

ToM = spang {a—m

If M is the boundary of an open set U with smooth boundary and r < 0 on U, then the
rotation can be chosen such that y > ¢@(x) for points in U. See Figure 2.6.
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Ay
y > p(x)

y = ¢(x)

Figure 2.6: Defining a domain as a graph.

Proof. Let r be a defining function at p. Take v = Vr|,. By translating p to the origin,
and applying a rotation (an orthogonal matrix), we assume v = (0,0, ...,0,v,), where
v, < 0. Denote our coordinates by (x,y) € R"™! x R. As Vr|p = v, then 3—;(0) # 0.

The implicit function theorem gives a smooth function ¢ such that r(x, ¢(x)) = 0 for
all x in a neighborhood of the origin, and {(x, y) : ¥ = ¢(x)} are all the solutions to
r = 0 near the origin.

We need to show that the derivative of ¢ at 0 vanishes. As r(x, ¢(x)) = 0 for all x
in a neighborhood of the origin, we differentiate. For every k =1,...,n -1,

n-1
3 B ar dxy or dp _ Jr  Jr do
0= ox; [r(X,go(x))] = ( )

- @ka - Oxy " @(%k'

At the origin, %(O, 0) =0and g—;(O, 0) = v, # 0, and therefore 5—2(0) = 0. That TyM
is the span of the xj derivatives follows at once from the fact that Vr|o = (0,...,0, v,).
To prove the final statement, note that r < 0 on U. It is enough to check that r is

negative for (0, y) if y > 0 is small, which follows as g—;(O, 0)=v, <0. O

The advantage of this representation is that the tangent space at p can be identified

with the x coordinates for the purposes of computation. Considering x as a column
vector, the Taylor expansion of a smooth function ¢ at the origin is

1
@(x)=@p0)+Velo-x + 5 x'Hx + E(x),
where H = [% 0] o is the Hessian matrix of ¢ at the origin, and E is O(3), namely,

E(0) = 0, and all first and second order derivatives of E vanish at 0. In the context of
the lemma above, the ¢ is O(2) at the origin, i.e. ¢(0) = 0 and Vg|p = 0. So we write
the hypersurface M as

1
y=5 x'Hx + E(x).

*The standard notation for O(¢) is O(||x||?) and it means that |% is bounded as x — p.
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If M is the boundary JdU of an open set U, then we pick the rotation so that
y > 2x'Hx + E(x) on U. It is an easy exercise to show that U is convex at p if H
positive semidefinite, and U is strongly convex at p if H is positive definite.

Exercise 2.2.9: Prove the statement above about H and convexity at p.

Exercise 2.2.10: Let r be a defining function at p for a smooth hypersurface M C R". We
say M is convex from both sides at p if both the set given by v > 0 and the set given by
r < 0 are convex at p. Prove that if a hypersurface M C R" is convex from both sides at all
points, then it is locally just a hyperplane (the zero set of a real affine function).

Exercise 2.2.11: Suppose U is a domain with smooth boundary that is strongly convex at
p € dU. Then there exists a real affine change of variables (translation and an invertible
linear map), such that after the change of variables, p = 0 and near 0, JU is given by
y = x'x + E(x) where E(x) is O(3) and y > x'x + E(x) on U.

Recall that U is geometrically convex if for every p, g € U the line between p and g
isin U, or in other words tp + (1 —t)q € U for all t € [0, 1]. In particular, geometric
convexity is a global condition. You need to know all of U. On the other hand, the
notion of convex for a smooth boundary is local in that you only need to know JU
in a small neighborhood. For domains with smooth boundaries the two notions are
equivalent. Proving one direction is easy.

Exercise 2.2.12: Suppose a domain U C R" with smooth boundary is geometrically convex.
Show that it is convex.

The other direction is considerably more complicated, and we will not worry about
it here. Proving a global condition from a local one is often trickier, but also often
more interesting. Similar difficulties will be present once we move back to several
complex variables and try to relate pseudoconvexity with domains of holomorphy.

2.3 | Holomorphic vectors, Levi form, pseudoconvexity

As C" is identified with R*" using z = x + iy, we have T,C" = T,R*". If we take the
complex span instead of the real span we get the complexified tangent space

. d| o J J
C eyt =spanc {8x1 ‘p, Y ’p'm' Ixnlp” IYn P}.

We simply replace all the real coefficients with complex ones. The space C ® T,C" is

a 2n-dimensional complex vector space. Both 81| and 84| are in C® T,C", and
Zr lp Zk lp

d % 0 0
T,C" = —, = ,..., =, =] 7.
= ® pC Spanc {azl ‘p, 821 ’p’ ! 8zn p, azn p}




2.3. HOLOMORPHIC VECTORS, LEVI FORM, PSEUDOCONVEXITY 63

Define
(1,0) ~py def d ) d (0,1) (n def P P
T,”/C" = — ., — d T, C — ..., = 7.
P spanC {821 p 82;1 P an panc 821 P aZn p
(1,0

The vectors in T, 'C" are the holomorphic vectors and vectors in TP(O’DC” are the
antiholomorphic vectors. We decompose the full tangent space as the direct sum

CoT,C" =T,""c" o T,""C".

A holomorphic function is one that vanishes on Tp(o’l)C”.

Let us see what holomorphic mappings do to these spaces when we treat holomor-
phic mappings as smooth mappings. Given a smooth mapping f from (an open subset
of) C" to C™, its derivativeat p € C" isareal-linear mapping Dr f(p): T,C" — Tf(,)C™.
Given the basis above, this mapping is represented by the standard real Jacobian
matrix, that is, a real 2m X 2n matrix that we wrote before as Dr f(p). As a basis
for T,C" is a basis for C ® T,C", the mapping Drf(p): T,C" — T, C™ naturally
uniquely extends to

quf(p): C® Tan - Ce® Tf(p)Cm.

Proposition 2.3.1. Let f: U C C" — C™ be a holomorphic mapping with p € U. Then

Def()(1'C") e T and - Def(p(1cr) e 1o e

If f is a biholomorphism, then D¢ f (p) restricted to T;l’O)C” is a vector space isomorphism.
Similarly for Tp(o’l)C”.

Exercise 2.3.1: Prove the proposition. Hint: Start with D f (p) as a real 2m X 2n matrix
to show it extends (it is the same matrix if you think of it as a matrix and use the same basis
vectors). Think of C"* and C™ in terms of the zs and the Zs and think of f as a mapping

(z,2) = (f(2), f(2)).

Write the derivative as a matrix in terms of the zs and the zZs and fs and fs and the result
will follow. That is just changing the basis.

Exercise 2.3.2: Prove a converse to the proposition. If f: U c C" — C™ is a smooth

mapping such that D¢ f (p)(T(1 O)C”) C Tﬁ ))Cm at every p € U, then f is holomorphic.

For holomorphic mappings and holomorphic vectors, when we say “derivative of
f,” we mean the holomorphic part of the derivative, which we write as

Df(p): ,"C" - T,/'C",  Df(p) = Def P00,
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That is, we restrict D¢ f(p) to Tp“'%". Let z be the coordinates on C" and w the

coordinates on C™. In the bases {% 2 J , the

e, o }and{i| ,...,—| }
tlp 9zulp dwrlf(p) I 1f(p)
holomorphic derivative D f(p) is represented by the m X n Jacobian matrix

[%‘ ]

0z P kp ’

which we have seen in section 1.3 and for which we also used the notation D f (p).
As before, define the tangent bundles

CeoTC", TWOC" and TOVCH,

by taking the disjoint unions. One can also define vector fields in these bundles.

Let us describe C ® T,M for a smooth real hypersurface M c C". Let r be a
real-valued defining function of M at p. A vector X, € C® T,C" is in C ® T,M
whenever Xpr =0. That is,

X, = S ai +bi eC®T,M whenever Zn:aﬁ +bi =0
p_k=1 k&ka k&ikp P P k&zkp k&zkp e

Therefore, C ® T,M is a (2n — 1)-dimensional complex vector space. We decompose
C®T,M as

CoL,M=T,""MeT,""MeB,,
where

"M E (ceT,M)n (T10C"), and TOYM = (CeT,M)Nn (TVCH).

The By is the “leftover” and must be included for the dimensions to work out.*

Exercise 2.3.3: Prove that there is another way of getting at these spaces. Consider
a smooth hypersurface M and p € M. Let | be the linear map of T,C" to itself that
corresponds to multiplication by i (the derivative of the actual multiplication by i). Write
Ty M = J(TpM) N'T, M (the subspace fixed by ], sometimes called the complex tangent
space despite being a real vector space). The map | restricts to an endomorphism of T; M

and thus it naturally induces an endomorphism of C ® T; M. Then Tp(l’O)M and Tp(o’l)M
are the eigenspaces of |, which has eigenvalues +i.

Make sure to notice what sort of vector spaces these are. The space T, M is a real

vector space; C ® LM, T(l’O)M, Tp(o’l)M, and B, are complex vector spaces. To see
that these give vector bundles, we must first show that their dimensions do not vary

“The B, is sometimes colloquially called the “bad direction.”
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from point to point. The easiest way to see this fact is to write down convenient
local coordinates. First, let us note that a biholomorphic map preserves the tangent
holomorphic and antiholomorphic vectors. That is, we get the following analogue of
Proposition 2.2.6. Note that a biholomorphic map is a diffeomorphism.

Proposition 2.3.2. Suppose M C C" is a smooth real hypersurface, p € M, and U c C"
is open with M C U, and supose M’ C C™ a smooth real hypersurface. Let f: U — C™
be holomorphic such f(M) c M’. Let D¢ f(p) be the complexified real derivative as before.
Then

(10 (10) ) 17 01 O1) 3 17
D@f(p)(T M)ch()M D@f(p)(T M)ch()M

Moreover, if m = n and f is a biholomorphism, then f(M) is a smooth real hypersurface,
D¢ f(p) is invertible, D¢ f (p) (T;l'O)M) = T]f(ll;(;)f(M) and D¢ f (p) (Trfo’l)M) T(0 1)f(M)
That is, the spaces are isomorphic as complex vector spaces.

The proposition is local, if U is only a neighborhood of p, replace M with M N U.

Proof. Apply Proposition 2.3.1 and Proposition 2.2.6. That is,
Def (p)(Tp(LO)Cn) Tj,)'C", Dcf (p)(Tp(O’”C”) TOVC",  and
DCf(p)(C ® T M) cCo® Tf(p)M’.

Then D¢ f(p) must take T(l’O)M to T;lr’JO)M’ and T(O DM to T;(() 1))M’ The “Moreover”

follows from the “Moreover of Proposition 2.2. 6 m]

We again wish to write a hypersurface as a graph. In this context, the right sort of
transformations are biholomorphic transformations. Translations are biholomorphic,
and the rotation we will want to use is applying a unitary matrix to C".

Proposition 2.3.3. Let M C C" be a smooth real hypersurface, p € M. After a translation
and a rotation by a unitary matrix, p is the origin, and near the origin, M is written in
variables (z, w) € C* 1 x C as

Imw = ¢(z,z, Rew),
with the ¢(0) and dg(0) = 0. Consequently,

(1,0) 2, _ J ‘ J ‘ O1) 7, _ J
M = —\ .., , TIy7'M= SR
0 spang { e p—." 0 spang 5= lo

9
T

P
Bo = spanc 8(Rew)‘0 '

In particular, dimc Trfl’o)M = dim¢ TFSO’DM =n —1and dim¢c B, = 1.
If M is the boundary of a open set U with smooth boundary, the rotation can be chosen
so that Imw > ¢(z,z,Rew) on U.

Remark the notation ¢(z, z, Re w), where we are using the z, Z notation for the z
directions, but since ¢ does not depend on Im w, we cannot do the same with the w.
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Proof. Apply a translation to put p = 0 and in the same manner as in Proposition 2.2.9
apply a unitary matrix to make sure that Vr is in the direction —mk. That
@(0) = 0 and dg(0) = 0 follows as before. A translation and a unitary matrix are
holomorphic and, in fact, biholomorphic, so via Proposition 2.3.2 the tangent spaces
are all transformed correctly. The rest of the proposition follows at once as m% is
the normal vector to M at the origin. m|

Remark 2.3.4. When M is of dimension less than 2n — 1 (not a hypersurface anymore),
the conclusion of the proposition on the dimensions does not hold. That is, we still
have dim¢ Tp(l’O)M = dim¢ T;O’l)M, but this number need not be constant from point
to point. Fortunately, the boundaries of domains with smooth boundaries are by
definition hypersurfaces and this complication does not arise.

Definition 2.3.5. Suppose U C C" is an open set with smooth boundary, and r is a
defining function for JU at p € dU such that r < 0 on U. If

< _ 821’ & 8 (1,0)
Z Aply— >0 for all Xy = Z Ap— e T,77JdU,
W 9Zxdz¢ lp 4" 9zl P

then U is pseudoconvex at p (or Levi pseudoconvex). If the inequality above is strict for
all nonzero X, € Tlg(l’o)&ll, then U is strongly pseudoconvex at p. If U is pseudoconvex,
but not strongly pseudoconvex, at p, then U is weakly pseudoconvex.

A domain U is pseudoconvex if it is pseudoconvex at all p € JU. For a bounded* U,
we say U is strongly pseudoconvex if it is strongly pseudoconvex at all p € dU.

For X, € Tp(l'o)au, the Hermitian quadratic form

n
’r
L(X,, X,) = ara
( P p) k—lzt;—l k [82_7](823 P

is called the Levi form at p. So U is pseudoconvex (resp. strongly pseudoconvex) at
p € JU if the Levi form is positive semidefinite (resp. positive definite) at p. The Levi
form can be defined for any real hypersurface M, although one has to decide which
side of M is “the inside.”

The matrix

%r ’
dZxdzy¢lp ke

is called the complex Hessian of r at p." So, U is pseudoconvex at p € dU if the complex
Hessian of r at p as a Hermitian form is positive (semi)definite when restricted to

*The definition for unbounded domains is not consistent in the literature. Sometimes strictly
pseudoconvex is used.

TPeople sometimes call the complex Hessian the “Levi form of r,” which is incorrect. The Levi
form is something defined for a boundary or a submanifold, not for r.
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tangent vectors in Tp(l’o)(%l. For example, the unit ball B, is strongly pseudoconvex
as can be seen by computing the Levi form directly from r(z, z) = ||z||> - 1, that is,
the complex Hessian of 7 is the identity matrix.

We remark that the complex Hessian is not the full (real) Hessian. Let us write
down the full Hessian, using the basis of %s and %s. It is the Hermitian matrix

0Z10z1 0Z10zy 0Z107Z1 0210z,
0Z,071 0Z,0z, 0Z,0Z1 0Z,0Z,
I N v S v SN o
021071 0210z, 021071 0210Z,
I Y o N Sy
| 02,021 02,0z, 02,071 02,0Z; |

To make it a Hermitian form, note that when multiplying on the left by X, we are
also taking the conjugate so the rows for the zs and the zs are flipped.” Note that it is
Hermitian only for a real-valued r (see an exercise below). The complex Hessian is
the upper left, or the transpose of the lower right, block—if you write the full Hessian

as [ é th ], then L is the complex Hessian. Note that L is a smaller matrix and we apply

it only to a subspace of the complexified tangent space.
We illustrate the change of basis in one dimension, and leave higher dimensions
to the student. Let z = x + iy be in C, and denote by T the change of basis matrix:

P*r P*r 02 92

1 1 or r

T = /2 1)2 T |9x9x  dxdy |7 _ |z 9zpE
~ify if2|’ Pr Pr P’ o°r |7

dydx dydy 020z 020z

where T* = T is the conjugate transpose. By Sylvester’s law of inertia from linear
algebra, star-congruence preserves the inertia (the number of positive, negative, and
zero eigenvalues). So the inertia of the full Hessian in terms of xs and ys is the same
as for the full Hessian in terms of zs and zs. The relationship between the eigenvalues
of the full Hessian and the complex Hessian is not as straightforward as may at first
seem, but there is a relationship there nonetheless.

Exercise 2.3.4 (Easy): If r is real-valued, then both the complex Hessian of r and the full
Hessian in terms of zs and z are Hermitian matrices.

Exercise 2.3.5: Consider one dimension, z = x + iy, and the real Hessian in terms of x

and y:
Pr Pr
H = dxdx dxdy

Pr Pr
dydx dydy

*It is common to also write it not flipped, in which case it will be a symmetric martrix.



68 CHAPTER 2. CONVEXITY AND PSEUDOCONVEXITY

Prove that the complex Hessian L (a number now) is 1/4 of the trace of H. Thus, if H is
positive definite, then L > 0, and if H is negative definite, then L < 0. Then show by
example that if H has mixed eigenvalues (positive and negative), then L can be positive,
negative, or zero.

Exercise 2.3.6: For every dimension, find the change of variables T*"HT to go from the real
Hessian in terms of x and y to the Hessian in terms of z and z. Hint: If you figure it out
for n =2, it will be easy to do in general.

Exercise 2.3.7: Prove in every dimension that if the real Hessian (in terms of x and y)
is positive (semi)definite, then the complex Hessian is positive (semi)definite. Hint: A
Hermitian matrix L is positive definite if v*Lv > 0 for all nonzero vectors v and semidefinite
ifv'Lv > 0 for all v.

Let us also see how a complex linear change of variables acts on the Hessian. A
complex linear mapping A as an n X n complex matrix transforms the tangent space
in the basis of a%s and %s via the derivative Dc A written as a 2n X 2n matrix. A

direct computation shows DcA = A ® A= [‘8 %]. Write the full Hessian as [ é th ],

where L is the complex Hessian. The complex linear change of variables A transforms

the full Hessian as
A O'[L Z|[A o] _[ALA AzA
0 A| |z LY||0 A| |A'ZA (A'LA)|’
Again by Sylvester’s law of inertia, L and A*LA have the same inertia, that is, the
number of positive, negative, and zero eigenvalues.
The Levi form itself does depend on the defining function, but the signs of the
eigenvalues do not. It is common to say “the Levi form” without mentioning a

specific defining function even though that is not completely correct. The proof of
the following proposition is left as an exercise.

Proposition 2.3.6. If U C C" is an open set with smooth boundary and p € U, then
the inertia of the Levi form at p does not depend on the defining function. Consequently,
the notion of pseudoconvexity and strong pseudoconvexity is independent of the defining
function.

Exercise 2.3.8: Prove Proposition 2.3.6.

Exercise 2.3.9: Show that a convex domain with smooth boundary is pseudoconvex,
and show that (a bounded) strongly convex domain with smooth boundary is strongly
pseudoconvex.

Exercise 2.3.10: Show that if an open set with smooth boundary is strongly pseudoconvex
at a point, it is strongly pseudoconvex at all nearby points.
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We are generally interested what happens under a holomorphic change of co-
ordinates, that is, a biholomorphic mapping. And as far as pseudoconvexity is
concerned we are interested in local changes of coordinates as pseudoconvexity is a
local property. Before proving that pseudoconvexity is a biholomorphic invariant, let
us note where the Levi form appears in the graph coordinates from Proposition 2.3.3,
that is, when our boundary (the hypersurface) is given near the origin by

Imw = ¢(z,z,Rew),

where ¢ is O(2). Let r(z,z, w,w) = ¢(z,z,Rew) — Imw be our defining function.
The complex Hessian of r (an n X n matrix) has the form

2
Lo+ where L = ? 14 .
*x 8zk82g 0 1y,

Note that L is an (n — 1) X (n — 1) matrix. The vectors in Tél’o)ﬁu are the span of

d
=
(a,0) € C" for some a € C"~!. The Levi form at the origin is then a*La, in other words,
it is given by the (n — 1) X (n — 1) matrix L. If this matrix L is positive semidefinite,
then dU is pseudoconvex at 0.

0 %HL)}. That is, as an n-vector, a vector in T0(1’0)8U is represented by

Example 2.3.7: Let us change variables to write the ball B, in different local holo-
morphic coordinates where the Levi form is displayed nicely. The sphere dB,, is
defined in the variables Z = (Z4,...,Z,) € C" by ||Z|| = 1. We change variables to
(z1,...,2n-1, w) where

i 1427
- 1—an forallk=1,...,n—1, w:il_Z:.

This change of variables is a biholomorphic map from the set where Z,, # 1 to the set
where w # —i (exercise). For us, it suffices that the map is invertible near (0, ..., 0, 1),
which follows by computing the derivative. Notice that the last component is the
inverse of the Cayley transform (which takes the disc to the upper half-plane).

We claim that the mapping takes the unit sphere given by ||Z|| = 1 (without the
point (0, ..., 0, 1)), to the set defined by

Zk

Imw = |z1* + - +|z4-1%,

and that it takes (0, ..., 0, —1) to the origin (this part is trivial). Let us check:

2 2 17, 147,
|21|2+..'+|Z 1|2_Imw: Zl cee 4 Zn_l _Zl_zn Zl—Zn
. 1-2, 1-2Z, 2;
_ 4P 2l 142, 142,
1= Zyf? 1-Z% 20-Zy) 201-Z)

_ |le2+"' + |Zn—1|2+ |Zn|2_ 1
11— Zul? '
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Therefore, |Z1|* +- - +|Z,|?> = 1if and only if Imw = |z1]? + - - - + |z,4-1|%. As the map
takes the point (0, ..., 0, —1) to the origin, we can think of the set given by

Imw = |z1]*+ - + |z

as the sphere in local holomorphic coordinates at (0, ..., 0, —1) (by symmetry of the
sphere we could have done this at any point by rotation). In the coordinates (z, w),
the ball (the inside of the sphere) is the set given by

Imw > |z1]2 + - + |zu_1]?

In these coordinates, the Levi form is just the identity matrix at the origin, and so the
domain is strongly pseudoconvex at the origin. We will prove that (strong) pseudo-
convexity is a biholomorphic invariant, and so the ball is strongly pseudoconvex.

Not the entire sphere gets transformed, the points where Z,, = 1 get “sent to
infinity.” The hypersurface Imw = |z1|? + - - - + |z,-1|? is sometimes called the Lewy
hypersurface, and in the literature some even say it is the sphere*. Pretending z
is just one real direction, see Figure 2.7. As an aside, the hypersurface Imw =
|z1|?> + -+ + |zy-1|* is also called the Heisenberg group. The group in this case
is defined on the parameters (z, Rew) of this hypersurface with the group law
(z,Rew)(z’,Rew’) = (z+z/,Rew + Rew’ + 2Imz - 2’).

Figure 2.7: Lewy hypersurface.

Exercise 2.3.11: Prove the assertion in the example about the mapping being biholomorphic
on the sets described above.

Let us see how the Hessian of r changes under a biholomorphic change of
coordinates. Let f: V — V’ be a biholomorphic map between two domains in
C", and let r: V' — R be a smooth function with nonvanishing derivative. Let
us compute the Hessian of r o f: V. — R. We first compute what happens to the

*That is not, in fact, completely incorrect. If we think of the sphere in the complex projective space,
we are simply looking at the sphere in a different coordinate patch.
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nonmixed derivatives. As we have to apply chain rule twice, to keep better track of
things, we write where the derivatives are being evaluated inside the computation,
as they are, after all, functions. For clarity, let z be the coordinates in V' and C the
coordinates in V’. That is, r is a function of  and (, f is a function of z, and f is a
function of z. So r o f is a function of z and Z.

*(ro f) 0 i( ar 3fm ar of, )O
D2z Izk LA\ ICml sy ey 92t | 9T l(sie) ey P2t 0
S (] |l | o)
ot \CCn | o) i) 92k |: 92t |, 9Cu0Cm (5 a2k lz O2e
P f

Z ICn (£ (2, Fizy) 92K92e |

r_fudfu N0 Ir Pfa
=1 (9Cvacm azk aZg = acm azkazg'

2 o . . .

The matrix [g (raf )] can have different eigenvalues than the matrix [ 3 & ] If r
Zk0Zy CkaCé’

has nonvanishing gradient, then using the second term, we can (locally) choose f

. . BZ(rof) . .
in such a way as to make the matrix [W be the zero matrix (or anything else)

at a certain point as we can choose the second derivatives of f arbitrarily at that
point. See the exercise below. Nothing about the matrix [ 7 5 Z ] is preserved under a

biholomorphic map. And that is precisely why it does not appear in the definition of

2 o .
pseudoconvexity. The story for [i?z(,:azfg )] and [ 859:5@] is exactly the same.

Exercise 2.3.12: Given a real function r with nonvanishing gradient at p € C". Find

a local change of coordinates f at p (so f ought to be a holomorphic mapping with an

d*(rof) d*(rof)
aZkQZg P] and [azkaif p

invertible derivative at p) such that [

] are just the zero matrices.

Let us look at the mixed derivatives:

P(rof) 3 i(i fi)

9zkdze  9Zk £\ Iz fio)) ‘9_21? : 0
NP oy | fm Za_ 7%
bt 9C0Cu |(p() Fizy 92k |z 92e | £ ICm| (52 iz 9ZKOZe |,

n

_ Z 321” 8fv afm
B e 8ivacm 0Zk 0zp
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The complex Hessian of r o f is the complex Hessian L of r conjugated as D*LD,
where D is the holomorphic derivative matrix of f at z and D* is its conjugate
transpose. Sylvester’s law of inertia says that the number of positive, negative, and
zero eigenvalues of D*LD is the same as that for L. The eigenvalues may change, but
their signs do not. We are only considering L and D*LD on a subspace. In linear
algebra language, consider an invertible D, a subspace T, and its image DT. Then the
inertia of L restricted to DT is the same as the inertia of D*LD restricted to T.

Let M be a smooth real hypersurface given by r = 0, then f~}(M) is a smooth
real hypersurface given by r o f = 0. The holomorphic derivative D = D f(p) takes

Tp(l,O) f~1(M) isomorphically to Tj%g)M . So L is positive (semi)definite on Tﬁ;’f;)M if

and only if D*LD is positive (semi)definite on Tp(l’o) f~1(M). We have almost proved
the following theorem. In short, pseudoconvexity is a biholomorphic invariant.

Theorem 2.3.8. Suppose U, U’ c C" are open sets with smooth boundary, p € U,V c C"
aneighborhood of p, q € dU’, V' ¢ C" aneighborhood of q,and f: V — V' a biholomorphic
map with f(p) = q, such that f(U NV)=U"NV". See Figure 2.8.

Then the inertia of the Levi form of U at p is the same as the inertia of the Levi form of U’
at q. In particular, U is pseudoconvex at p if and only if U’ is pseudoconvex at q. Similarly,
U is strongly pseudoconvex at p if and only if U’ is strongly pseudoconvex at q.

Figure 2.8: Local boundary biholomorphism.

To finish proving the theorem, the only thing left is to observe that if f(U N V) =
U’'NnV’, then f(JUNV) =dU NV’, and to note that if 7 is a defining function for U’
at g, then f o r is a defining function for U at p.

Exercise 2.3.13: Find an example of a bounded domain in C", n > 2, with smooth
boundary that is not convex, but that is pseudoconvex.

So while the Levi form is not invariant under holomorphic changes of coordinates,
its inertia is. Putting this together with the other observations we made, we find
the normal form for the quadratic part of the defining equation for a smooth real
hypersurface under biholomorphic transformations. It is possible to do better than
the following lemma, but it is not always possible to get rid of the dependence on
Re w in the higher order terms.
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Lemma 2.3.9. Let M C C" be a smooth real hypersurface and p € M. Then there exists a
local biholomorphic change of coordinates taking p to 0 and M to the hypersurface given by

o a+/3
mw=>"|z* = > |z +E(z, 2 Rew),
k=1 k=a+1

where E is O(3) at the origin. Here « is the number of positive eigenvalues of the Levi form
at p, B is the number of negative eigenvalues, and a + f < n — 1.

Recall that O(¢) at the origin means a function that together with its derivatives
up to and including order ¢ — 1 vanish at the origin.

Proof. Change coordinates so that M is given by Imw = ¢(z,z, Rew), where ¢ is
O(2). Apply Taylor’s theorem to ¢ up to the second order:

¢(z,%Z,Rew) = ¢(z,2) + Rew)(Lz + Lz) + a(Rew)* + O(3),

where g is quadratic, L: C" ! - Cislinear,and a2 € R. If L # 0, do a linear change of
coordinates in the z only to make Lz = z1. So assume Lz = €z1 wheree =0ore = 1.

Change coordinates by leaving z unchanged and letting w = w’ + bw'? + cw’z;.
Ignore q(z, Z) for a moment, as this change of coordinates does not affect it. Also,
only work up to second order.

—Imw+e(Rew)(z1 + 21) + a(Re w)?

L w-D | WA+ _ W+ W\>2
= +€ 5 (zl+z1)+a( 5 )
w +bw? + cw'zy — @ — b - 'z
2i
w4+ bw? + cw'zy + @ + b + 'z _
+€ 5 (z1+ Z1)

(W' +bw? + cw'zy + @ + bw'? + c'Z1)
+a
4
w - ((ei —c)w’ +eiw’)z1 + ((ei + O)@ + eiw’)Zy
— + -
2i ) 2i
N (ia = 2b)w’ + (ia + 2b)wW"? + 2iaw'®w’
4i
We cannot quite get rid of all the quadratic terms in ¢, but we choose b and c to

make the second order terms not depend on Rew’. Set b = ia and ¢ = 2i¢, and add
q(z, z) + O(3) into the mix to get

2

+ O(3).

—Imw + @(z,z,Rew) = —Imw + q(z,2) + e(Rew)(z1 + Z1) + a(Re w)* + 0(3)

w —w w —w

4 —/2
_ ) _ w' —w
= - +q(z,z) — €i 5 (21—21)+a( )+O(3)

= —Imw’ + q(z,%) — ei(lmw’)(z1 — 1) + a(Imw’)* + O(3).
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The right-hand side is the defining function in the (z, w’) coordinates. As M is no
longer written as a graph of Im w’ over the rest, apply the implicit function theorem
to solve for Im w’ and write the hypersurface as a graph again. The expression for
Imw’ is O(2), and so —ie(Im w’)(z1 — z1) + a(Im w’)* is O(3). If we write M as a graph,

Imw’ =q(z,z) + E(z,Z,Rew’),

then E is O(3).
Write the quadratic polynomial g as

n—

q(z,2) = Z Axezkze + breZrZe + Crezrze. (2.2)
K, i=1

The ayy and by, are not uniquely determined, but we can pick the matrices [ax/] and
[bk¢] to be symmetric to make them uniquely determined. As g is real-valued, it is
left as an exercise to show that ax; = biy and cip = Czx. That is, the matrix [Dke] is the
complex conjugate of [ax/] and [ck/] is Hermitian.

We make another change of coordinates. Fix the zs again, and set

n-1

w =w"+1i Z AkpZrZe. (2.3)
k=1

In particular,

n-1 n-1
akezkze) =Imw” + Z (akezkze + breZiZe),

Imw’ =Imw” + Im(i
k=1 k=1

as ax; = byy. Plugging (2.3) into Imw’ = q(z, Z) + E(z, Z, Re w’) and solving for Im w”’
cancels the holomorphic and antiholomorphic terms in g, and leaves E as O(3). After
this change of coordinates we may assume that g is a Hermitian form,

n-1

q(z,z) = Z CkeZkZe-

k=1

As g is real-valued, the matrix C = [ck¢] is Hermitian. In linear algebra notation,
q(z,z) = z*Cz, where we think of z as a column vector. If T is a linear transformation
on the z variables, say z’ = Tz, we obtain z’*Cz’ = (Tz)'CTz = z*(T*CT)z. Thus, we
normalize C up to *-congruence. A Hermitian matrix is *-congruent to a diagonal
matrix with only 1s, —1s, and Os on the diagonal, again by Sylvester’s law of inertia.
Writing out what that means is precisely the conclusion of the proposition. |
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Exercise 2.3.14: Prove the assertions in the proof. First, that if q is a quadratic as in
(2.2), then the matrices [ay] and [by,] can be chosen to be symmetric, in which case all the
coefficients are uniquely determined. Second, that if q is real valued, then ax; = by and
Cke = Cyx forall k and {.

Lemma 2.3.10 (Narasimhan’s lemma®). Let U C C" be an open set with smooth boundary
that is strongly pseudoconvex at p € dU. Then there exists a local biholomorphic change of
coordinates fixing p such that in these new coordinates, U is strongly convex at p and hence
strongly convex at all points near p.

Exercise 2.3.15: Prove Narasimhan’s lemma. Hint: See the proof of Lemima 2.3.9.

Exercise 2.3.16: Prove that an open U C C" with smooth boundary is pseudoconvex at p
if and only if there exist local holomorphic coordinates at p such that U is convex at p.

To make use of convexity, the domain needs to be convex at all points (all points
near p), so Narasimhan’s lemma only works at points of strong pseudoconvexity.
For weakly pseudoconvex points the situation is far more complicated. While it is
possible to use weak pseudoconvexity at p to make the domain convex at p, the same
change of variables does not necessarily make the domain convex at nearby points.
In particular, it is not always possible for a domain that is weakly pseudoconvex at all
points to be made convex in a neighborhood. What makes the lemma work is that if
U is strongly (pseudo)convex at p, it will also be so at nearby points.

Let us prove the easy direction of the famous Levi problem. The Levi problem
was a long-standing problem® in several complex variables to classify domains of
holomorphy in C". The answer is that a domain is a domain of holomorphy if and
only if it is pseudoconvex. Just as the problem of trying to show that the classical
geometric convexity is the same as convexity as we have defined it, the Levi problem
has an easier direction and a harder direction. The easier direction is to show that a
domain of holomorphy is pseudoconvex, and the harder direction is to show that a
pseudoconvex domain is a domain of holomorphy. See Hérmander’s book [H] for
the proof of the hard direction.

Theorem 2.3.11 (Tomato can principle). Suppose U C C" is an open set with smooth
boundary and the Levi form has a negative eigenvalue at p € dU. Then every holomorphic
function on U extends to a neighborhood of p. In particular, U is not a domain of holomorphy.

Pseudoconvex at p means that all eigenvalues of the Levi form are nonnegative.
The theorem says that a domain of holomorphy must be pseudoconvex. The theorem’s

*A statement essentially of Narasimhan’s lemma was already used by Helmut Knesser in 1936.
TE. E. Levi stated the problem in 1911, but it was not fully solved until the 1950s, by Oka and others.
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name comes from the proof, and sometimes other theorems using a similar proof of a
“tomato can” of analytic discs are called tomato can principles. The general statement
of proof of the principle is that “an analytic function holomorphic in a neighborhood
of the sides and the bottom of a tomato can extends to the inside.” And the theorem
we gave as the principle states that “if the Levi form at p has a negative eigenvalue,
we can fit a tomato can from inside the domain over p.”

Proof. We change variables so that p = 0, and near p, U is given by

n-1
Imw > —|.21|2 + Z (—:k|zk|2 + E(z1,2',71,Z',Rew),
k=2

where z’ = (z2,...,24-1), €k = —1,0,1, and E is O(3). We embed an analytic disc via

the map & € D lﬂ (A&,0,0,...,0) for some small A > 0. Clearly ¢(0) =0 € dU. For
& # 0 near the origin

n-1
—A2EP + ) exl0l + E(AE,0,AE,0,0) = —A2[E* + E(AE,0,AZ,0,0) <0,
k=2

because the function above has a strict maximum at & = 0 by the second derivative
test. Therefore, for £ # 0 near the origin, ¢(&) € U. By picking A small enough,
e\ {0)) c U.

We can “wiggle the disc a little” and find discs entirely in U. In particular, for all
small enough s > 0, the closed disc given by

feD D (AE,0,0,...,0,is)

(thatis, for slightly positive Im w) is entirely inside U. Fix such a small s > 0. Suppose
€ > 0is small and € < s. Define the Hartogs figure

H={(z,w):A—e<|z1] <A+e¢,|z| <efork=2,...,n—1, and |w —is| < s + €}
U{(z,w):|z1l <A+e, |zxl <efork=2,...,n—1, and |w — is| < €}.

The set where |z1| = A, 2/ = 0, and |w — is| < s is inside U, so an e-neighborhood
of that is in U. For w = is the whole disc where |z1| < A and 2z’ = 0is in U, so
an e-neighborhood of that is in U. Thus, for small enough e > 0, H c U. We are
really just taking a Hartogs figure in the z1, w variables, and then “fattening it up” to
the z’ variables. In Figure 2.9, we picture the Hartogs figure in the |z1| and |w — is|
variables. The boundary dU and U are only pictured diagrammatically. Also, we
make a “picture” the analytic discs giving the “tomato can.” In the picture, the U is
below its boundary dU, unlike usually.

The origin is in the hull of H, and so every function holomorphic in U, and so in
H, extends through the origin. Hence U is not a domain of holomorphy. O
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5 T
N ’
(z,w) =(0,0)— H \/ Tomato can of

¢ analytic discs

~_ f(ps

|
A |z1]

Figure 2.9: Tomato can principle.

Another, perhaps a little less concrete, way to finish the proof that does not use a
Hartogs figure is to apply the first version of Kontinuitétssatz (Theorem 2.1.7) with
the sequence of discs {¢1/x}.

Exercise 2.3.17: For the following domains in U C C2, find all the points in U where U
is weakly pseudoconvex, all the points where it is strongly pseudoconvex, and all the points
where it is not pseudoconvex. Is U pseudoconvex?

a) Imw > |z|*

b) Imw > |z|*(Rew)

c) Imw > (Rez)(Rew)

Exercise 2.3.18: Let U C C" be an open set with smooth boundary that is strongly
pseudoconvex at p € JU. Show that p is a so-called peak point: There exists a
neighborhood W of p and a holomorphic f: W — C such that f(p) = 1and |f(z)| < 1 for
allze Wn U\ {p}.

Exercise 2.3.19: Suppose U C C" is an open set with smooth boundary. Suppose for
p € dU, there is a neighborhood W of p and a holomorphic f : W — C such that df (p) # 0,
f(p) =0, but f is never zero on W N U. Show that U is pseudoconvex at p. Hint: You
may need the holomorphic implicit function theorem (Theorem 1.3.8). Note: The result
does not require the df to not vanish, but it is harder to prove without that hypothesis.

A hyperplane is the “degenerate” case of normal convexity, that is, a hyperplane
is convex from both sides. There is also a flat case of pseudoconvexity. A smooth real
hypersurface M C C" is Levi-flat if the Levi form vanishes at every point of M. The
zero matrix is positive semidefinite and negative semidefinite, so both sides of M are
pseudoconvex. Conversely, the only hypersurface pseudoconvex from both sides is a
Levi-flat one.
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Exercise 2.3.20: Suppose U =V X C"1 c C", where V c Cisan open set with smooth
boundary. Show that U is has a smooth Levi-flat boundary.

Exercise 2.3.21: Prove that a real hyperplane is Levi-flat.

Exercise 2.3.22: Let U c C" beopen, f € O(U), and M = {z eU:Imf(z) = O}. Show
that if df (p) # O for some p € M, then near p, M is a Levi-flat hypersurface.

Exercise 2.3.23: Suppose M C C" is a smooth Levi-flat hypersurface, p € M, and a
complex line L is tangent to M at p. Prove that p is not an isolated point of L N M.

Exercise 2.3.24: Suppose U C C" is an open set with smooth boundary and dU is Levi-flat.
Show that U is unbounded. Hint: If U were bounded, consider the point on U farthest
from the origin.

24 | From harmonic to plurisubharmonic functions

Definition 2.4.1. Let U c R" be open. A C2-smooth f: U — R is harmonic if*

9? ?*f
Vif=—S 4 b — =
f 8x% ox?

0 onU.

A function f: U — R U {—co} is subharmonic if it is upper-semicontinuous’ and

for every ball B,(a) with B,(a) c U, and every function ¢ continuous on B,(a) and
harmonic on B,(a) such that f(x) < g(x) for x € dB,(a), we have

f(x) < g(x), forall x € B.(a).

In other words, a subharmonic function is a function that is less than every
harmonic function on every ball. We remark that when n = 1 in the definition of a
subharmonic function, it is the same as the standard definition of a convex function of
one real variable, where affine linear functions play the role of harmonic functions: A
function of one real variable is convex if for every interval it is less than the affine linear
function with the same end points. A function of one real variable is harmonic if the
second derivative vanishes, and it is therefore affine linear. In one real dimension it is
also easier to picture. The function f is convex if on every interval [«, §], f < g for
every affine linear ¢ bigger than f at the endpoints a and . In particular, we can take
the ¢ thatis equal to f at the endpoints. See Figure 2.10. The picture is analogous for
subharmonic functions for n > 1, but it is harder to draw.

We will consider harmonic and subharmonic functions in C = R2. Let us go
through some basic results on harmonic and subharmonic functions in C that you

*The operator V2, sometimes also written A, is the Laplacian. It is the trace of the Hessian matrix.
"Recall f is upper-semicontinuous if limsup,_, . f(t) < f(x) forall x € U.
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y=8()
y=f)
X =« xiﬁ

Figure 2.10: Convex function.

have probably seen in detail in your one-variable class. Consequently, we leave some
of these results as exercises. In this section (and not just here) we often write f(z) for
a function even if it is not holomorphic.

Exercise 2.4.1: An upper-semicontinuous function achieves a maximum on compact sets.
You may assume the function to be extended-real-valued.

Exercise 2.4.2: Let U C C be open. Show that for a C? function f: U — R,
92 fe 1
dz9z” 4

Use this to show that f is harmonic if and only if it is (locally) the real or imaginary part of a
holomorphic function. Hint: The key is to find an antiderivative of a holomorphic function.

V2f.

Exercise 2.4.3: Prove the identity theorem. Let U C C be a domain and f: U — R
harmonic such that f = 0 on a nonempty open subset of U. Then f = 0.

Via Exercise 2.4.2, harmonic functions are locally real parts of holomorphic
functions, and hence they are infinitely differentiable. In fact, if U C C is a simply
connected domain and u is harmonic on U, then it is the real part of a holomorphic
function on U.

It is useful to find a harmonic function given boundary values. This problem is
called the Dirichlet problem, and it is solvable for many (though not all) domains. The
proof of the following special case is contained in the exercises following the theorem.
The Poisson kernel for the unit disc D C Cis

1 172 1R(1+rei9

P.(0) = — = — .
+(0) 21 +12—2rcosO® 27 € 1—reif

), forO<r<1.

Theorem 2.4.2. Let u: D — R be a continuous function. Define Pu: D — R by

Pu(re'?) = /7T u(eP,(0 —t)ydt ifr<1  and  Pu(e'®) = u(e').

Us

Then Pu is harmonic in D and continuous on D.
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In the proof, it is useful to consider how the graph of P, as a function of 0 looks
for a fixed r. That is, P, acts like an approximate identity; integrating against P,(0 —t)
gives a weighted average of u with the values near ¢’% getting weighted more and
more as ¥ — 1. See Figure 2.11.

Figure 2.11: Graph of P, for r = 0.5, 7 = 0.7, and r = 0.85 on [-7, 7t].

Exercise 2.4.4:
a) Prove P,(0) > 0 forall 0 < r < 1andall 6.
b) Prove /_7; P,(0)do =1.
¢) Prove for any given 6 > 0, sup{P,(0) : 6 < |0| <} - 0asr — 1.

Exercise 2.4.5: Prove Theorem 2.4.2 using the following guideline:
a) Poisson kernel is harmonic as a function of z = re'® € D, and hence Pu is harmonic.
b) P acts like an approximate identity: Prove that Pu(re'®) — u(e'9) uniformly as
r — 1. Hint: Split the integral to [—06, 8] and the rest and use the previous exercise.
c) Prove that Pu(z) tends to u(zp)as z € D — zp € dD.

Exercise 2.4.6: State and prove a version of Theorem 2.4.2 for an arbitrary disc A,(a).

Exercise 2.4.7: Prove that the Dirichlet problem is not solvable in the punctured disc
D\ {0}. Hint: Let u = 0 on dD and u(0) = 1. The solution would be less than —e log|z|
for every € > 0.

The Poisson kernel is a reproducing kernel for holomorphic (and antiholomorphic)
functions, as (the real and imaginary parts of) holomorphic functions are harmonic.
Poisson kernel exists for higher dimensions as well. Solving the Dirichlet problem
using the Poisson kernel leads to the following result.
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Proposition 2.4.3 (Mean-value property and sub-mean-value property). Let U C C
be an open set.

(i) A continuous function f: U — R is harmonic if and only if

1 21

f(a) = 5 f(a+ re'%)do whenever A,(a) C U.
0

(if) An upper-semicontinuous function f: U — R U {—co} is subharmonic if and only if

2n I
f(a) < % fla+re®)de whenever A,(a) C U.
0

For the sub-mean-value property you may have to use the Lebesgue integral to
integrate an upper-semicontinuous function, and to use the version of the Poisson
integral above, you need to approximate by continuous functions on the boundary in
the right way. On first reading, feel free to think of continuous subharmonic functions
and not too much will be lost.

Exercise 2.4.8: Fill in the details of the proof of Proposition 2.4.3.

Exercise 2.4.9: Suppose U C Cis open and f: U — R U {—oo} is subharmonic. Prove

limsup f(w) = f(z)  forallz € U.

w—z

Exercise 2.4.10: Suppose U C C is open and g: U — R is harmonic. Then f: U —
R U {—oo} is subharmonic if and only if f — g is subharmonic.

Proposition 2.4.4 (Maximum principle). Suppose U C C is a domain and f: U —
R U {—co} is subharmonic. If f attains a maximum in U, then f is constant.

Proof. Suppose f attains a maximum ata € U. If A,(a) C U, then

27
f(a) < % fla+r1e®)do < f(a).
0

Hence, f = f(a) almost everywhere on dA,(a). By upper-semicontinuity, f = f(a)
everywhere on dA,(a). This was true for all »r with A,(a) c U, so f = f(a) on A,(a),
and so the set where f = f(a) is open. The set where an upper-semicontinuous
function attains a maximum is closed. So f = f(a) on U as U is connected. m]

A very useful fact we will use over and over without mentioning much is that
subharmonicity is a local property, even if it does not seems so from the definition.
The proof is left as an exercise.
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Proposition 2.4.5. Given an open U C C, a function f: U — R U {—co} is subharmonic
if and only if for every p € U there exists a neighborhood W of p, W C U, such that f|w is
subharmonic.

Exercise 2.4.11: Prove Proposition 2.4.5. Hint: Perhaps try to use the maximum principle
and Exercise 2.4.10.

Exercise 2.4.12: Suppose U C C is a bounded open set, f: U — R U {—co} is upper-

semicontinuous such that f|y is subharmonic, g: U — R is continuous such that g|i is
harmonic and f(z) < g(z) for all z € dU. Prove that f(z) < g(z) forall z € U.

Exercise 2.4.13: Let g be a function harmonic on a disc A ¢ C and continuous on A.
Prove that for every € > 0 there exists a function g, harmonic in a neighborhood of A, such
that g(z) < ge(z) < g(z) + € forall z € A. In particular, to test subharmonicity, we only
need to consider those g that are harmonic a bit past the boundary of the disc.

Proposition 2.4.6. Suppose U C C is an open set and f: U — R is a C? function. The
function f is subharmonic if and only if V2 f > 0.

In analogy to convex functions, a C2-smooth function f of one real variable is
convex if and only if f”(x) > 0 for all x.

Proof. Suppose f is a C2-smooth function on a subset of C = R? with V2f > 0. We
wish to show that f is subharmonic. Take a disc A such that A ¢ U. Consider a
function g continuous on A, harmonic on A, and such that f < ¢ on the boundary
JA. Because V2(f — g) = V>f > 0, we assume ¢ = 0 and f < 0 on the boundary JA.
We need to show that f < 0 on A.

Suppose V2f > 0 at all points on A. The Laplacian V?f is the trace of the Hessian
matrix, that is, the sum of the eigenvalues. Thus f has no maximum in A, since at a
maximum both eigenvalues of the Hessian matrix would be nonpositive. Therefore,
f <0onallof A,

Next suppose only that V2f > 0. Let M be the maximum of x* + y2 on A. Take
falx,y) = f(x,y) + 1(x2 + y?) = L M. Clearly V2, > 0 everywhere on A and f, <0
on the boundary, so f, < 0on all of A. As f, — f, we obtain that f < 0 on all of A.

The other direction is left as an exercise. m|

Exercise 2.4.14: Finish the proof of the proposition above.
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Proposition 2.4.7. Suppose U C C is an open set and f,: U — R U {—oo} is a family of
subharmonic functions. Let

@(z) =sup fa(z).

If the family is finite, then @ is subharmonic. If the family is infinite, p(z) # oo for all z, and
@ is upper-semicontinuous, then ¢ is subharmonic.

Proof. Suppose A,(a) c U. For all a,

1 21 . 1 27 .
— (a+re'?)do > — J(a+1e'?)do > f.(a).
27 Jy 27 )y J J

Taking the supremum on the right over a obtains the results. O

Exercise 2.4.15: Prove that if ¢ : R — R is a monotonically increasing convex function,
U c Cisanopen set,and f: U — R is subharmonic, then ¢ o f is subharmonic.

Exercise 2.4.16: Let U C C be open, { f,} a sequence of subharmonic functions uniformly
bounded above on compact subsets, and {c,, } a sequence of positive real numbers such that
Yimeq Cn < 0o. Prove that f = Y, | ¢y fu is subharmonic. Make sure to prove the function
is upper-semicontinuous.

Exercise 2.4.17: Suppose U C C is a bounded open set, and {p,} a sequence of points in
U. For z € U, define f(z) = 3,71 27" log|z — pul, possibly taking on the value —co.
a) Show that f is a subharmonic function in U.
b) If U = D and p, = Y/n, show that f is discontinuous at 0 (the natural topology on
R U {—o0}).
c) If {pn} is dense in U, show that f is discontinuous on a dense set. Hint: Prove that
f~Y(~o0) is a small (but dense) set. Another hint: Integrate the partial sums, and
use polar coordinates.

There are too many harmonic functions in C" = R?". The real and imaginary
parts of holomorphic functions in C" form a smaller set when n > 1. Notice that
when a holomorphic function is restricted to a complex line, we obtain a holomorphic
function of one variable. So the real and imaginary parts of a holomorphic function
had better be harmonic on every complex line. It turns out, this is precisely the right
class of functions.

Definition 2.4.8. Let U C C" be open. A C2-smooth f: U — R is pluriharmonic if for
every a,b € C", the function of one variable

Er fla+b&)

is harmonic where defined (on {£ € C: a + b& € U}). That s, f is harmonic on every
complex line.
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A function f: U — RU {—oo} is plurisubharmonic, sometimes plush or psh for short,
if it is upper-semicontinuous and for every a, b € C", the function of one variable

Er fa+bé)
is subharmonic where defined.

A harmonic function of one complex variable is in some sense a generalization
of an affine linear function of one real variable. Similarly, as far as several complex
variables are concerned, a pluriharmonic function is the right generalization to C" of
an affine linear function on R". In the same way, plurisubharmonic functions are the
correct complex variable generalizations of convex functions. A convex function of
one real variable is like a subharmonic function, and a convex function of several real
variables is a function that is convex when restricted to any real line.

Many properties of harmonic and subharmonic functions in C have immediate
generalizations to pluriharmonic and plurisubharmonic functions in C". We empha-
size three such immediate generalizations, the maximum principle, the fact that the
property of plurisubharmonicity is local, and the fact that functions are pluriharmonic
if and only if they are (locally) the real and imaginary parts of holomorphic functions.
We will leave these as exercises.

Exercise2.4.18: Let U C C" beopen. Prove thata C%-smooth f : U — R is pluriharmonic
if and only if
’f
0Z10z¢

Exercise 2.4.19: Show that a pluriharmonic function is harmonic. On the other hand, find
an example of a harmonic function that is not pluriharmonic.

=0 onUforalk,(=1,...,n

Exercise 2.4.20: Let U C C" be open. Show that f: U — R is pluriharmonic if and
only if it is locally the real or imaginary part of a holomorphic function. Hint: Using a
of

previous exercise 5 is holomorphic for all £. Assume that U is simply connected, p € U,

and f(p) = 0. Consider the line integral from p to a nearby q € U:
1 df
F(q) = ‘/p Z a—zé)(C)dQ-
=1
Prove that it is path independent, compute derivatives of F, and find out what is F + F — f.

Exercise 2.4.21: Prove the maximum principle: If U C C" is a domain and f: U —
R U {—oco} is plurisubharmonic and achieves a maximum at p € U, then f is constant.

Exercise 2.4.22: Show that plurisubharmonicity is a local property, that is, f is plurisub-
harmonic if and only if f is plurisubharmonic in some neighborhood of each point.
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Proposition 2.4.9. Let U C C" be open. A C*-smooth f: U — R is plurisubharmonic if
and only if the complex Hessian matrix
?f
0Z10z¢ ke

is positive semidefinite at every point.

Proof. First suppose the complex Hessian has a negative eigenvalue at some p € U.
Pf
0Zx0z¢ 0] Kt
is Hermitian. A complex linear change of coordinates acts on the complex Hessian
by *-congruence, and therefore we can diagonalize, using Sylvester’s Law of Inertia
Pf
0Z1dz¢
eigenvalue, then one of the diagonal entries is negative. Without loss of generality
I*f

suppose 35|,
therefore is not subharmonic, and thus f itself is not plurisubharmonic.

For the other direction, suppose the complex Hessian is positive semidefinite at all
points. After an affine change of coordinates assume that an arbitrary complex line
& — a+b¢ is setting all but the first variable to zero, thatis,a = 0and b = (1,0, ...,0).

2
As the complex Hessian is positive semidefinite, % > 0 for all points (z1,0, ..., 0).

After a translation assume p = 0. As f is real-valued, the complex Hessian [

again. So assume that [ ] is diagonal. If the complex Hessian has a negative
0l ke

< 0. The function z1 — f(z1,0,...,0) has a negative Laplacian and

We proved above that V2¢ > 0 implies g is subharmonic, and we are done. m|

Exercise 2.4.23: Suppose U C C" is open and f: U — C is holomorphic.
a) Show log|f(z)| is pluriharmonic on U \ f~1(0) and plurisubharmonic on U.
b) Show |f(z)|" is plurisubharmonic for all n > 0.

Exercise 2.4.24: Show that the set of plurisubharmonic functions on an open set U C C"
is a cone in the sense that if a,b > 0 are constants and f,g: U — R U {—oco} are
plurisubharmonic, then af + bg is plurisubharmonic.

Theorem 2.4.10. Suppose U C C" is an open set and f: U — R U {—oo} is plurisubhar-
monic. Let U C U be the set of points further than € > 0 away from dU. For every € > 0,
there exists a smooth plurisubharmonic function f.: Ue — R such that fo(z) > f(z), and

f(z) = lir%fe(z) forall z € U.

That is, f is a (pointwise) limit of smooth plurisubharmonic functions. The idea
of the proof is important and useful in many other contexts.

Proof. We smooth f out by convolving with so-called mollifiers, or approximate delta
functions. Many different mollifiers work, but we use a specific one for concreteness.
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For € > 0, define

2(z) = {Ce‘”“‘”Z”Z) if |1z < 1,

1
0 izl = 1, 8e(2) = ;8(z/€).

It is left as an exercise that g, and so g, is smooth. The function g has compact
support as it is only nonzero inside the unit ball. The support of g, is the e-ball. Both
are nonnegative. Choose C so that

gdv =1, and therefore gedV =1.
cn cn

Here dV is the volume measure. The function g only depends on ||z]||. To get an idea
of how these functions work, see Figure 2.12.

I I | I I
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Figure 2.12: Graphs of e‘l/(l‘xz), ()1?6‘1/(1‘("/0‘5)2), and (f—25€‘1/(1‘(x/0'25)2).

Compare the graphs to the graphs of the Poisson kernel as a function of 6, which
is also a type of mollifier. The idea of integrating against the right approximate delta
function with the desired properties is similar to the solution of the Dirichlet problem
using the Poisson kernel.

The function f is bounded above on compact sets as it is upper semicontinuous. If
f is not bounded below, replace f with max{ f, _?1}, which is still plurisubharmonic.
Thus, without loss of generality, assume that f is locally bounded. For z € U, define
fe as the convolution with g.:

fi@) = (Frg0@) = [ fllgtz—waviw) = [ fe-w)gdwavio),

The two forms of the integral follow easily via change of variables. We are perhaps
abusing notation a bit as f is only defined on U, but it is not a problem as long as
z € Ue, because g is then zero when f is undefined. By differentiating the first form
under the integral, we find that f is smooth.
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Let us show that f. is plurisubharmonic. Restrict to a line & + a + b&. We wish to
prove the sub-mean-value property using a circle of radius r around & = 0:

1 2m 0 1 271 0
o ), fe(a +bre'®)do = o . /nf(a +bre'’ —w)ge(w)dV(w)do

= /01 (2NA fla—w+0bre'”)do| ge(w)dV(w)
> - fa—w)ge(w)dV(w) = fe(a).

For the inequality, we used g > 0. So f. is plurisubharmonic.

Let us show that f.(z) > f(z) for all z € U,. The function g.(w) only depends on
lwil, ..., |wnl|, in fact, ge(w1, ..., wy) = ge(|wil, ..., |wy|). Without loss of generality,
we consider z = 0 and we use polar coordinates for the integral.

f0) = [ flewigllon,.... o) dvw)

€ € 271 271 ‘ )
:/ / / f(—7’1e’91,...,—rnele”)del"'den)
0 0 0 0

ge(rl/"'/rn)rl"'rndf’l"'d?’n

€ € 21 21 ) ’
> / / / (Zn)f(O,—rzelez,...,—rne’e")dez---den)
0 0 0 0

Qe(r1, ..., )11+ 1y dry---dry

Zf(o)/o A (27’()718'6(1’1,,,,,1’”)}’1---rndrl...drn

= £(0) . Qe(w)dV(w) = £(0).

The second equality above follows as ge is zero outside the polydisc of radius €. For

the inequalities, we again needed that g, > 0. The penultimate equality follows from

the fact that 27t = fozn do.

Finally, for a fixed z, we show lim._,o f¢(z) = f(z). For subharmonic, and so for

plurisubharmonic, functions, limsup,_,, f(C) = f(z), see Exercise 2.4.9. So given
0 >0, find an € > 0 such that f(C) — f(z) < 6 for all C € B¢(z).

fe(z) - f(2) = [3 (O)f(z —w)ge(w) dV(w) - f(2) )ge(W) dV(w)

Be(0

_ / e = @) g V@)
<5 /B | BV =

Again we used that g > 0. We find 0 < f.(z) — f(z) < 6, and so fe(z) — f(z). O
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Exercise 2.4.25: Show that g in the proof above is smooth on all of C".

Exercise 2.4.26: )
a) Show that for a subharmonic function f, /0 " f(a + re'9) dO is a monotone function

of r. Hint: Try a C? function first and use Green’s theorem.
b) Use this fact to show that the f.(z) from Theorem 2.4.10 is monotone decreasing in €.

As smooth plurisubharmonic functions have a local characterization in terms of
derivatives, we obtain the following useful corollary, whose proof is an exercise.

Corollary2.4.11. Let U € C"and V C C" beopen. Prove thatif g: U — V is holomorphic
and f: V — R U {—oo} is plurisubharmonic, then f o g is plurisubharmonic.

Exercise 2.4.27: Prove Corollary 2.4.11. Hint: Prove it first for C? functions, then use the
approximation. Monotone convergence is useful.

Exercise 2.4.28: Using the computation from Theorem 2.4.10 show that if f is plurihar-
monic, then fe = f (where it makes sense), obtaining another proof that a pluriharmonic f
is C*.

Exercise 2.4.29: Let the f in Theorem 2.4.10 be continuous and suppose K cC U. For
small enough € > 0, K C Ue. Show that f. converges uniformly to f on K.

Exercise 2.4.30: Let the f in Theorem 2.4.10 be C*-smooth for some k > 0. Show that all
derivatives of f. up to order k converge uniformly on compact sets to the corresponding
derivatives of f. See also previous exercise.

Let us prove the theorem of Rad6, which is a complementary result to the Riemann
extension theorem. Here on the one hand the function is continuous and vanishes on
the set you wish to extend across, but on the other hand you know nothing about
this set. It is sometimes covered in a one-variable course, and in several variables it
follows directly from the one-variable result.

Theorem 2.4.12 (Rado). Let U € C" be open and f: U — C a continuous function that
is holomorphic on the set
U={zelU: f(z)#0}.

Then f € 6(U).

Proof. First assume n = 1. The conclusion is local, so it is enough to prove it for a
small disc A such that f is continuous on the closure A. Let A’ C A be the set where f
is nonzero. If A" is empty, we are done as f is identically zero and hence holomorphic.

Let u be the real part of f. On A’, u is a harmonic function. Let Pu be the Poisson
integral of u on A. Hence Pu equals u on dA, and Pu is harmonic in all of A. Consider
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the function Pu(z) — u(z) on A. The function is zero on dA and it is harmonic on
A’. By rescaling f, we assume |f(z)| < 1 for all z € A. The function z > log|f(z)| is
harmonic on A/, it is —co when f(z) = 0, and hence it is upper-semicontinuous on
A. Applying the sub-mean-value property near points where f vanishes and the
fact that subharmonicity is local, we find that log|f(z)| is subharmonic on A. As
|f(z)| <1, we find that log|f(z)| is negative on A. So for every t > 0, the function
z — tlog|f(z)| is subharmonic and negative and the function z — —tlog|f(z)| is
superharmonic (minus a subharmonic function) and positive. See Figure 2.13. It is
immediate that for all + > 0 and z € JdA, we have

tlog|f(z)| < Pu(z) —u(z) < —tlog|f(z)]. (2.4)

The functions z — tlog |f(z)| — (Pu(z) — u(z)) and z + tlog |f(z)| — (u(z) — Pu(z))
are harmonic on A’ and —co whenever f(z) = 0. Thus both are upper-semicontinuous
on A and subharmonic on A. The maximum principle shows that (2.4) holds for all
ze€Aandallt > 0.

Figure 2.13: Proof of Radé’s theorem.

Taking the limit t — 0 shows that Pu = u on A’. Let W = A\ A”. On W, u =0
and so Pu — u is harmonic on W and continuous on W. Furthermore, Pu —u = 0
on A’ U dA, and so Pu — u = 0 on JW. By the maximum principle, Pu = u on W
and therefore on all of A. Similarly, if v is the imaginary part of f, then Pv = v on A.
In other words, # and v are harmonic on A. As A is simply connected, let ¥ be the
harmonic conjugate of u that equals v at some point of A”. As f is holomorphic on A’,
the harmonic functions ¢ and v are equal on the nonempty open subset A’ of A and
so they are equal everywhere. Consequently, f = u + iv is holomorphic on A.

The extension of the proof to several variables is left as an exercise. O

Exercise 2.4.31: Use the one-variable result to extend the theorem to several variables.
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2.5 | Hartogs pseudoconvexity

By Corollary 2.4.11, plurisubharmonicity is preserved under holomorphic mappings.
In particular, if p: D — C” is an analytic disc and f is plurisubharmonic in a
neighborhood of ¢(D), then f o @ is subharmonic on D. As subharmonic functions
satisfy the maximum principle, we find that f(z) < sup,,. (9D) f(w) for all z € p(D).
Let us give a general definition for this type of situation.

Definition 2.5.1. Let F be a class of (extended®)-real-valued functions defined on an
open U C R". If K C U, define K, the hull of K with respect to F, as the set

K% {x eU: f(x)<supf(y)forall f eF }
yeK

An open set U is convex with respect to F if for every K cC U, the hull Kccut

Clearly K C K. The key is to show that K is not “too large” for U. Keep in mind
that the functions in F are defined on U, so K depends on U not just on K. An easy
mistake is to consider functions defined on a larger set, obtaining a smaller & and
hence a larger K. Sometimes it is useful to write K to denote the dependence on ¥,
especially when talking about several different hulls.

For example, if U = R and F is the set of real-valued smooth f: R — R with
f"”(x) > 0, then {a,/?} = [a,b] for any a,b € R. In general, if F is the set of convex
functions, then a domain U C R" is geometrically convex if and only if it is convex
with respect to convex functions ¥, although let us not define what that means except
for smooth functions in exercises below.

Exercise 2.5.1: Suppose U C R" is a domain.
a) Show that U is geometrically convex if and only if it is convex with respect to the
affine linear functions.
b) Suppose U has smooth boundary. Show that U is convex if and only if it is convex
with respect to the smooth convex functions on U, that is, with respect to smooth
functions with positive semidefinite Hessian.

Exercise 2.5.2: Show that every open set U C R is convex with respect to real polynomials.

Theorem 2.5.2 (Kontinuitdtssatz—Continuity principle, second version). Suppose
an open set U C C" is convex with respect to plurisubharmonic functions, then given any
collection of closed analytic discs A, C U such that | J, dA, cC U, we have | J, Ay cC U.

“By extended reals we mean R U {—oo, c0}.

TRecall that CC means relatively compact: the closure in the relative (subspace) topology is compact.

The technicality is, of course, that we must define convex functions on not-necessarily-convex sets,
and that is not completely straightforward.
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Various similar theorems are named the continuity principle, we have now seen
two. What they have in common is a family of analytic discs whose boundaries stay
inside a domain, and where the conclusion has to do with extension of holomorphic
functions, with domains of holomorphy, or with some sort of convexity as above.

Proof. Let f be a plurisubharmonic function on U. If @, : D — U is the holomorphic
(in D) mapping giving the closed analytic disc, then f o ¢, is subharmonic. By the
maximum principle, f on A, must be less than or equal to the supremum of f on
A, s0 A, is in the hull of dA,. In other words, Ugq Aq is in the hull of |, dA, and
therefore | J, Ay CC U by convexity. O

Let us illustrate the failure of the continuity principle. If you have discs (denoted
by straight line segments) that approach the boundary as in Figure 2.14, then the
domain is not convex with respect to plurisubharmonic functions. In the diagram,
the boundaries of the discs are denoted by the dark dots at the end of the segments.
In fact, for standard geometric convexity, we can prove a continuity principle where
we do replace discs with line segments, see the exercises below.

Figure 2.14: Failure of the continuity principle.

Exercise 2.5.3: Suppose U C C" is a domain and K CC U is a nonempty compact subset.
Prove that U \ K is not convex with respect to plurisubharmonic functions.

Exercise 2.5.4: Suppose U C C" is a domain with smooth boundary, p € dU, and A is an
affine linear analytic disc with p € A, but A\ {p} c U. Prove that U is not convex with
respect to the plurisubharmonic functions.

Exercise 2.5.5: Prove the corresponding Kontinuititssatz, and its converse, for geometric
convexity: Prove that a domain U C R" is geometrically convex if and only if whenever
[Xa, Yol C U is a collection of straight line segments such that | J ,{xa, Yo} CC U implies

UalXa, ya] cc U.

We can now define another version of pseudoconvexity, this time only in terms of
the interior of the domain.
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Definition 2.5.3. Let U C C" be open. An f: U — R is an exhaustion function for U if
{ZEU:f(z)<r} ccu for every r € R.

A domain U c C" is Hartogs pseudoconvex if there exists a continuous plurisubhar-
monic exhaustion function. The set {z € U : f(z) < r} is called the sublevel set of f, or
the r-sublevel set.

Example 2.5.4: The unit ball B, is Hartogs pseudoconvex. The continuous function
z — —log(1 - |z|)
is an exhaustion function, and it is easy to check directly that it is plurisubharmonic.

Example 2.5.5: The entire C" is Hartogs pseudoconvex as ||z||? is a continuous
plurisubharmonic exhaustion function. Also, because ||z||? is plurisubharmonic, then
given any K cc C", the hull K with respect to plurisubharmonic functions must be
bounded. In other words, C" is convex with respect to plurisubharmonic functions.

Theorem 2.5.6. Suppose U & C" is a domain. The following are equivalent:
(i) —log p(z) is plurisubharmonic, where p(z) is the distance from z to JU.

(if) U has a continuous plurisubharmonic exhaustion function, that is, U is Hartogs
pseudoconvex.

(iii) U is convex with respect to plurisubharmonic functions defined on U.

Proof. (i) = (ii): If U is bounded, the function —log p(z) is clearly a continuous
exhaustion function. If U is unbounded, take z — max{-log p(z), ||z}

(ii) = (iii): Suppose f is a continuous plurisubharmonic exhaustion function.
If K cc U, then for some r we have K € {z € U : f(z) < r} cc U. But then by
definition of the hull K we have K {zelU: f(z) <r} ccl.

(iiil) = (i): Aslongas U # C", the function — log p(z) is real-valued and continuous.
For c € C" with [|c|| = 1, let p.(z) be the supremum of the radii of the affine discs
centered at z in the direction ¢ that lie in U. That is,

pe(z) =sup{A > 0:z+Cc € Uforall C € AD}.

As p(z) = inf; p.(2),
—log p(z) = ||SI|TP1 (—log pc(z)).
cll=

If we prove that for all a,b € C" the function & — —log p.(a + b&) is subharmonic,
then & — —log p(a + b&) is subharmonic, and we are done. See Figure 2.15 for the
setup.

Suppose A C C is a disc such that a + b& € U for all £ € A. If u is a harmonic
function on A continuous on A such that —log p.(a +b&) < u(&) on A, we must show
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Figure 2.15: Largest disc in the direction of c. The disc is drawn as a line.

that the inequality holds on A. By Exercise 2.4.13, we may assume u is harmonic on a
neighborhood of A and so let # = Re f for a holomorphic function f. Suppose & € JA
for a moment. We have —log p.(a + b&) < Re f(£), or in other words

pela +b8) > ™RSO = |=T€)

Using C = te=f(¢) in the definition of pc(a + bé), the statement above is equivalent to
saying that
(a+b&)+te/®cel forallt eD.

This statement holds whenever & € dA. We must prove that it also holds for all £ € A.

The function @;(&) = (a +b&) +te~f©)c gives a closed analytic disc with boundary
inside U. We have a family of analytic discs, parametrized by ¢, whose boundaries are
in U for all ¢t with |t| < 1. For t = 0 the entire disc is inside U. As ¢;(&) is continuous
in both t and & and A is compact, @;(A) € U for t in some neighborhood of 0. Take
0 < tp < 1such that ¢¢(A) C U for all t with |¢| < ty. Then

L) ei@8) ¢ | ) pu(98) ccu,

[t[<to [t[<to

because continuous functions take compact sets to compact sets. Kontinuititssatz
(second version) implies

U pi(A) cc U.

|t]<to

By continuity again, U<, ¢+(A) cC U, and so Ujyj<ty+e Pt(A) cC U for some € > 0.
Consequently ¢;(A) c U for all t with |t| < 1. Thus (a + b¢) + te=f&¢ e U for all
& € Aand all |t| < 1. This implies p.(a + b&) > e~ Ref(&) for all & € A, which in turn
implies —log pc(a + b&) < Re f(&) = u(&) for all £ € A. Therefore, —log pc(a + b&) is
subharmonic. O
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Exercise 2.5.6: Show that if Uy C C" and U, C C" are Hartogs pseudoconvex domains,
then so are all the topological components of Uy N Ub.

Exercise 2.5.7: Show that if U c C" and V C C™ are Hartogs pseudoconvex domains,
then sois U X V.

Exercise 2.5.8: Show that every domain U C C is Hartogs pseudoconvex.

Exercise 2.5.9: Consider the union U = J; Uy of a nested sequence of Hartogs pseudo-
convex domains, U1 C Uy C C". Show that U is Hartogs pseudoconvex.

Exercise 2.5.10: Let RZ ¢ C2 be naturally embedded (that is, it is the set where z1 and z;
are real). Show that the set C* \ R? is not Hartogs pseudoconvex.

Exercise 2.5.11: Let U C C" be a domain and f € O(U). Prove that U’ = {z el:
f(z) # O} is a Hartogs pseudoconvex domain. Hint: See also Exercise 1.6.5.

Exercise 2.5.12: Suppose U,V C C" are biholomorphic domains. Prove that U is Hartogs
pseudoconvex if and only if V is Hartogs pseudoconvex.

Exercise 2.5.13: Let U = {z e C?: |z1| > |22|}.
a) Prove that U is a Hartogs pseudoconvex domain.
b) Find a closed analytic disc A in C? such that 0 € A (0 ¢ U) and A\ {0} C U (in
particular dA c U).
c) What do you think would happen if you tried to move A a little bit to avoid the
intersection with the complement? Think about the continuity principle (second
version). Compare with Exercise 2.5.4.

Exercise 2.5.14: Let U C C" be a domain, and f : U — R be a continuous function,
plurisubharmonic and negative on U, and f = 0 on dU. Prove that U is Hartogs
pseudoconvex.

The statement corresponding to Exercise 2.5.9 on nested unions for domains of
holomorphy is the Behnke—Stein theorem, which follows using this exercise and the
solution of the Levi problem. Behnke—Stein is easier to prove without the solution to
the Levi problem, see Exercise 2.6.13, and is, in fact, generally used in the solution of
the Levi problem.

Exercise 2.5.12 says that (Hartogs) pseudoconvexity is a biholomorphic invariant.
That is a good indication that we are looking at a correct notion. It also allows us
to change variables to more convenient ones when proving a specific domain is
(Hartogs) pseudoconvex.

It is not immediately clear from the definition, but Hartogs pseudoconvexity is
also a local property of the boundary.
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Lemma 2.5.7. A domain U C C" is Hartogs pseudoconvex if and only if for every point
p € dU there exists a neighborhood W of p such that W N U is Hartogs pseudoconvex.

Proof. One direction is trivial, so consider the other. Suppose p € dU, and let W be
such that U N W is Hartogs pseudoconvex. Intersection of Hartogs pseudoconvex
domains is Hartogs pseudoconvex, see Exercise 2.5.6, so assume W = B,(p). Let
B = B,5(p). If g € BN U, the distance from g to the boundary of W N U is the same
as the distance to JU. The setup is illustrated in Figure 2.16.

Figure 2.16: Local Hartogs pseudoconvexity.

The part of the boundary JU in W is marked by a thick black line, the part of the
boundary of (W N U) that arises as the boundary of W is marked by a thick gray
line. A point q € B is marked and a ball of radius 7/2 around g is dotted. No point of
distance 7/2 from g is in W, and the distance of g to U is at most 7/2 as p € JU and
p is the center of B. Let dist(x, y) denote the euclidean distance function*. Then for
zeBNU

—log dist(z, dU) = —log dist(z, I(U N W)).

The right-hand side is plurisubharmonic as U N W is Hartogs pseudoconvex. Such
a ball B exists around every p € dU, so near the boundary, —log dist(z, JU) is
plurisubharmonic.

If U is bounded, then JU is compact. So there is some € > 0 such that
—log dist(z, dU) is plurisubharmonic if dist(z, dU) < 2e. The function

¢(z) = max{-log dist(z, dU), —log €}

is a continuous plurisubharmonic exhaustion function. The proof for unbounded U
is left as an exercise. O

*If either x and/or y are sets of points, we take the infimum of the euclidean distance over all the
points.
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Exercise 2.5.15: Finish the proof of the lemma for unbounded domains. See Exercise 2.5.9.

It may seem that we defined a totally different concept, but it turns out that
Levi and Hartogs pseudoconvexity are one and the same on domains where both
concepts make sense. As a consequence of the following theorem we say simply
“pseudoconvex” and there is no ambiguity.

Theorem 2.5.8. Let U C C" be a domain with smooth boundary. Then U is Hartogs
pseudoconvex if and only if U is Levi pseudoconvex.

Proof. Suppose U C C" is a domain with smooth boundary that is not Levi pseudo-
convex at p € dU. As in Theorem 2.3.11, change coordinates so that p = 0 and U is
defined by
n-1
mz, > —|z212+ > exlzel* + 0(3).
k=2

For a small fixed A > 0, the closed analytic discs defined by & € D~ (A&,0,---,0,1s)
are in U for all small enough s > 0. The origin is a limit point of the insides of the
discs, but not a limit point of their boundaries. Kontinuititssatz (second version) is
not satisfied, and U is not convex with respect to the plurisubharmonic functions.
Therefore, U is not Hartogs pseudoconvex.

Next suppose U is Levi pseudoconvex. Take any p € dU. After translation and
rotation by a unitary, assume p = 0 and write a defining function r as

r(z) = p(z’,Z’,Rez,) — Im z,,,
where z’ = (z1,...,2z,-1). Levi pseudoconvexity says

- 9%r =~ or
kg = >0 whenever Z ar—1| =0, (2.5)
kT =1 8zk82g q e &Zk q

S

for all g € dU near 0. Let s be a small real constant, and let g = (g1, ..., gu-1, Gn + i)

None of the derivatives of r depend on Imz,, and therefore g—;% = 9| and

aZ(i|q

32325 |~ = 8_325 | for all k and ¢. So condition (2.5) holds for all g € U near 0. We
k9z¢ 1q Zxdzelq

will use r to manufacture a plurisubharmonic exhaustion function, that is one with a
positive semidefinite Hessian. Starting with 7, we already have what we need in all
but one direction.

LetV.r|; = (59—2’1 Y ;Trn |q) denote the gradient of r in the holomorphic directions
only. Given g € U near 0, decompose an arbitrary c € C" as ¢ = a + b, where a and b

are orthogonal and b is a scalar multiple of V.7|;. Thatis, a = (a1, ..., a,) satisfies

< or —_—
;aka—Zk . = <a,Vzr|q> =0.
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By the equality part of Cauchy-Schwarz,

Seail|- e

As V.rlop =(0,...,0,—-1/2i), then for g sufficiently near 0, we have ||Vzr|q|| > 1/3, and

<3 uar]|

As ¢ = a + b is the orthogonal decomposition, ||c|| > ||b||. The complex Hessian
matrix of 7 is continuous, and solet M > Obe an upper bound on its operator norm for g
near the origin. Note that cxcy = (Ax+bi)(ag+by) = Arag+bi(ag+be)+(ar+bi)by—brby =
Axap + brcy + ¢xby — biby. Using Cauchy-Schwarz,

LR Lo P 92
Z Ckcf&ikarzz‘q :k:;a agazkaze‘ zlz:bkceazkarzf‘

= |6, V2rT)| = el | variy |

bl = (2.6)

1 Vl
”Vz”lqn k=1 82"

k=1,(=1 A
+chbg ‘ Z kbe )
k=1i=1 82]4925 k== 8zk8Zg (2.7)
Z _ 827’ 2
zzakae - ‘ — M|blllfell = Mllelllioll = Ml
azkaZg q
k=1,{=1
> -3Mlc]lllb]l.

Putting (2.7) and (2.6) together, for g € U near the origin,

o *r ) N or
> Ckcisea—| = -3Mllcllbl = -3Mllell| Y e 5
k=l i=1 azkaZg q e 8zk q

For z € U sufficiently close to 0, define

f(z) = ~log(-r(2)) + AllzII?,

where A > 0 is some constant we will choose later. The log is there to make f blow
up as we approach the boundary. The A||z||? is there to add a constant diagonal
matrix to the complex Hessian of f, which we hope is enough to make it positive
semidefinite at all z near 0. Compute:

I’ f _1lorodr 1 9%

0Z10z¢ 2 0Zr 0zp v 0Zdzy

¢
+A6k,
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where 6£ is the Kronecker delta*. Apply the complex Hessian of f to ¢ at g € U near
the origin (recall that r is negative on U and so for g € U, —r = |r|):

2

- 2 f 1| & or 1 < 27
CkCy ‘ - Cp— + — EkCg - ‘ +A||C||2
k=1z,e_1 0Zxdzyly 12 Z dz¢lg |7 k=1z,e=1 0Zx9z¢lg
2
1|~ or 32M oy
z = —| | — = —| |+ Alc||*
- rZZC‘}&zg ] ”Cllkzz;%azk\q lel

Now comes a somewhat funky trick. As a quadratic polynomial in ||c||, the right-hand
side of the inequality is always nonnegative if A > 0 and if the discriminant is negative
or zero. Let us see if we can make the discriminant zero:

¥M o Or
( |Z el 215zl
All the nonconstant terms go away and A = < fLVI makes the discriminant zero. Thus

for that A,
Z EkCga_ g ‘ > 0.
k=1,0=1 Zkoztl

2

—4A1

In other words, the complex Hessian of f is positive semidefinite at all points g € U
near 0. The function f(z) goes to infinity as z approaches dU. So for every t € R, the
t-sublevel set (the set where f(z) < t) is a positive distance away from dU near 0.
We have constructed a local continuous plurisubharmonic exhaustion function for
U near p. If we intersect with a small ball B centered at p, then we get that U N B is
Hartogs pseudoconvex. This is true at all p € JU, so U is Hartogs pseudoconvex. O

2.6 . Holomorphic convexity

Definition 2.6.1. Let U C C" be a domain. For K c U, define the holomorphic hull

Ky & {z e U:|f(z)] < sup|f(w)]| forall f e @(U)}.

wekK

A domain U is holomorphically convex if whenever K cC U, then Ky cc U. In
other words, U is holomorphically convex if it is convex with respect to moduli of
holomorphic functions on U."

*Recall 6f = 0if k # f and 6} = 1if k = £.
fSometimes simply K is used, but we use Ki; to emphasize the dependence on U.
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It is a simple exercise (see below) to show that a holomorphically convex domain
is Hartogs pseudoconvex. We will prove that holomorphic convexity is equivalent
to being a domain of holomorphy. That a Hartogs pseudoconvex domain is holo-
morphically convex is the Levi problem for Hartogs pseudoconvex domains and is
considerably more difficult. The thing is, there are lots of plurisubharmonic functions,
and they are easy to construct; we can even construct them locally, and then piece
them together by taking maxima. There are far fewer holomorphic functions, and we
cannot just construct them locally and expect the pieces to somehow fit together. As
it is so fundamental, let us state it as a theorem.

Theorem 2.6.2 (Solution of the Levi problem). A domain U C C" is holomorphically
convex if and only it is Hartogs pseudoconvex.

Proof. The forward direction follows from an exercise below, which is sometimes
called Oka’s lemma. We skip the proof of the backward direction in order to save some
hundred pages or so. See Hérmander’s book [H] for the proof. m]

Exercise 2.6.1: Prove that a holomorphically convex domain is Hartogs pseudoconvex. See
Exercise 2.4.23.

Exercise 2.6.2: Prove that every domain U C C is holomorphically convex by giving a
topological description of Ky for every compact K CC U. Hint: Runge may be useful.

Exercise 2.6.3: Suppose f: C" — C is holomorphic and U is a topological component of
{z eC":|f(z)] < 1}. Prove that U is a holomorphically convex domain.

Exercise2.6.4: Compute the hull I?W of the set K = {z eD":|zy| =Apfort=1,..., n},
where 0 < Ay < 1. Prove that the unit polydisc is holomorphically convex.

Exercise 2.6.5: Prove that a geometrically convex domain U C C" is holomorphically
convex.

Exercise 2.6.6: Prove the Hartogs figure (see Theorem 2.1.4) is not holomorphically convex.

Exercise 2.6.7: Let U C C" be a domain, f € O(U), and f is not identically zero. Show

that if U is holomorphically convex, then U= {z elU: f(z) # 0} is holomorphically
convex. Hint: First see Exercise 1.6.5.

Exercise 2.6.8: Suppose U,V C C" are biholomorphic domains. Prove that U is
holomorphically convex if and only if V is holomorphically convex.

Exercise 2.6.9: In the definition of holomorphic hull of K, replace U with C" and O(U)
with holomorphic polynomials on C", to get the polynomial hull of K. Prove that the

polynomial hull of K cc C" is the same as the holomorphic hull Kcn.
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Exercise 2.6.10:
a) Prove the Hartogs triangle T (see Exercise 2.1.9) is holomorphically convex.
b) Prove T U B¢(0) (for a small enough € > 0) is not holomorphically convex.

Exercise 2.6.11: Show that if domains U; C C" and Uy € C" are holomorphically convex,
then so are all the topological components of Uy N Up.

Exercise 2.6.12: Let n > 2.
a) Let U c C" beadomain and K cC U a nonempty compact subset. Show that U \ K
is not holomorphically convex.
b) Let U c C" be a bounded holomorphically convex domain. Prove that C" \ U is
connected.
c¢) Find an unbounded holomorphically convex domain U C C" where C" \ U is
disconnected.

The set C" is both holomorphically convex and a domain of holomorphy. These
two notions are equivalent also for all other domains in C".

Theorem 2.6.3 (Cartan-Thullen). Let U & C" be a domain. The following are equivalent:
(1) U is a domain of holomorphy.
(if) Forall K cc U, dist(K, dU) = dist(Ky, oU).
(iii) U is holomorphically convex.

Proof We start with (i) = (ii). Suppose there is a K cC U with d1st(K au) >

dist(Ky;, oU). After possibly a rotation by a unitary, there exists a point p € Kyanda
polydisc A = A,(0) with polyradius r = (ry, ..., r,) such that p + A = A,(p) contains
a point of JU, but

K+A= UAr(q) ccU.
qeK

See Figure 2.17.
If f € 6(U), then thereisan M > O such that |f| < M on K+ A as that is a relatively
compact set. By the Cauchy estimates for each g € K, we get

L )'
This inequality therefore holds on Ky and hence at p. The series
10°f o
; 5 Pz = p)

converges in A,(p). The function f extends to all of A,(p) and A,(p) contains points
outside of U. In other words, U is not a domain of holomorphy.

Ma'
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Figure 2.17: Point in the hull closer to the boundary than closest point of K.

The implication (ii) = (iii) is immediate.

Finally, we prove (iii) = (i). Suppose U is holomorphically convex. Let p € dU.
By convexity, choose nested compact sets K;—1 & Ky cC U such that | J, Ky = U, and
@u = Ky. As the sets exhaust U, we can perhaps pass to a subsequence to ensure
that there exists a sequence of points py € K, \ K1 such that limy_,. py = p.

Choose f1 € 6(U) so that fi(p1) > 1. Proceed inductively. As py is not in the hull
of Ky_1, there is a function f; € 6(U) such that |f,| < 2= on Ky_1, but

-1
Z fr(pe)
=1

Finding such a function is left as an exercise below. For every ¢, the series };7; fi(z)
converges uniformly on Ky as for all k > ¢, | fi| < 275 on K;. As the K; exhaust U, the
series converges uniformly on compact subsets of U. Consequently,

|fe(pe)l = €+

f) =) filz)
k=1

is a holomorphic function on U. We bound

-1 ) )
Fal = 1fepol =D filp| = | D flpo)| = €= D 275 = £-1.
k=1 k=0+1 k=0+1

So limy_,e f(p¢) = 0. Clearly there cannot be any open W c C" containing p to
which f extends (see definition of domain of holomorphy). As every connected open
W such that W\ U # 0 and W \ U # 0 must contain a point of U, we are done. O
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By Exercise 2.6.8, holomorphic convexity is a biholomorphic invariant. Thus,
being a domain of holomorphy is also a biholomorphic invariant. This fact is not easy
to prove from the definition of a domain of holomorphy, as the biholomorphism is
defined only on the interior of our domains.

Holomorphic convexity is an intrinsic notion; it does not require knowing anything
about points outside of U. It is a much better way to think about domains of
holomorphy. Holomorphic convexity generalizes easily to more complicated complex
manifolds®, while the notion of a domain of holomorphy only makes sense for
domains in C".

Exercise 2.6.13 (Behnke-Stein again): Show that the union | J, Uy of a nested sequence
of holomorphically convex domains U,—; C Uy € C" is holomorphically convex.

Exercise 2.6.14: Prove the existence of the function f; € O(U) as indicated in the proof of
Cartan—Thullen above.

Exercise 2.6.15: Show that if U C C" is holomorphically convex, then there exists a single
function f € ©(U) that does not extend through any point p € dU.

Exercise 2.6.16: We know U = C2\ {z € C?: z1 = 0} is a domain of holomorphy. Use
part (i) of the theorem to show that if W C C? is a domain of holomorphy and U C W,
then either W = U or W = C2. Hint: Suppose L C W is a complex line and K is a circle

in L. What is EW?

In the following series of exercises, which you should most definitely do in order,
you will solve the Levi problem (and more) for complete Reinhardt domains. Recall
that a domain U is a complete Reinhardt domain if whenever (z1, ..., z,) is in U and
rx = |zk|, then the entire closed polydisc A.(0) c U. We say a complete Reinhardt
domain U is logarithmically convex if there exists a (geometrically) convex C C R" such
that z € U if and only if (log|z1],...,log|z.|) € C.

Exercise 2.6.17: Prove that a logarithmically convex complete Reinhardt domain is the
intersection of sets of the form

{zeC":aloglzi| + - + anloglza| < B} = {z € C" ¢ |z1|* -+ |z, |* < €}
for some nonnegative ay, ..., a,, and p € R.

Exercise 2.6.18: Prove that a complete Reinhardt domain that is Hartogs pseudoconvex is
logarithmically convex.

*Manifolds with complex structure, that is, “manifolds with multiplication by i on the tangent
space.”
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Exercise 2.6.19: For each k € Ny, let £ € Ny be the smallest nonnegative integer such
that €5, > ka,,. Prove that the domain of convergence of the power series

[o0]

k k
z : kg 4 4
e ﬁzl ...Zn”

k=0

is precisely {z € C" : |z1]|%1 - - - |z,|* < eP}. Hint: That it diverges outside is easy, what

k
is hard is that it converges inside. Perhaps useful is to notice %’“ — &y <, and that if z is
in the set, there is some € > 0 such that (1 + €)|z1|%' - - - |z, | = eF.

Exercise 2.6.20: Prove that a logarithmically convex Reinhardt domain is holomorphically
convex and therefore it is a domain of holomorphy.

Exercise 2.6.21: Prove that a complete Reinhardt domain is a domain of holomorphy if and
only if it is the domain of convergence of some power series at the origin. Hint: There is a
function that does not extend past any boundary point of a holomorphically convex domain.

We (you) have proved the following proposition.

Proposition 2.6.4. Let U C C" be a complete Reinhardt domain. Then the following are
equivalent:

(1) U is logarithmically convex.
(i) U is a domain of holomorphy.
(iii) U is a domain of convergence of some power series at the origin.

(iv) U is Hartogs pseudoconvex.



3 ' CR Functions

3.1 | Real-analytic functions and complexification

Definition 3.1.1. Let U C R" be open. A function f: U — C is real-analytic (or simply
analytic if clear from context) if at each point p € U, the function f has a convergent
power series that converges (absolutely) to f in some neighborhood of p. A common
notation for real-analytic is C“.

Before we discuss the connection between real-analytic and holomorphic functions,
we prove a simple lemma.

Lemma 3.1.2. Let R" c C" be the natural inclusion and V. C C" a domain such that
VNR" #0. Suppose f,g: V — C are holomorphic functions such that f = g on V N R".
Then f = gonV.

Proof. Considering f — ¢ we may assume that ¢ = 0. Let z = x + iy as usual so that
R" is given by y = 0. Our assumption is that f = 0 when y = 0, so the derivative of f
with respect to xj is zero. When y = 0, the Cauchy-Riemann equations say

of of
0= =—=—-i—.
8xk 8yk
Therefore, ony =0,
daf
a_Zk =0.

g—sz is holomorphic and g—f = 0 on y = 0. By induction all holomorphic

The derivative =
derivatives of f at p € R" NV vanish, and f has a zero power series. Hence f is
identically zero in a neighborhood of p in C". By the identity theorem, f is zero on

all of V. m|

We return to R” for a moment. We write a power series in R" in multi-index
notation as usual. Suppose that for some 2 € R" and some polyradius r = (r1, ..., 75),

the series
Z Ca(x - a)a

o
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converges whenever |x; — ai| < ri for all k. Here convergence is absolute convergence.
That is,
o
D Il lx —al
o

converges. If we replace xx € R with zx € C such that |zx — ax| < |xx — ak|, then the
series still converges. Hence the series

Z ca(z — a)*

o

converges absolutely in A,(a) ¢ C".

Proposition 3.1.3 (Complexification partI). Suppose U C R" isadomainand f: U — C
is real-analytic. Let R"™ C C" be the natural inclusion. Then there exists a domain V C C"
such that U C V and a unique holomorphic function F: V — C such that F|y = f.

Among many other things that follow from this proposition, we can now conclude
that a real-analytic function is C* smooth. Be careful and notice that U is a domain
in R", but it is not an open set when considered as a subset of C". Furthermore, V
may be a very “thin” neighborhood around U. There is no way of finding V' just from
knowing U. You need to also know f. As an example, consider f(x) = ﬁ fore > 0,
which is real-analytic on R, but the complexification is not holomorphic at +ei.

Proof. We proved the local version already. But we must prove that if we extend our
f near every point, we always get the same function. That follows from Lemma 3.1.2;
any two such functions are equal on R”, and hence equal. There is a subtle topological
technical point in this, so let us elaborate. A key topological fact is that we define V
as a union of the polydiscs where the series converges. If a point p is in two different
such polydiscs, we need to show that the two definitions of F are the same at p. The
intersection of two polydiscs is connected, and in this case it also contains a piece of
R", and we may apply the lemma. O

Exercise 3.1.1: Prove the identity theorem for real-analytic functions. That is, if U C R"
is a domain, f: U — R a real-analytic function and f is zero on a nonempty open subset
of U, then f is identically zero.

Exercise 3.1.2: Suppose U C R" is a domain and f: U — R a real-analytic function.
Suppose that W C U is a nonempty open subset and f|w is harmonic. Prove that f is
harmonic.

Exercise 3.1.3: Let (0,1) ¢ R. Construct a real-analytic function on (0, 1) that does
not complexify to the rectangle (0,1) + i(—€, €) C C for every € > 0. Why does this not
contradict the proposition?
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A polynomial P(x) in n real variables (x1, ..., x,) is homogeneous of degree d if
P(sx) = s“P(x) for all s € R and x € R". A homogeneous polynomial of degree d is
a polynomial whose every monomial is of total degree d. If f is real-analytic near
a € R", then write the power series of f ata as

i fm(x - 61),
m=0

where f,, is a homogeneous polynomial of degree m. The f,, is called the degree m
homogeneous part of f at a.

There is usually a better way to complexify real-analytic functions in C". Suppose
UcC"=R?* and f: U — C is real-analytic. Assume a = 0 € U for simplicity.
Writing z = x + iy, near 0,

zZ+Z Z—Z)

fe) =3 fulen = 3 fn (525
m=0 m=0

The polynomial f,, becomes a homogeneous polynomial of degree m in the variables
z and Z. The series becomes a power series in z and zZ. We simply write the function
as f(z,z), and we consider the power series representation in z and z rather than in x
and y. In multi-index notation, we write a power series at a € C" as

Z Caplz —a)'(Z - ).
ap

A holomorphic function is real-analytic, but not vice versa. A holomorphic
function is a real-analytic function that does not depend on z.
Before we discuss complexification in terms of z and z, we need a lemma.

Lemma 3.1.4. Let V C C" X C" be a domain, let the coordinates be (z, C) € C" x C", let
D={(z,0)eC"xC": =1z},

and suppose D NV # (. Suppose f,g: V — C are holomorphic functions such that f = g
onDNV.Then f = gonall of V.

The set D is sometimes called the diagonal.

Proof. Without loss of generality assume that ¢ = 0. For (z,z) € V,wehave f(z,z) =0,
which is really f composed with the map taking z to (z,Z). This composition is
identically zero, so applying Wirtinger operators yields zero. Using the chain rule,

o 1 of .
0= a—zk[f(z,z)] = a—ck(z,z).

Let us do this again with the z,

9 J
0= a—Zk[f(z,Z)] - a—ka(z,Z).
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Either way, we get another holomorphic function in z and C that is zero on D. By
induction, for all & and p we get

3Ia|+|ﬁ|[ ] Jlal+lely
Z,

92297F = Saeg0r Zr2)

All holomorphic derivatives in z and C of f are zero on every point (z, z), so the power
series is zero at every point (z, Z), and so f is identically zero in a neighborhood of
every point (z,Z). The lemma follows by the identity theorem. O

Let f be a real-analytic function. Suppose the series (in multi-index notation)

flz,2) = Z Cap(z —a)*(z — )
ap

converges in a polydisc A.(a) C C". By convergence we mean absolute convergence,
D lcapllz —al®lz - alf
a,p

converges. The series still converges if we replace zy with Cx where |C; — | < |z — a].
So the series
F(z,0) = ) caplz—a)"(C—a)
ap
converges (absolutely) for all (z, C) € A,(a) X A,(a).
Putting together the discussion above with the lemma we obtain:

Proposition 3.1.5 (Complexification partIl). Suppose U C C"isadomainand f: U — C
is real-analytic. Then there exists a domain V- C C" X C" such that

{(z,0):C=zandze U} CV,

and a unique holomorphic function F: V — C such that F(z,Z) = f(z,Z) forall z € U.

The function f can be thought of as the restriction of F to the set where C = z. We
will abuse notation and write simply f(z, ) both for f and its extension. The reason
for this abuse is evident from the computations above. What we are calling f is a
function of (z, ) if thinking of it as a function on the diagonal where C = Z, or it is
a function of z if thinking of it as just the function z — f(z, z), or it is the function
(z,C) = f(z,C). We have the following commutative diagram:

z+>(z,Z)

uccnr s VecCrx(Ct
x Aj)
C

All three ways of going from one place to another in the diagram we are calling f.
The arrow from V was called F in the proposition. The notation plays well with
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differentiation and the Wirtinger operators. Differentiating f (really the F in the
proposition) in Cx and evaluating at (z, z) is the same thing as evaluating at (z, z) and
then differentiating in Z; using the Wirtinger operator:

oF _.  df _ d _ af

(9_C1<(Z'Z) = 8—Ck(Z/Z) = a—zk[f(zfz)] = 8—21{(2,2)-

If we squint our mind’s eye, we can’t quite see the difference between z and C. We
have already used this idea for smooth functions, but for real-analytic functions we
can treat z and z as truly independent variables. The abuse of notation is entirely
justified, at least once it is understood well.

Remark 3.1.6. The domain V' in the proposition is not simply U times the conjugate of
U. In general, it is much smaller. For example, a real-analytic f: C" — C does not
necessarily complexify to all of C" x C". That is because the domain of convergence
for a real-analytic function on C" is not necessarily all of C". In one dimension,

B 1
14z

f(z,2)

is real-analytic on C, but it is not a restriction to the diagonal of a holomorphic
function defined on all of C2. The problem is that the complexified function

1

f@ =17

is undefined on the set where zC = -1, which by a fluke never happens when C = Z.

Remark 3.1.7. This form of complexification is sometimes called polarization due to its
relation to the polarization identities*: We can recover a Hermitian matrix A, and
therefore the sesquilinear form (Az, w) for z, w € C", by simply knowing the value of

n

(Az,z) =2z"Az = Z Ak ZkZy
k{=1

for all z € C". In fact, under the hood Proposition 3.1.5 is polarization in an
infinite-dimensional Hilbert space, but we digress.

Treating Z as a separate variable is a very powerful idea, and as we have just seen
it is completely natural for real-analytic functions. This is one of the reasons why
real-analytic functions play a special role in several complex variables.

Exercise 3.1.4: Let U C C" be an open set and ¢ : U — R a pluriharmonic function.
Prove that ¢ is real-analytic.

*Such as 4(z, w) = ||lz + w|> = [|lz = w|* + i(||z + iw]|> = ||z — iw]?).
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Exercise3.1.5: LetU C C" beanopenset, zg € U. Suppose ¢ : U — Risapluriharmonic
function. You know that @ is real-analytic. Using complexification, write down a formula
for a holomorphic function near zo whose real part is .

Exercise 3.1.6: Let U C C" be a domain, and suppose f, g € O(U). Suppose that f =
on U. Use complexification (complexify f — g) to show that both f and g are constant.

Example 3.1.8: Not every C* smooth function is real-analytic. For x € R, define

e ifx >0,
X) =
fz) {O if x <0.

-1/x

The function f: R — R is C* and f*)(0) = 0 for all k. The Taylor series of f at the
origin does not converge to f in any neighborhood of the origin; it converges to the
zero function but not to f. Because of this, there is no neighborhood V of the origin
in C such that f is the restriction to V N R of a holomorphic function in V.

Exercise 3.1.7: Prove the statements of the example above.

Definition 3.1.9. A real hypersurface M C R" is said to be real-analytic if locally at
every point it is the graph of a real-analytic function. That is near every point (locally),
after perhaps relabeling coordinates M can be written as a graph

y=opk)
where ¢ is real-analytic, (x,y) € R""! x R = R".

Compare this definition to Definition 2.2.1. We could define a real-analytic
hypersurface as in Definition 2.2.1 and then prove an analogue of Proposition 2.2.9 to
show that this new definition would be identical to the definition above. However,
the definition we gave is sufficient, and so we avoid the complication, leaving it to the
interested reader.

Exercise 3.1.8: Show that the definition above is equivalent to an analogue of
Definition 2.2.1. That is, state the alternative definition of real-analytic hypersurface
and then prove the analogue of Proposition 2.2.9.

A mapping to R™ is real-analytic if all the components are real-analytic functions.
Via complexification we give a simple proof of the following result.

Proposition 3.1.10. Let U ¢ R", V c R¥ be open and let f: U — Vand g: V — R™ be
real-analytic. Then g o f is real-analytic.
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Proof. Let x € R" be our coordinates in U and y € R be our coordinates in
V. Complexify f(x) and g(y) by allowing x to be a complex vector in a small
neighborhood of U in C" and y to be a complex vector in a small neighborhood of V'
in C*. So treat f and g as holomorphic functions. On a certain neighborhood of U
in C", the composition f o ¢ makes sense and it is holomorphic, as composition of
holomorphic mappings is holomorphic. Restricting the complexified f o ¢ back to
R" we obtain a real-analytic function. m|

The proof demonstrates a simple application of complexification. Many properties
of holomorphic functions are easy to prove because holomorphic functions are
solutions to certain PDE (the Cauchy—Riemann equations). There is no PDE that
defines real-analytic functions, so complexification provides a useful tool to transfer
certain properties of holomorphic functions to real-analytic functions. We must be
careful, however. Hypotheses on real-analytic functions only give us hypotheses on
certain points of the complexified holomorphic functions.

Exercise 3.1.9: Demonstrate the point about complexification we made just above. Find a
nonconstant bounded real-analytic f: R" — R that happens to complexify to C".

Exercise 3.1.10: Let U C R" be open. Let ¢: (0,1) — U be a real-analytic function
(curve), and let f: U — R be real-analytic. Suppose that (f o @)(t) =0 forallt € (0, €)
for some € > 0. Prove that f is zero on the image ¢ ((0, 1)).

3.2 CR functions

We first need to know what it means for a function f: X — C to be smooth if X is not
an open set, for example, if X is a hypersurface.

Definition 3.2.1. Let X C R”" be a set. The function f: X — C is smooth (resp.
real-analytic) if for each point p € X there is a neighborhood U C R" of p and a
smooth (resp. real-analytic) F: U — C such that F(q) = f(q) forg € X N U.

For an arbitrary set X, issues surrounding this definition can be rather subtle. The
definition is easy to work with, however, if X is nice, such as a hypersurface, or if X is
a closure of a domain with smooth boundary.

Proposition 3.2.2. Suppose M C R" is a smooth (resp. real-analytic) real hypersurface. A
function f: M — C is smooth (resp. real-analytic) if and only if whenever near any point
we write M in coordinates (x,y) € R"™! X R as

y=¢(x),

for a smooth (resp. real-analytic) function @, then f (x, @(x)) is a smooth (resp. real-analytic)
function of x.
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Exercise 3.2.1: Prove the proposition.

Exercise 3.2.2: Prove that if M is a smooth or real-analytic hypersurface,and f: M — C
is smooth or real-analytic, then the function F from the definition is never unique, even for
a fixed neighborhood U.

Exercise 3.2.3: Suppose M C R" is a smooth hypersurface, f: M — C is a smooth
function, p € M, and X, € T, M. Prove that X, f is well-defined. That is, suppose U is a
neighborhood of p, F: U — C and G: U — C are smooth functions that both equal f on
U N M. Prove that X,F = X,,G.

Due to the last exercise, we can apply vectors of T, M to a smooth function on a
hypersurface by simply applying them to any smooth extension. We can similarly
apply vectors of C® T, M to smooth functions on M, as C®T, M is simply the complex
span of vectors in T, M.

Definition 3.2.3. Let M C C" be a smooth real hypersurface. A smooth f: M — Cis
a smooth CR function if

Xpf =0
for all p € M and all vectors Xp € Trgo’l)M .

Remark 3.2.4. One only needs one derivative (rather than C*) in the definition above.
One can even define a continuous CR function if the derivative is taken in the
distribution sense, but we digress.

Remark 3.2.5. When n =1, a real hypersurface M C C is a curve and Trfo’l)M is trivial.
Therefore, all functions f: M — C are CR functions.

Proposition 3.2.6. Let M C U be a smooth (resp. real-analytic) real hypersurface in an
open U C C". Suppose F: U — C is a holomorphic function, then the restriction f = F|py
is a smooth (resp. real-analytic) CR function.

Proof. First let us prove that f is smooth. The function F is smooth and defined on a
neighborhood of every point of M, and so it can be used in the definition. Similarly
for real-analytic.

Let us show f is CR at some p € M. Differentiating f with vectors in C ® T, M is

the same as differentiating F. As Tp(o’l)M - Téo’l)C”, we have

X,f =X,F=0 forall X,eT" M. O

On the other hand, not every smooth CR function is a restriction of a holomorphic
function.
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Example 3.2.7: Take the smooth function f: R — R we defined before that is not
real-analytic at the origin. Take M C C? be the set defined by Imz; = 0. M is a

real-analytic real hypersurface. Clearly T;O’l)M is one-complex-dimensional, and at

31 |p is tangent and spans Trfo’l)M . Define g: M — C by

eachp € M, -

g(z1,22,21,22) = f(Re z).

Then g is CR as it is independent of Z;. If G: U ¢ C? — C is a holomorphic function
where U is some open set containing the origin, then G restricted to M must be
real-analytic (a power series in Re z1, Im z1, and Re z;) and therefore G cannot equal
to g on M.

Exercise 3.2.4: Suppose M C C" is a smooth real hypersurface and f: M — Cisa
CR function that is a restriction of a holomorphic function F: U — C defined in some
neighborhood U C C" of M. Show that F is unique, that is if G: U — C is another
holomorphic function such that G|y = f = F|um, then G = F.

Exercise 3.2.5: Show that there is no maximum principle of CR functions. In fact, find a
smooth real hypersurface M c C", n > 2, and a smooth CR function f on M such that |f|
attains a strict maximum at a point.

Exercise 3.2.6: Suppose M C C", n > 2, is the hypersurface given by Im z, = 0. Show
that every smooth CR function on M is holomorphic in the variables z1, ... ,zy-1. Use
this to show that for no smooth CR function f on M can |f| attain a strict maximum on
M. But show that there do exist nonconstant functions such that | f| attains a (nonstrict)
maximum M.

Real-analytic CR functions on a real-analytic hypersurface M always extend to
holomorphic functions of a neighborhood of M. To prove this we wish to complexify
everything, that is treat the zs and Zs as separate variables. The standard way of
writing a hypersurface as a graph is not as convenient for this setting, so let us prove
that for a real-analytic hypersurface, we can write it as a graph of a holomorphic
function in the complexified variables. That is, using variables (z, w), we will write
M as a graph of w over z, z, and w. This allows us to eliminate @ in any real-analytic
expression.

Proposition 3.2.8. Suppose M C C" is a real-analytic hypersurface and p € M. Then after
a translation and rotation by a unitary matrix, p = 0, and near the origin in coordinates
(z,w) € C""! X C, the hypersurface M is given by

w=D(z,z,w),

where ®(z, C, w) is a holomorphic function defined on a neighborhood of the origin in C"~! x
C" 1 x C, such that ®, g—i, 3—8 vanish at the origin for all k, and w = ®(C, z, ®(z, T, w))
forall z, C, and w.
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A local basis for TV M vector fields is given by

9 ,9%9d (L9  9PI
0Zr  0zxdw \ 9zy 9L dw)’

Finally, let ML be the set in (z, C, w, w) € C" 1 x C" ! x C x C coordinates given near
the origin by w = ®(z, C, w). Then J is the unique complexification of M near the origin
in the sense that if f(z,z,w,w) is a real-analytic function vanishing on M near the origin,
then f(z, C,w, w) vanishes on Jl near the origin.

Again as a slight abuse of notation @ refers to both the function ®(z, {, w) and
D(z,z,w).

Proof. Translate and rotate so that M is given by

Imw = ¢(z,z,Rew),
where ¢ is O(2). Write the defining function as r(z, Z, w, @) = %2 + ¢(z, z, &2).
Complexifying, consider r(z, C, w, @) as a holomorphic function of 2n variables, and
let /L be the set defined by r(z, (, w, w) = 0. The derivative of r in @ (that is @)
does not vanish near the origin. Use the implicit function theorem for holomorphic
functions to write Jl near the origin as

w=D(z,C,w).

Restrict to the diagonal, @ = w and z = , to get @ = P(z, Z, w). This is order 2 in the
z and the Z since ¢ is O(2).

Because r is real-valued, then r(z,z, w, @) = r(z,z, w,w) = 7(Z,z,w,w). Com-
plexify to obtain r(z,(,w, w) = #(C,z, w,w) for all (z, C, w, w) near the origin. If
r(z, (,w,w) =0, then

0=r(z,C,w,w) =7, z,w,w) =1, Z, 0, M) =

So, (z,C,w, w) € J if and only if (C,Z,,W) € M. Near the origin, (z, C, w, w) € J if
and only if @ = ®(z, {, w), and hence if and only if @ = ®((, Z, @). Conjugating, we
get that J( is also given by

w =D, z,w).

As (z,C,w,D(z,C,w)) € M, then for all z, {, and w,
=®(C,z,D(z, C, w)).

The vector field X = % + %D% annihilates the function ®(z, z, w) — @, but that

is not enough. The Vector f1e1d must annihilate a real defining function such as the
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real part of ®(z, zZ, w) — @. So X must also annihilate the conjugate D(z,z, W) —w, at
least on M. Compute, for (z, w) € M,

ob,_ o, 0D, _
Xk [(I)(lelw) - w] = a_zk(zlzlw) + a_zk(zlzlw)%(zlzr w)

oD oD

= a_Zk(z,z,q)(z,z,zb)) + j—i(z,z,w)%(i,z,cb(z,z,zb))
= aiZk[CTJ(Z,Z,CD(z,Z,w))] = aizk[w] =0.
The last claim of the proposition is left as an exercise. m|

Why do we say the last claim in the proposition proves the “uniqueness” of the
complexification? Suppose we defined a complexification Jt’ by another holomorphic
equation f = 0. By the claim, /l C Jl’, at least near the origin. If the derivative df is
nonzero at the origin, then f(z, {, w, ®(z, {,w)) = 0 implies that % is nonzero at the
origin. Using the holomorphic implicit function theorem we can uniquely solve f = 0
for w near the origin, that unique solution is @, and hence Jl’ = Jl near the origin.

As an example, recall that the sphere (minus a point) in C? is biholomorphic
to the hypersurface given by Imw = |z|?. That is, % = zZ. Solving for @ and
using C and w obtains the equation for the complexification w = —-2izC + w. Then
D(z,C,w) = =2izC +w, and D(C,z, w) = 2iCz + w. Let us check that @ is the right
sort of function: ®(z, C, P(z, L, w)) = 2iCz + (-2izC + w) = w. The CR vector field is

given by % + 2iz%.

Exercise 3.2.7: Finish the proof of the proposition: Let M C C" be a real-analytic hyper-
surface given by w = O(z, z, w) near the origin, as in the proposition. Let f(z,z, w,w) be
a real-analytic function such that f = 0 on M. Prove that the complexified f(z,C, w, w)
vanishes on J.

Exercise 3.2.8: In the proposition we only rotated and translated. Sometimes the following
change of coordinates is also done. Prove that one can change coordinates (no longer linear)
so that the ® in the proposition is such that ®(z,0, w) = (0, C, w) = w forall z, C, and
w. These coordinates are called normal coordinates.

Exercise 3.2.9: Suppose @ is a holomorphic function defined on a neighborhood of the
originin C" 1 x C""1 x C.

a) Show that @ = ®(z,z, w) defines a real-analytic hypersurface near the origin if and
onlyw = ®(C, z,D(z, C,w)) for all z, C, and w. Hint: One direction was proved
already.

b) As an example, show that W = zZ does not satisfy the condition above, nor does it
define a real hypersurface.
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Let us prove that real-analytic CR functions on real-analytic hypersurfaces are
restrictions of holomorphic functions. To motivate the proof, consider a real-analytic
function f on the circle |z|? = zZ = 1 (f is vacuously CR). This f is a restriction of
a real-analytic function on a neighborhood of the circle, that we write f(z,z). On
the circle z = 1/z. Thus, F(z) = f(z,1/z) is a holomorphic function defined on a
neighborhood of the circle and equal to f on the circle. Our strategy then is to solve
for one of the barred variables via Proposition 3.2.8, and hope the CR conditions take
care of the rest of the barred variables in more than one dimension.

Theorem 3.2.9 (Severi). Suppose M C C" is a real-analytic hypersurface and p € M. For
every real-analytic CR function f: M — C, there exists a holomorphic function F € O(U)
for a neighborhood U of p such that F(q) = f(q) forallg e M N U.

Proof. Write M nearpas@ = ®(z,Z, w). Let Ml be the set in the 2n variables (z, w, C, )
given by w = ®(z, C, w). Take f and consider any real-analytic extension of f to a
neighborhood of p and write it f(z, w, z, w). Complexify* as before to f(z, w, C, w).
On Jil we have f(z,w,(, w) = f(z,w,{, D(z, (,w)). Let

F(z,w,C) = f(z,w, , D(z, C,w)).

Clearly F(z,w, Z) equals f on M. As f is a CR function, it is annihilated by -2 + 22 2

d0Zxy = JZx dw
on M. So
JF 00 JF B oF B

—_— + —_— =

ICk Ik dw Ik
on M C Jl. We have a real analytic function g—i(z,w,i) that is zero on M, so
5—5{(2, w, C) = 0 on Jl (Proposition 3.2.8 again). As 3—5 is a function only of z, w, and C

(and not of w), g—CFk = 0 for all (z, w, C) in a neighborhood of the origin. Consequently,
F does not depend on (, and F is actually a holomorphic function of z and w only
and F = f on M. O

The most important place where we find CR functions that aren’t necessarily
real-analytic is as boundary values of holomorphic functions.

Proposition 3.2.10. Suppose U C C" is an open set with smooth boundary. Suppose
f: U — Cisasmooth function, holomorphic on U. Then f|y; is a smooth CR function.

Proof. The function f | is clearly smooth.
Supposep € JU. If X, € Tp(o’l)8u is such that

Xp = Zakaizk

k=1

s
p

*At this point f stands for three distinct objects: the function on M, its real-analytic extension to a
neighborhood in C”, and its complexification to a neighborhood of (p, p) in C* x C".
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then take a sequence {g,} in U that approaches p. Consider

S
Xa= Qg

k=1

W.
Then Xq .f =0 for all £ and by continuity Xp f=0. O

The boundary values of a holomorphic function define the function uniquely.
That is, if two holomorphic functions continuous up to the (smooth) boundary are
equal on an open set of the boundary, then they are equal in the domain:

Proposition 3.2.11. Suppose U C C" is a domain with smooth boundary and f: U — C is
a continuous function, holomorphic on U. If f = 0 on a nonempty open subset of U, then
f =0onall of U.

Proof. Take p € dU such that f = 0 on a neighborhood of p in dJU. Consider a small
neighborhood A of p such that f is zero on dJU N A. Define g: A — C by setting
g(z) = f(z)if z € U and g(z) = 0 otherwise. See Figure 3.1. It is not hard to see that
g is continuous, and it is clearly holomorphic where it is not zero. Radé’s theorem
(Theorem 2.4.12) says that g is holomorphic, and as it is zero on a nonempty open
subset of A, it is identically zero on A, meaning f is zero on a nonempty open subset
of U, and we are done by identity.

Figure 3.1: Extending a function zero on the boundary.

Exercise 3.2.10: Find a domain U C C", n > 2, with smooth boundary and a smooth
CR function f: dU — C such that there is no holomorphic function on U or C" \ U
continuous up to the boundary and whose boundary values are f.

Exercise 3.2.11:

a) Suppose U C C" is a bounded open set with smooth boundary, f: U — C is a
continuous function, holomorphic in U, and f |y is real-valued. Show that f is
constant.

b) Find a counterexample to the statement if you allow U to be unbounded.
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Exercise 3.2.12: Find a smooth CR function on the sphere S>"~1 c C" that is not a
restriction of a holomorphic function of a neighborhood of S**~1.

Exercise 3.2.13: Show a global version of Severi. Given a real-analytic hypersurface
M c C" and a real-analytic CR function f: M — C, show that there exists a neighborhood
Uof M, and an F € O(U) such that F|y = f.

A problem we tackle next is to try to extend a smooth CR function from the
boundary of a domain to a holomorphic function inside. This is a PDE problem
where the PDE are the Cauchy-Riemann equations, and the function on the boundary
is the boundary condition. Cauchy-Riemann equations are overdetermined, that is,
there are too many equations. Not every data on the boundary gives a solution.
Proposition 3.2.10 says that the data being CR is a necessary condition for a solution
(it is not sufficient in general). Proposition 3.2.11 says the solution is unique if it exists.

3.3 | Approximation of CR functions

The following theorem (proved circa 1980) holds in much more generality, but we
state its simplest version. One of the simplifications we make is that we consider
only smooth CR functions here, although the theorem holds even for continuous CR
functions where the CR conditions are interpreted in the sense of distributions.

Theorem 3.3.1 (Baouendi-Tréves). Suppose M C C" is a smooth real hypersurface, p € M
is a point, and z = (z1, . .., zn) are the holomorphic coordinates of C". Then there exists a
compact neighborhood K C M of p, such that for every smooth CR function f: M — C,
there exists a sequence {p,} of polynomials in z such that

pe(z) = f(z)  uniformly in K.

A key point is that K cannot be chosen arbitrarily, it depends on p and M. On the
other hand, K does not depend on f. Given M and p € M there is a K such that every
CR function on M is approximated uniformly on K by holomorphic polynomials. The
theorem applies in one dimension, although in that case the theorem of Mergelyan
(see Theorem B.31) is much more general.

Example 3.3.2: Let us show that K cannot possibly be arbitrary. For simplicity n = 1.
Let S! c C be the unit circle (boundary of the disc), then every smooth function on S*
is a smooth CR function. Let f be a nonconstant real function such as Re z. Suppose
for contradiction that we could take K = S! in the theorem. Then f(z) = Rez could
be uniformly approximated on S! by holomorphic polynomials. By the maximum
principle, the polynomials would converge on D to a holomorphic function on D
continuous on D. This function would have nonconstant real boundary values, which
is impossible. Clearly K cannot be the entire circle.
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The example is easily extended to C" by considering M = S! X C""!, then Re z; is
a smooth CR function on M that cannot be approximated uniformly on S! x {0} by
holomorphic polynomials.

The technique of the example above will be used later in a more general situation,
to extend CR functions using Baouendi-Treéves.

Remark 3.3.3. It is important to note the difference between Baouendi-Tréves (and
similar theorems in complex analysis) and the Weierstrass approximation theorem.
In Baouendi-Tréves we obtain an approximation by holomorphic polynomials, while
Weierstrass gives us polynomials in the real variables, or in z and z. For example,
via Weierstrass, every continuous function is uniformly approximable on S! via
polynomials in Rez and Imz, and therefore by polynomials in z and z. These
polynomials do not in general converge anywhere but on S'.

Exercise 3.3.1: Let z = x + iy as usual in C. Find a sequence of polynomials in x and y
that converge uniformly to e*~Y on S, but diverge everywhere else.

The proof is an ingenious use of the standard technique used to prove the
Weierstrass approximation theorem. Also, as we have seen mollifiers before, the
technique will not be completely foreign even to the reader who does not know
the Weierstrass approximation theorem. Basically what we do is use the standard
convolution argument, this time against a holomorphic function. Letting z = x + iy
we only do the convolution in the x variables keeping y = 0. Then we use the fact
that the function is CR to show that we get an approximation even for other y.

In the formulas below, given a vector v = (v1, ..., v,), it will be useful to write

-~

2 def - 2
[0]° = o]+ - +0.

The following lemma is a neat application of ideas from several complex variables
to solve a problem that does not at first seems to involve holomorphic functions.

Lemma 3.3.4. Let W be the set of n X n complex matrices A such that
[[(Im A)x[| < [[(Re A)x]|

for all nonzero x € R" and Re A is positive definite. Then forall A € W,
/ e 4T det A dx = /2,

Proof. Suppose A has real entries and A is positive definite (so A is also invertible).
By a change of coordinates

/ e—[Ax]2 det A dx :/ e_[x]z dy = (/ e—xf dx1)"'(/ e—X% dxn) = (\/E)n
n n R R
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Next suppose A is any matrix in W. There is some € > 0 such that [|(Im A)x|* <
(1 - €2)||(Re A)x||? for all x € R™. That is because we only need to check this for x in

the unit szphere, which is compact (exercise). By reality of Re A, Im A, and x we get
[(Re A)x]* = ||(Re A)x||? and [(Im A)x]* = ||(Im A)x||?. So

) e—[Ax]z _ e—Re[Ax]2 < e—[(ReA)x]2+[(ImA)x]2 < e—ez[(ReA)x]Z.

Therefore, the integral exists for all A in W by a similar computation as above.

The expression
/ e AT det A dx

is a well-defined holomorphic function in the entries of A, thinking of W as a domain
(see exercises below) in C"’. We have a holomorphic function that is constantly equal

n/2

to /2 on W N R"* and hence it is equal to "/ everywhere on W. m|

Exercise 3.3.2: Prove the existence of € > 0 in the proof above.

Exercise 3.3.3: Show that W c C"” in the proof above is a domain (open and connected).

Exercise 3.3.4: Prove that we can really differentiate under the integral to show that the
integral is holomorphic in the entries of A.

Exercise 3.3.5: Show that some hypotheses are needed for the lemma. In particular, take
n =1 and find the exact set of A (now a complex number) for which the conclusion of the
lemma is true.

Given an n X n matrix A, let |A|| denote the operator norm,

Av
JAll = sup 4ol = sup 1A
lv]|=1 veC”,v#0 ||U||

Exercise 3.3.6: Let W be as in Lemma 3.3.4. Let B be an n X n real matrix such that
IIB|| < 1. Show that I +iB € W.

We will be using differential forms, and the following lemma says that as far
as the exterior derivative is concerned, all CR functions behave as restrictions of
holomorphic functions.

Lemma 3.3.5. Let M C C" be a smooth real hypersurface, f: M — C be a smooth CR
function, and (z1, . . ., z,,) be the holomorphic coordinates of C". Then at each point p € M,
the exterior derivative df is a linear combination of dzi, . ..,dzy, thinking of z1, ..., z, as
functions on M. Namely,

d(fdz)=df Ndz =0
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Recall the notation dz = dzqy Adzy A --- AN dz,,.

Proof. After a complex affine change of coordinates, we simply need to prove the
result at the origin. Let &4, ..., &, be the new holomorphic coordinates and suppose

0’ and such that

the To(l’O)M tangent space is spanned by 3%1 07 % aR(ZE |0 is

tangent and ﬁ| o Is normal. At the origin, the CR conditions are j—gfk(()) = 0 for all
k, so
_9f of of
Af(0) = 50 d61(0) + -+ 52 —(0) dén1(0) + 5 —(0) d(Re £4)(0).

Also, at the origin d&,(0) = d(Re &,)(0) + id(Im &,)(0) = d(Re &,)(0). So df(0) is a
linear combination of 4&1(0), ..., d&,(0). As & is a complex affine function of z, then
each d&y is a linear combination of dz; through dz,, and the claim follows. So if f is
a CR function, then d(f dz) = df A dz = 0 since dzx A dzy = 0. O

Proof of the theorem of Baouendi—Tréves. Suppose M C C" is a smooth real hypersur-
face, and without loss of generality suppose p = 0 € M. Let z = (z1, ..., z,) be the
holomorphic coordinates, write z = x + iy, y = (y’, ¥»), and suppose M is given by

Yn = 9(x,y),
where 1 is O(2). The variables (x, y’) parametrize M near 0:
zk =Xk +iyy, fork=1,...,n-1, and z,=x,+iP(x,y’).

Define
o, y)=(y1,-- ., Yu-1, P(x, ¥)).

Write (x,y’) — z = x + ip(x,y’) as the parametrization. That is, think of z as a
function of (x, y’).

Letr > 0 and d > 0 be small numbers to be determined later. Assume they are
small enough so that f and ¢ are defined and smooth on some neighborhood of the
set where ||x|| < r and ||y’|| < d. There exists a smooth g: R" — [0, 1] such that g = 1
on B, »(0) and g = 0 outside of B,(0). See Figure 3.2. Explicit formula can be given.
Alternatively we obtain such a g by use of mollifiers on a function that is identically
one on Bj,/4(0) and zero elsewhere. Such a g is commonly called a cutoff function.

Exercise 3.3.7: Find an explicit formula for g without using mollifiers.

Let
K = {(x,y") : lIxll < /4, ly'Il < d}.

Let K = z(K’), that is the image of K’ under the mapping z(x, y’).
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Figure 3.2: Cutoff function.

Consider the CR function f a function of (x, y’) and write f(x, y’). For £ € N, let
a¢ be a differential n-form defined (thinking of w € C" as a constant parameter) by

Tt

e\""? )
ap(x,y’) = (—) e~ {lw-l ) f(x,y)dz

¢ n/2 ' o
= (_) e—f[w—x—up(x,y )] g(x)f(x, y/)

TC
(dx1 +idy1) A - A(dxp—1 + idyu—1) A (dx, + idip(x, y)).

The key is the exponential, which looks like the bump function mollifier, except
that now we have w and z possibly complex. The exponential is also holomorphic in
w, and that will give us entire holomorphic approximating functions.

Fix y’ with 0 < ||y’|| < d and let D be defined by

D= {(x,s) eR"xR"™:||x|| <rands =ty fort € (0, 1)}.

D is an (n + 1)-dimensional “cylinder.” We take a ball in the x directions, then take a
single fixed point y’ in the s variables and make a cylinder. See Figure 3.3.

Figure 3.3: Cylinder D.

Orient D in the standard way as if it sat in the (x, t) variables in R"” X R. Stokes’

theorem says
/dag(x,s):/ ap(x,s).
D oD
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Since g(x) = 0if ||x|| > r, ay is zero on the sides of the cylinder D, so the integral over
dD only needs to consider the top and bottom of the cylinder. And because of g, the
integral over the top and bottom can be taken over R". As is usual in these sorts of
arguments, we do the slight abuse of notation ignoring that f and ¢ are undefined
where ¢ is identically zero:

/aD ap(x,s)

n/2
:(ﬁ) / e_”w_x_i@(x'y’)]Zg(x)f(x, y)dxy Ao Adxp_1 A (dxn +idy(x, y’))
xeR”

T
\"? S
- (;) / g~ Hw-x=ip(x,0)] g(x)f(x,0)dx1 A -+ Adxy_1 A (dxy +ideP(x,0)),
xeR"
(3.1)
where d, means the derivative in the x directions only. Le., dx{ = w dx +- IP dx,,.

We will show that as ¢ — oo, the left-hand side of (3.1) goes to zero umformly for
w € K and the first term on the right-hand side goes to f (¥, y’) if w = z(X, y’) is in M.
Hence, we define entire functions that we will show approximate f:

n/2
fo(w) = (%) / e_‘}[w_"_i@(’“'o)]zg(x)f(x,0) dxi A« Ndxy—q A (dx, +idc(x,0)).
xeRn

Clearly each f; is holomorphic and defined for all w € C".
In the next claim it is important that f is a CR function.

Claim 3.3.6. We have
r\""? .
dag(x,s) = (E) e~ w2 £(x,5) dg(x) A dz(x,s),

and for sufficiently small r > 0 and d > 0,

{—o0

n/2
lim (%) /( - e~ 0=20oF £y 5) dg(x) A dz(x, s) =
x,s)€

uniformly as a function of w € K and y" € B4(0) (recall that D depends on y").

Proof. The function (x, s) — e~* [w=z(cs) g CR (as a function on M), and so is f(x,s).
Therefore, using Lemma 3.3.5,

n/2
dag(x,s) = (%) e"‘)[w"z("’s)Ff(x, s)dg(x) Adz(x,s).

Since dg is zero for ||x|| < 7/2, the integral

/dag(x s) = (ﬁ)n/z/ g~ tlw—z(xs)P f(x,s)dg(x) Adz(x,s)
D ’ Tt D
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is only evaluated for the subset of D where ||x|| > 7/2.
Suppose w € Kand (x,s) € D with ||x|| > 7/2. Letw = z(%, §). We need to estimate

|e—€[w—z(x,s)]2| — e—f Re [w—z(x,s)]z.

Then
—Re[w - z]* = —||% - x|* + lo(&, §) — p(x, 5)||.

By the mean value theorem

lp(%,8) = p(x,s)ll < lo(%,5) — @(x, 5| +[lg(x,5) — p(x, s)|| < al|x - x][+AllS - 5],

d
e

Here [g—f] and [3;] are the derivatives (matrices) of ¢ with respect to x and y’
I

respectively, and the norm we are taking is the operator norm. Because [W] is zero at
the origin, we pick r and d small enough (and hence K small enough) so that a < 1/4.
We furthermore pick d possibly even smaller to ensure that d < 57=. We have that
r/2 < ||x|| <, but ||X]| < /4 (recall w € K), so

where g and A are

a=  sup
I£l<r g’ ll<d

, A= sup

I2ll<rl19’ll<d

d
g

Also, ||5 = s|| < 2d by triangle inequality.
Therefore,

—Re[w - z(x,s)]2 < —||x - x||2 + a2||3? - x||2 +A2||§ - s||2 + 2aA||X — x]||||5 - s]|

< _165||J? —x|>+ A%|I5 - s|]> + E”f alllE sl
2
< - .
T 64
In other words,
|e_€[ZU—Z(X,S)]2| < e_(r2/64’
or
e 1’1/2 i 2
(_) ./ e =2  £(x, 5) dg(x) A dz(x,s)| < CM/2e~t /64,
T (x,s)eD

for some constant C. Note that D depends on y’. The set of all y’ with ||y’|| < d,isa
compact set, so we can make C large enough to not depend on the y’ that was chosen.
The claim follows. O
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Claim 3.3.7. For the given r > 0 and d > 0,

¢ n/2
lim (_) / o~ E+ipE,y)-x—ip(x,y")P
(-0 \ T x€R"
g)f(x,y)dx1 A -+ Adxp_1 A (dx, + idy(x, ")) = f(X, )
uniformly in (¥, y’) € K'.
That is, we look at (3.1) and we plug in w = z(X, y’) € K. The g (as usual) makes

sure we never evaluate f, ¢, or ¢ at points where they are not defined.

Proof. The change of variables formula implies
dxi A~ ANdx,—1 A (dxn +idy(x, y’)) =dyz(x,y’) = det lg—i(x,y’)l dx,

where [g—fc(x, y’)] is the matrix corresponding to the derivative of the mapping z with
respect to the x variables evaluated at (x, y’).
Let us change variables of integration via & = V{(x — %):

(\"? —U[F+igp(E,y ) —x—ip(x g , az .,
— e Py PEYI o(x)f(x,y')det | =—(x, y) | dx =
xeR" 8x

Tt
)7 [l
Tt EeRn

X+ —= X+ —=, det|— |X + =, dé.
8 ( Ve / N dx Vil
We now wish to take a limitas { — oo and for this we apply the dominated convergence

theorem. So we need to dominate the integrand. The second half of the integrand is
uniformly bounded independent of ¢ as

o g0fc, ) det| S0, v)|

is a continuous function with compact support (because of g). Hence it is enough to
worry about the exponential term. We also only consider those £ where the integrand
is not zero. Recall that r and d are small enough that

% g

<
ox Y B

sup

1
-7
Il <r l177ll<d 4

and as ||%|| < /4 (as (%, y’) € K) and “x + = H < r (because g is zero otherwise), then

bl o145

e

=1

L&
\/-
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So under the same conditions,

el rss | - refeenlloe o))

2

_ lertfo(z+ Gy ) ey

< e~ U5/16)[E.

And that is integrable. Thus, take the pointwise limit under the integral to obtain

n/2 B 20z e 2
(l) / 1 FN g2,y de [3_2(9?, y’)l de.
Tt EeRn X

In the exponent, we have an expression for the derivative in the & direction with v’
fixed. If (¥, y’) € K/, then g(¥) = 1, and so we can ignore g.

LetA=1+ i[‘;—f(i, y’)]. Lemma 3.3.4 says

Tt

1’1/2 Jop, ~ 2
(l) / e |FEOLE £ 5 de lg—i(az, y’)l dE = F(%, y)-
EeRn

That the convergence is uniform in (¥, y’) € K’ is left as an exercise. O

Exercise 3.3.8: In the claim above, finish the proof that the convergence is uniform in
(%,y’) € K'. Hint: It may be easier to use the form of the integral before the change of
variables and prove that the sequence is uniformly Cauchy.

We are essentially done with the proof of the theorem. The two claims together
with (3.1) show that f; are entire holomorphic functions that approximate f uniformly
on K. Entire holomorphic functions can be approximated by polynomials uniformly
on compact subsets; simply take the partial sums of Taylor series at the origin. O

Exercise 3.3.9: Explain why being approximable on K by (holomorphic) polynomials does
not necessarily mean that f is real-analytic.

Exercise 3.3.10: Suppose M C C" is given by Im z,, = 0. Use the standard Weierstrass
approximation theorem to show that given a K CC M, and a smooth CR function
f: M — C, then f can be uniformly approximated by holomorphic polynomials on K.




126 CHAPTER 3. CR FUNCTIONS

3.4 Extension of CR functions

We will apply the so-called “technique of analytic discs” together with Baouendi—
Treves to prove the Lewy extension theorem. Lewy’s original proof was different and
predates Baouendi-Treves. A local extension theorem of this type was first proved
by Helmut Knesser in 1936.

Theorem 3.4.1 (Lewy). Suppose M C C" is a smooth real hypersurface and p € M. There
exists a neighborhood U of p with the following property. Suppose r: U — R is a smooth
defining function for M N'U, denote by U_ C U the set where r is negative and U, C U the
set where r is positive. Let f: M — R be a smooth CR function. Then:

(i) If the Levi form with respect to r has a positive eigenvalue at p, then f extends to a
holomorphic function on U_ continuous up to M (continuous on {z € U : r(z) < 0}).

(ii) If the Levi form with respect to v has a negative eigenvalue at p, then f extends to a
holomorphic function on U.. continuous up to M (continuous on {z € U : r(z) > 0}).

(iii) If the Levi form with respect to r has eigenvalues of both signs at p, then f extends to
a function holomorphic on U.

So if the Levi form has eigenvalues of both signs, then near p all CR functions are
restrictions of holomorphic functions. The function r can be any defining function
for M. Either we can extend it to all of U or we could take a smaller U such that r
is defined on U. As we noticed before, once we pick sides (where 7 is positive and
where it is negative), then the number of positive eigenvalues and the number of
negative eigenvalues of the Levi form is fixed. A different r may flip U_ and U, but
the conclusion of the theorem is exactly the same.

Proof. We prove the first item, and the second item follows by considering —r. Suppose
p = 0 and M is given in some neighborhood Q) of the origin as

n-1
Imw = |z1]* + Z exlzkl* + E(z1,2', 21,2, Rew),
k=2
where z’ = (z2,...,24-1), €k = —1,0,1,and E is O(3). Let Q_ be given by
n-1
0>r=|z1>+ Z erl|ze|* + E(z1,2’, 21,2, Rew) — Im w.
k=2

The (real) Hessian of the function
z1 - |z1|% + E(z1,0,21,0,0)

is positive definite in a neighborhood of the origin and the function has a strict
minimum at 0. There is some small disc D C C such that this function is strictly
positive on dD.
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Therefore, for (z’, w) € W in some small neighborhood W c C"1 of the origin,
the function

Z1 |21|2 + Z e—:k|z:k|2 + E(z1,2',7Z1,Z',Rew) —Imw
k=2

is still strictly positive on dD.

We wish to apply Baouendi-Tréves and so let K be the compact neighborhood of
the origin from the theorem. Take D and W small enough such that (D xW)NM c K.
Find the polynomials p, that approximate f uniformly on K. Consider z; € D and
(z/,w) € W such that (z1,z’,w) € Q_. Let A = (D x {(z’,w)}) N Q_. Denote by dA
the boundary of A in the subspace topology of C x {(z’, w)}.

The set (O, where r > 0 is open and it contains (dD) x {(z’, w)}. Therefore, JA
contains no points of (dD) x {(z’, w)}. Consequently, JA contains only points where
r =0, thatis dA ¢ M, and also dA € D X W. As (D x W) N M cC K, we have dA C K.
See Figure 3.4.

M

XL N /. Djw

(z',w

Z1 8A

Figure 3.4: Proof of Lewy extension.

As py — f uniformly on K, then p; — f uniformly on dA. As p, are holomorphic,
then by the maximum principle, py converge uniformly on all of A. In fact, as (z1, z’, w)
was an arbitrary point in (D x W) N Q_, the polynomials p; converge uniformly on
(DxW)NQ_. LetU = D x W, then U_ = (D x W) N Q_. Notice U depends on K, but
not on f. So py converge to a continuous function F on U_ N U and F is holomorphic
on U_. Clearly F equals f on M N U.

To prove the last item, pick a side, and then use one of the first two items to extend
the function to that side. Via the tomato can principle (Theorem 2.3.11) the function
also extends across M and therefore to a whole neighborhood of p. O

If you were wondering what happened to the analytic discs we promised, the A in
the above is an analytic disc (simply connected) for a small enough U, but it was not
necessary to prove that fact.
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We state the next corollary for a strongly convex domain, even though it holds
with far more generality. It is a simpler version of the Hartogs—Bochner*. Later, in
Exercise 4.3.4, you will prove it for strongly pseudoconvex domains. However, the
theorem is true for every bounded domain with connected smooth boundary with
no assumptions on the Levi form, but a different approach would have to be taken.

Corollary 3.4.2. Suppose U C C", n > 2, is a bounded domain with smooth boundary that
is strongly convex and f: dU — C is a smooth CR function, then there exists a continuous
function F: U — C holomorphic in U such that F|y; = f.

Proof. A strongly convex domain is strongly pseudoconvex, so f must extend to the
inside locally near every point. The extension is locally unique as any two extensions
have the same boundary values. Therefore, there exists a set K cC U such that f
extends to U \ K. Via an exercise below we can assume that K is strongly convex and
therefore we can apply the special case of Hartogs phenomenon that you proved in
Exercise 2.1.8 to find an extension holomorphic in U. m]

Exercise 3.4.1: Prove the existence of the strongly convex K in the proof of Corollary 3.4.2
above.

Exercise 3.4.2: Show by example that the corollary is not true when n = 1. Explain where
in the proof have we used that n > 2.

Exercise 3.4.3: Suppose f: dBy — C is a smooth CR function. Write down an explicit
formula for the extension F.

Exercise 3.4.4: A smooth real hypersurface M C C® is defined by Imw = |z1|*> — |z|* +
O(3) and f is a real-valued smooth CR function on M. Show that |f| does not attain a
maximum at the origin.

Exercise 3.4.5: A real-analytic hypersurface M C C", n > 3, is such that the Levi form at
p € M has eigenvalues of both signs. Show that every smooth CR function f on M is, in
fact, real-analytic in a neighborhood of p.

Exercise 3.4.6: Let M C C3 be defined by Imw = |z1|? — |z2|%.
a) Show that for this M, the conclusion of Baouendi—Tréves holds with an arbitrary
compact subset K CC M.
b) Use this to show that every smooth CR function f: M — C is a restriction of an
entire holomorphic function F: C* — C.

Exercise 3.4.7: Find an M c C", n > 2, such that near some p € M, for every
neighborhood W of p in M, there is a CR function f: W — C that does not extend
holomorphically to either side of M at p.

*What is called Hartogs-Bochner is the C! version of this theorem where the domain is only
assumed to be bounded and the boundary connected, and it was proved by neither Hartogs nor
Bochner, but by Martinelli in 1961.
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Exercise 3.4.8: Suppose f: dB, — C is a smooth function and n > 2. Prove that f isa
CR function if and only if

271

f(eiev)eikede =0  forallv € dB, and all k € N.
0

Exercise 3.4.9: Prove the third item in the Lewy extension theorem without the use of the
tomato can principle. That is, prove in a more elementary way that if M Cc U C C" isa
smooth real hypersurface in an open set U and f: U — C is continuous and holomorphic
inU \ M, then f is holomorphic.

Remark 3.4.3. Studying solutions to nonhomogeneous CR equations of the form
Xf =1 for a CR vector field X, and the fact that such conditions can guarantee
that a function must be real-analytic, led Lewy to a famous, very surprising, and
rather simple example of a linear partial differential equation with smooth coefficients
that has no solution on any open set*. The example is surprising because when a
linear PDE has real-analytic coefficients, a solution always exists by the theorem
of Cauchy—Kowalevski. Furthermore, if X is a real vector field (X is in TM not in
C ® TM), then a solution to X f = 1 exists by the method of characteristics, even if X
and ¢ are only smooth.

“Lewy, Hans, An example of a smooth linear partial differential equation without solution, Annals of
Mathematics, 66 (1957), 155-158.



4\ The J-problem

4.1 | The generalized Cauchy integral formula

Before we get into the d-problem, let us prove a more general version of Cauchy’s
formula using Stokes” theorem (really Green’s theorem). This version is called the
Cauchy—Pompeiu integral formula. We only need the theorem for smooth functions, but
as it is often applied in less regular contexts and it is just an application of Stokes’
theorem, let us state it more generally. In applications, the boundary is often only
piecewise smooth, and again that is all we need for Stokes.

Theorem 4.1.1 (Cauchy-Pompeiu). Let U C C be a bounded open set with piecewise-C!
boundary U oriented positively (see appendix B), and let f: U — C be continuous with
bounded continuous partial derivatives in U. Then for z € U:

of
fy= L [ [O, . a©)
S 2mi Jyy C- z u C—

If f is holomorphic, then the second term is zero, and we obtain the standard
Cauchy formula. If C = x + iy, then the standard orientation on C is the one
corresponding to the area form dA = dx A dy. The form dC A d( is the area form up

to a scalar. That is,

dCAdC = (dx +idy) A (dx —idy) = (=2i)dx A dy = (=2i)dA.

As we want to use Stokes, we need to write the standard exterior derivative in
terms of z and z. For z = x + iy, we compute:
d

w L
dy = &ydy &zdz+8zdz

Exercise 4.1.1: Observe the singularity in the second term of the Cauchy—Pompeiu formula,
and prove that the integral still makes sense (the function is integrable). Hint: polar
coordinates.

Exercise 4.1.2: Why can we not differentiate in zZ under the integral in the second term of
the Cauchy—Pompeiu formula? Notice that it would lead to an impossible result.
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Proof. Fix z € U. We wish to apply Stokes’ theorem®, but the integrand is not smooth
at z. Let A,(z) be a small disc such that A,(z) cC U. See Figure 4.1. Stokes now
applieson U \ A,(z).

@/Ar(z)

Figure 4.1: Proof of Cauchy—Pompeiu.

Via Stokes, where the exterior derivative inside is with respect to C and C of course,

f
f© | £(©) (f(C) ) B z(©)
d dc| =
uC—Z /A(Z)C_Z A () \C—z ¢ /U\A(Z)C

The second equality follows because the holomorphic derivative in C has a dC and
when we wedge it with dC we get zero. We now wish to let the radius r go to zero.

of
C
Via the exercise above, ‘9‘:( ) dC AdCis integrable over all of U. Therefore,
3_f
lim =
=0 JU\A(z) C C -

The second equality is simply swapping the order of dC and dC. By continuity of f,

1 f(0) 1 [ i0 _
r’l—r>r(1) 2_7'(1 IA(2) C —Z dc B 11f—>0 21 f(z Tre )da B f(Z)
The theorem follows. m|

Exercise 4.1.3: .
a) LetU C Cbeabounded open set with piecewise-C1 boundary and suppose f: U — C

isa C! function such that fu Z0 — dA(C) = 0 for every z € JU. Prove that f|y are

the boundary values of a functzon continuous on U and holomorphic in U.
b) Given arbitrary € > 0, find a C! function f on the closed unit disc D, such that
‘;f is identically zero outside an e-neighborhood of the origin, yet f|yp are not the

boundary values of a holomorphic function.

“We are really using Green’s theorem, which is the generalized Stokes’ theorem in 2 dimensions,
see Theorem B.2.
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Exercise 4.1.4: Let U C C and f be as in the theorem, but let z ¢ U. Show that

i
520
1 () i

2mi Joy C—z uC-z

4.2 | Compactly supported d-problem

For a smooth function ¢, consider the exterior derivative in terms of z and z,

_9Y 9y Iy LoV
dw = a—21d21 + - aznd nt+ a—le 1+ azn dZn.
Let us give a name to the two parts of the derivative:
def Y Y def Y 31,0 _
I = 821d 1+ + Edzn, 81,1) 821d 1+ - 8zn dz,.

Then dy = dy + 1. Notice 1 is  holomorphic if and only if P = 0.
The so-called inhomogeneous d-problem (d is pronounced “dee bar”) is to solve the
equation

=g,
for ¢, given a one-form
g =1dz1 + -+ gudzy.

Such a g is called a (0, 1)-form. The fact that the partial derivatives of i) commute,
forces certain compatibility conditions on g for us to have any hope of getting a
solution (see below).

Exercise 4.2.1: Find an explicit example of a ¢ in C? such that no corresponding v exists.

On any open set where ¢ = 0, ¢ is holomorphic. So for a general g, what we are
doing is finding a function that is not holomorphic in a specific way.

Theorem 4.2.1. Suppose g is a (0, 1)-form on C", n > 2, given by
8§ =gudzi+ -+ gudZn,

where gj: C" — C are compactly supported smooth functions satisfying the compatibility
conditions
&gk _ agg
Jzg Iz
Then there exists a unique compactly supported smooth function ¢ : C* — C such that

o =g.

forallk,¢=1,2,...,n. 4.1)



4.2. COMPACTLY SUPPORTED 9-PROBLEM 133

The compatibility conditions on g are necessary, but the compactness is not.
Without compactness, the domain where the equation lives would come into play.
Let us not worry about this, and prove that this simple compactly supported version
always has a solution. The compactly supported solution is unique: If ¢; and 1,
are solutions, then d(1; — 12) = ¢ — g = 0, and so0 Y1 — 1, is holomorphic. The only
holomorphic compactly supported function is 0, and hence the compactly supported
solution ¢ is unique.

Proof. Really there are n smooth functions, g1, ..., g, so the equation 91,[) = g consists

of the n equations
Iy
Q_Zk = Sk,

where the functions g satisfy the compatibility conditions (4.1).
We claim that the following is an explicit solution:

_ 1 gl(C/ ZZ/- . -/Zn) b=

C—271
_ 1 g1(C+21;Z2/---/Zn) =
=5 /C e dC AdC.

To show that the singularity does not matter for integrability is the same idea as for
the generalized Cauchy formula.

Let us check that ¢ is the solution. We use the generalized Cauchy formula on the
z1 variable. Take R large enough so that gx(C, z2, . .., z,) is zero when |C| > R for all
k. For every k,

agk
> CI 7 AN -
gk(Z): 1 / gk(CrZ2/---/Zn)dC+ 1 / azl( Zz = )dC/\dC
IC|=R |C|<R

27 C—21 2mi C—21

dC AdC.

J
1 /%(C/ZZ/--‘/ZW)
C

:2ni C—71

Using the second form of the definition of 1, the compatibility conditions (4.1),
and the computation above we get

agl
o 1 E(C+zl,zz,...,zn) _
—(z) = dCNd
9z 2 T 2mi o C CAde
a;‘fk(c+21 Zz...Z)
-1 [# AT A dl
271 C C

= 57 T2 dCAdC = gi(z).

J
1 / a_gllc(C/ZZ/---/Zn)
C



134 CHAPTER 4. THE 9-PROBLEM

Exercise 4.2.2: Show that we were allowed to differentiate 1\ under the integral in the
computation above, but only in the second form of the integral.

That 1) has compact support follows because g1 has compact support together
with the identity theorem. In particular, i is holomorphic for large z since di = g = 0
when z is large. When at least one of z, ..., z, is large, then 1 is identically zero
simply from its definition. See Figure 4.2.

z2,...,Zn largeso ¢ =0 Y =0
ZZ,...,Zn
Y =0
21
z3,...,2y largeso 1 =0 Y =0

Figure 4.2: Far enough, di) = 0.

As 91,0 = 0 on the light gray and white areas in the diagram, 1) is holomorphic
there. As ¢ is zero on the light gray region, it is zero also on the white region by the
identity theorem. That is, ¢ is zero on the unbounded component of the set where
g =0, and so ¢ has compact support. m|

The first part of the proof still works when n = 1; we get a solution ). However,
the last bit of the proof does not work in one dimension, so 1 does not have compact
support.

Exercise 4.2.3:
a) Show that if g is supported in K cc C", n > 2, then { is supported in the
complement of the unbounded component of C" \ K. In particular, show that if K is
the support of g and C" \ K is connected, then the support of ¢ is K.
b) Find an explicit example where the support of  is strictly larger than the support

of g.
Exercise 4.2.4: Find an example of a smooth function g: C — C with compact support,

such that no solution : C — C to g—z = g (at least one of which always exists) is of
compact support.
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4.3 | The general Hartogs phenomenon

We can now prove the general Hartogs phenomenon as an application of the solution
of the compactly supported inhomogeneous d-problem. We proved special versions
of this phenomenon using Hartogs figures before. The proof of the theorem has a
complicated history as Hartogs’ original proof from 1906 contained gaps. A fully
working proof was finally supplied by Fueter in 1939 for n = 2 and independently
by Bochner and Martinelli for higher n in the early 40s. The proof we give is the
standard one given nowadays due to Leon Ehrenpreis from 1961.

Theorem 4.3.1 (Hartogs phenomenon). Let U C C" bea domain, n > 2, and let K cC U
be a compact set such that U \ K is connected. Every holomorphic f: U \ K — C extends
uniquely to a holomorphic function on U. See Figure 4.3.

Figure 4.3: Hartogs phenomenon.

The idea of the proof is extending in any way whatsoever and then using the
solution to the d-problem to correct the result to make it holomorphic.

Proof. First find a smooth function ¢ thatis 1 in a neighborhood of K and is compactly
supported in U (exercise below). Let fo = (1 —¢)f on U \ K and fy = 0 on K. The
function fj is smooth on U and it is holomorphic and equal to f near the boundary
of U, where ¢ is 0. We let ¢ = dfy on U, that is g = 3—2, and we let ¢ = 0 outside
U. As gy are identically zero near dU, we find that each gx is smooth on C". The
compatibility conditions (4.1) are satisfied because partial derivatives commute. Let
us see why ¢ is compactly supported. The only place to check is on U \ K as elsewhere
we have ¢ = 0 automatically. Note that f is holomorphic on U \ K and compute

o 9 Lof A dp.  dp
92, = oz (A=) = o —eg 5 f =5 S

The function 3—;{ is compactly supported in U \ K by construction. Apply the solution

of the compactly supported d-problem to find a compactly supported function 1
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such that di = g. Set F = fy — 1. We check that F is the desired extension. First, it is
holomorphic:

OF dfy JY

0Zx a 0Zx B 0Zy =8k~ & =0.
Next, Exercise 4.2.3 and the fact that U \ K is connected reveals that ) must be
compactly supported in U. This means that F agrees with f near the boundary (in
particular on an open set) and thus everywhere in U \ K since U \ K is connected. O

The hypotheses on dimension and on connectedness of U \ K are necessary.
No such theorem is true in one dimension. If U \ K is disconnected, a simple
counterexample can be constructed. See the exercise below.

Exercise 4.3.1: Show that @ exists. Hint: Use mollifiers.

Exercise 4.3.2: Suppose U C C" is a domain and K C U is a compact set (perhaps U \ K
is disconnected). Prove that given f € O(U \ K) there exists an F € ©(U) that equals to f
on the intersection of U and the unbounded component of C" \ K.

Exercise 4.3.3: Suppose U C C" is a domain and K C U is a compact set such that U \ K
is disconnected. Find a counterexample to the conclusion to Hartogs.

One of many consequences of the Hartogs phenomenon is that the zero set of a
holomorphic function f is never compact in dimension 2 or higher, although there
exist easier proofs of that fact, see Exercise 1.6.6. If it were compact, 1 would provide
a contradiction, see also Exercise 1.6.5.

Corollary 4.3.2. Suppose U C C", n > 2, isa domain and f: U — C is holomorphic. If
the zero set f~1(0) is not empty, then it is not compact.

Replacing U \ K with a hypersurface is usually called the Hartogs—Bochner
theorem (when the hypersurface is C! or smooth). The real-analytic case was stated
first by Severi in 1931.

Corollary 4.3.3 (Severi). Suppose U C C", n > 2, is a bounded domain with connected real-
analytic boundary and f: JU — C is a real-analytic CR function. Then there exists some

neighborhood U’ ¢ C" of U and a holomorphic function F: U’ — C for which F|ay = f.

Proof. By Severi’s result (Theorem 3.2.9), for every p € JdU, there is a small ball B,
centered at p, such that f extends to B,. Cover dU by finitely many such balls so that
if B, intersects By, then the (connected) intersection B, N B, contains points of JU.
The extension in B, and in B, then agree on a piece of a hypersurface JU, and hence
agree. Taking a union of the B,, we find a unique extension in single neighborhood
of dU. We write this neighborhood as U’ \ K for some compact K and a connected
U’ such that U ¢ U’. Consider the topological components of C" \ K. As dU is
connected and U is bounded, the unbounded component of C" \ K must contain all
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of dU. By boundedness of U, all the other components are relatively compact in U.
If we add them to K, then K is still compact and U’ \ K is connected. We apply the
Hartogs phenomenon. O

Exercise 4.3.4 (Hartogs—Bochner again): Let U C C", n > 2, be a bounded domain
with connected strongly pseudoconvex smooth boundary and let f: JU — C be a smooth
CR function. Prove that there exists a continuous function F: U — C holomorphic in U
such that F|y; = f. Note: Strong pseudoconvexity is not needed (“bounded with smooth
boundary” will do), but that is much more difficult to prove.

Exercise 4.3.5: Suppose U C C", n > 2, is a bounded domain of holomorphy. Show that
C" \ U is connected using the Hartogs phenomenon.

Exercise 4.3.6: Suppose W c U C C", n > 3, are domains such that for each fixed

0 .0
29,29, , 20,

{(z1,20) € C*: (21,22,23,...,25) e U\ W}
cc{(z1,22) € C*: (z1,22,23,...,25) € U}.

Prove that every f € O(W) extends to a holomorphic function on U. Note: The fact that W
is connected is important.

Exercise 4.3.7:
a) Prove that if n > 2, no domain of the form U = C" \ K for a compact K is
biholomorphic to a bounded domain.
b) Prove that every domain of the form U = C \ K for a compact K with nonempty
interior is biholomorphic to a bounded domain.

Exercise4.3.8: SupposeU c C",n > 2,isadomain such that for some affine A: C*> — C"
the set A1 (C" \ U) has a bounded topological component. Prove that U is not a domain
of holomorphy.

4.4 \ Solvability of the d-problem in the polydisc

Let us tackle the solvability of the d-problem for differential forms. In general,
the problem is equivalent to holomorphic convexity, although it is rather involved,
and thus we content ourselves with polydiscs and other simple examples. To work
with differential forms, we, as before, split the derivatives into the holomorphic
and antiholomorphic parts. For higher order forms we work with multi-indices for
simplicity, although the way that multi-indices are applied is slightly different.
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Definition 4.4.1. Let p and g be integers between 0 and 7. Let a and f be ordered p-
and g-tuples of distinct integers between 1and n: 1 < a1 < ap <--- < ap, < nand
1<p1<pfa<-- <Py <n. Write

dz, = dZal VAN /\dZap and dfﬁ = dZ‘BI VAN /\dfﬁq.

Then a differential form
n= Znaﬁ Aza N dZﬁ,
ap
where the a and p run over all p- and g-tuples as above, is called a (p, g)-form or
a differential form of bidegree (p, q). A general k-form can be written as a sum of
(p, q9)-forms for different p and g where p + g = k. Define

n 8 B n a

def T]aﬁ _ def Thxﬁ _ _

on = Z;‘ ; 3, dzy Adzy AdZg, and dn = Z;‘ ; 5, dzy A dzy A dZg.
a, = a, =

If 11 is of bidegree (p, q), then Jn if of bidegree (p + 1, 4q) and on is of bidegree
(p, g +1). We get the total exterior derivative dn = dn + dn as before.

Exercise 4.4.1: Prove dn = dn + n.

Exercise 4.4.2: Show that 9> = 0, that is, prove that 9*n = ddn = 0 for every form .
Similarly, show 9% = 0.

Exercise 4.4.3: Given a hypersurface M C C" with a defining function r, compute dor
and show that it gives the Levi form. That is, for a TYY M vector field Z, the Levi form
is given by ddr(Z,Z). Hint: See appendix C on how to evaluate differential forms as
multilinear forms.

_ Aformnisa d-exact form if there exists a form w such that dw = 1. A form njis a
d-closed form if dn = 0. For an open set U ¢ C", we define the Dolbeault cohomology
groups (quotient of complex vector spaces)

HPAU) = {0-closed forms of bidegree (p, ¢) on U}

{9-exact forms of bidegree (p, ) on U} -

By convention, the only (0, 0)-form that is exact is the identically zero form.

Exercise 4.4.4: Show that the d-closed forms of degree (p, q) are a subspace of the vector
space of all (p, q)-forms and similarly that the d-exact forms of degree (p, q) are a subspace.

Exercise 4.4.5: Prove that if two domains U,V C C" are biholomorphic, then for all (p, q),
then HPD(U) and HPD(U) are isomorphic as vector spaces.
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The 9-problem for (p, q)-forms is then the solvability of the equation dw = 1) for
every (p, q)-form 1 given the necessary compatibility conditions dn = 0, and this
problem can then be stated as the cohomology condition H?-7)(UI) = 0, where by 0, we
mean the trivial vector space. The Dolbeault cohomology is in a sense a refinement of
the so-called de Rahm cohomology, which is the usual smooth cohomology measuring
the normal topology of U, whereas the Dolbeault cohomology also takes into account
the complex structure. Note that H ©OW) is just the set of d-closed (0, 0)-forms, that
is, it is the set ©(U) of holomorphic functions on U. More generally, H?0(U) is the
set of d-closed (p, 0)-forms, that is, forms

n
= d
n= g Nadz, suchthat dn= E kgl %dik ANdz, =0.
o =

a Zk

That is, all the functions 1), are holomorphic.

Solvability of the equation dw = 1 for every (p,q)-form n such that dn = 0
whenever g > 1 is equivalent to holomorphic convexity, although the complete proof
is beyond the scope of this book. You will prove one direction of this theorem in C?
in the exercises in this section, and we will prove the general version of this direction
in the next section; see Theorem 4.5.6. That is, we will prove that the vanishing of
the cohomology groups implies domain of holomorphy. Let us state this theorem
without proof.

Theorem 4.4.2. A domain U C C" is a domain of holomorphy (and hence holomorphically
convex) if and only if HOD(U) = 0 whenever 1 < g < n — 1.

If U is a domain of holomorphy, it is in fact true that H?'?(U) = 0 whenever g > 1.
We will not prove this fact, but we will prove it for a polydisc, and we saw above that
H®O(U) is never trivial.

Exercise 4.4.6: Prove that it is sufficient to consider p = 0, that is, H®9(U) = 0 if and
only if HP9(U) = 0 for all p.

Exercise 4.4.7: Suppose U C C" is open. Show that HP(U) = 0 if and only if
HPA(W) = 0 for every connected component W of U.

Example 4.4.3: As we mentioned, if U is not a domain of holomorphy, the d problem
is not always solvable, and hence the Dolbeault cohomology groups may be nonzero.
Let us show that HO1) (C?\ {0}) contains a nonzero element.
Let r = |z|> + |w|*>. Write
1 @ -z

zw  zr  wr

That is, the two functions on the right hand side differ by a holomorphic function
wherever z and w are both not zero and hence their J’s are equal (where they are
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both defined). The left hand term is defined when z # 0 and the right hand term is
defined when w # 0. So the following form is well-defined on C? \ {0}

17:8(%) ifz#0, and nzé(;}—i) ifw # 0.

That 7 is d-closed follows by 9> = 0. Suppose for contradiction that there existed
a smooth f: C?\ {0} — C such that df = 1. Define ¢ = zf — @/r. When z # 0,
then £ = f — ©/zr, and so J(s/z) = 0. Therefore, g is holomorphic where z # 0, but
g is, and this is really where the contradiction comes in, smooth on C? \ {0} and
hence satisfies the Cauchy-Riemann equations on C? \ {0} and so is holomorphic. By
Hartogs phenomenon (any version) ¢ extends to be holomorphic in C?, in particular,
near 0, which contradicts the fact that g(0, w) = 1/w.

Example 4.4.4: It is not simply the topology (as we know already) that determines
the H?7 groups. The previous example still works in C?\ R? = {(z,w) € C? :
Imz # 0or Imw # 0}. That is, the function g from the previous example can be
defined in C? \ R? and hence extends to C? (see Exercise 2.1.10), leading again to
a contradiction. Notice that the domain C? \ {z = 0} has the same exact topology
as C? \ R%. However, C?\ {z = 0} is a domain of holomorphy, and via an exercise
below we know HOD(C2\ {z = 0}) = 0. The thing is that the f actually exists by
construction: f = @®/zr. Then g is identically zero, so we do not get any contradiction.

Exercise 4.4.8: Prove that if U C C?isadomain and K c U is compact, then HOD(U \ K)
is nontrivial.

Exercise 4.4.9: Give another example for why topology is not enough. Consider the Hartogs
figure H = {(z, w) € D?: |z| > Y20r |w| < 1/2}. Show that while H is homeomorphic to
the polydisc (has trivial topology), HOV(H) is nontrivial.

Exercise 4.4.10: Suppose U C C? is a domain such that HOV(U) = 0, then U is a
domain of holomorphy. Hint: Prove the contrapositive, suppose that U is not a domain of
holomorphy and show that HOD(U) # 0 using the reasoning from the examples.

Exercise 4.4.11: Suppose U C C" is a domain with smooth boundary, 0 € U, {z1 =
zp = 0} NU = 0, and the Levi form at the origin has a negative eigenvalue. Show that
HOYW) = 0.

Exercise 4.4.12: Prove that HOV (C2\ {0}) is not just trivial, it is an infinite-dimensional
vector space.

We will prove the solvability of the d-problem for the polydisc. We will allow
some of the factors in the polydisc to be C, so for the moment we define possibly
unbounded polydisc A C C" to mean A = D1 X - -- X D, where each Dy is either a disc
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or C. In this way, we also achieve a solution on C" itself. This is the theorem we will
actually prove:

Theorem 4.4.5. Let A C C" be a possibly unbounded polydisc, let p > 0 and q > 1
be integers, and let 1 be a smooth (p, q)-form on A such that dn = 0, then there exists a
(p, g — 1)-form w such that dw = 1. In other words, HPD(A) = 0 for g > 1.

Before tackling the proof of the theorem, let us solve a simple d-problem in one
dimension using the Cauchy-Pompeiu formula.

Lemma 4.4.6. Let U C C be a bounded open set with piecewise-C' boundary, and let

g: U — C be a smooth function (restriction of a smooth function on a neighborhood of U).
Then : U — C given by

1 g(0)

2ni Ji; C— dC AdG

P(z) = o—

. , W _
is a smooth function such that 5= = g.

By taking conjugates, we can also similarly solve the ‘;—f = ¢ problem. Moreover,

since the solution is given as an integral, we can also solve the problem with
parameters. Thatis, if ¢ depends on some other variables in a smooth or holomorphic
way, then the solution ¢ also depends on those variables smoothly or holomorphically.
Compare the expression for 1 to the one used in the proof of Theorem 4.2.1. The
proof is around the fact that 1(z) = log|z|? solves the problem for ¢(z) = 1/z. This fact
may be surprising, as doing calculus blindly, one would arrive at the multivalued
function log z + holomorphic function, but log Z + log z = log|z|? is single valued as
needed. The lemma, via the exercises, leads to showing that HV(U) = 0 for every
domain U c C. Note that every (0,1)-form gdz in U is d-closed, so the statement is

equivalent to showing that IP = g is solvable for any smooth function g on U.

Exercise 4.4. 13 The fact that the functions are complex-valued is important. Show that for
gx+iy) = x2+y 5 for C \ {0}, there is no real-valued ¢: C \ {0} — R such that lp =g

d
Oi’ali)zg

Proof of the lemma. Fix z € U for a moment and take a small disc A,(z) such that
Ar(z) € U, see Figure 4.4. Then via Stokes,

/ ¢(0)1og|C — z|*dC - ¢(0)1og|C —z|?dC = d(g(C)log|C — z|*d{)
ou IA(2) U\A(z)
g(0)

= 1 —zIPdi A d +/
/U\A(Z)O.,C@ogm pacnate [ 8
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Note that both log|C — z|* and L are integrable over U with respect to the area

measure. Asr — 0, the last term above goes to fu g(C)dC A dC, which is 2miy(z).
Next, the function g is bounded on U, by say M, so

/ 2(0)loglC
IA(2)

Thus, taking the limit we get

(| < / M [log(r®)| || = 2rrM [log(r*)| — 0.
A (2)

as r—0

1 g 1 dg o -
¢(Z)—2—m/aug(C)10g|C z|*dC 5 ua—C(C)loglC z|?dC A dC.

@/Ar(z)

Figure 4.4: Using Stokes.

Taking partial derivatives (in Re z and Im z) still leaves the integrands integrable,
and hence we can pass them under the integral sign. In particular, the function ¢ is
C! and we can take the z derivative. We then apply the Cauchy-Pompeiu formula
(actually its conjugate applied to 3)

I L[ 8Q - 1 ¢(0)
i 2m/ug_z C 2m’/uz_ ACAdC=g(2)

So we are done with the existence of this solution, we need to show that it is also
smooth. As ¢ is smooth, then al’b is also smooth. If we prove that B—I’D is also smooth,
then ¢ must be smooth. We take the z derivative instead of the z derlvatlve to find

d
alp( _— 3(0) its 20
2ni Jou C—z Zm yC—z

The first integral is clearly smooth The second integral is precisely the sort of integral

dC AdC.

we have just shown is C! (with g replaced by Fid £), so ¢ is C2. By induction, ?;P is
smooth, and hence 1 is smooth. |

Moving to several variables, we prove that we can solve the problem on a
subpolydisc of any polydisc, which is usually called the Dolbeault lemma or Dolbeault—
Grothendieck lemma. As it is the analogue of the Poincaré lemma, it is sometimes called
the 9-Poincaré lemma.
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Lemma 4.4.7 (Dolbeault-Grothendieck). Let As;(w) € A,(w) € C" be polydiscs where
0 <sg <1y <ooforeachl. Let p > 0and q > 1 be integers, and let n be a smooth
(p, q)-form on A,(w) such that dn = 0, then there exists a smooth (p, q — 1)-form w on
As(w) such that dw = 1.

Proof. Take k be an integer such that n only involves dzy, ..., dzy from the barred
differentials. If k = 0, then the lemma is true trivially as g > 1 so 11 would just have to
be zero. We will proceed by induction.
Write
n=dzxAT+0,

where 7 and 0 only involve the barred differentials dzy, ..., dZx—1. Now
OZQT]:é(de/\T+9):dzk/\97+99.

Hence the coefficients of 7 and 6 must be holomorphic in zy41,...,2z, as their
derivatives in the bars of those variables are zero. In particular, if 7,4 is one of
the coefficients of 7, then it is a smooth function of the larger polydisc, but also
holomorphic in the variables zy41, ..., zy.

Exercise 4.4.14: Check the assertion that the coefficients of T and O are holomorphic in the
variables zy,1,...,2Zn.

By Lemma 4.4.6, there is a smooth function 44 in the z; variable such that

I, . . .
(;PZ 2 = Tap. Moreover, each 1,4 is also a smooth function in

Ay, (w1) X -+ X Ay, (wi-1) X Ap(wy) X AV (Wis1) X -+ - X Ay, (wn)

for some t such that sy <t < r. It is also holomorphic in the variables zi41, .. ., zx.
From the 1), functions we construct a (p, g — 1)-form 1. We compute di:

0 Zl)ba[gdza /\dzlg = Z
af

k—
=z A| Y Tap dza A dZg +ZZ aﬁng A dzy A dZg
af af (=1

=dzy AT+ 0,

k—
;Da dzk/\dza/\dzﬁ+zz ¢aﬁngAdzaAdzﬁ
“k ap =1

where 0 also does not contain the barred differentials other than dzq, ..., dZy_1. Now
note that

(0 —06)=9d(n— ) =adn -y =0.
Since 0 and 6 both only contain the barred differentials dzy, ..., dZx_1, we can apply
the induction hypothesis, to find a (p, g — 1)-form ¢ such that d¢ = 0 — 5. Then we
let w = ¥ + ¢ and note that we are done:

dw =0 +¢@)=dzxr AT+5+0-06=n. O
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Exercise 4.4.15: Prove that the construction from the proof of the lemma reproduces the
compactly supported solution for compactly supported (0, 1)-forms from section 4.2 provided
we start with a sufficiently large polydisc, of course.

Exercise 4.4.16: Prove the lemma if you replace the polydiscs As(w) and A,(w) with two
nested balls with center w.

We can now prove the theorem itself.

Proof of Theorem 4.4.5. The proof splits in two cases. First, suppose that g > 1. Pick
a sequence of polydiscs Ay all centered at the origin, such that | J; Ax = A and such
that Ay C Ay.q for all k. Using the Dolbeault-Grothendieck lemma with Az and Ay,
we find a smooth form w; defined on A; such that dw; = n. We will construct a
sequence of forms {wy} each wy defined in Ay, such that wgi1]a, = wkla,. Suppose
we have defined wy, . .., wx. Now using Ay;3 and Ag;4 using the lemma again, define
a new form ¢ on Ag.3 such that do = 1. What we need to do is to correct o so that it
equals wr on Ar. On Ag,o, we have é(a)k —0)=n-1n=0,s0 wg — o is closed. The
lemma gives a new form 0 on Ay, such that 00 = wy — 0. Define a smooth bump
function ¢ on C” such that @ = 1 on Ag and ¢ is compactly supported in A1. Define
Wiyl =0 + c_9((p 0), which can be defined as a smooth form on A3 as ¢ is identically
zero where 6 is undefined. The fact that 9% = 0 ensures that dwy.1 = do = non Ag,s.
On Ax, we have Wi = 0 + 00 = 0 + Wi — 0 = wi. See Figure 4.5. The sequence {wy}
is defined. We define w on A by simply letting @ = wi on Ay.

Ak+3

3 Akt2 Mot [a
o=1 = :
= d — =0 : _
dwis1 =1 (@ = 0) § a)k+11— Wi
P =
20 = a)}; . (p:()

Figure 4.5: Diagram for defining wi.1 = 0 + d(p0). The dotted line gives supp .

Now assume g = 1. By Exercise 4.4.6, it is enough to consider p = 0 to simplify
notation. That is, we are now looking for a smooth function w so that dw = 1. We
take the polydiscs Ay as before and define w1 on A, using 1 on Az. But instead of
ensuring that wi;1 and wy are equal on Ay, we will ask that

|wis1(z) — wr(z)| < 27F  for z € Ay.

Suppose that such wy, ..., @ have been defined. Use the lemma with Ag.3 and Ay,
to obtain a smooth function ¢ on Ay, such that do = 1. The function ¢ — wy is
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holomorphic (on A1 where wy is defined) as (_9(0 — wg) = n—n =0, and hence it

has a power series representation converging uniformly on Ax. Thus there exists a
holomorphic polynomial P such that

lo(z) — wi(z) = P(z)| < 27%  for z € A.

So let wy41 = 0 — P. As P is holomorphic, we have dwis1 = n, and we satisfied the
required properties.

On any particular A, the sequence {wy} is uniformly Cauchy as if m > k > ¢,
then |wm(z) — wi(z)| < 27K + 271 4 ... 4 27m+ < 2=k+1 G the sequence converges
uniformly on compact subsets of A to a function w: A — C. We need to show that
@ is smooth and satisfies dw = 1. The functions w,, — w; converge uniformly as
m — oo on Ap. As HNwy — wy) = n —n = 0, these functions are holomorphic, and
so the limit w — wy is holomorphic. In particular, @ is smooth as w, is smooth and
dw = dwy = 1. O

Exercise 4.4.17: Prove the theorem also holds for a ball, say the unit ball B, c C". Hint:
Use Exercise 4.4.16.

Exercise 4.4.18: Foranydisc D C C, let D* denote the punctured disc D* = D \ {a} where
a is the center. Prove that the theorem also holds for U = Dy X --- X Dy X Dy | X --- X Dy,
for some (possibly unbounded) discs Dy, . .., D,. Hint: You may have to prove a slightly
more general version of the Dolbeault—Grothendieck lemma. Also, see Exercise 1.2.4.

Exercise 4.4.19: Prove that in one variable, for any domain U C C, we have H O =o.
Exercise 4.4.20: Prove the theorem for the Hartogs triangle T = {(z, w) € D?: |z| > |w|}.

Exercise 4.4.21: Suppose U C C" is a domain and p € JU. Suppose there is some polydisc
A centered at p such that HOO(U N A) # 0, then HOD(U) # 0. Hint: Find a smooth
function @ on U N A such that @ is identically zero near the boundary of U and identically
one near the boundary of A. And use the theorem.

Exercise 4.4.22: Use the Exercise 4.4.21 and Exercise 4.4.11 to prove that if U c C",
n > 2, is a domain with smooth boundary and p € dU such that the Levi form at p has a
negative eigenvalue and n — 2 positive eigenvalues, then HOD(U) # 0.

Exercise 4.4.23: Being a subset gives us no relation between the Dolbeault cohomology
groups: Find domains U ¢ V. ¢ W c C? such that HOV(U) = HOV(W) = 0, but
HOD(V) is nontrivial.
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4.5 | Extension from an affine subspace

Let L ¢ C" be a (complex) affine subspace of dimension k, that is, the set defined by
Mz = ¢ for arank n — k matrix M and c € C". After a complex linear transformation
and translation, we may assume that L = {z € C" : z441 = -+ = z, = 0}. We say
a function f defined on an open subset of L is holomorphic if after this change of
coordinates it is holomorphic in the z1, ..., zi variables. If k = n -1, we call L a
(complex) affine hyperplane, and if k = 1, we call L a complex line.

It is easy to see that if U C C" is open, L is an affine subspace, and F € 6(U), then
F|unr is holomorphic. It is not hard to see that being able to do the inverse may be
quite useful in proofs by induction on dimension, that is, starting with a holomorphic
function f on U N L and finding a holomorphic function on U whose restriction is f.
If f is just smooth, then finding such a smooth extension is not difficult no matter
what U looks like, however, in the holomorphic category it is not that easy (or even
always possible). A holomorphic extension from an affine subspace is possible for
domains of holomorphy, in fact, it is a defining characteristic of such domains.

Example 4.5.1: Suppose U = C?\ {0} and L = {(z,w) € C*>: w = 0}. Then U N L is
the punctured plane. Let f(z) = 1/z be the function on U N L. Suppose that there was
an F € 6(U) whose restriction to U N L was f. Such an F extends to all of C?, and
hence f extends to all of L (which is just the z-plane), which is impossible. Note that
we proved that HOD(U) is nontrivial.

Example 4.5.2: Suppose U = B»((0,1)) ¢ C?and L = {(z,w) € C* : w = 0}. Then
U N L is a disc of radius V3 in the z-plane. Take a function f: A ;5(0) — € be such
that it does not extend past any point in the boundary of the disc. The obvious way
to extend f to an F would be to simply take a function F(z, w) = f(z), but that is not
defined on all of U. Extension to all of U is somewhat harder to prove. See Figure 4.6.
It is possible to do this explicitly in this specific case (exercise below). Note that
HOD(U) = 0, which you proved as an exercise in the previous section.

u= Bz((O, 1))

uUuntL

Figure 4.6: Extending f from a hyperplane to the ball, it is easy to extend to within the
dotted lines.
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Exercise 4.5.1: Explicitly define the extension of the holomorphic function f to F in the
setup of Example 4.5.2.

Exercise 4.5.2: Come up with an example domain U and hyperplane L (in C?) where
HOD(U) is nontrivial, but where every f € O(U N L) extends holomorphically to U.

Exercise 4.5.3: You can also do this with multiple hyperplanes. Suppose that in C2, L is
the set where z = 0, M is the set where w = 0, N is the set where z = w. Let f, g, h be
holomorphic functions on L, M, and N, respectively such that f(0) = g(0) = h(0). Prove
that there is a holomorphic F on C? such that F|p = f, Flm = g, FIn = h.

Exercise 4.5.4: Show that you cannot replace the hyperplane with something that has no
complex structure. Find an example of a domain of holomorphy U C C?, and a real-analytic
f: U NR? — C that is not a restriction of a holomorphic function on U. Note that f does
extend holomorphically to some neighborhood of U N R? in U, just perhaps not all of U.

The way to do the extension in general is to do the simple extension as in
F(z,w) = f(z) to a neighborhood of L, then extend in a smooth way via a cutoff
function to all of U. But to make the extension holomorphic, we need to then correct
via the appropriate d-problem. We stated the extension with holomorphic functions,
but really it is no harder to prove a more general version of the problem about d-closed
(p, q)-forms, where holomorphic functions are the d-closed (0, 0)-forms.

To be able to prove this more general theorem, we need to know what it means to
restrict (p, g)-forms to L, not just functions. Instead of making this too complicated,
let us do the same simplification as we did above for functions. Informally, we will
restrict the values of the form to L and only take the parts of the form that “point
along L.” Let us, also for simplicity, suppose that L is a hyperplane, as the more
general case then follows. As before, after a linear map and a translation, assume
L={zeC":z, =0}. Writea (p, q)-form as

n= Znaﬁdza AdZg + wy Adzy + w3 A dZy,
ap

where a and  do not include n (so no dz, nor dz, in the first term). Then

Nl = Z NaplL dza A dZzg.
ap
Basically we restrict the components to L, and throw out the differentials that do

not change along L. If 17 is a function (a (0, 0)-form), then, of course, this is just the
restriction of the function.

Theorem 4.5.3. Suppose that U c C" is open with HP4*D(U) = 0 and L is an affine
hyperplane. Let 1 be a smooth d-closed (p, q)-form on U N L, then there exists a smooth
d-closed (p, q)-form Y on U such that W|ynL = 1.
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So to extend holomorphic functions from a hyperplane, we need HOD(U) = 0

Proof. After a translation and a linear map, we assume L = {z € C" : z,, = 0}. Write
z = (z’,zy) as usual. Let y: U — R be the function that is identically 1 in some
neighborhood of U N L and such that it is identically 0 in some neighborhood of
{zeU:(z,0) ¢ UNL}. See Figure 4.7.

Figure 4.7: The cutoff function . Note that y = 0 on a neighborhood where it is not
trivial to extend 1.

We will define
W(z) = x(2)¢(2') + zun(2),
where 1) is chosen appropriately so that W is d-closed. This form is defined in U as x

is identically zero where ¢ is undefined. Clearly, if such an 1) can be found, we have
Wunr = 1. Let us compute W to see what is required of 1.

S A0 - . ,
8‘P=8}(/\¢+)(Q/§ﬁ(+§/z{/\r]+znan=(9)(/\gb+znc91].

As dy is 0 in a neighborhood of U N L, the form - X Z0XNY oxtends smoothly through

UNL. Itisasmooth (p, g +1)-formon U as dyx is 1dent1cally zero in a neighborhood of
where ¢ is undefined. The form is J-closed as 82 0, dY =0, and 1/z, is holomorphic.

By hypothesis, we find an 1 such that on = ¥ and we are done. O

We remark that an extension works for zero sets of holomorphic functions, that is,
subvarieties (see chapter 6), not just hyperplanes, a result which is called the Cartan
extension theorem, but we will not prove this fact. However, as an exercise prove the
extension for two hyperplanes.

Exercise 4.5.5: Suppose that U C C" is open with HP1*D(U) = 0 and L, and L, are two
affine hyperplanes such that U N Ly N Ly = 0. Let 1 be a smooth d-closed (p, q)-form on
U N Ly and - be a smooth d-closed (p, q)-form on U N Ly. Show that there is a smooth
d-closed (p, q)-form W on U such that W|ynr, = ¥1 and W)ynr, = V.
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In what follows, when we talk about U N L as an open set for a hyperplane L,
we think of it as an open set in C""!. More generally, if L is a k-dimensional affine
subspace, then we will treat U N L as an open set in C"~*.

Corollary 4.5.4. Suppose U C C" is open and L is an affine hyperplane. If HP9(U) = 0
and HPA4*D)(U) = 0 then HP DU N'L) = 0.

Proof. Let ¢ be a d-closed (p, q)-form on U N L. As HP4+D(U) = 0, via the theorem,
there is a d-closed (p,q)-form W on U such that Wy~ = . As HPD(U) = 0,
there is a (p, g — 1)-form ® on U such that d® = W. It is not difficult to see that
(0D)|unt = A(P|unt) (true for any form), so ¢ = ®|yny is the solution to dp = . O

Exercise 4.5.6: Prove the claim that for any (p, q)-form, (9CD)|UQL = é(q)lum).

We have the following immediate corollary.

Corollary 4.5.5. Suppose that U C C" is open such that HOD(U) = 0 whenever 1 < g <
n —1and L is an affine hyperplane. Then HOD(U N L) = 0 whenever 1 < q < n — 2.

Exercise 4.5.7: Prove a more general corollary. Suppose that U C C" is a domain
and suppose that L is a k-dimensional affine subspace 1 < k < n — 1. Suppose that
HOD(U) = 0 whenever 1 < q < n—1. Then HOD(U N L) = 0 whenever 1 < q < k-1,
and every f € O(U N L) has a holomorphic extension to U.

We now prove the general version of one direction of the theorem mentioned in
the previous section. That is, as an exercise, you proved by direct construction that
HOD(U) = 0in C?, then U is a domain of holomorphy. We extend this result to C".

Theorem 4.5.6. Suppose U C C" is domain such that HO9D(U) = 0whenever1 < q < n—1.
Then U is a domain of holomorphy.

Proof. We induct on dimension. When n = 1, the hypothesis just says that U is a
domain, and any domain in C is a domain of holomorphy. Assume the theorem
holds for any domain in C"1.

Let U C C" be a domain and suppose that V and W are open sets in C" such that
0+#V cUNW,W is connected, and W contains points outside of U. Thatis, V and
W are like in the definition of the domain of holomorphy. We want to show that there
must exist at least one F € 6(U) for which there does not exist any G € 6(W) such
that F = G on V. Consider a component of W N U that contains some component of
V. Without loss of generality we could take V to be any small ball in this component
of W N U. It is not difficult to check (exercise) that there exists such a V' (move it
around if you must) so that there is a point zg € JU NIV NW.
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Exercise 4.5.8: Prove that such a V exists.

There is some affine hyperplane L through z such that the boundary of V N L
(in the topology of L) includes zp, and hence the boundary of U N L (in the topology
of L) includes zg. Here we use the fact that V is a ball; pick an L that includes the
normal direction to the boundary of V at zo. See Figure 4.8. By Corollary 4.5.5,
HO9(U NL)=0for1 < g < n - 2. By the induction hypothesis (and Exercise 4.4.7),
every component of U N L is a domain of holomorphy. Since zy is in the boundary
of U N L, we have a holomorphic function f € 6(U N L) that does not extend (along
L) through zg. As HOD(U) = 0, we have that there exists an F € 6(U) such that
Flunr = f. If there existed a G € 6(W) that agreed with F on V, then G|wnr, would be
an extension of f through zo, which we know is impossible, so no such G exists. O

<=

=
S

Figure 4.8: Location of zp and the placement of V and L with respect to U and W.

If you think about what we really needed in the proof, it was not the cohomology
vanishing, we needed the extension. It is sufficient to extend from complex lines,
that is, affine subspaces of dimension 1, since the intersection of U N L in that case
is always a domain of holomorphy. On the other hand, it is not sufficient to have
extension from hyperplanes, see Exercise 4.5.12.

Theorem 4.5.7. Suppose U C C" is domain such that for every complex line L and every
f € 6(UNL) thereexists an F € O(U) where F|ynr = f. Then U is a domain of holomorphy.

Exercise 4.5.9: Prove the theorem.

Exercise 4.5.10: Suppose U C C" is domain of holomorphy and L is an affine subspace of
dimension k. Then every component of U N L is a domain of holomorphy.

Exercise 4.5.11: Suppose U C C" is domain and k € N is such that HOD(U) = 0 for all
1 < g < n -k, and every component of U N L is a domain of holomorphy for every affine
subspace L of dimension k. Prove that U is a domain of holomorphy.
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Exercise 4.5.12: Extension from hyperplanes is not enough: Find a domain U C C3 that is
not a domain of holomorphy, such that for every affine hyperplane L and every f € 6(UNL)
there is an F € O(U) such that F|ynr = f. Hint: Modify Example 4.5.1.

Remark 4.5.8. We have by now stated several equivalent conditions for a domain to be
a domain of holomorphy, although we have not proved all the implications in this
book. In particular, for a domain U C C", the following are equivalent:

(i) U is a domain of holomorphy.
(ii) U is Levi pseudoconvex (if U has smooth boundary).
(iii) U is Hartogs pseudoconvex (continuous plurisubharmonic exhaustion function).
(iv) —log p(z) is plurisubharmonic (p is distance to dU).
(v) U is convex with respect to plurisubharmonic functions.
(vi) U is holomorphically convex.
(vii) dist(K,dU) = dist(Ky;, dU) for every K cc U.
(viiiy HO9(U) =0foralll1 < g <n-1.

(ix) Every f € 6(U N L) extends holomorphically to U for every complex line L.

4.6 | The Cousin problems

A chapter in many a book on one complex variable is devoted to the Mittag-Leffler
theorem on finding a meromorphic function with prescribed poles, and another one
on a theorem of Weierstrass for finding a holomorphic function with a prescribed
zero set. The analogues of these results in several complex variables are the so-called
Cousin I and Cousin II problems* respectively. The Cousin I problem is an additive
version of the problem and obtains an analogue to Mittag-Leffler. The Cousin II
problem is the multiplicative version to obtain an analogue of Weierstrass.

Definition 4.6.1 (Cousin I). Suppose U C C" is open. Let {U, },e; be an open covering
of U,and when U, N U, # 0, let h,. € 6(U, N U, ) be such that

hye + he, =0 in U, N Uy,
hye+hep+hy, =0 inU, NU.NU,.

The covering and the functions h,, are called Cousin I data. The solution of the Cousin I
problem is a set of holomorphic functions f, € 6(U,) such that

hm = fl _fK-

*Named for Pierre Cousin, the French mathematician, and not for some family scuffle.
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Clearly if the functions f, exist, then their differences must satisfy the two
conditions. The point is going the other way: finding f, given /.. We remark that we
could always take ¢, k, and A to be distinct, as the first condition means that 1, = 0
for all ¢ otherwise, and the second condition then just reduces to the first if two of the
indices are equal.

Exercise 4.6.1: The triple sum is enough to force the similar condition on 4 or more
summands, but the double sum is not enough. That is,
a) Find an example where the first condition h,. + hy, = 0 is satisfied but the second
condition h,. + hip + hy, = 0 is not.
b) Show that if both conditions are satisfied (we have valid Cousin I data), then
hye + hir + hay + hy = 0, and similarly for any number of terms.

To see how Cousin I relates to Mittag-Leffler, note that Mittag-Leffler could be
stated by giving meromorphic functions locally and then trying to piece them together.
Recall that meromorphic functions are locally a ratio of holomorphic functions. So
suppose that we have a covering {U, } and in each U, we have a meromorphic function
g. such that g, — g« is holomorphic in U, N U (or more precisely, extends to be
holomorphic on that set). That is, if we were in one dimension, the two functions
would have the same principal part. The solution is to find a global meromorphic
function with the same singular behavior (principal part).

On U, NnU,, let

hy = g — 8«

It is easy to see that we obtain Cousin I data. Suppose the Cousin I problem is solvable
in U. Then we would find holomorphic f, as above. We define a meromorphic
function f on U by defining it in each U, as

f=8-f.

The function is well-defined. Indeed, on U, N U, the possible definitions are g, — f,
and gy — fi, and their difference is zero:

(gL _f‘)_(gk _fK) = (gl _gK)+(fK _fl) = hy + hye, = 0.

The function f has the same singularity as g, in U, since f — g, is holomorphic.

So the data gives some local solution to some problem and the solution of the
Cousin problem gives a way of gluing the local data together into a global solution.
We state this as a proposition (the converse also holds but we do not prove it here):

Proposition 4.6.2. Suppose U c C" is open, {U,},e1 an open covering of U, and g, are
meromorphic functions on each U, such that g, — g\ is holomorphic on U, N U,. Suppose
that the Cousin I problem is solvable on U. Then there exists a meromorphic function f on
U such that on each U,, f — g, is holomorphic.
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In one dimension, Cousin I (that is, Mittag-Leffler) is solvable for any domain
in C. In several variables, Cousin I is solvable on domains of holomorphy in C”, in
particular, it is solvable when we can solve the d-problem for (0, 1)-forms.

Example 4.6.3: Let us see an example where the Cousin I problem is not solvable.
Let U = C?\ {0}, where we know that HOD(U) is nontrivial. Write U = U; U Uy
where Uy = {(z,w) € C?:z # 0} and U, = {(z,w) € C?: w # 0}. On Uy N Uy, define
1 -1
hlZ(zlw) - %1 th(ZI ZU) - %
These are holomorphic functions giving Cousin I data. Suppose the problem was
solvable and we find f; € 6(U;) and f, € 6(U>) such that on U; N Uy, we have

1
fA-fo=ho=—

Zw
In other words, f; = % + fo on Uy N U,. But that means that z f1 is holomorphic in U,
and therefore in U, and thus extends to C2. Similarly, w f, extends to a holomorphic
function on C2. Thus zw f; — zw f, is a holomorphic function on C? that vanishes at
the origin, but zw f1 — zw fo = zw(h12) = 1 on Uy N Uy, which leads to a contradiction.

The Cousin I problem with smooth data is smoothly solvable in any domain.

Lemma 4.6.4. Suppose U C C" is open, {U,},er be an open covering of U, and let h,, be
smooth (not necessarily holomorphic) Cousin I data. Then there exist smooth (not necessarily
holomorphic) solution functions f,.

Proof. Find a smooth partition of unity {¢, },er subordinate to the cover {U,} ;.
That is, ¢, are smooth functions of U valued in [0, 1] that add up to 1 at every point,
in a neighborhood of any point only finitely many ¢, are nonzero, and each ¢,, is
supported in some U, so denote such x € I as k. For z € U, let

f(2) = ) @y @i, (2).

yel

Note why this is well-defined and smooth: For z € U,, given a y and hence «,,, either
¢y = 0 in some neighborhood of z or z € Uy, N U,. So each term can be interpretted
as a smooth function on U,, and in a neighborhood of z we are adding at most finitely
smooth functions, so f, is smooth in U,. For z € U, N U,,

f2) = /i) = Y 0@ (hi (2) = ha (2)) = D 9, (Dha(2) = ha(2). O

yel yel
The (holomorphic) Cousin I problem is solvable on any domain of holomorphy
and in general on any domain with a trivial first Dolbeault cohomology group.

Theorem 4.6.5. Suppose U C C" is a domain with HOV(U) = 0. Then the Cousin I
problem is solvable.
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Proof. Let {U,}er be an open covering of U, and let /. be (holomorphic) Cousin I
data. Using the lemma, find the smooth solutions f,. The functions f, need not be
holomorphic, but f, - f, = h,, are holomorphic, and so df, — df, = d(f, - f,) = 0.
The (0, 1)-form 1 given by

n=0f
is therefore well-defined on U. Moreover, 1 is 0-closed, so by assumption on U, there
exists a ¢ € 6(U) such that dip = 1. On each U,,

E = f 1.
On U, N U,, we have
F[_FK:fL_fK:h[KI

and on U,, we have

JF, =df,—dp=n—-n=0.
Therefore, the F, give a solution to the Cousin I problem. m|

Corollary 4.6.6. Cousin I problem is solvable on any possibly unbounded polydisc in C".

Exercise 4.6.2: Use the solution of the d-problem in the disc to show that if the Cousin I
problem is solvable in a domain U C C", then H ©ON(U) = 0. Hint: Solve locally and then
follow the same idea as trying to piece together the meromorphic function above.

Exercise 4.6.3: Formulate a version of Cousin I problem for integer-valued continuous
functions on domains in R2. Prove that the problem is not always solvable in R? \ {(0,0)}.

Let us briefly mention the second Cousin problem and its relation to the Cousin I
problem and to the theorem of Weierstrass.

Definition 4.6.7 (Cousin II). Suppose U C C" is open. Let {U, } e be an open covering
of U, and when U, N U, # 0, let h,, € 6(U, N U,) be nonvanishing functions such that

hyhe =1 inU, NU,,
huheahpy, =1 inU, N U NU,.

The covering and the functions /. are called Cousin II data. The solution of the Cousin
11 problem is a set of nonvanishing holomorphic functions f, € 6(U,) such that

hLK = ff_‘;'
Cousin II is the analogue of the Weierstrass product theorem, that is, finding a

function with a prescribed zero set. Suppose that M C U is locally given by the
vanishing of a single holomorphic function with a nonvanishing derivative (a complex
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submanifold of codimension 1), that is for every p € U, there is a neighborhood U,
and a holomorphic g, with dg, # 0 such that g[l(O) =MnU, OnU, NU,, let

th = &
I«

Exercise 4.6.4: Prove that h, is holomorphic and nonvanishing.

Thus we have Cousin II data. If the Cousin II problem is solvable, we have f, as
above. Define a holomorphic function f on U by defining it on each U, via

_ &
f=%
Similarly as before, this gives a well-defined function, and clearly it vanishes precisely
on M. Moreover, the derivative is nonzero on M. We state this result as a proposition.

Proposition 4.6.8. Suppose U € C" is a domain on which the Cousin II problem is solvable
and M C U is a complex hypersurface (locally the zero set of a holomorphic function with
nonvanishing derivative). Then there exists an f € O(U) such that f~1(0) = M and df # 0
on M.

The second Cousin problem is not always solvable on every domain of holomorphy
like the Cousin I problem. An extra condition on the topology of the domain is
necessary. Interestingly, on a domain of holomorphy;, if the Cousin II problem is
solvable just continuously, then it is solvable. We will skip the proof of this fact, but
let us describe how the topological obstruction arises. Suppose we have Cousin II
data /... We refine the covering to make the sets U, and their intersections U, N U
simply connected. Then we take logarithms g, = log 1, and we take the correct
branch to also get g, = —gux, SO i + g« = 0. For the triple sum we get

Sk T 8xA T80 = 27T 5\

for some integer m,,5. It is not always possible to pick the branches in such a way to
make m )y = 0 for all indices. If it were possible, we could apply the solution to the
Cousin I data. This question is just a question of cohomology, that is, just topology.*

Exercise 4.6.5: Suppose U C C" is a domain with HOV(U) = 0 and M c U is a complex
hypersurface. Suppose there is a continuous function g on U such that locally near every
p € M, if r is a defining function for M (holomorphic with nonvanishing derivative), then
r/g extends to be continuous and nonvanishing in a neighborhood of p. Prove that there
exists an f € O(M) such that f71(0) = M and df # 0 on M. Hint: Cover with balls U,
and in each ball define log(f/¢), then obtain a Cousin I problem.

*For the interested reader, the needed extra cohomology condition is H%(U, Z) = 0.
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Exercise 4.6.6: Let U C C be a domain and assume the Cousin II problem is solvable (it
always is in C). Prove the classical theorem of Weierstrass using Cousin 1I. That is, given a
countable set of points in U and multiplicities, and assuming the set has no limit points in

U, find a function f € O(U) that has zeros precisely at the given points of precisely the
given multiplicities.




5 | Integral Kernels

5.1 The Bochner—-Martinelli kernel

A generalization of Cauchy’s formula to several variables is called the Bochner—
Martinelli integral formula, which reduces to Cauchy’s (Cauchy-Pompeiu) formula
when n = 1. As for Cauchy’s formula, we will prove the formula for all smooth
functions via Stokes’ theorem. First, let us define the Bochner—Martinelli kernel:

def (n—1)!' v Tk -2

C()(C/Z) - (27_(1)71 £ ||C —Z”

’;n dCl/\dcl/\---/\d’(_j\k/\dck/\---/\din/\dcn.

—

The notation d(; means that this term is simply left out.

Theorem 5.1.1 (Bochner-Martinelli). Let U C C" be a bounded open set with smooth
boundary and let f: U — C be a smooth function. Then for z € U,

f(z) = /a 00,2 - /u SF(O) A (G, 2).

In particular, if f € 6(U), then

f(z) = /a OO ).

Recall that if C = x + iy are the coordinates in C", the orientation that we assigned
to C" in this book" is the one corresponding to the volume form

AV =dxi ANdyy ANdxa Adya A+ Ndxy A dyy,.
With this orientation,
A ANACG ANdC ANdCo A+ ANdT, AdC, = (=20)"dV,

and hence
A ANACG ANdC ANdCo A+ ANdC, AdT, = (20)'dV.

fAgain, there is no canonical orientation of C", and not all authors follow this (perhaps more
prevalent) convention.
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Exercise 5.1.1: Similarly to the Cauchy—Pompeiu formula, note the singularity in the
second term of the Bochner—Martinelli formula. Prove that the integral still makes sense
(the function is integrable).

Exercise 5.1.2: Check that for n = 1, the Bochner—Martinelli formula reduces to the
standard Cauchy—Pompeiu formula.

Recall the definition of @ and @ from Definition 4.4.1, and recall that dn = dn + on.

Proof of Bochner-Martinelli. The structure of the proof is essentially the same as that of
the Cauchy-Pompeiu theorem for n = 1, although some of the formulas are somewhat
more involved.

Let z € U be fixed. Suppose r > 0 is small enough so that B,(z) C U. Orient both
JdU and dB,(z) positively. As f(C)w(C, z) contains all the holomorphic d(y,

d(f(Qw(C, 2)) = d(f(Qw(C,2))
=éﬂko@z)

d _ _
+ d /\d /\"'/\d n/\d -
f@U20 EZ%knc ]cl G Cn A dC

We compute
Z”] J | Ck—% ]: C ( L (V% ):
ok LIc-zI"] Z -z |-z

Therefore, d(f(C)w(C, z)) = df (L) A (L, z). We apply Stokes:

/ FOw(T,2) -

,,

fQw() = /u S AFO0(E )

- / O AT 2).
U\B;(z)

Again, due to the integrability, which you showed in an exercise above, the right-hand

side converges to the integral over U as r — 0. Just as for the Cauchy—Pompeiu

formula, we now need to show that the integral over dB,(z) goes to f(z) as v — 0.
So

9B, (z)

QG2 =f@) [ w2+ / (F(O) - F@) (T, 2).
9B, () 9B, ()
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To finish the proof, we will show that faB ) w(C,z) =1, and that the second term

goes to zero. We apply Stokes again and note that the volume of B,(z) is Z-72".

/ o(C,2)
9B, (z)

—1) < (o —% - —_ -
=/ L .1,3' Sk Bk g2 ATy A ATk AT A A dEy A dC,
aB,(z) (2mi)" |0~ 2™

_1| —_— _
_ -l / Z(Ck_zk)dC1/\dC1/\ “ANACe NACe A+~ ANdCy ANdCy
PY:

(27’(1) 1’2" (z) =

= (n_.l)!L/( d(Z(zk_Zk)dilAdCl/\"'/\Ez\k/\de/\"'/\dzn/\an
B:(z)

n2
(2mi)" ren el

n-1)"!1 = =
= ((27_”)3 ﬁ/I;(Z)ndCl/\dC1/\"‘/\an/\an

— |
_ u%/ n(2iy'dV = 1.
2ni)" r B,(2)

Next, we tackle the second term. Via the same computation as above we find

[ -
9B, (z)

_(n=1)! 1
— Qmi)" r2n

(/B( )(f(C)—f(Z))n dli AdCi A AdT, AdT,

n f _
+ - = - d /\d /\ /\d n /\d nil-
/B(Z) k§1 aCk(C)(Ck Z) dCy A dGy C C )

As U is bounded, [£(C) - f(2)] < MIIC - z]| and |24 (C)(ck—zk)j MIIC —z]| for

some M. So for all C € dB,(z), we have |f(C) — f(z)| < Mr and‘ (O)(Ck — zk)| < Mr.
Hence

[ @@
JB,(z)

—_1)!
(n b - (/ n2"MrdV + / n2"Mr dV) =2Mr.
T@2n)" 2\, B,(2)

Therefore, this term goes to zero as r — 0. |

One drawback of the Bochner-Martinelli formula fau f(Q)w(C, z) is that the kernel
is not holomorphic in z unless n = 1. It does not simply produce holomorphic
functions. If we differentiate in Z underneath the dU integral, we do not necessarily



160 CHAPTER 5. INTEGRAL KERNELS

obtain zero. On the other hand, we have an explicit formula and this formula does
not depend on U. This is not the case for the Bergman and Szeg6 kernels, which we
will see next, although those are holomorphic in the right way.

Exercise 5.1.3: Prove that if z ¢ U, then rather than f(z) in the formula you obtain
/ f(Ow(C, z) - / If(0) A w(C,z)=0.
ou u

Exercise 5.1.4: Suppose f is holomorphic on a neighborhood of B,(z).
a) Using the Bochner—Martinelli formula, prove that

1
0= 5@

where V (B(z)) is the volume of B,(z).
b) Use part a) to prove the maximum principle for holomorphic functions.

/ FOAV(D),
By(z)

Exercise 5.1.5: Use Bochner-Martinelli for the solution of @ with compact support. That
is, suppose § = g1dz1 + - -+ + §,dZz, is a smooth compactly supported (0, 1)-form on C",
n > 2,and % = %ﬁfor all k, €. Prove that

Y(z) = - . g(0) A w(C,z)

is a compactly supported smooth solution to dY = g. Hint: Look at the previous proof.

5.2 | The Bergman kernel
Let U c C" be a domain. Define Bergman space of U:

A2(U) ¥ o) n L2W).

That is, A%2(U) denotes the space of holomorphic functions f € 6(U) such that

def
B & 1y = [ PPV <

A?%(U) is an inner product space with the L?(U) inner product

g0 & /u f2)g@ V.

We will prove that A%2(U) is complete, in other words, it is a Hilbert space. We first
prove that the A%2(U) norm bounds the uniform norm on compact sets.



5.2. THE BERGMAN KERNEL 161

Lemma 5.2.1. Let U c C" be a domain and K cC U compact. Then there exists a constant
Ck, such that

Ifllk = suplf(2)l < Cxlifllazry ~ forall f € A*(U).

zeK

Consequently, A%2(U) is complete.

Proof. As K is compact there exists an r > 0 such that A,(z) c U for all z € K. Take
any z € K, and apply Exercise 1.2.10 and Cauchy-Schwarz:

1
()] = ‘V(A—(Z)) /A o dve)‘

1 ’ 2
< W%\/ / U dV(e)\/ / L FOF aveo

1 1
N ey

h/2yn

£ 1l a2r)-

Taking supremum over z € K proves the estimate. Therefore, if {f;} is a sequence of
functions in A%(U) converging in L2(U) to some f € L?(U), then it converges uniformly

on compact sets, and so f € 6(U). Consequently, A%2(U) is a closed subspace of L2(U),
and hence complete. m|

For a bounded domain, A%(U) is always infinite-dimensional, see exercise below.
There exist unbounded domains for which either A%(U) is trivial (just the zero

function) or even finite-dimensional. When n = 1, A?(U) is either trivial, or infinite-
dimensional.

Exercise 5.2.1: Show that if a domain U C C" is bounded, then A*>(U) is infinite-
dimensional.

Exercise 5.2.2:
a) Show that A%(C") is trivial (it is just the zero function).
b) Show that A%(D x C) is trivial.

¢) Find an example of an unbounded domain U for which A%(U) is infinite-dimensional.
Hint: Think in one dimension for simplicity.

Exercise 5.2.3:
a) Show that A%(D) can be identified with A%(D \ {0}), that is, every function in the
latter can be extended to a function in the former.
b) Let U c C" be a domain, f € 6(U), and X = f~1(0). Show that every function in
A%(U \ X) is a restriction of a function in A2(U), that is, A2(U) = A%(U \ X).
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The lemma says that point evaluation is a bounded linear functional. That is, fix
z € U and take K = {z}, then the linear operator

fefz)

is a bounded linear functional. By the Riesz-Fisher theorem, there exists a k, € A%(U),
such that

f(2)={f k2).

Define the Bergman kernel for U as

def 77—

Ku(z, C) = k(0).
The function Ky; is defined as (z, C) vary over U X U*, where we write
U ={ceC":CelU).

Then for all f € A%2(U), we have

f(z) = /u F(OKu(z, DV (D). 1)

This last equation is sometimes called the reproducing property of the kernel.
Note that the Bergman kernel depends on U, which is why we write it as Ky;(z, Q).

Proposition 5.2.2. The Bergman kernel Ky;(z, C) is holomorphic in z, antiholomorphic in
C, and

Ku(z,C) = Ku(C, 2).

Proof. As each k; is in AZ(U), it is holomorphic in C. Hence, Ky; is antiholomorphic

in C. If we prove K (z, 0) = Ky(, z), then we prove Ky is holomorphic in z.
As Kii(z, €) = k,(Q) is in A%(U), then

Ku(z, 0 = /u Ku(z, @)Ku(C, )dV (w)

- (/ Ku(C, w)Ku(z,w)dV(w)| = Ku(C, z) = Ku(C, 2). O
u

Therefore, thinking of C as the variable, Ki; is a holomorphic function of 2n
variables.

Example 5.2.3: Let us compute the Bergman kernel (and the Szegt kernel of the next
section while we're at it) explicitly for the unit disc D c C. Let f € 6(D) N C(D), that
is, f is holomorphic in D and continuous up to the boundary. Let z € D. Then

_ 1 f(©)
f(Z)—ﬁ‘/a‘DC_ZdC.
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On the unit circle {C = 1. Let ds be the arc-length measure on the circle, parametrized
as { = e’s. Then d( = ie’*ds, and

£(Q) 1 f©O :p-_ 1 f©O
fz) = 21 pC—2z de = 27 |D1—ZCC C_E Dl—ZC

The integral is now a regular line integral of a function whose singularity, which used
to be inside the unit disc, disappeared (we “reflected it” to the outside). The kernel
2171 T ! 7 is called the Szegd kernel, which we will briefly mention next. We apply Stokes
to the second integral above:

1 f(C)
27t |D>1—ZC 2nz/f(C) [ dCAdg
-1 +ﬂ%ﬂmq
D (1-2zC)

The Bergman kernel in the unit disc is, therefore,

11
(-2

It follows from the exercises below that this function really is the Bergman kernel.
That is, Kp is the unique conjugate symmetric reproducing function that is in A%(D)
for a fixed C. We have only shown the formula for functions continuous up to the
boundary, but those are dense in A%(D).

Kp(z, Q) =

Example 5.2.4: In an exercise you found that A%2(C") = {0}. Therefore, Kcu(z, ) =0

The Bergman kernel for a more general domain is diffcult (usually impossible) to
compute explicitly. We do have the following formula however.

Proposition 5.2.5. Suppose U C C" is a domain, and {@¢(z)} e is a complete orthonormal
system for A?(U). Then
Ku(z,0) = Y 9i@)pu(©),

lel

with uniform convergence on compact subsets of U X U".

Proof. For a fixed C € U, the function z — Ky(z, C) is in A%2(U). Expand this function
in terms of the basis and use the reproducing property of Ky:

Ku(z, Q) = Z (/ Ku(w, Ope(w) dV(ZU)) Pe(z) = ZW@@(Z)-
tel \WU tel

The convergence is in L2 as a function of z, for a fixed . Let K cc U be a compact
set. Via Lemma 5.2.1, L? convergence in A%(U) is uniform convergence on compact
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sets. Therefore, for a fixed C the convergence is uniform in z € K. In particular, we
get pointwise convergence. So,

D lpe@)F = > pi(2)ge(z) = Ku(z,2) < Ci < o0,

lel lel

where Ck is the supremum of Ky;(z, C) on K x K*. Hence for (z,() € K x K*,

S |orzio)] < \/Z ) \/Z PO < Cx < o

lel lel lel

And so the convergence is uniform on K x K*. m|

Exercise 5.2.4:
a) Show that if U c C" is bounded, then Ky(z,z) > 0 forall z € U.
b) Why can this fail if U is unbounded? Find a (trivial) counterexample.

Exercise 5.2.5: Show that given a domain U C C", the Bergman kernel is the unique
function Ky (z, C) such that

1) for a fixed C, Ky(z, Q) is in A%2(U),

2) KU(ZI Z) = KU(CI 2)/

3) the reproducing property (5.1) holds.

Exercise 5.2.6: Let U C C" be either the unit ball or the unit polydisc. Show that
A%2(U) N C(U) is dense in A2(U). In particular, this exercise says we only need to check
the reproducing property on functions continuous up to the boundary to show we have the
Bergman kernel.

Exercise 5.2.7: Let U,V C C" be two domains and f: U — V a biholomorphism. Prove

Ku(z,0) = det Df (z)det D£(C) Kv (f(2), £(Q)).

Exercise 5.2.8: Show that the Bergman kernel for the polydisc is

n

= 1 1
Kpi(z,O)=—| | ——-
T a1 (1= zeCy)

Exercise 5.2.9 (Hard): Show that for some constants c,, the set of all monomials % gives
a complete orthonormal system of A%(B,,). Hint: To show orthonormality compute the
integral using polar coordinates in each variable separately, that is, let zy = rpe'% where
0 € [0,2n]" and Yy r; < 1. Then show completeness by showing that if f € A*(B,,) is

" a!
(n+]al)!

orthogonal to all z%, then f = 0. Finding c, = requires the classical B function of

special function theory.
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Exercise 5.2.10: Using the previous exercise, show that the Bergman kernel for the unit

ball is
n_! 1

" (1-<(z, C))n+1’
where (z, C) is the standard inner product on C".

Kg,(z, Q) =

5.3 | The Szego kernel

We use the same technique to create a reproducing kernel on the boundary by starting
with L2(dU, do) instead of L?(U). We obtain a kernel where we integrate over the
boundary rather than the domain itself. Let us give a quick overview, but let us not
get into the details.

Let U c C" be a bounded domain with smooth boundary. Let C (U) N 6(U) be
the holomorphic functions in U continuous up to the boundary. The restriction of
f e C(U)N6(U) to U is a continuous function, and hence f|g; is in L2(dU, do),
where do is the surface measure on dU. Taking a closure of these restrictions in
L%(9U) obtains the Hilbert space H?(dU), which is called the Hardy space. The inner
product on H2(dU) is the L%(dU, do) inner product:

def

(f, g) & /a FEgE) do(a)

Exercise 5.3.1: Show that monomials z* are a complete orthonormal system in H2(0B,,).

Exercise 5.3.2: Let U C C" be a bounded domain with smooth boundary. Prove that
H?(dU) is infinite-dimensional.

Given an f € H%(dU), write the Poisson integral

Pf(z) = /,9 QPG Oa(0)

where P(z, C) is the Poisson kernel. The Poisson integral reproduces harmonic
functions. As holomorphic functions are harmonic, we find that if f € C Uu)noe),
then Pf = f.

Although f € H2(dU) is only defined on the boundary, through the Poisson
integral, we have the values P f(z) for z € U. For each z € U,

f = Pf(z)

defines a continuous linear functional. Again we find a s, € H?(dU) such that

Pf(z) =(f,sz2).
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For z € U and C € dU, define

def ——

Su(z, 0) = s:(0),

although for a fixed z this is a function only defined almost everywhere as it is an
element of L2(dU, do). The function Sy; is the Szegé kernel. If f € H*(dU), then

Pf@)=v£uf@35u@,©d0@)

As functions in H2(dU) extend to U, then f € H?(dU) may be considered a
function on U, where values in U are given by Pf. Similarly, we extend S(z, ) to
a function on U x U (where the values on the boundary are defined only almost

everywhere). We state without proof that if {¢} s is a complete orthonormal system
for H%(dU), then

Su(z,0) = ) pe(2)pi(0) (5.2)

lel

for (z, C) € U x U*, converging uniformly on compact subsets. As before, this formula
shows that S is conjugate symmetric, and so it extends to (U x U ) U (U x U*).

Example 5.3.1: In Exercise 5.2.3, we computed that if f € C(D) N 6(D), then

1 f(0)
f(Z)—E 120

ds.

1

In other words, Sp(z, C) = %1—25 .

Exercise 5.3.3: Using the formula (5.2) compute Sg,,.



6 |« Complex Analytic Varieties

6.1 | The ring of germs

Definition 6.1.1. Let p be a point in a topological space X. Let Y beasetand U,V C X
be open neighborhoods of p. Say that two functions f: U — Y and g: V — Y are
equivalent if there exists a neighborhood W of p such that f|w = g|w. Anequivalence
class of functions under this relation defined in neighborhoods of p is called a germ of
a function. The germ is denoted by (f, p), but we may say f when the context is clear.
We usually restrict the functions to a certain category: smooth, holomorphic, etc.

The set of germs of complex-valued functions forms a commutative ring, see
exercise below to check the details. For example, to multiply (f, p) and (g, p), take
two representatives f and g defined on a common neighborhood multiply them and
then consider the germ (f g, p). Similarly, (f, p) + (g, p) is defined as (f + g, p). Itis
easy to check that these operations are well-defined.

Exercise 6.1.1: Let X be a topological space and p € X. Let F be a class of complex-valued
functions defined on open subsets of such that whenever f: U — Cisin F and W C U is
open, then f|w € F, and such that whenever f and g are two functions in &, and W is an
open set where both are defined, then f g|lw and (f + g)|w are also in F. Assume that all
constant functions are in %. Show that the ring operations defined above on a set of germs
at p of functions from F are well-defined, and that the set of germs at p of functions from F
is a commutative ring.

Exercise 6.1.2: Let X =Y = R and p = 0. Consider the ring of germs of continuous
functions (or smooth functions). Show that for every continuous f: R — R and every
neighborhood W of 0, there exists a ¢: R — R such that (f,0) = (g,0), but glw # flw-.

Germs are particularly useful for holomorphic functions because of the identity
theorem. In particular, the behavior of Exercise 6.1.2 does not happen for holomorphic
functions. Furthermore, for holomorphic functions, the ring of germs is the same as
the ring of convergent power series, see exercise below. No similar result is true for
smooth functions.
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Definition 6.1.2. Let p € C". Write ,6, = ©, as the ring of germs at p of holomorphic
functions.

The ring of germs 6, has many nice properties, and it is generally a “nicer” ring
than the ring ©(U) for some open U, and so it is easier to work with if we are interested
in local properties and not the geometry of U.

Exercise 6.1.3:
a) Show that ©, is an integral domain (has no zero divisors).
b) Prove the ring of germs at 0 € R of smooth real-valued functions is not an integral
domain.

Exercise 6.1.4: Show that the units (elements with multiplicative inverse) of ©, are the
germs of functions which do not vanish at p.

Exercise 6.1.5:

a) (easy) Show that given a germ (f,p) € Oy, there exists a fixed open neighborhood
U of p and a representative f: U — C such that any other representative g can be
analytically continued from p to a holomorphic function U.

b) (easy) Given two representatives f: U — Cand g: V — Cofa germ (f,p) € 6,
let W be the connected component of U NV that contains p. Prove that f|w = g|w.

c¢) Find a germ (f,p) € ©,, such that for every representative f : U — C, we can find
another representative of ¢: V- — C of that same germ such that g|lunv # flunv.
Hint: n =1 is sufficient.

Exercise 6.1.6: Show that O, is isomorphic to the ring of convergent power series.

Definition 6.1.3. Let p be a point in a topological space X. Say that sets A,B C X
are equivalent if there exists a neighborhood W of p suchthat ANW =BNW. An
equivalence class of sets under this relation is called a germ of a set at p. It is denoted
by (A, p), but we may write A when the context is clear.

The concept of (A, p) C (B, p) is defined in an obvious manner, that is, there exist
representatives A and B, and a neighborhood W of p such that ANW Cc BNW.
Similarly, if (A, p), (B, p) are germs and A, B are some representatives of these germs,
then the intersection (A, p) N (B, p) is the germ (A N B, p), the union (A, p) U (B, p) is
the germ (A U B, p), and the complement (A, p)° is the germ (A€, p).

Exercise 6.1.7: Check that the definition of subset, union, intersection, and complement of
germs of sets is well-defined.

Let R be some ring of germs of complex-valued functions at p € X for some
topological space X. If f is a complex-valued function, let Z be the zero set of f, that
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is f71(0). When (f,p) € R is a germ of a function it makes sense to talk about the
germ (Zs, p). We take the zero set of some representative and look at its germ at p.

Exercise 6.1.8: Suppose f and g are two representatives of a germ (f, p) show that the
germs (Zy,p) and (Zg, p) are the same.

Exercise 6.1.9: Show that if (f, p)and (g, p) arein R and f and g are some representatives,
then (Zg, p) U(Zg, p) = (Zfg, p)-

6.2 | Weierstrass preparation and division theorems

Suppose f is (a germ of) a holomorphic function at a point p € C". Write
f@) =) fiz-p),
k=0

where f; is a homogeneous polynomial of degree k, that is, fi(tz) = t* fi(z).

Definition 6.2.1. Let p € C" and f be a function holomorphic in a neighborhood of p.
If f is not identically zero, define

ord, f = min{k € Ng : fi # 0}.
If f =0, define ord, f = co. We call the number ord,, f the order of vanishing of f at p.

In other words, the order of vanishing of f at p is k whenever all partial derivatives
of order less than k vanish at p, and there exists at least one derivative of order k that
does not vanish at p.

In one complex variable, a holomorphic function f with ordy f = k can be written
(locally) as f(z) = z*u(z) for a nonvanishing holomorphic u. Such a u is a unit in the
ring O, that is, an element with a multiplicative inverse. In several variables, there is
a similar theorem, or in fact a pair of theorems, the so-called Weierstrass preparation
and division theorems. We first need to replace z* with something.

Definition 6.2.2. Let U ¢ C"! be open, 0 € U, and let z’ € C"! denote the
coordinates. Suppose P € 6(U)[z,] is a monic polynomial of degree k > 0,

k-1
P(z',z,) = z,’j + Z ce(z') zfl,
=0

where ¢y are holomorphic functions defined on U such that ¢,(0) = 0 for all £. Then P
is called a Weierstrass polynomial of degree k. If the c; are germs in 6g = ,,_10, then
P € Op[z,] and P is called a germ of a Weierstrass polynomial.
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The definition (and the theorem that follows) still holds for n = 1. If you read the
definition carefully, you will find that if n = 1, then the only Weierstrass polynomial
of degree k is zF. Note that for any 7, if k = 0, then P = 1.

The purpose of this section is to show that every holomorphic function in O is
up to a unit and a possible small rotation a Weierstrass polynomial, which carries
the zeros of f. Consequently the algebraic and geometric properties of ,,0y can be
understood via algebraic and geometric properties of ,,_10p[z,].

Theorem 6.2.3 (Weierstrass preparation theorem). Suppose f € O(U) for an open
U c C*"1' xC, where 0 € U, and f(0) = 0. Suppose z, > f(0, z,) is not identically zero
near the origin and its order of vanishing at the origin is k > 1.

Then there exists an open polydisc V.=V’ x D c C"! x Cwith 0 € V C U, a unique
ueO6(V),u(z) #0forall z € V, and a unique Weierstrass polynomial P of degree k with
coefficients holomorphic in V' such that

f(z',zn) =u(z’,z4) P(Z', 24),
and such that all k zeros (counting multiplicity) of z, v~ P(z’,z,) liein D forall z’ € V’

Proof. There exists a small disc D ¢ C centered at zero such that {0} x D ¢ U and
such that £(0,z,) # 0 for z, € D \ {0}. By continuity of f, there is a small polydisc
V =V’ x D such that V ¢ U and f is not zero on V’ X dD. See Figure 6.1 for the
setup. We will consider the zeros of z, — f(z’, z,) for 2 € V’. See Figure 6.2.

V'xdD . zeros of f

Figure 6.1: Setting up the neighborhood V, the two discs in Figure 6.2 are the vertical
thick black line and the thin dashed line.

By the one-variable argument principle (Theorem B.25) the number of zeros (with
multiplicity) of z, — f(z’,z,) in D is
of (o
1 %(z ,0) B
271 oD f(Z’, C) '

As f(z’,C) does not vanish when z’ € V’ and C € dD, the expression above is a
continuous integer-valued function of z’ € V’. The expression is equal to kK when
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zero of z, — f(0, z,) the k (k = 4) zeros of
of order k zn > f(2',2n)

zy-plane where z’ = 0 zy-plane where z’ € V’

Figure 6.2: The zeros of z,, — f(z’, z,).

z’ = 0, and so it is equal to k for all z’ € V’. Write the zeros of z, — f(z’,z,) as
a1(z’), ..., ax(z’), including multiplicity. The zeros are not ordered in any particular
way—pick some ordering for every z’. Write

k
P(z',z,) = I_I(Z" —ay(Z)) = 28 + cpo1(2) 2+ -+ cp(2).
(=1
For a fixed z’, P (and thus the coefficients cy, ..., cx-1) is uniquely defined as its
definition is independent of the ordering of the zeros. That c;(0) = 0 for all j follows
as a¢(0) = 0 for all ¢. As the above is the unique way to define a monic polynomial
with these zeros (Exercise 6.2.6), the uniqueness part of the theorem follows. We
need to show that the coefficients are holomorphic functions on V’, and that u is a
holomorphic function on V.

No matter how you ordered the zeros for each z’, the functions ay may not be
continuous in general (see Example 6.2.4). However, we will prove that the functions
c¢ are holomorphic. The functions c; are (up to sign) the elementary symmetric functions
of a1, ..., ak (see below). A standard theorem in algebra (Newton’s identities, see
Exercise 6.2.1) says that the elementary symmetric functions are polynomials in the
so-called power sum functions in the ays:

k
Sm(z') = Z al)", m=1,...,k
(=1
So if the power sums s, are holomorphic on V’, then ¢ are holomorphic on V’.

A refinement of the argument principle (see Theorem B.25) says: If h and g are
holomorphic functions on a disc D, continuous on 5, such that g has no zeros on dD,
and a7y, ..., ay are the zeros of ¢ in D, then

1 gQ . -
7 oy MO dc—;man.




172 CHAPTER 6. COMPLEX ANALYTIC VARIETIES
With h(C) = ¢" and g(C) = f(z’, C), the theorem says

k ﬁ ’
@)=Y wy = b [ Y

£ C2mi Jop o f(2,0)

dc.

The function s, is clearly continuous, and if we differentiate under the integral with

8%1, eel, % we find that s, is holomorphic. Thus cy, . .., cx—1 are holomorphic, and
s
so P is a Weierstrass polynomial.

Finally, we wish to show that P divides f as claimed, that is, that u is holomorphic.
For each fixed z’, one variable theory says that z, +— I{Z,?;
singularities, and in fact, it has no zeros as we defined P to exactly cancel them all

out. The Cauchy formula on f/p then says that the function

1 £,0)
o) = 50z [ r o

has only removable

is equal to l{gi:;

each fixed z’. Differentiating under the integral shows it is also holomorphicinz’. O

. The function u is clearly continuous and holomorphic in z, for

Example 6.2.4: Consider the zero set of f(z1,z2) = z% — z1, a Weierstrass polynomial
in z; of degree k = 2. So z” = z;. For all z; except the origin there are two zeros, £+/z1.
Call one of them a1(z1) and one of them a(z1). Recall there is no continuous choice
of a square root that works for all z1, so no matter how you choose, a1 and a; will not
be continuous. At the origin there is one zero of multiplicity two, so @1(0) = a2(0) = 0.
On the other hand, the symmetric functions ci(z1) = —a1(z1) — a@2(z1) = 0 and
co(z1) = a1(z1)a2(z1) = —z1 are holomorphic. See Figure 6.3.

Figure 6.3: Graphs of the real and imaginary parts of both branches ++/z;. A possible

choice of branch a1(z1) is drawn darker; note the discontinuity of its imaginary part. The

surface z% — z1 = 0 does not cross itself in C2, we just lack the dimensions to see it.
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The k depends on the coordinates chosen. Consider g(z1, z2) = —f(z2,21) = zz—z%,
which is a Weierstrass polynomial in z, of degree k = 1. In these coordinates, there is
only one zero for each z’, a1(z1) = z%, and so co(z1) = —z%.

A function f(z1,...,z,) is symmetric if f = f o p for all permutations of the
variables p. The elementary symmetric functions of a1, ..., ay are the coefficients

01, ...,0k of the polynomial

K
(t+a)) =tF+ 01t 4t o 2+ o1 £+ O
(=1
So,
or=oa1+ay+---+ag,

O = a1y + x1a3 + -+ + X1k,

Ok-1 = Q2@3 - Qg + 134 + - + a1z - Ag-1,
Ok = 142« * * k.
For example, when k = 2, then 02 = a1az and 01 = a1 + a2. The function o1 happens
to already be a power sum. We can write 0, as a polynomial in the power sums:

Oy = % ((ozl + a2)2 — (a7 + a%)) )

In general, as we said we can write any oy in terms of the power sums of the a;s.
The formulas for this are called the Newton’s identities or Girard—Newton formulas,
although we will avoid writing these down explicitly, and we leave finding them (or
just proving that they exist) as an exercise.

Exercise 6.2.1: Show that elementary symmetric functions are polynomials in the power
sums. Equivalently, show that the elementary symmetric functions oy can be found in
terms of the power sums of the a;s.

Exercise 6.2.2: Prove the fundamental theorem of symmetric polynomials: Every
symmetric polynomial can be written as a polynomial in the elementary symmetric functions.
Use the following procedure. Using double induction, suppose the theorem is true if the
number of variables is less than k, and the theorem is true in k variables for degree less
than d. Consider a symmetric P(z1,...,zx) of degree d. Write P(z1,...,zx-1,0) by
induction hypothesis as a polynomial in the elementary symmetric functions of one less
variable. Use the same coefficients, but plug in the elementary symmetric functions of
k variables except the symmetric polynomial in k variables of degree k, that is, except
2123 -+ - zk. You will obtain a symmetric function L(z1, ..., zx) and you need to show
L(z1,...,2k-1,0) = P(z1, ..., 2zk-1,0). Now use symmetry to prove that

P(z1,...,2zk) = L(z1,...,2¢) + z122- - - 2k Q(21, - . ., 2k).

Then note that Q has lower degree and finish by induction.
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Exercise 6.2.3: Extend the previous exercise to power series. Suppose f(z1,...,zx) is a
convergent symmetric power series at 0, show that f can be written as a convergent power
series in the elementary symmetric functions.

Exercise 6.2.4: Suppose P(z’, z,,) is a Weierstrass polynomial of degree k, and write the zeros
as a1(z’), ..., ax(z’). These are not holomorphic functions, but suppose that f is a symmet-
ric convergent power series at the origin in k variables. Show that f (a1(2’), ..., ax(z’)) is
a holomorphic function of z’ near the origin.

The hypotheses of the preparation theorem are not an obstacle. If a holomorphic
function f is such that z, — £(0, z,,) vanishes identically, then we can make a small
linear change of coordinates L (L can be a matrix arbitrarily close to the identity)
such that f o L satisfies the hypotheses of the theorem. For example, f(z1, z2,z3) =
z1z3 + 2223 does not satisfy the hypotheses of the theorem as f(0,0,z3) = 0. But
for an arbitrarily small € # 0, replacmg zr with z, + €Z3 leads to f (z1,22,23) =
f(z1,22 + €23,23) = 2123 + 2223 + €Z3, and f(O 0,z3) = ez3 Thence, f satisfies the
hypotheses of the theorem.

Exercise 6.2.5: Prove the fact above about the existence of L arbitrarily close to the identity.

Exercise 6.2.6: Prove that a monic polynomial P(C) of one variable is uniquely determined
by its zeros up to multiplicity: If P and Q are two monic polynomials with the same zeros
up to multiplicity, then P = Q. That proves the uniqueness of the Weierstrass polynomial.

Exercise 6.2.7: Suppose D C C is a bounded domain, 0 € D, U’ C C" 1 is a domain,
0e U’ and P € 6(U’)|z,] is a Weierstrass polynomial such that P(z’, z,,) is not zero on
U’ x dD. Show that for every z’ € U, all zeros of z, — P(z’,z,) are in D.

Exercise 6.2.8: Let D C C be a bounded domain, and U’ C C"~! a domain. Suppose f is
a continuous function on U’ x D holomorphic on U’ X D, where f is zero on at least one
point of U’ X D, and f is never zero on U’ X dD. Prove that z, — f(z’, z,) has at least
one zero in D for every z’ € U’.

The order of vanishing of f at the origin is a lower bound on the number k in
the theorem. The order of vanishing for a certain variable may be larger than this
lower bound. If f(z1,z2) = z% + zg’, then the k we get is 3, but ordg f = 2. We can
make a small linear change of coordinates to ensure k = ordg f. With the f as above,
f(z1 + €22, 22) gives k = 2 as expected.

When k = 1 in the Weierstrass preparation theorem, we obtain the Weierstrass
polynomial z,, + co(z’). That is, the zero set of f is a graph of the holomorphic function
—cg. Therefore, the Weierstrass theorem is a generalization of the implicit function
theorem to the case when ;—f is zero. In such a case, we can still “solve” for z,, but we
tind a k-valued solution given by the zeros of the obtained Weierstrass polynomial.
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There is an obvious statement of the preparation theorem for germs.
Exercise 6.2.9: State and prove a germ version of the preparation theorem.

The next theorem is rather trivial in one variable. Let f be any holomorphic
function near the origin in C and take any k € N. Let r be the Taylor polynomial for
f at 0 of degree k — 1. Then f — r is divisible by z¥, in other words, f = gzF + 7. In
several variables, we replace z* with a Weierstrass polynomial and we still have this
division theorem.

Theorem 6.2.5 (Weierstrass division theorem). Suppose f is holomorphic near the origin,
and suppose P is a Weierstrass polynomial of degree k > 1 in z,. Then there exists a
neighborhood V of the origin and unique q,r € O(V), where r is a polynomial in z,, of degree
less than k, and on V,

f=qP+r.

Note that  need not be a Weierstrass polynomial; it need not be monic nor do
the coefficients need to vanish at the origin. It is simply a polynomial in z, with
coefficients that are holomorphic functions of the first n — 1 variables.

Proof. Uniqueness is left as an exercise. There exists a connected neighborhood
V =V’ x D of the origin, where D is a disc, f and P are continuous on V’ X D, and P
is not zeroon V' X dD. Let

’ 1 f(z',0)
9(z' 20) = 27 /8D P(z’, 0)(C = zy) 4c.

As P is not zero on V'’ x dD, the function g is holomorphic in V' (differentiate under the
integral). If P did divide f, then g4 would really be f/p. But if P does not divide f, then
the Cauchy integral formula does not apply and g is not equal to f/p. Interestingly,
the expression does give the quotient in the division with remainder.

Write f using the Cauchy integral formula in z,, and subtract 4P to obtain r:

r(z',zn) = f(2',24) — q(2", 24)P(2’, 21)
1 [ fEOPE,0-fE,OPE, 2)
~ 2mi /aD P(z’, 0)(C — zn) ac.

We need to show r is a polynomial in z, of degree less than k. In the expression
inside the integral, the numerator is of the form lele he(z’, O)(C* - z!) and is therefore
divisible by (C — z;;). The numerator is a polynomial of degree k in z,,. After dividing
by (C — z,,), the integrand becomes a polynomial in z,, of degree k — 1. Use linearity
of the integral to integrate the coefficients of the polynomial. Each coefficient is a
holomorphic function in V’ and the proof is finished. Some coefficients may have
integrated to zero, so we can only say that 7 is a polynomial of degree k —1 orless. O
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For example, let f(z,w) = e + z*e™ + zw?e™ + zw and P(z, w) = w? + z%. Then P
is a Weierstrass polynomial in w of degree k = 2. A bit of computation shows

1 / e% + z%eC + z(%eC + 2
oD

e dC=1ze", so f(z,w)=(ze") (w2+z3)+zw+ez.

(CZ + Z3)(C - w) —_——— —— —— —
q P ’

Notice that r is a polynomial of degree 1 in w, but it is neither monic, nor do the
coefficients vanish at 0.

Exercise 6.2.10: Prove the uniqueness part of the theorem. Hint: Don't forget that we
defined V to be connected.

Exercise 6.2.11: State and prove a germ version of the division theorem.

The Weierstrass division theorem is a generalization of the division algorithm
for polynomials with coefficients in a field, such as the complex numbers: If f(C)
is a polynomial, and P(C) is a nonzero polynomial of degree k, then there exist
polynomials 4(C) and r(C) with degree of r less than k such that f = gP + r. If the
coefficients are in a commutative ring, we can divide as long as P is monic. The
Weierstrass division theorem says that we can divide by a monic P € ,,-10,[z,], even
if f is a holomorphic function (a “polynomial of infinite degree”).

Remark 6.2.6. Despite what it looks like given our proofs, the preparation and division
theorems are really theorems about power series, and they also work with formal
power series, that is, power series which do not necessarily converge. Another
standard way to prove the theorems is to prove the formal version and then to prove
that in case we stick in convergent power series, the series we obtain back are also
convergent.

6.3 | The dependence of zeros on parameters

Let us prove that the zeros change holomorphically as long as they do not come
together. We will prove shortly that the zeros come together only on a small set: a
zero set of a certain holomorphic function called the discriminant.

A set of zeros of a function of one variable are said to be geometrically distinct if
they are distinct points of C. A zero is called geometrically unique if it is a unique
complex number. For example, ( — 1)* has a geometrically unique zero at 1, and
(C- 1)2(C + 1) has two geometrically distinct zeros, 1 and —1.

Proposition 6.3.1. Let U’ ¢ C"' and D C C be domains, and f € O(U’ X D). Suppose
that for each fixed z’ € U’ the function z, — f(2’,z,) has a geometrically unique zero
a(z’) € D. Then a is holomorphic in U’
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The proposition shows that the regularity conclusion of the holomorphic implicit
function theorem holds under the hypothesis that there exists some locally unique
solution for z,, regardless of the derivative vanishing or not. Such a result holds only
for holomorphic functions and not for real-analytic or smooth functions. For example,
x2 — y3 = 0 has a unique real solution y = x?/3, but x?/ is not even differentiable.

Proof. We must show that a is holomorphic near any point, which, without loss of
generality, is the origin and a(0) = 0. Apply the preparation theorem to find f = uP,
where P is a Weierstrass polynomial in 6(V’)[z,] for some V’ ¢ U’ and all zeros of
zn > P(z’,z,) arein D. As «a is a geometrically unique zero in D,

P(z',zn) = (zn — a(z’))k =zK —ka(z)zE + -
The coefficients of P are holomorphic, so & is holomorphic. |

Proposition 6.3.2. Let U’ ¢ C"' and D c C be domains, and f € 6(U’ x D). Let m € N
be such that for each z’ € U’, the function z, — f(z’,z,) has precisely m geometrically
distinct zeros. Then locally near each point in U’ there exist m holomorphic functions
a1(z’), ..., an(z’), positive integers ki, . . ., kyy, and a nonvanishing holomorphic function
u such that

£ z) =, z0) [ | (20— aez)"™
=1

Proof is left as an exercise. We can only define a1 through a,, locally (on a smaller
domain) as we cannot consistently order a; through a,, as we move around U’ if it is
not simply connected. If U’ is simply connected, then the functions can be defined
globally by analytic continuation. For an example where U’ is not simply connected,
recall Example 6.2.4. Consider U’ = C \ {0} and think D = C rather than a disc
for simplicity. Then U’ is not simply connected, and there do not exist continuous
functions a1(z1) and a2(z1) defined in U’ that are zeros of the Weierstrass polynomial,
that is z% — 21 = (22 — a1(z1)) (z2 — @2(z1)). These would be the two square roots of z1,
and there is no continuous (let alone holomorphic) square root defined in C \ {0}.
Such roots can be chosen to be holomorphic on any smaller simply connected open
subset of U’, for example, on any disc A c U".

Exercise 6.3.1: Let D c C be a bounded domain, U’ c C" a domain, f a continuous
function on U’ x D holomorphic on U’ x D, where f is zero on at least one point of
U’ x D, and f is never zero on U’ X dD. Suppose that for each fixed z’ € U’, the function
zy > f(2’,z4) has at most one zero in D. Prove that for each z’ € U’, z,, — f(z’, zy)
has exactly one zero in D. Note: By Proposition 6.3.1, that zero is a holomorphic function.

Exercise 6.3.2: Prove Proposition 6.3.2. See the exercise above and Proposition 6.3.1.
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Theorem 6.3.3. Let D C C be a bounded domain, U’ C C"~' a domain, and f € 6(U’x D).
Suppose the zero set f~1(0) has no limit points on U’ X dD. Then there exists an m € N and
a holomorphic function A: U’ — C, not identically zero, such that for every z’ € U’ \ E,
where E = A™Y(0), z, — f(2’,zy) has exactly m geometrically distinct zeros in D, and
zn V> f(2’, 2y) has strictly less than m geometrically distinct zeros for z’ € E.

The complement of a zero set of a holomorphic function is connected, open, and
dense. We call A the discriminant function and its zero set E the discriminant set. For
the quadratic equation a(z")z2 + b(z’)z, + c(z’) = 0, A is the discriminant we learned
about in high school: A = b? — 4ac (that is, this is equal to the A from the theorem
assuming we get at least two zeros at some z’).

Proof. The zeros of z,, — f(z’, z,) are isolated, and there are finitely many for every z’
as D isbounded and f~!(0) has no limit points on U’ x dD. For any p’ € U’, we define
two useful paths. Let y be the union of nonintersecting small simple closed curves
around small nonintersecting discs in D, one around each geometrically distinct zero
of z, = f(p’,zn). Let A be a large closed path in D going exactly once around all the
zeros and such that the interior of A is in D. Suppose y and A intersect no zeros. See
Figure 6.4. By continuity, the curves y and A do not intersect any zeros for z’ near p’.
Since the set f1(0) is closed and the zeros do not accumulate on U’ x dD, then for z’
near p’ the zeros stay a positive distance away from the boundary. So A can be picked
to go around all the zeros of z, — f(z’, z,) exactly once for z’ near p’.

roots of z, — f(p’, zn)

zy-plane for fixed p’

Figure 6.4: Curve around each zero.

Let M(z’) be the number of zeros (counting multiplicity) of z, — f(z’,z,). Given
any p’ pick a A as above that contains all zeros of z,, — f(z’, z;,) for all z’ in some
neighborhood of p’. The argument principle show that

of (1
1 % (z,0) i
2ni Jy f(z,0) 7
and so M is constant in this neighborhood (it is an integer-valued continuous function).

So M is a locally constant function on U’, which is connected and so M is constant.
The number of geometrically distinct zeros at any z’ is bounded by M, although the

M(z') =
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number of geometrically distinct zeros may not be constant. Let m be the maximal
number of geometrically distinct zeros and suppose that at some point in U’, there
are exactly m geometrically distinct zeros.

Let U;, ¢ U’ be the set of z’ € U’ for which z, — f(z’,z,) has exactly m
geometrically distinct zeros. Write U’ as a union of disjoint sets U’ = U,, U E, where
E = U’ \ U;,. By definition of m, U,, is nonempty. Suppose p’ € U, and y goes
around the zeros as above. Let y; be a single component curve of the path y going
around one of the zeros. The argument principle with respect to y; says that y; must
contain at least one zero for all z’ near p’. There are finitely many components of ,
so for z’ in some neighborhood of p’, z,, = f(z’, z,,) has at least m zeros in y (at least
one in each component), and as m is the maximum, it has exactly m zeros. In other
words, U, is open.

Locally on U,,, there exist m holomorphic functions a4, ..., a, giving the zeros
by the previous proposition. We cannot define these on all of U}, as we do not know
how they are ordered. The function

AZ) = | [(ej(z) = ax(z)
i#k
defined for z’ € U;, does not depend on the order. That means A is well-defined as a

function on the open set U,,, and since ax can locally be picked to be holomorphic, A
is holomorphic.

Let p” € E N Uj,, so there are fewer than m zeros at p’. Suppose y and A are as
above, so there are fewer than m components of y. In each component y; of y, there
is at least one zero for all z’ near p’ by the same argument as above. The path A goes
around all the zeros of z,, — f(z’, z,) for z’ near p’. The number of between A and y
atz’is 5

| L, 9
2mi A=y f(Z/, C) '
which is a continuous integer-valued function that is zero at z’ = p” and so it is zero
in a neighborhood. Thus there are no zeros between y and A. As A goes around all
the zeros for z’ near p’, all zeros of z, — f(z’,z,) lie inside y for z’ near p’. There
exist such z’ € Uj, arbitrarily near p’, in which case, by pidgeonhole principle, some
component y; contains at least two geometrically distinct zeros of z, — f(z’, z,).
Let {z;} be an arbitrary sequence of points in Uj, going to p’. As the number of
components of y is finite, we pass to a subsequence so that there is some fixed
component y; of y where z, — f(z},z,) has at least two distinct zeros in y; for every
z;. Label the two distinct zeros as a1(z;) and ax(z;). At p’ there is only a single
(geometrically) zero in y;, let us name it a1(p’). As f ~1(0) is closed, a1(z;) and as(z))
both approach a1(p’) as £ — co. The zeros are bounded, so lim—,« A(z;) = 0. As the
limit is zero for a subsequence of an arbitrary sequence,
lim A(z’) =0.

’
Z/eulﬂ _)p/
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We have already defined A on U,,, where it is nonzero, so set A(z’) = 0 for z’ € E.
The function A is continuous on U’ and is zero precisely on E and holomorphic on
U,,. Radé’s theorem (Theorem 2.4.12) says that A is holomorphic in U’. O

The discriminant given above is really the discriminant of the set f~!(0) rather than
of the corresponding function, which we can, via the preparation theorem, assume
is a Weierstrass polynomial. For Weierstrass polynomials, the discriminant is often
defined as [ (aj(z') — ax(z’)) taking multiple zeros into account, and therefore the
“discriminant” could be identically zero. It will be clear from upcoming exercises that
if the Weierstrass polynomial is irreducible, then the two notions do in fact coincide.

Exercise 6.3.3: Prove that if f € ©(U), then U \ f~1(0) is not simply connected if £f~1(0)
is nonempty. In particular, in the theorem, U’ \ E is not simply connected if E # (.

Exercise 6.3.4: Let D C C be a bounded domain and U’ C C"~! a domain. Suppose f is
a continuous function on U’ x D holomorphic on U’ x D, and f is never zero on U’ X D.
Suppose y: [0,1] — U’ is continuous and f(y(0),c) = 0 for some ¢ € D. Prove that
there exists a continuous a: [0,1] — C such that a(0) = c and f (y(t), a(t)) = 0 for all
t € [0,1]. Hint: Start with a path arbitrarily close to y that misses the discriminant.

6.4 | Properties of the ring of germs

Given a commutative ring R, an ideal I C R is a subset such that firstly, fg € I
whenever f € Rand g € I, and secondly, g + h € I whenever g, h € I. An intersection
of ideals is again an ideal, and hence it makes sense to talk about the smallest ideal
containing a set of elements. An ideal I is generated by fi, ..., fi if I is the smallest
ideal containing {f1, ..., fr}. We thenwrite I = (fi, ..., fx). Every element in I can be
written as ¢1 f1 + - - - + cx fy where ¢y, ..., ck € R. A principal ideal is an ideal generated
by a single element, that is, (f).

For convenience, when talking about germs of functions, we often identify a
representative with the germ when the context is clear. So by abuse of notation, we
may write f € O, instead of (f,p) € 6, and (f1, ..., fi) instead of ((f1,p), ..., (fx, p))
As in the following exercises.

Exercise 6.4.1:
a) Suppose f € Oy, f(p) # 0, and (f) is the ideal generated by f. Prove (f) = Oy.
b) Let my = (z1 — p1,...,2n — Pn) C O, be the ideal generated by the coordinate
functions. Show that if f(p) = 0, then f € m,,.
c) Show that if I C ©p is a proper ideal (ideal such that I #+ ©gp), then I C my, that is,
my, is a maximal ideal.
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Exercise 6.4.2: Suppose n = 1. Show that 10, is a principal ideal domain (PID), that
is, every ideal is a principal ideal. More precisely, show that given an ideal I C 16y, then
there existsa k = 0,1,2, ..., such that I = ((z — p)¥).

Exercise 6.4.3: If U,V c C" are two neighborhoods of p and h: U — V is a biholomor-
phism. First prove that it makes sense to talk about f o h for any (f,p) € 6,. Then prove
that f v f o his a ring isomorphism.

A commutative ring R is Noetherian if every ideal in R is finitely generated. That
is, for every ideal I C R there exist finitely many generators fi, ..., fy € I: Every g € I
can be written as ¢ = c1f1 + -+ - + ¢k fx, for some cq, ..., cx € R. In an exercise, you
proved 10, is a PID. So 16, is Noetherian. In higher dimensions, the ring of germs
may not be a PID, but it is Noetherian.

Theorem 6.4.1. Op is Noetherian.

Proof. Without loss of generality, p = 0. The proof is by induction on dimension. By
Exercise 6.4.2, 10 is Noetherian. By Exercise 6.4.3, we are allowed a biholomorphic
change of coordinates near the origin.

For induction, suppose ,,—10¢ is Noetherian and let I C ,0p be an ideal. If I = {0}
or I = ,0p, then the assertion is obvious. Therefore, assume that all elements of |
vanish at the origin (I # ,0p), and that there exist elements that are not identically
zero (I # {0}). Let ¢ be such an element. After perhaps a linear change of coordinates,
assume g is a Weierstrass polynomial in z, by the preparation theorem.

The ring ,,—109[z,] is a subring of ,6¢. The set | = ,,_10g[z,] N I is an ideal in the
ring ,-10o[z,]. By the Hilbert basis theorem (see Theorem D.4 in the appendix for
a proof), as ,-10p is Noetherian, the ring ,-10o[z,] is also Noetherian. Thus | has
finitely many generators, thatis, | = (hy, ..., hx) in the ring ,,_100[z,].

By the division theorem, every f € I is of the form f = g¢ + r, where r €
n-100[zx] and g € ,09. As f and g arein I, sois r. As g and r are in ,_10p[z,],
they are both in J. Write ¢ = c1hy +--- + cxhg and v = dihy + --- + dihy. Then
f=(c1+dy)h +---+(qck + di)hk. So hy, ..., hi also generate I in , 0. O

Exercise 6.4.4: Prove that every proper ideal I C Oy where I # {0} is generated by
Weierstrass polynomials. As a technicality, note that a Weierstrass polynomial of degree 0
is just 1, so it works for I = ©.

Exercise 6.4.5: We saw above that 10 isa PID. Prove that if n > 1, then nOp is not a PID.

Theorem 6.4.2. O, is a unique factorization domain (UFD). That is, up to a multiplication
by a unit, every element has a unique factorization into irreducible elements of ©.
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Proof. Again assume p = 0 and induct on the dimension. The one-dimensional
statement is an exercise below. If ,_10¢ is a UFD, then ,_10g[z,] is a UFD by the
Gauss lemma (see Theorem D.6).

Take f € ,69. We can assume that f(0) and f # 0. After perhaps a linear change
of coordinates f = qP, for g a unit in ,0p, and P a Weierstrass polynomial in z,,. As
n-100[z,] is a UFD, P has a unique factorization in ,_16g[z, ] into P = P1P; - - - Px. So
f =qP1Py - -- Pg. That Py are irreducible in ,,0y is left as an exercise.

Suppose f = §g182- - gm is another factorization. The preparation theorem
applies to each gy. Therefore, write g, = ugﬁg for a unit uy and a Weierstrass
polynomial 55. We obtain f = uﬁlﬁz ‘e 5m for a unit u. By uniqueness part of the
preparation theorem we obtain P = P1P, - - P,,. The conclusion is obtained by noting
that ,,_16y[z,] is a UFD. O

Exercise 6.4.6: Prove that 10p isa UFD.

Exercise 6.4.7: Show that an irreducible element of ,_10g[z, ], is irreducible in ,,0y.

6.5 Varieties

As before, if f: U — C s a function, let Z; = f~1(0) c U denote the zero set of f.

Definition 6.5.1. Let U C C" be an open set. Let X C U be a set such that near
each point p € U, there exists a neighborhood W of p and a family of holomorphic
functions F defined on W such that

WﬂXz{zeW:f(z)=Oforallf€°J}=ﬂZf.

feF

Then X is called a (complex or complex-analytic) variety or a subvariety of U. Sometimes
X is called an analytic set. We say X C U is a proper subvariety if 0 # X ¢ U.

We generally leave out the “complex” from “complex subvariety” as it is clear
from context. But you should know that there are other types of subvarieties, namely
real subvarieties given by real-analytic functions. We will not cover those in this book.

Example 6.5.2: The set X = {0} ¢ C" is a subvariety as it is the only common
vanishing point of functions % = {z1, ..., z,}. Similarly, X = C" is a subvariety of
C", where we let ¥ = 0.

Example 6.5.3: The set defined by z, = ¢!/?1 is a subvariety of U = {z € C?: z; # 0}.
It is not a subvariety of any open set larger than U.
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It is useful to note what happens when we replace “near each point p € U” with
“near each point p € X.” We get a slightly different concept, and X is said to be a local
variety. A local variety X is a subvariety of some neighborhood of X, but it is not
necessarily closed in U. As a simple example, the set X = {z €C?:21=0,|z2| < 1}
is a local variety, but not a subvariety of C2. On the other hand, X is a subvariety of
the unitball {z € C?: ||z|| < 1}.

Note that ¥ depends on p and near each point may have a different set of functions.
Clearly the family F is not unique. We will prove below that we would obtain the
same definition if we restricted to finite families F.

We work with germs of functions. Recall, that when (f, p) is a germ of a function
the germ (Zy, p) is the germ of the zero set of some representative. Let

def

I,(X) = {(f,p) € 6, : (X, p) C (Z,p)}.

That is, I,(X) is the set of germs of holomorphic functions vanishing on X near p. If
a function vanishes on X, then any multiple of it also vanishes on X, so I,(X) is an
ideal. Really I,(X) depends only on the germ of X at p, so define I, ((X, p)) = I,(X).

Every ideal in 6, is finitely generated. Let I C O, be an ideal generated by

fi, f2, ..., fx. Write

V() E (Zg, )0 (2, p) 0o 0 (2, p)

That is, V(I) is the germ of the subvariety “cut out” by the elements of I, since
every element of I vanishes on the points where all the generators vanish. Suppose
representatives fi, ..., fi of the generators are defined in some neighborhood W of p,
and agerm (g, p) € I has arepresentative ¢ defined in W such that ¢ = c1f1+- - - +c fk,
where cy are also holomorphic functionson W. If g € Z5 N ---N Zg,, then g(q) = 0.
Thus, Zp N---N Zg C Zg, or in terms of germs, V(I) C (Zg, p). The reason why we
did not define V(I) to be the intersection of zero sets of all germs in [ is that this
would be an infinite intersection, and we did not define such an object for germs.

Exercise 6.5.1: Show that V (I) is independent of the choice of generators.

Exercise 6.5.2: Suppose I1,(X) is generated by the functions fi, f2, ..., fx. Prove

(X,p)=Zgn, )N (Zp,p) NN (Zg, p).

Exercise 6.5.3: Given a germ (X, p) of a subvariety at p, show V (I,(X)) = (X, p) (see
above). Then given an ideal I C ©,, show I,(V(I)) o I.

As O, is Noetherian, I,(X) is finitely generated. Near each point p only finitely
many functions are necessary to define a subvariety, that is, by an exercise above,
those functions “cut out” the subvariety. When one says defining functions for a
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germ of a subvariety, one generally means that those functions generate the ideal,
not just that their common zero set happens to be the subvariety. A theorem that
we will not prove here in full generality, the Nullstellensatz, says that if we take the
germ of a subvariety defined by functions in an ideal I C 6,, and look at the ideal
given by that subvariety, we obtain the radical of I. The radical of I is defined as

VI {f : f™ €1, for some m}. In more concise language, the Nullstellensatz says

Ip (V(I )) = VI. Germs of subvarieties are in one-to-one correspondence with radical
ideals of O,.

Example 6.5.4: The subvariety X = {0} c C? can be given by F = {zf, z%} If
I = (z%,z%) C Op is the ideal of germs generated by these two functions, then
Io(X) # I. We have seen that the ideal I5(X) is the maximal ideal my = (z1, z2). As

I € (z1,z2) = mg and the square of z; and z; are both in I, we find VI = (z1,22) = my.

The local properties of a subvariety at p are encoded in the properties of the ideal
I,(X). Therefore, the study of subvarieties often involves the study of the various
algebraic properties of the ideals of 6,. Let us also mention in passing that the other
object that is studied is the so-called coordinate ring 6, /1,(X), which represents the
functions on (X, p). That is, we identify two functions if they differ by something in
the ideal, since then they are equal on X.

At most points a subvariety behaves like a piece of C¥, more precisely like a graph
over C¥. A graph of a mapping f: U’ ¢ CF — C"*is theset Iy c U’ xC"™*
Ck x C"=F defined by

Iy def {z,w)e W' xC"*:w = f(2)}.

Definition 6.5.5. Let X C U C C" be a subvariety of an open set U. Let p € X be a
point. Suppose that after a permutation of coordinates, near p the set X is a graph of a

holomorphic mapping. That is, after relabeling coordinates, there is a neighborhood
U’ x U"” c Ck x C"* of p, where k € Ny, such that

XnU xU”) =Ty

for a holomorphic mapping f: U’ — C"*. Then p is a regular point (or simple point)
of X and the (complex) dimension of X at p is k. We write dim, X = k. If all points of
X are regular points of dimension k, then X is called a complex manifold, or complex
submanifold, of (complex) dimension k. As the ambient* dimension is 1, we say X is
of codimension n — k at p.

The set of regular points of X is denoted by X.,. Any point that is not regular is
singular. The set of singular points of X is denoted by Xsyg-

A couple of remarks are in order. A subvariety X can have regular points of
several different dimensions, although if a point is a regular point of dimension k,

*The word ambient is used often to mean the set that contains whatever object we are talking about.
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then all nearby points are regular points of dimension k as the same U’ and U"” works.
Any isolated point of X is automatically a regular point of dimension 0. Finally, we
remark is that dimension is well-defined. We leave it as an exercise below. Sometimes
the empty set is considered a complex manifold of dimension —1 (or —o0).

Example 6.5.6: Theset X = C" isa complex submanifold of dimension 7 (codimension
0). In particular, X;o; = X and Xsjng = 0.

The set Y = {z € C®: z3 = z2 — z3} is a complex submanifold of dimension 2
(codimension 1). Again, Yy, = Y and Ysing = 0.

On the other hand, the so-called cusp, C = {z eC?2:23- Z% = O} is not a complex

1
submanifold. The origin is a singular point of C (see exercise below). At every other

point, we can write z, = izf/z, 50 Cree = C \ {0}, and so Csjyg = {0}. The dimension

at every regular point is 1. See Figure 6.5 for a plot of C in two real dimensions.

Figure 6.5: The cusp.

Exercise 6.5.4: Prove that if p is a reqular point of a subvariety X c U C C" of a domain
U, then the dimension at p is well-defined. Hint: If there were two possible U’ of different
dimension (possibly different affine coordinates), construct a map from one such U’ to
another such U’ with nonvanishing derivative.

Exercise 6.5.5: Consider the cusp C = {z € C?: zf — 22 = 0}. Prove that the origin is
not a regular point of C.

Exercise 6.5.6: Show that p is a regular point of dimension k of a subvariety X if and
only if there exists a local biholomorphic change of coordinates that puts p to the origin and
near 0, X is given by w = 0, where (z, w) € Ck x C" %, In other words, if we allow a
biholomorphic change of coordinates instead of just reordering of coordinates, we can let
f = 0in the definition.

We also define dimension at a singular point. A fact that we will not prove in
general is that the set of regular points of a subvariety is open and dense in the
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subvariety; a subvariety is regular at most points. Therefore, the following definition
makes sense without resorting to the convention that max( = —co.

Definition 6.5.7. Let X C U C C" be a (complex) subvariety of U. Let p € X be a
point. We define the (complex) dimension of X at p to be

dim, X & max{k € Np : VY neighbhds. W of p, 39 € W N X, with dim; X = k}.

If (X, p) is a germ and X a representative, the dimension of (X, p) is the dimension of
X at p. The dimension of the entire subvariety X is defined to be

dim X % max dim, X.
peX

We say that X is of pure dimension k if at all points p, dimension of X at p is k. We
say a germ (X, p) is of pure dimension k if there exists a representative of X that is
of pure dimension k. We define the word codimension as before, that is, the ambient
dimension minus the dimension of X.

Example 6.5.8: We saw that C = {z € C?: z? - Z% = 0} is of dimension 1 at all the
regular points, and the only singular point is the origin. Hence dimg C = 1, and so
dim C = 1. The subvariety C is of pure dimension 1.

We have the following theorem, which we state without proof, at least in the
general setting. We will prove it for varieties of pure codimension 1 in the next
section.

Theorem 6.5.9. Let U C C" be open and connected and let X C U be a subvariety, then the
set of regular points Xyeq is open and dense in X. In fact, Xsing C X is a subvariety.

Exercise 6.5.7: Suppose that X C U C C" is a subvariety of a domain U, such that Xeq
is connected. Show that X is of pure dimension. Feel free to assume Xiq is dense in X.

6.6 = Hypervarieties

Pure codimension-1 subvarieties are particularly nice. Sometimes pure codimension-1
subvarieties are called hypervarieties. We will prove two things for hypervarieties.
First we will prove that locally, a hypervariety can be defined via a single function
(something not true for higher codimension), and second, we will prove that the
singular set of a hypervariety is a subvariety.

Theorem 6.6.1. If (X, p) is a germ of a pure codimension-1 subvariety, then there is a germ
of a holomorphic function f at p such that (Z¢,p) = (X, p). Further, 1,(X) is generated by

(f, p)



6.6. HYPERVARIETIES 187

Proof. We need to find a function that vanishes on (X, p) and divides every other
function that vanishes there. There has to exist at least one germ of a function that
vanishes on (X, p) (although it could vanish on a larger set). Assume p = 0, and
after a linear change of coordinates assume we can apply the Weierstrass preparation
theorem to the function. Taking representatives of the germs, we assume X is a pure
codimension-1 subvariety of a small enough neighborhood U’ x D ¢ C"~! x C of
the origin, where D is a disc, and the function that vanishes on X is a Weierstrass
polynomial P(z’, z,) defined for z’ € U’, and all zeros of z,, — P(z’,z,) are in D for
z' e U.

Theorem 6.3.3 applies. Let E C U’ be the discriminant set, a zero set of a
holomorphic function. On U’ \ E, there are a certain number of geometrically distinct
zeros of z,, — P(z’, zy,).

Let X’ be a topological component of X \ (E X D). Above each pointz’ € U’ \ E,
let a1(z’), ..., ax(z’) denote the distinct zeros that are in X’, that is (z’, (X[(Z’)) e X'.
If ay is a holomorphic function in some small neighborhood and (z’, a¢(z’)) € X’ at
one point, then (z’ ,ap(z’ )) € X’ for all nearby points too as those are clearly in the
same component of X \ (E X D). Furthermore, this means that the set X’ contains
only regular points of X, which are of dimension n — 1.

The number of such geometrically distinct zeros in X" above each pointin U’ \ E
is locally constant, and as U’ \ E is connected (Exercise 1.6.5) there exists a unique k.

Take
k

k-1
F(z',z,) = n(zn —ay(2')) =2k + Z gu(z))z).
=0

(=1

The coefficients g; are well-defined for z € U’ \ E as they are independent of how
ai,...,ar are ordered. The g are holomorphic for z € U’ \ E as locally we can
choose the order so that each ay is holomorphic. The coefficients g, are bounded on
U’ and therefore extend to holomorphic functions of U’. Hence, the polynomial F
is a polynomial in 6(U’)[z,]. The zeros of F above z’ € U’ \ E are simple and give
precisely X’. By using the argument principle again, we find that all zeros above
points of E are limits of zeros above points in U’ \ E. Consequently, the zero set of F
is the closure of X’ in U’" X D by continuity. It is left to the reader to check that all the
functions g, vanish at the origin and F is a Weierstrass polynomial, a fact that will be
useful in the exercises below.

If the polynomial P(z’, z,,) is of degree m, then z’ +— P(z’, z,) has at most m zeros.
Together with the fact that U’ \ E is connected, this means that X \ (E x D) has at most
finitely many components (at most m). So we can find an F for every topological
component of X \ (E x D). Then we multiply those functions together to get f.

The fact that this f generates I,,(X) is left as Exercise 6.6.3. O

In other words, local properties of a codimension 1 subvariety can be studied by
studying the zero set of a single Weierstrass polynomial.



188 CHAPTER 6. COMPLEX ANALYTIC VARIETIES

Example 6.6.2: It is not true that if a dimension of a subvariety in C" is n — k
(codimension k), there are k holomorphic functions that “cut it out.” That only works
for k = 1. The set defined by

Z1 2o Z
rank[ 1o=2 3] <2
Z4 25 Zg

is a pure 4-dimensional subvariety of C%, so of codimension 2, and the defining
equations are z1z5 —z2z4 = 0, 2126 — 2324 = 0, and z2z¢ — z3z5 = 0. Let us state without
proof that the unique singular point is the origin and there exist no 2 holomorphic
functions near the origin that define this subvariety. In more technical language, the
subvariety is not a complete intersection.

Interestingly, a small refinement of the proof of the theorem above proves the
following result. Same theorem is true for higher codimension, but it is harder to
prove.

Corollary 6.6.3. Let (X, p) is a germ of a subvariety of pure codimension 1. Then there exists
a neighborhood U of p, a representative X C U of (X, p) and subvarieties X1, ..., X Cc U
of pure codimension 1 such that (X¢)yeq is connected for every £, and X = Xy U -+ U Xj.

Proof. A particular X is defined by considering a topological component of X \ (ExD)
as in the proof of Theorem 6.6.1, getting the F, and setting X, = Zr. The topological
component is a connected set and it is dense in (X¢).q, which proves the corollary. O

Exercise 6.6.1: Suppose p(z’,z,) is a Weierstrass polynomial of degree k such that for an
open dense set of z’ near the origin z,, — p(z’, z,,) has geometrically k zeros, and such that
the regular points of Z, are connected. Show that p is irreducible in the sense that if p = rs
for two Weierstrass polynomials r and s, then either r = 1 or s = 1.

Exercise 6.6.2: Suppose f is a function holomorphic in a neighborhood of the origin with
zy = f(0, z,,) being of finite order. Show that

f = upflpgz . .p?fl

where py are Weierstrass polynomials of degree iy such that for an open dense set of z’,
zn > f(2',zy) has py geometrically distinct zeros (no multiple zeros), the set of reqular
points of Z,, are connected, and u is a nonzero holomorphic function near 0. Note: In the
next section, these polynomials will be the irreducible factors in the factorization of f.

Exercise 6.6.3: Finish the proof of Theorem 6.6.1: Show that if (X, p) is a germ of a pure
codimension-1 subvariety, then the ideal I,,(X) is a principal ideal (has a single generator).

Exercise 6.6.4: Suppose I C O, is a principal ideal. Prove the Nullstellensatz for
hypervarieties: 1,(V(I)) = VI. That is, show that if (f,p) € I,(V(I)), then (f*,p) € T
for some integer k.
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Exercise 6.6.5: Suppose X C U is a subvariety of pure codimension 1 for an open set
U c C". Let X’ be a topological component of Xeq. Prove that the closure X’ is a subvariety
of U of pure codimension 1.

Example 6.6.4: If X is a hypervariety and you choose coordinates where the prepara-
tion theorem applies and E the corresponding discriminant set, it is tempting to say
that the singular set of X is the set X N (E x C), which is a codimension-2 subvariety.
It is true that X N (E x C) will contain the singular set, but in general the singular set
is smaller. A simple example of this behavior is the set defined by z% —z1 =0. The
defining function is a Weierstrass polynomial in z; and the discriminant set is given
by z1 = 0. However, the subvariety has no singular points as it is the graph of z; over
zp. See Figure 6.6.

-1 I
-1 0 1

Figure 6.6: The sideways parabola z7 — z; = 0 for real z; and z. For each nonzero z1,
there are two solutions (for negative z; these are obviously not real). But for each fixed
2y, there is exactly one solution.

A less trivial example z7 + --- + z7 = 0, where the singular set is of any given
dimension n — k is given in Exercise 6.6.8.

Back in section 1.6, we proved following theorem (Theorem 1.6.2). We restate it in
the language of varieties.

Theorem 6.6.5. Let U C C" be a domain and f € O(U). Then Zy is empty, Zs is a
subvariety of pure codimension 1, or Zg = U. Furthermore, if Zy is a pure codimension-1
subvariety, then (Z f)yeq is open and dense in Zy.

We will improve on that theorem, since we now know that hypervarieties are
precisely the zero sets of a single function locally. We can use the discriminant to
locate singularities, but we must allow infinitely many linear changes of coordinates.

Theorem 6.6.6. Let U C C" be a domain and X C U a subvariety of pure dimension n — 1
(a hypervariety). Then Xsing is a subvariety of dimension less than or equal to n — 2.
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Proof. 1t is sufficient to consider a certain fixed point p € X and prove the result
locally near p. At p, there is a single holomorphic function f that defines the germ
of (X, p) meaning that its zero set is equal to X near p. Without loss of generality,
assume that p = 0, and after a linear change of coordinates, assume that we can
apply the preparation theorem and Theorem 6.3.3 near the origin with respect to
each variable (e.g., if we can apply the preparation in each variable). Suppose that D
is a small enough polydisc in U where f is defined, Zy = X N D, and such that we
can apply Theorem 6.3.3 with respect to each variable in the polydisc D. Let V be
some small neighborhood of the origin with V ¢ D.

Picka q € Xjee NV. By definition, it means that X is a graph near g, so we can,
after reordering variables, assume it is a graph of z,, over z’ = (z1, ..., z,—1). Write
D =D’'xD, c C"! xC. Let E C D’ be the discriminant set given by the function
A € O6(D’). We can think of A as a function in 6(D). If g ¢ E X D, then we have
A(q) # 0, so we have found a function holomorphic in V' that is nonzero at q. Let us
start a collection % of holomorphic functions on V and put A in it.

Now suppose that A(g) = 0. Moreover, we can assume that the f we get is the
Weierstrass polynomial in z,, we found in the proof of Theorem 6.6.1. In particular, it is
a Weierstrass polynomial of degree m and for a generic z’ (outside of the discriminant
set), the function z, — f(z’, z,) has m geometrically distinct roots (so m roots up
to multiplicity as well). Write g = (¢’, gn). The zero of z, — f(q’,z,) at z, = qu
is simple. We will try to change variables so that the new vertical line through ¢
intersects X only at simple zeros. We already have that the root at g is simple and so
we will rotate the line around 4.

We will change variables to Z = (/, z,) where (z’,z,4) = (£’ + (qu — zu)€’, z,) and
where €’ € C""! is small, so that the chosen line becomes the vertical {’ = g’}. For
small €’ and Z’ near ¢’, the function z,, — f(Z’ +(qn — zn)€’, zn) still has exactly m
roots up to multiplicity via the argument principle. If z, > f(q’ + (qu — zn)€’, z4)
has m geometrically distinct roots, then so does z, — f (2’ +(qn — zn)€’, Zn) has m
geometrically distinct roots via the same argument with the m small discs and the
argument principle as in the proof of Theorem 6.3.3.

The problem of finding arbitrarily small €’ that do the trick is left as an exercise. It
can be done one intersection of the line z, — (q’ +(qn — zn)€’, zn) with X at a time,
that is, if we have a multiplicity k intersection, a small generic change in €’ will give
us k distinct intersections nearby. See Exercise 6.6.6.

We take a slightly smaller polydisc D c D’ x D,, € D in the Z variables such that
still V c D (we may need to pick €’ small enough to arrange this), we can apply
Theorem 6.3.3. As the number of zeros of f(Z’ +(qn — zn)€’, zn) is m for all Z’ near ¢’
including z’ = q’, we find that the discriminant A in these variables does not vanish
at g. We also have that Aisa holomorphic function on V and we add Ato F. See
Figure 6.7 for the setup.

Now if g € X NV is singular, then every discriminant function used above must
be zero at gq. If it were not, than outside of the discriminant set all points are graphs
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Znh A

Figure 6.7: Changing variables to make the discriminant not vanish at g, where L is the
line {z’ = g’} while L is the tilted line {Z' = g'}.

of the zeros and hence nonsingular. That is, ¢(gq) = 0 for every ¢ € %. Thus the
common zero set of all the functions in F intersected with X NV gives us precisely
Xsing NV, 80 Xiing is a subvariety. It cannot be of dimension  — 1 as if it were it would
be a complex submanifold of dimension n — 1 near some point and so not all of those
points would be singular for X, see Exercise 6.6.7. m|

Note that we have used infinitely many functions in & to define X;;y¢. It is possible
to use finitely many near each point as the ideals I,,(X;ix¢) are Noetherian, but despite
the temptation, it is not possible to do a single generic linear change of variables and
use just the n discriminant functions, one for each variable. More than n functions
may be necessary as situations like the one depicted in Figure 6.7 may occur for some
g no matter how we change variables to start with.

Exercise 6.6.6:

a) Suppose D C C" isa polydisc,0 € D, q = (0,1) € C"~! x C, and P is a Weierstrass
polynomial of degree k such that for a generic z’ (not in the discriminant set),
zy > P(2’, zy,) has k simple zeros. Prove that there exists a ball B C C* 1 centered
at the origin and a dense open set W C B such that for every €’ € W, the function
zn > ((1 = zn)€’, zn) has exactly k geometrically distinct zeros. Hint: Change
coordinates near the origin to make all these lines vertical.

b) Show that part a) proves the claim in the proof of theorem.

Exercise 6.6.7: Suppose that U C C" is a domain and X C U is a subvariety of pure
dimension n — 1. Suppose that M is a small piece of a complex submanifold of dimension
n —1such that M C X. Prove that the set M N Xing is nowhere dense in M. Hint: Locally
near some point of M, make M into {z,, = 0} and apply Theorem 6.3.3 to X there.
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Exercise 6.6.8:
a) Prove that the hypervariety in C", n > 2, given by z% + z% +---+22 =0 has an
isolated singularity at the origin (that is, the origin is the only singular point).
b) For every 0 < k < n -2, find a hypervariety X of C" whose set of singular points is
a subvariety of dimension k.

6.7 | Irreducibility, local parametrization, and Puiseux

Definition 6.7.1. A germ of a subvariety (X, p) C (C", p) is reducible at p if there exist
two germs (X1, p) and (X, p) with (X3, p) ¢ (Xp,p) and (X2, p) ¢ (X1, p) such that
(X, p) = (X1,p) U (Xy, p). Otherwise, the germ (X, p) is irreducible at p.

Similarly globally, a subvariety X C U is reduciblein U if there exist two subvarieties
X1 and X5 of U with X7 ¢ X5 and X, ¢ Xj such that X = X; U X,. Otherwise, the
subvariety X is irreducible in U.

Example 6.7.2: Local and global reducibility are different. The subvariety given by
z% =z1(z1 — 1)2

is irreducible in C? (the regular points are connected), but locally at the point (1, 0) it
is reducible. There, the subvariety is a union of two graphs: z; = £4/z1(z1 — 1). See
Figure 6.8 for a plot in two real dimensions.

Figure 6.8: Locally reducible curve.

Exercise 6.7.1: Prove a germ of a subvariety (X, p) is irreducible if and only if [,(X) is a
prime ideal. Recall an ideal I is prime if ab € I implies either a € I or b € 1.

Exercise 6.7.2: Suppose a germ of a subvariety (X, p) is of pure codimension 1. Prove
(X, p) is irreducible if and only if there exists a representative of X where X;eq is connected.
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Exercise 6.7.3: Let X C U be a subvariety of pure codimension 1 of a domain U C C".
Prove X is irreducible if and only if the set of reqular points is connected. Hint: See previous
exercise.

For complex subvarieties, a subvariety is irreducible if and only if the set of regular
points is connected. We omit the proof in the general case, and for hypervarieties
it is an exercise above. It then makes sense that we can split a subvariety into its
irreducible parts.

Proposition 6.7.3. Let (X, p) C (C", p) be a germ of a subvariety. Then there exist finitely
many irreducible subvarieties (X1, p), . .., (Xk, p) such that (X1, p)U... U(Xk, p) = (X, p)
and such that (X,,, p) ¢ (Xe, p) for all m and ¢.

Proof. Suppose (X, p) is reducible: Find (Y1, p) and (Y1, p) such that (Y1, p) ¢ (Ya, p),
(Y2, p) ¢ (M1, p)/ and (Y1, P) U (Y2, p) = (X, P) As (Ye, p) ¢ (X, p)/ then Ip(Yé’) 2 IP(X)
forboth ¢. If both (Y1, p) and (Y2, p) are irreducible, then stop, we are done. Otherwise
apply the same reasoning to whichever (or both) (Y, p) that was reducible. After
finitely many steps you must come to a stop as you cannot have an infinite ascending
chain of ideals since 6, is Noetherian. m]

These (X1,p),...,(Xk,p) are the irreducible components. We omit the proof in
general that they are unique. For a germ of a hypervariety, the UFD property of ,,0,
gives the irreducible components. You found this factorization in an exercise above,
and so this factorization is unique.

Each irreducible component has the following structure. We give the theorem
without proof in the general case, although we have essentially proved it already for
pure codimension 1 (to put it together is left as an exercise).

Theorem 6.7.4 (Local parametrization theorem). Let (X,0) be an irreducible germ of
a subvariety of dimension k in C". Let X denote a representative of the germ. Then after a
linear change of coordinates, we let : C" — CF be the projection onto the first k components,
and obtain that there exists a neighborhood U C C" of the origin, and a proper subvariety
E c n(U) such that

(i) X’ = X NU\ n~(E) is a connected k-dimensional complex manifold that is dense in
XNnu.

(if) m: X" — n(U) \ E is an m-sheeted covering map for some integer m.
(iif) m: X NU — n(U) is a proper mapping.

The m-sheeted covering map in this case is a local biholomorphism that is an
m-to-1 map.



194 CHAPTER 6. COMPLEX ANALYTIC VARIETIES

Exercise 6.7.4: Use Theorem 6.3.3 to prove the parametrization theorem if (X, 0) is of pure
codimension 1.

Let (z1,...,z,) be the coordinates. The linear change of coordinates needed in the
theorem is to ensure that the set defined by z; = zp = - -+ = z; = 0 intersected with
X is an isolated point at the origin. This is precisely the same condition needed to
apply Weierstrass preparation theorem in the case when X is the zero set of a single
function.

We saw hypersurfaces are the simpler cases of complex-analytic subvarieties. At
the other end of the spectrum, complex-analytic subvarieties of dimension 1 are also
reasonably simple for different reasons. Locally, complex-analytic subvarieties of
dimension 1 are analytic discs. Moreover, they are locally the one-to-one holomorphic
images of discs, and so they have a natural topological manifold structure even at
singular points.

Example 6.7.5: The image of the analytic disc & > (&2, &3) is the cusp subvariety
defined by z7 — z5 = 0in C2.

The following theorem is often stated only in C? for zero sets of a single function
although it follows in the same way from the local parametrization theorem in
higher-dimensional spaces. Of course, we only proved that theorem (or in fact you
the reader did so in an exercise), for codimension-1 subvarieties, and therefore, we
also only have a complete proof of the following in C2.

Theorem 6.7.6 (Puiseux). Let (z,w) € C x C""! be coordinates. Suppose f: U C
C x C"! — C is a holomorphic map such that f(z,w) = 0 defines a one-dimensional
subvariety X of U, 0 € X, and w — f(0, w) has an isolated zero at the origin.

Then there exists an integer k and a holomorphic function g defined near the origin in C
such that for all & near the origin

£(&¥, g(&) =0.

Proof. Without loss of generality assume (X, 0) is irreducible, so that the local
parametrization theorem applies. We work in a small disc D C C centered at the
origin, such that the origin is the unique point of the discriminant set (the subvariety
E). Let N={z € D :Imz =0,Rez < 0}. As D \ N is simply connected we have
the well-defined functions a1(z), . .., @u(z) holomorphic on D \ N that are solutions
to f(z, aj(z)) = 0. These functions continue analytically across N away from the
origin. The continuation equals one of the zeros, e.g. aj(z) becomes a,(z) (and by
continuity it is the same zero along the entire N). So there is a permutation ¢ on m
elements such that as z moves counter-clockwise around the origin from the upper
half-plane across N to the lower half-plane, a(z) is continued as aa(j)(z). There exists
some number k (e.g. k = m!) such that ¢* is the identity. As & goes around a circle
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around the origin, £¥ goes around the origin k times. Start at a positive real & and
start defining a function g(&) as a1(& k). Move & around the origin counter-clockwise
continuing ¢ analytically. Divide the disc into sectors of angle 27/k, whose boundaries
are where &K € N. Transition to aa(l)(ék) after we reach the boundary of the first
sector, then to a(5(1))(& k) after we reach the boundary of the next sector, and so on.
After k steps, that is as £ moved all the way around the circle, we are back at a1(& k),
because o is the identity. So g(&) is a well-defined holomorphic function outside the
origin. Let ¢(0) = 0, and g is holomorphic at 0 by the Riemann extension theorem.
See Figure 6.9 for an example. m]

Figure 6.9: Proving Puiseux with m = k = 4. The permutation ¢ takes 1to 2,2 to 3, 3 to 4,
and 4 to 1. As £ moves along the short circular arrow on the right, &% moves along the
long circular arrow on the left. The definition of g is given in the right-hand diagram.

Exercise 6.7.5: Consider an irreducible germ (X,0) C (C?,0) defined by an irreducible
Weierstrass polynomial f(z,w) = 0 (polynomial in w) of degree k. Prove there exists a
holomorphic g such that f(z*, g(z)) = 0 and z — (z*, g(z)) is one-to-one and onto a
neighborhood of 0 in X.

Exercise 6.7.6: Suppose (X,0) C (C?,0) is a germ of a one-dimensional subvariety. Show
that after a possible linear change of coordinates, there are natural numbers dy, . .., dy and
holomorphic functions c1(z), . .., cx(z) vanishing at 0, such that X is given near 0 by

k
I—[ (w - ¢c4(z)) = 0.

=1

Exercise 6.7.7: Using the local parametrization theorem, prove that if (X, p) is an irreducible
germ of a subvariety of dimension greater than 1, then there exists a neighborhood U of
p and a closed subvariety X C U (whose germ at p is (X, p)), such that for every q € X
there exists an irreducible subvariety Y C X of dimension 1 such thatp € Yandg €Y.
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Exercise 6.7.8: Prove a stronger version of the exercise above. Show that not only is there a
Y, but an analytic disc ¢ : D — U such that (D) C X, ¢(0) = p and ¢(1/2) = g.

Exercise 6.7.9: Suppose X C U is a subvariety of a domain U C C". Show that X is
irreducble if and only if for every pair of points p, q € X there exists a finite sequence of
points po = p,p1,..., Pk = q in X, and a finite sequence of analytic discs Ay C X such
that py and pe—1 are in Ay.

Exercise 6.7.10: Prove a maximum principle for subvarieties using the exercises
above: Suppose X C U is an irreducible subvariety of an open set U, and suppose
f: U — RU{—co} is a plurisubharmonic function. If the modulus of the restriction f|x
achieves a maximum at some point p € X, then the restriction f|x is constant.

Exercise 6.7.11: Prove that an analytic disc (namely the image of the disc) in C? is a
one-dimensional local variety (that is, a subvariety of some open subset of C?).

Using the Puiseux theorem, we often simply parametrize germs of complex
one-dimensional subvarieties. And for larger-dimensional varieties, we can find
enough one-dimensional curves through any point and parametrize those.

6.8 | Segre varieties and CR geometry

The existence of analytic discs (or subvarieties) in boundaries of domains says a lot
about the geometry of the boundary.

Example 6.8.1: Let M C C" be a smooth real hypersurface containing a complex
hypersurface X (zero set of a holomorphic function with nonzero derivative), at
p € X C M. Apply a local biholomorphic change of coordinates at p, so that in
the new coordinates (z,w) € C"! X C, X is given by w = 0, and p is the origin.
The tangent hyperplane to M at 0 contains {w = 0}. By rotating the w coordinate
(multiplying it by ’?), we assume M is tangent to the set {(z, w) : Imw = 0}. In other
words, M is given by
Imw = p(z,z,Rew),

where dp = 0. Asw = 0 on M, then p = 0 when Rew = 0. That is, p is divisible by
Rew. So M is defined by

Imw = (Rew)p(z,z,Rew),

for a smooth function p. The Levi form at the origin vanishes. As p = 0 was an
arbitrary point on M N X, the Levi form of M vanishes on M N X.

Example 6.8.2: The vanishing of the Levi form is not necessary if the complex varieties
in M are smaller. Consider M c C® with a nondegenerate (but not definite) Levi
form:

Imw = |z = |z
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For every O € R, M contains the complex line Ly, given by z; = ¢’z and w = 0. The
union | Jg Lg of those complex lines is not contained in some single unique complex
subvariety inside M. Any complex subvariety that contains all the lines Ly must
contain the entire complex hypersurface given by w = 0, which is not contained in M.
See Figure 6.10.

Figure 6.10: A trace of the hypersurface in the (Re z1, Re zo, Im w) space. The traces of the
two complex lines Ly and Ly in the plane w = 0 corresponding to z; = z; and z1 = —z5.

Exercise 6.8.1: Let M C C" be a smooth real hypersurface. Show that if M at p contains
a complex submanifold of (complex) dimension more than ”T_l, then the Levi form must be
degenerate, that is, it must have at least one zero eigenvalue.

Exercise 6.8.2: Let M C C" be a smooth pseudoconvex real hypersurface (one side of M is
pseudoconvex). Suppose M at p contains a dimension k complex submanifold X. Show
that the Levi form has at least k zero eigenvalues.

Exercise 6.8.3: Find an example of a smooth real hypersurface M C C" that contains a
germ of a singular complex-analytic subvariety (X, p) through a point p, which is unique
in the sense that if (Y, p) is another germ of a complex analytic subvariety in M, then

(Y,p) c (X,p).

Let us discuss a tool, the Segre variety, that allows us to find such complex
subvarieties inside M, and much more. Segre varieties only work in the real-analytic
setting and rely on complexification.

Let M C C" be a real-analytic hypersurface and p € M. Suppose M C U, where
U c C" is a small domain with a defining function r: U — R for M. Thatis, r isa
real-analytic function in U such that M = r~1(0), but dr # 0 on M. Define

U ={zeC":zeU}.

Suppose U is small enough so that the Taylor series for r converges in U X U* when
treating z and Z as separate variables. That is, 7(z, C) is a well-defined function on
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U x U, and r(z, C) = 0 defines a complexification /l in U x U". Assume also that U
is small enough that the derivative dr of the complexified r does not vanish on .
and that J/( is connected. See also Proposition 3.2.8.

Given g € U, define the Segre variety

LU, r)={zel:r(z,§) =0} ={z €U :(z,7) € M}.

See a diagram in Figure 6.11. A priory, the subvariety X, depends on U and r.
However, if 7 is a real-analytic function that complexifies to U x U* and vanishes on M,
it must also vanish on the complexification .. If 7 is a defining function as above, that
is, dr does not vanish on its zero set and the zero set of the complexified 7 is connected
in U x U*, then 7(z, C) = 0 also defines Jl. Hence the actual r does not matter. As
long as g € M, then q € L,;(U, ), and furthermore the Segre variety is a complex
hypersurface for every 4. It is not hard to see that if U is a small neighborhood of
g, the same r is a defining function in U, and we get the same complexification in
U x U*. So the germ at g € U is well-defined, and we write

T, = (Z4U, 1), q).

The Segre variety is well-defined as a germ, and so often when one talks about X;
without mentioning the U or r, then one means some small enough representative of
a Segre variety or the germ itself.

, diagonal C = Z

IIMII

X (U,r) q 2

Figure 6.11: Diagram of (U, r). The “M” is in quotation marks as it is really in the z
space not in the diagonal, but we identify it with a subset of the diagonal in this picture.

Exercise 6.8.4: Let r: U — R be a real-valued real-analytic function that complexifies to
U x U*. Show that r(z, C) = 0 if and only if r(w, C) = 0. In other words, z € Zc(U, r) if
and only if C € (U, r).
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Example 6.8.3: Suppose we start with the real-analytic hypersurface M given by
Imw = (Rew)p(z, z, Rew),

with p vanishing at the origin. Rewriting in terms of w and @, we find

w—zb_(w+zb) (Zzw+zb)
27 T2 JP\EET)

21 2 ! 2

As p vanishes at the origin, then near the origin the equation defines the complex
hypersurface given by w = 0. So X is defined by w = 0. This is precisely the complex
hypersurface that lies inside M.

The last example is not a fluke. The most important property of Segre varieties is
that it locates complex subvarieties in a real-analytic submanifold. We will phrase it
in terms of analytic discs, which is enough as complex subvarieties can be filled with
analytic discs, as we have seen.

Proposition 6.8.4. Let M C C" be a real-analytic hypersurface and p € M. Suppose
A C M is an analytic disc through p. Then as germs (A, p) C L,.

Proof. Let U be a neighborhood of p where a representative of =, is defined, that is,
we assume that I, is a closed subset of U, and suppose 7(z, Z) is the corresponding
defining function. Let ¢: D — C" be the parametrization of A with ¢(0) = p. We
can restrict ¢ to a smaller disc around the origin, and since we are only interested in
the germ of A at p this is sufficient (if there are multiple points of D that go to p, we
repeat the argument for each one). So let us assume without loss of generality that
@(D) = A c U. Since A ¢ M we have

r((8), (&) = r(p(), p(&)) = 0.

The function & — r((p(é), qb(f)) is a real-analytic function of &, and therefore for
some small neighborhood of the origin, it complexifies. In fact, it complexifies to
DxDas @(&) € U forall £ € D. So we can treat £ and & as separate variables. By
complexification, the equation holds for all such independent £ and E. SetE=0to
obtain

0=r(p(&), P0) =r(p(&),p) for all & € D.
In particular, (D) C I, and the result follows. O

Exercise 6.8.5: Show that if a real-analytic real hypersurface M C C" is strongly
pseudoconvex at p € M (one side of M is strongly pseudoconvex at p), then £, N (M, p) =
{p} (as germs).

Exercise 6.8.6: Use the proposition and the exercise above to show that if a real-analytic
real hypersurface M is strongly pseudoconvex, then M contains no analytic discs.
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We end our discussion of Segre varieties by its perhaps most well-known applica-
tion, the so-called Diederich—Fornaess lemma. Although we state and prove it only
for real-analytic hypersurfaces it works in greater generality. There are two parts to it,
although it is generally the corollary that is called the Diederich—Forneess lemma.

First, for real-analytic hypersurfaces each point has a fixed neighborhood such
that germs of complex subvarieties contained in the hypersurface extend to said fixed
neighborhood.

Theorem 6.8.5 (Diederich-Forneess). Suppose M C C" is a real-analytic hypersurface.
Forevery p € M there exists a neighborhood U of p with the following property: If g € MNU
and (X, q) is a germ of a complex subvariety such that (X, q) C (M, q), then there exists
a complex subvariety Y C U (in particular a closed subset of U) such that Y C M and

(X,q9) c(Y,q).

Proof. Suppose U is a polydisc centered at p, small enough so that the defining
function r of M complexifies to U x U* as above. Suppose ¢ € M N U is a point such
that (X, g) is a germ of a positive-dimensional complex subvariety with (X, q) € (M, q).
Most points of a subvariety are regular, so without loss of generality assume g is
a regular point, that is, (X, q) is a germ of a complex submanifold. Let X be a
representative of the germ (X, g) such that X ¢ M, and X c U, although we do not
assume it is closed.

Assume X is an image of an open subset V C CF via a holomorphic surjective
mapping ¢: V — X. Since r(go(é),@) = 0 for all £ € V, then we may treat £ and &
separately. In particular, r(z, () =0 forall z, C € X.

Define complex subvarieties Y’, Y C U (closed in U) by

Y = m r.(U,r) and Y = m r.Uu,r).

aeX acgy’

Ifa €Y and b € X, then r(a, b) = 0. Because r is real-valued, r(b, @) = 0. Therefore,
X cY cY’'. Furthermore, r(z,z) =0forallz € Y,andso Y C M. O

Corollary 6.8.6 (Diederich—Fornaess). Suppose M C C" is a compact real-analytic hy-
persurface. Then there does not exist any point q € M such that there exists a germ of a
positive-dimensional complex subvariety (X, q) such that (X, q) € (M, q).

Proof. Let S C M be the set of points through which there exists a germ of a positive-
dimensional complex subvariety contained in M. As M, and hence §, is compact,
there must exist a point p € S that is furthest from the origin. After a rotation by
a unitary and rescaling assume p = (1,0, ...,0). Let U be the neighborhood from
the previous theorem around p. There exist germs of varieties in M through points
arbitrarily close to p. So for any distance € > 0, there exists a subvariety Y C U (in
particular, Y closed in U) of positive dimension with Y C M that contains points €
close to p. Consider the function Re z1, whose modulus attains a strict maximum on
S at p. Because Re z; achieves a maximum strictly smaller than 1 on dU N S, for a
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small enough €, we would obtain a pluriharmonic function with a strict maximum
on Y, which is impossible by the maximum principle for varieties that you proved in
Exercise 6.7.10. The picture would look as in Figure 6.12. m]

Rezi =1

Figure 6.12: Contradicting the maximum principle at p.

Example 6.8.7: The results above do not work in the smooth setting. Let us disprove
the theorem in the smooth setting. Disproving the corollary is an exercise. Let
g: R — R be a smooth function that is strictly positive for |t| > 1, and g(t) = 0 for all
|t| < 1. Define M in (z,w) € C"~! x C by

Imw = g(lz]|* + (Rew)?).

The M is a smooth real hypersurface. Consider p = (0,...,0,1) € M. For every
0<s<1letgs=(0,...,0,5) € Mand X; = {(z,w) € M : w = s}. Bach X; is the
closure of a local complex subvariety of dimension n — 1 and (X, g5) € (M, g5). The
size (diameter) of X goes to zero as s — 1 and X cannot extend to a larger complex
subvariety inside M. So, no neighborhood U at p (as in the theorem) exists.

Exercise 6.8.7: Find a compact smooth real hypersurface M C C" that contains a germ of
a positive dimensional complex subvariety.

...and that is how using sheep’s bladders can prevent earthquakes!



A | Basic Notation and Terminology

We quickly review some basic notation used in this book that is perhaps not described
elsewhere. We use C, R for complex and real numbers, and i for imaginary
unit (a square root of —1). We use N = {1,2,3,...} for the natural numbers,
No ={0,1,2,3,...} for the zero-based natural numbers, and Z for all integers. When
we write C" or R" we implicitly mean that n > 1, unless otherwise stated.

We denote set subtraction by A \ B, meaning all elements of A that are notin B. We
denote complement of a set by X¢. The ambient set should be clear. So, for example,
if X ¢ C naturally, then X¢ = C \ X. Topological closure of a set S is denoted by S, its
boundary is denoted by dS. If S is a relatively compact subset of X (its closure in X is
compact) or compact, we write S CC X.

A function with domain X and codomain Y we denote by f: X — Y. The direct
image of S by if is f(S). The notation f! for the inverse image of sets and single
points. When f is bijective (one-to-one and onto), we use f~! for the inverse mapping.
So f~I(T) for a set T C Y denotes the points of X that f maps to T. For a point g,
f~1(q) denotes the points that map to g, but if the mapping is bijective, then it means
the unique point mapping to 4. To define a function without giving it a name, we use

x — F(x),

where F(x) would generally be some formula giving the output. The notation f|s
is the restriction of f to S: a function f|s: S — Y such that f|s(x) = f(x) for all
x € S. A function f: U — C is compactly supported if the support, that is the set

{p eU: f(p) # 0}, is compact. If f(x) = g(x) for all x in the domain, we write
f=8

and we say that f and g are identically equal. The notation
fosg

denotes the composition defined by x — f(g(x)).
To define X to be Y rather than just show equality, we write

X =Y.



B | Results from One Complex
Variable

We review some results from one complex variable useful for reading this book.
The reader should first look through section 0.1 for basic notation and motivation,
although we review some of the results again here. Let U C C be open. A function
f: U — Cis holomorphic if it is complex differentiable at every point, that is,

Fe= tim LEXNSO

heC—0

exists for all z € U. For example, polynomials and rational functions in z are
holomorphic. Perhaps the most important holomorphic function is the solution to
the differential equation f’(z) = f(z), f(0) = 1, the complex exponential,

f(z) = e* = e* = e (cos y + isin(y)).

A piecewise-C! path (or curve) in C is a continuous y : [a,b] — C, continuously
differentiable except at finitely many points, such that one-sided limits of )’(f) exist
atall t € [a,b] and such that )’ (or its one-sided limits) is never zero. By abuse of
notation, when y is used as a set, we mean the image y([a, b]). For a continuous
f:y — C, define

b
/ f(z)dz / Fr®)y (.
y a

As )’ is continuous at all but finitely many points, the integral is well-defined. Similarly,
one defines the more general path integral in dz = dx + idy and dz = dx —idy. Let
z =y(t) = y1(t) + i y2(t) = x + i y parametrize the path. Then

/f(z)dz+g(z)d2:/(f(x+iy)+g(x+iy))dx+i(f(x+iy)—g(x+iy))dy

Y Y

B / b(f (r®)y' ) + f (y(t))m) dt
_ /ab((f(y(t)) +g(V(t)))V1(t)+i(f(y(t)) _g(y(t)))yé(t)) "



204 APPENDIX B. RESULTS FROM ONE COMPLEX VARIABLE

A path is closed if y(a) = y(b), and a path is simple if )|, ») is one-to-one with the
possible exception of y(a) = y(b).

An open U C C has piecewise-C! boundary if for each p € dU there is an open
neighborhood W of p such that JU NW = y((a, b)) where y: [a,b] — Cis an injective
piecewise-C! path, and such that each p € JU is in the closure of C \ U. Intuitively,
the boundary is locally a piecewise-C! curve that locally cuts the plane into two
open pieces. If at each point where the parametrization of JU is differentiable the
domain is on the left ()’(t) rotated by 7 points into the domain), then the boundary
is positively oriented. As in the introduction, we have the following version of Cauchy
integral formula.

Theorem B.1 (Cauchy integral formula). Let U C C be a bounded open set with
piecewise-C' boundary U oriented positively, and let f: U — C be a continuous function
holomorphic in U. Then for z € U,

1 f(0)
f(Z)—% uC—z

dc.

Usually the theorem is stated with winding numbers. The winding number is the
number of times a closed path y “goes around” a point p ¢ y. More precisely it is

defined by
def 1 1
n(y;p) = ﬁ/yz—pdz'

It is easy to show that n1(y; p) is always an integer and it is constant on the components
of C\ y. Itis also defined on cycles, which are just formal sums of closed paths
I'=y1+y2+ -+ yyu, by simply summing the corresponding integrals.

A common statement of the Cauchy integral formula with winding numbers is
that if U is open, f: U — C holomorphic, and 7 is a closed piecewise C! path (or
cycle) in U, such that n(y;p) = 0 for all p ¢ U, then

i) = 5 [ L ac
Y

By the Jordan curve theorem, a simple closed path divides the plane into two
components, one bounded and one unbounded. The bounded component is called
the interior of y, and the unbounded component, called the exterior. It can be shown
that for a piecewise-C! path y, n(y; p) = %1 for p in the interior of ¥ and n(y;p) = 0
for p in the exterior of y. We say y is oriented positively if n(y; p) = 1 on the interior.

More generally, if U is a bounded open set with piecewise-C! boundary U
oriented positively, then one can show that JU is composed of finitely many simple
closed paths oriented in such a way that n(dU; p) = 1 for p € U and n(dU; p) = 0 for
peC\U.

One way to get at the Cauchy integral formula is via Green’s theorem, which
is the Stokes’ theorem in two dimensions. In the versions we state, one needs to
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approximate the open set by smaller open sets from the inside to insure the partial
derivatives are bounded. See Theorem 4.1.1. Let us state Green’s theorem using the
dz and dz for completeness. See appendix C for an overview of differential forms.

Theorem B.2 (Green’s theorem). Let U C C be a bounded open set with piecewise-C!
boundary dU oriented positively, and let f : U — C be continuous with bounded continuous
partial derivatives in U. Then

/auf(z)d“8<2>df=/d(f(z)dz+g<z>dz):/(§_§_g_fzj) o

= (- 2)/(a—g—‘9—£)d xAdy = (- 2)/(8_g_8_f)

The Cauchy integral formula is equivalent to what is usually called just Cauchy’s
theorem:

Theorem B.3 (Cauchy). Let U C C be a bounded open set with piecewise-C' boundary oU
oriented positively, and let f: U — C be a continuous function holomorphic in U. Then

/ f(z)dz =0
ou

Again, the alternative statement with winding numbers is that if U is open,
f: U — C holomorphic, and y is a closed piecewise C! path (or cycle) in U, such that
n(y;p) =0forall p ¢ U, then the integral of f over y vanishes.

There is a converse to Cauchy. A triangle T C C is the convex hull of the three
vertices (we include the inside of the triangle), and JT is the boundary of the triangle
oriented counter-clockwise. We state the following theorem as an “if and only if,”
even though, usually it is only the reverse direction that is called Morera’s theorem.

Theorem B.4 (Morera). Suppose U C C is an open set, and f: U — C is continuous.
Then f is holomorphic if and only if

f(z)dz=0  forall triangles T C U.
aT

As we saw in the introduction, a holomorphic function has a power series.

Proposition B.5. If U C C is open and f: U — C is holomorphic, then f is infinitely
differentiable, and if A,(p) C C is a disc, then f has a power series that converges absolutely
uniformly on compact subsets of Ap(p):

f@) = az-p),
k=0
where given a simple closed (piecewise-C') path y going once counter-clockwise around p
inside Ap(p),

fBp) 1 £(0)

CTTR T om y (T = z)F*!
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Cauchy estimates follow: If M is the maximum of |f| on the circle JA,(p), then

Ckl < —.
el < =
Conversely, if a power series satisfies such estimates, it converges on A(p).

A holomorphic f: C — C that is entire. An immediate application of Cauchy
estimates is Liouville’s theorem:

Theorem B.6 (Liouville). If f is entire and bounded, then f is constant.
And as a holomorphic function has a power series it satisfies the identity theorem:

Theorem B.7 (Identity). Suppose U C C is a domain and f: U — C is holomorphic. If
the zero set f~1(0) has a limit point in U, then f = 0.

Another consequence of the Cauchy integral formula is that there is a differential
equation characterizing holomorphic functions.

Proposition B.8 (Cauchy—Riemann equations). Let U C C be open. A function f: U —
C is holomorphic if and only if f is continuously differentiable and

AL

2z 2 \ox ’ay):() on .

Yet another consequence of the Cauchy formula (and one can make an argument
that everything in this appendix is a consequence of the Cauchy formula) is the open
mapping theorem.

Theorem B.9 (Open mapping theorem). Suppose U C Cisadomainand f: U — Cis
holomorphic and not constant. Then f is an open mapping, that is, f(V') is open whenever
V' is open.

The real and imaginary parts u and v of a holomorphic function f = u + iv are
harmonic, that is V>u = V?v = 0, where V? is the Laplacian. A domain U is simply
connected if every simple closed path is homotopic in U to a constant, in other words,
if the domain has no holes. For example a disc is simply connected.

Proposition B.10. If U C C is a simply connected domain and u: U — R is harmonic,
then there exists a harmonic function v: U — R such that f = u + iv is holomorphic.

The function v is called the harmonic conjugate of u. For further review of harmonic
functions see section 2.4 on harmonic functions. We have the following versions of
the maximum principle.

Theorem B.11 (Maximum principles). Suppose U C C is a domain.

(i) If f: U — C is holomorphic and |f| achieves a local maximum in U, then f is
constant.

(i) IfU is bounded and f U— Cis holomorphic in U and continuous, then | f| achieves
its maximum on dU.
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(iit) If f: U — R is harmonic achieves a local maximum or a minimum in U, then f is
constant.

(iv) IfU is bounded and f: U — R is harmonic in U and continuous, then f achieves its
maximum and minimum on JU.

The first two items are sometimes called the maximum modulus principle. The
maximum principle immediately implies the following lemma.

Lemma B.12 (Schwarz’s lemma). Suppose f: D — D is holomorphic and f(0) = 0, then
(@) |f(2)] < |z, and
@i@) [f'(0) < 1.
Furthermore, if | f (zo)| = |zo| for some zg € D \ {0} or |f'(0)| = 1, then for some O € R we
have f(z) = €9z for all z € D.
The theorem above is actually quite general.

Theorem B.13 (Riemann mapping theorem). If U C C is a nonempty simply connected
domain such that U # C, then U is biholomorphic to D. Given zo € U there exists a unique
biholomorphic f: U — D such that f(zo) =0, f'(zo) > 0, and f maximizes |f'(zo)| among
all injective holomorphic maps to D such that f(zo) = 0.

Schwarz’s lemma can also be used to classify the automorphisms of the disc (and
hence any simply connected domain). Let Aut(D) denote the group of biholomorphic
(both f and f~! are holomorphic) self maps of the disc to itself.

Proposition B.14. If f € Aut(D), then there exists an a € D and 6 € R such that

_ i %—4a
fz)=e 1-az’

Speaking of automorphisms. We have the following version of inverse function
theorem.

Theorem B.15. Suppose U and V are open subsets of C.

(i) If f: U — V is holomorphic and bijective (one-to-one and onto), then f'(z) # 0 for
all z € V,and f~1: V — U is holomorphic. If f(p) = q, then

1
f(p)

(ii) If f: U — Vis holomorphic, f(p) = q,and f'(p) # 0, then there exists a neighborhood
W of q and a holomorphic function g: W — U that is one-to-one and f(g(z)) = z
forallz e W.

(F) @ =
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The Riemann mapping theorem actually follows from the following theorem
about existence of branches of the logarithm.

Theorem B.16. Suppose U C C is a simply connected domain, and f: U — C isa
holomorphic function without zeros in U. Then there exists a holomorphic function L: U —
C such that

el = f.

In particular, we can take roots: For every k € N, there exists a holomorphic function
g: U — C such that

gh=f.

In one complex variable, zeros of holomorphic functions can be divided out.
Moreover, zeros of holomorphic functions are of finite order unless the function is
identically zero.

Proposition B.17. Suppose U C C is a domain and f: U — C is holomorphic, not
identically zero, and f(p) = O for some p € U. There exists a k € N and a holomorphic
function g: U — C, such that g(p) # 0 and

f(z)=(z - p)kg(z) forall z € U.

The number k above is called the order or multiplicity of the zero at p. We can use
this fact and the existence of roots to show that every holomorphic function is locally
like z¥. The function ¢ below can be thought of as a local change of coordinates.

Proposition B.18. Suppose U C C is a domain and f: U — C is holomorphic, not
identically zero, and p € U. Then there exists a k € N, a neighborhood V-.C U of p, and a
holomorphic function ¢: V. — C with ¢’(p) # 0, such that

((P(Z))k =f(z)-f(p) forallzeV.

Convergence of holomorphic functions is the same as for continuous functions:
uniform convergence on compact subsets. Sometimes this is called normal convergence.

Proposition B.19. Suppose U C C is open and fr: U — C is a sequence of holomorphic
functions which converge uniformly on compact subsets of U to f: U — C. Then f

is holomorphic, and every derivative fk(g) converges uniformly on compact subsets to the
derivative f),

Holomorphic functions satisfy a Heine-Borel-like property:

Theorem B.20 (Montel). Suppose U C C is open and f, ¢ U — C is a sequence of
holomorphic functions. If {f,} is uniformly bounded on compact subsets of U, then there
exists a subsequence converging uniformly on compact subsets of U.

A sequence of holomorphic functions cannot create or delete zeros out of thin air:
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Theorem B.21 (Hurwitz). Suppose U C C is a domain and f, C U — C is a sequence
of holomorphic functions converging uniformly on compact subsets of U to f: U — C. If f
is not identically zero and z is a zero of f, then there exists a disc A,(zo) and an N, such
that for all n > N, f, has the same number of zeros (counting multiplicity) in A.(zo) as f
(counting multiplicity).

A common application, and sometimes the way the theorem is stated, is that if f,
have no zeros in U, then either the limit f is identically zero, or it also has no zeros.

If U cCisopen, p € U ,and f: U\ {p} — C is holomorphic, we say that f
has an isolated singularity at p. An isolated singularity is removable if there exists a
holomorphic function F: U — Csuch that f(z) = F(z) forallz € U \ {p}. Anisolated
singularity is a pole if

lim f(z) = o0 (thatis, |f(z)] = o0 as |z —p| — 0).
zZ—p

An isolated singularity that is neither removable nor a pole is said to be essential.

At nonessential isolated singularities the function blows up to a finite integral
order. The first part of the following proposition is usually called the Riemann
extension theorem.

Proposition B.22. Suppose U C Cisanopenset,p € U,and f: U\{p} — C holomorphic.
(i) If f is bounded (near p is enough), then p is a removable singularity.

(i) If p is a pole, there exists a k € N such that

3(z)=(z-p)'f(2)
is bounded near p and hence g has a removable singularity at p.

The number k above is called the order of the pole. There is a symmetry between
zeros and poles: If f has a zero of order k, then % has a pole of order k. If f has a

pole of order k, then Jl( has a removable singularity, and the extended function has a
zero of order k.

Let P! = C U {oo} be the Riemann sphere. The topology on Plis given by insisting
that the function 1 is a homeomorphism of P! to itself, where = = 0and § = c0. A
function f: U — P! is called meromorphic, if it is not identically oo, is holomorphic
on U \ f7!(), and has poles at f~!(o). A holomorphic function with poles is
meromorphic by setting the value to be oo at the poles. A meromorphic function is
one that can locally be written as a quotient of holomorphic functions.

At an isolated singularity we can expand a holomorphic function via the so-called
Laurent series by adding all negative powers. The Laurent series also characterizes the
type of the singularity.
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Proposition B.23. If A ¢ Cisadisc centeredat p € C,and f: A\ {p} — C holomorphic,
then there exists a double sequence {cx}; _ such that

[©e]

f@)= > alz-p),

k=—o00

converges absolutely uniformly on compact subsets of A. If y is a simple closed piecewise-C*
path going once counter-clockwise around p in A, then

1 f(©)

7 o y (C—z)F 7

The singularity at p is
(i) removable if ¢, =0 forall k < 0.
(i) pole of order ¢ € N if cx =0 forall k < —€ and c_y # 0.
(iii) essential if for every exist infinitely negative k such that cy # 0.

If p is an isolated singularity of f, then call the corresponding c_; the residue of f
at p, and write it as Res(f, p). The proposition says that for a small y around p in the
positive direction,

Res(f,p) = c1= 5 [ f2)d=
V4

Combining this equation with Cauchy’s theorem tells us that to compute integrals of
functions with isolated singularities we simply need to find the residues, which tend
to be simpler to compute. For example, if p is a simple pole (of order 1), then

Res(f,p) = ;ig;(z —p)f(2).

Theorem B.24 (Residue theorem). Suppose U C C is an open set, and y is a piecewise-C!
closed path in U such that n(y;p) = 0 for all p ¢ U. Suppose that f: U\ S — Cisa
holomorphic function with isolated singularities in a finite set S, and suppose S lies in the
interior of y. Then

/f(z) dz = 2711'2 n(y;p)Res(f,p).
Y

pes

If y is a simple closed curve positively oriented, then n(y;p) = 1 for all p in its
interior, and we can replace the hypothesis on y by requiring that the interior of y
lies in U and hence avoid mentioning winding numbers.

The identity theorem says that zeros of a nonconstant holomorphic f have no
limit points, and so are isolated points. Since % is a meromorphic function with zeros
at the poles of f, poles are also isolated. Zeros and poles of can be counted fairly

easily.
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Theorem B.25 (Argument principle). Suppose U C C is an open set, and y is a piecewise-
C! closed path in U such that n(y;p) = 0 forall p ¢ U and n(y;p) € {0,1} forallp ¢ y.
Suppose that f: U — P is a meromorphic function with no zeros or poles on y. Then

1R
2ni J,, f(z)

where N is the number of zeros of f inside y and P is the number of poles inside y, both
counted with multiplicity.

Furthermore, suppose h: U — C is holomorphic. Let z1, ..., zN be the zeros of f inside
y and w1y, ..., wp be the poles of f inside y. Then

1 f@ S ;
= /V M5 dz—;h(zk) - ;h(ww-

Again, if y is simple closed and positively oriented, the hypothesis on y could
be replaced with the requirement that the interior of y lies in U. The proof is an
immediate application of the residue theorem. Simply compute the residues at the

zeros and poles of f. In particular, if f has a zero at p or multiplicity m, then h(z)J},((;)

has a simple pole at p with residue m h(p). Similarly, if f has a pole at p of order m,

dz=N-P,

then h(z)% has a simple pole with residue —m h(p) at p.

Another useful way to count zeros is Rouché’s theorem.
Theorem B.26 (Rouché). Suppose U C C is an open set, and y is a piecewise-C! closed
path in U such that n(y;p) = 0 forall p ¢ U and n(y;p) € {0,1} forall p & y. Suppose
that f: U — Cand g: U — C are holomorphic functions such that

1f(2) = g(2)] < If(2)] +18(2)]
forall z € y. Then f and g have the same number of zeros inside y (up to multiplicity).

In the classical statement of the theorem the weaker inequality |f(z) — g(z)| <
|f(z)] is used. Notice that either inequality precludes any zeros on y itself.

A holomorphic function with an essential singularity achieves essentially every
value. A weak version of this result (and an easy to prove one) is the Casorati—
Weierstrass theorem: If a holomorphic f has an essential singularity at p, then for
every neighborhood W of p, f (W \ {p}) is dense in C. Let us state the much stronger
theorem of Picard: A function with an essential singularity is very wild. It achieves
every value (except possibly one) infinitely often.

Theorem B.27 (Picard’s big theorem). Suppose U C C is open, f: U\ {p} — Cis
holomorphic, and f has an essential singularity at p. Then for every neighborhood W of p,
f(W\ {p}) is either C or C minus a point.

For example, e!/? has an essential singularity at the origin and the function is
never 0. Since we stated the big theorem, let us also state the little theorem.
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Theorem B.28 (Picard’s little theorem). If f: C — C is holomorphic, then f(C) is either
C or C minus a point.

One theorem from algebra that is important in complex analysis, and becomes
perhaps even more important in several variables is the fundamental theorem of
algebra. It really is a theorem of complex analysis and its standard proof is via the
maximum principle.

Theorem B.29 (Fundamental theorem of algebra). If P: C — C is a nonzero polynomial
of degree k, then P has exactly k zeros (roots) in C counted with multiplicity.

The set of rational functions is dense in the space of holomorphic functions, and
we even have control over where the poles need to be. Note that a nonconstant
polynomial has a “pole at infinity” meaning P(z) — o0 as z — 0. Letting P! again
be the Riemann sphere, we have Runge’s approximation theorem.

Theorem B.30 (Runge). Suppose U C C is an open set and A C P\ U is a set containing
at least one point from each component of P*\ U. Suppose f: U — C is holomorphic. Then
for every € > 0 and every compact K CC U, there exists a rational function R with poles in
A such that

IR(z) - f(z)] <e  forallz € K.

Perhaps a surprising generalization of the classical Weierstrass approximation
theorem, and one of my favorite one-variable theorems, is Mergelyan’s theorem. It
may be good to note that Mergelyan does not follow from Runge.

Theorem B.31 (Mergelyan). Suppose K cC C is a compact set such that C\ K is connected
and f: K — C is a continuous function that is holomorphic in the interior K°. Then for
every € > 0 and every compact K CC U, there exists a polynomial P such that

|P(z) = f(z)] <e  forallz € K.

The reason why the theorem is perhaps surprising is that K may have only a
small or no interior. Using a closed interval K = [a, b] of the real line we recover the
Weierstrass approximation theorem.

Given an open set U C C, we say U is symmetric with respect to the real axis if z € U
implies z € U. We divide U into three parts

Ui ={zelU:Imz > 0}, Up={z el :Imz =0}, U_-={zelU:Imz < 0}.
We have the following theorem for extending (reflecting) holomorphic functions past
boundaries.

Theorem B.32 (Schwarz reflection principle). Suppose U C C is a domain symmetric
with respect to the real axis, f: U, U Uy — C a continuous function holomorphic on U,
and real-valued on Uy. Then the function g: U — C defined by

g(z) = f(z) ifzel,Uly, gz)=f(Z) ifzel-,

is holomorphic on U.
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In fact, the reflection is really about harmonic functions.

Theorem B.33 (Schwarz reflection principle for harmonic functions). Suppose U C C
is a domain symmetric with respect to the real axis, f : U, U Uy — R a continuous function
harmonic on U, and zero on Uy. Then the function g: U — R defined by

g(z) = f(z) ifzeU,sUl,, g(z)=—-f(2) ifzel_,

is harmonic on U.

Functions may be defined locally, and continued along paths. Suppose p is a
point and D is a disc centered at p € D. A holomorphic function f: D — C can
be analytically continued along a path y: [0,1] — C, y(0) = p, if for every t € [0, 1]
there exists a disc D; centered at y(t), where Dy = D, and a holomorphic function
fi: Dy — C, where fy = f, and for each to € [0,1] there is an € > 0 such that if
|t —to| < €, then f; = f;, in Dy N Dy,. The monodromy theorem says that as long as
there are no holes, analytic continuation defines a function uniquely.

Theorem B.34 (Monodromy theorem). If U C C is a simply connected domain, D C U a
disc and f: D — C a holomorphic function that can be analytically continued from p € D
to every q € U along every path from p to q, then there exists a unique holomorphic function
F:U — Csuch that F|p = f.

An interesting and useful theorem getting an inequality in the opposite direction
from Schwarz’s lemma, and one which is often not covered in a one-variable course
is the Koebe %-theorem. Think of why no such theorem could possibly hold for just
smooth functions. At first glance the theorem should seem quite counterintuitive,
and at second glance, it should seem outright outrageous.

Theorem B.35 (Koebe quarter theorem). Suppose f : D — C is holomorphic and injective.
Then f(D) contains a disc centered at f(0) and radius %ﬂ.

The % is sharp, that is, it is the best it can be.

Finally, it is useful to factor out all the zeros of a holomorphic function, not just
finitely many. Similarly, we can work with poles.

Theorem B.36 (Weierstrass product theorem). Suppose U C C is a domain, {ay}, {bx}
are countable sets in U with no limit points in U, and {ny}, {my} countable sets of natural
numbers. Then there exists a meromorphic function f of U whose zeros are exactly at ay,
with orders given by ny, and poles are exactly at by, with orders given by my.

For a more explicit statement, we need infinite products. The product [];_,(1+ax)
converges if the sequence of partial products [];_,(1 + ax) converges. We say that
the product converges absolutely if ]}, ,(1 + |ax|) converges, which is equivalent to
Yreqlak| converging.
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Define

Eo(z) =(1-2), Em(z)=(1—z)exp(z+22—2+---+§).

The function E,, (z/a) has a zero of order 1 at a.

Theorem B.37 (Weierstrass factorization theorem). Let f be an entire function with
zeros (repeated according to multiplicity) at points of the sequence {ay} except the zero at
the origin, whose order is m (possibly m = 0). Then there exists an entire function g and a

sequence {py} such that
— M ,8(2) | | z
f(Z) °e k=1 Epk (ak) '

converges uniformly absolutely on compact subsets.

Dk

oo
a
k=1 k

The py are chosen such that
1+pg

converges for all r > 0.

* %k

There are many other useful theorems in one complex variable, and we could
spend a lot of time listing them all. However, hopefully the listing above is useful
as a refresher for the reader of the most common results, some of which are used in
this book, some of which are useful in the exercises, and some of which are just too
interesting not to mention.



C | Differential Forms and Stokes’
Theorem

Differential forms come up quite a bit in this book, especially in chapter 4 and
chapter 5. Let us overview their definition and state the general Stokes” theorem.
No proofs are given, this appendix is just a bare bones guide. For a more complete
introduction to differential forms, see Rudin [R1].

The short story about differential forms is that a k-form is an object that can be
integrated (summed) over a k-dimensional object, taking orientation into account.
For simplicity, as in most of this book, everything in this appendix is stated for smooth
(C*) objects to avoid worrying about how much regularity is needed.

The main point of differential forms is to find the proper context for the Funda-
mental theorem of calculus,

b
/ f'(x)dx = f(b) - f(a).

We interpret both sides as integration. The left-hand side is an integral of the 1-form
f’ dx over the 1-dimensional interval [a, b] and the right-hand side is an integral of
the O-form (a function) f over the O-dimensional (two-point) set {a,b}. Both sides
consider orientation, [a, b] is integrated from a to b, {a} is oriented negatively and
{b} is oriented positively. The two-point set {a, b} is the boundary of [a, b], and the
orientation of {a, b} is induced by the orientation of [a, b].

Let us define the objects over which we integrate, that is, smooth submanifolds of
R". Our model for a k-dimensional submanifold-with-boundary is the upper-half-
space and its boundary:

HE L e RF - x> 0), oHF €' {x e RF : x; = 0},

Definition C.1. Let M C R" have the induced subspace topology. Let k € Ny. Let
M have the property that for each p € M, there exists a neighborhood W c R" of
p, a point g € H¥, a neighborhood U ¢ HF of g, and a smooth one-to-one open®
mapping ¢: U — M such that ¢(g) = p, the derivative D¢ has rank k at all points,

"By open, we mean that ¢ (V) is a relatively open set of M for every open set V C U.
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and ¢(U) = M NW. Then M is an embedded submanifold-with-boundary of dimension k.
The map ¢ is called a local parametrization. If q is such that g; = 0 (the last component
is zero), then p = ¢(q) is a boundary point. Let M denote the set of boundary points.
If IM = 0, then we say M is simply an embedded submanifold.

The situation for a boundary point and an interior point is depicted in Figure C.1.
Note that W is a bigger neighborhood in R” than the image ¢(U).

Hk Hk

JHF
Interior point Boundary point

Figure C.1: Parametrization at an interior and a boundary point of a submanifold.

Completely correctly, we should say submanifold of R¥. Sometimes people (includ-
ing me) say manifold when they mean submanifold. A manifold is a more abstract
concept, but all submanifolds are manifolds. The word embedded has to do with
the topology on M, and this has to do with the condition p(U) = M NW and ¢
being open. The condition means that ¢ is a homeomorphism onto M N W. It is
important that W is an open set in R”. For our purposes here, all submanifolds will
be embedded. We have also made some economy in the definition. If g is not on the
boundary of HF, then we might as well have used RF instead of HF. A submanifold is
something that is locally like R¥, and if it has a boundary, then near the boundary it
is locally like H* near a point of JHF.

We also remark that submanifolds are often defined in reverse rather than by
parametrizations, that is, by starting with the (relatively) open sets M N W, and
the maps ¢}, calling those charts, and calling the entire set of charts an atlas. The
particular version of the definition we have chosen makes it easy to evaluate integrals
in the same way that parametrizing curves makes it easy to evaluate integrals.

Examples of such submanifolds are domains with smooth boundaries as in
Definition 2.2.1, we can take the inclusion map x +— x as our parametrization. The
domain is then the submanifold M and JM is the boundary of the domain. Domains
are the key application for our purposes. Another example are smooth curves.
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If M is an embedded submanifold-with-boundary of dimension k, then dM is also
an embedded submanifold of dimension k — 1. Simply restrict the parametrizations
to the boundary of H¥.

We also need to define an orientation.

Definition C.2. Let M C R" be an embedded submanifold-with-boundary of di-
mension k > 2. Suppose a set of parametrizations can be chosen such that each
point of M is in the image of one of the parametrizations, and if ¢: U — M and
@: U — M are two parametrizations such that ¢(U) N go(ll) # 0, then the transition
map (automatically smooth) defined by

¢ log

on ¢~ 1(eU) N @(ﬁ)) (in other words, wherever it makes sense) is orientation
preserving, that is,

detD(@ -1 ogo) >0

at all points. The set of such parametrizations is the orientation on M, and we usually
take the maximal set of such parametrizations.

If M is oriented, then the restrictions of the parametrizations to JH* give an
orientation on dM. We say this is the induced orientation on JM.

For dimensions k = 0 (isolated points) and k = 1 (curves) we must define
orientation differently. For k = 0, we simply give each point an orientation of +
or —. For k = 1, we need to allow parametrization by open subsets not only of
H! = [0, o), but also —H! = (—c0, 0]. The definition is the same otherwise. To define
the orientation of the boundary, if the boundary point corresponds to the 0 in [0, o)
we give this boundary point the orientation —, and if it corresponds to the 0 in (—o0, 0],
then we give this point the orientation +. The reason for this complication is that
unlike in R* for k > 2, the set H! = [0, o) cannot be “rotated” (in R!) or mapped via
an orientation preserving map onto —H! = (=co, 0], but in R? the upper-half-plane
H? can be rotated to the lower-half-plane —H? = {x € R? : x, < 0}. For computations,
it is often useful for compact curves with endpoints (boundary) to just give one
parametrization from [0, 1] or perhaps [a, b], then a corresponds to the — and b
corresponds to the +.

The fact that the transition map is smooth does require a proof, which is a good
exercise in basic analysis. It requires a bit of care at boundary points.

An orientation allows us to have a well-defined integral on M, just like a curve
needs to be oriented in order to define a line integral. However, unlike for curves,
not every submanifold of dimension more than one is orientable, that is, admits an
orientation. A classical nonorientable example is the Mobius strip.

Now that we know “on” what we integrate, let us figure out what “it” is that we
integrate. Let us start with 0-forms. We define 0-forms as smooth functions (possibly
complex-valued). Sometimes we need a function defined just on a submanifold.
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A function f defined on a submanifold M is smooth when f o ¢ is smooth on U
for every parametrization ¢: U — M. Equivalently, one can prove that f is the
restriction of some smooth function defined on some neighborhood of M in R".

A 0-form w defined on a 0-dimensional oriented submanifold M is integrated as

A/I w i Z epw(p),

peM

where €, is the orientation of p given as +1 or —1. To avoid problems of integrability,
one can assume that w is compactly supported (it is nonzero on at most finitely many
points of M) or that M is compact (it is a finite set).

The correct definition of a 1-form is that it is a “smooth section” of the dual of the
vector bundle TR". That is, it is something that eats a vector field, and spits out a
function. The 1-form dxy is supposed to be the object that does

d d .
ka (a—xk) = 1, ka (a_x‘;) =0 ifl #k.

For our purposes here, just suppose that a 1-form in R" is an object of the form
w = g1dx1 + Qdxy + - + gudxy,

where ¢1, &2, ..., gn are smooth functions. That is, a 1-form is at each point a linear
combination of dxi,dxy, . ..,dx, that varies smoothly from point to point. Suppose
M is a one-dimensional submanifold (possibly with boundary), ¢: U — M is a
parametrization compatible with the orientation of M, and g is supported in ¢(U).

Define ;
def ,
/M 0 ) /u gelo() @t dt,

where the integral fu --+ dt is evaluated with the usual positive orientation (left to
right) as U C R, and ¢y is the kth component of ¢.

Generally, a 1-form has support bigger than just ¢(U). In this case, one needs to
use a so-called partition of unity to write w as a locally finite sum

w = E Wy,
L

where each w, has support in the image of a single parametrization. By locally finite,
we mean that on each compact neighborhood only finitely many w, are nonzero.

Define
def
w = @,.
Je % o

The definition makes sense only if this sum actually exists. For example, if w is
compactly supported, then this sum is only finite, and so it exists.
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Higher degree forms are constructed out of 1-forms and 0-forms by the so-called
wedge product. Given a k-form @ and an ¢-form 7,

w AN

is a (k + ¢)-form. We require the wedge product to be bilinear at each point: If f and
g are smooth functions, then

(fo+gmAE=flwné)+gnAf), and wA(fn+g&) = flonn)+g(wAl).

The wedge product is not commutative; we require it to be anticommutative on
1-forms. If w and 1 are 1-forms, then

WwAN=-1NAw.
The negative keeps track of orientation. When w is a k-form and 7 is an m-form,
wAn=(=D"Aw.

We wedge together the basis 1-forms to get all k-forms. A k-form is then an

expression

n o on n

w = ZZ---Zggl ..... [kngl /\dxng\---/\dxgk,
6H=16=1 =1

where gy,,.. ¢, are smooth functions. We can simplify even more. Since the wedge is
anticommutative on 1-forms,

dxg Ndxy, = —dx, Adxy, and dxy A dxp = 0.

In other words, every form dxy A dxy, A --- A dxy,_is either zero, if any two indices
from #1, ..., { are equal, or can be put into the form +dx, A dx, A --- A dx,, where
{1 < b <--- <. Thus, a k-form can always be written as

w = Z Lor, bk ngl /\ngz/\---/\ngk.

1<bi<by<--<l<n

In general, just like 1-forms are linear functionals of vector fields, k-forms are
alternating multilinear functions of k vector fields. To simplify matters, let us note
how k vectors are plugged into dx, Adxg, A---Adxg,. Consider vector fields Xj, ..., Xi
givenby X; = 3/ cmj%. Then

Cpu1 Cp2 - Cpk

Cirl Ch2 " Chk
dxg Adxg A--- ANdxg (X, ..., Xg)=det| | T N

kal %2 e kak
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That is, each ng]. picks out the {;th row out of the matrix of all coefficients and we
take the determinant. Here is an explicit example for k = 2:

J J da)zad—bc.

b&JCz’ C&xl * 8xz

dx1 A dxo (a J +
&xl

Consider an oriented k-dimensional submanifold M (possibly with boundary), a
parametrization ¢: U — M from the orientation, and a k-form w supported in ¢(U)

.....

def
/Ma) = Z /ugel ..... o (t)det D(@e, @o,, ..., Qu,) dt

1<l <by<-<lp<n

U. Define

where the integral fu -+ dt is evaluated in the usual orientation on R* with dt the
standard measure on R¥ (think dt = dt1dt, - - - dt,), and D(@e,, ¢4, - - -, @r.) denotes
the derivative of the mapping whose mth component is ¢y,

Similarly as before, if w is not supported in the image of a single parametrization,

write
w=Y o
¢

as a locally finite sum, where each w, has support in the image of a single parametriza-

tion of the orientation. Then
/ def /
w = Z wy.
M 7 JM

Again, the sum has to exist, such as when w is compactly supported and the sum is
finite.

The only nontrivial differential forms on R" are 0,1,2,...,n forms. The only
n-forms are object of the form

f(x)dxy Adxa A=+ Adxy.

The form dx1 Adxy A - -+ A dxy, is called the volume form. Integrating it over a domain
(an n-dimensional submanifold) gives the standard volume integral.

More generally, one defines integration of k-forms over k-chains, which are
just linear combinations of smooth submanifolds, but we do not need that level of
generality.

In computations, we can avoid sets of zero measure (k-dimensional), so we
can ignore the boundary of the submanifold. Similarly, if we parametrize several
subsets we can leave out a measure zero subset. Let us give a couple of examples of
computations.
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Example C.3: Consider the circle S! ¢ R?. We use a parametrization ¢: (-7, ) —
S! where ¢(t) = (cos(t),sin(t)), so the circle is oriented counter-clockwise. Let
w(x1,x2) = P(x1, x2) dx1 + Q(x1, x2) dx2, then

/ w = /H(P (cos(t), sin(t)) (- sin(t)) + Q(cos(t), sin(t)) cos(t)) dt.
sl -1

We can ignore the point (-1, 0) as a single point is of 1-dimensional measure zero.

Example C.4: Consider a domain U C R”, then U is an oriented submanifold. We
use the parametrization ¢: U — U, where ¢(x) = x. Then

/uf(x)dxl/\dxz/\-~~/\dxn:Lf(x)dxldxz---dxn:Lf(x)dV,

where dV is the standard volume measure.

Example C.5: Finally, consider M the upper hemisphere of the unit sphere S? ¢ R?
as a submanifold with boundary. That is consider

M = {x€R3:x%+x§+x§:1,x3 20}.
The boundary is the circle in the (x1, x2)-plane:
oM = {x€R3:x%+x§:1,x3:O}.
Consider the parametrization of M using the spherical coordinates
©(0,9) = (cos(0) sin(y), sin(0) sin(y), cos(y)))

for U givenby -t < 6 < 1,0 < 1 < 7/2. After a rotation this is a subset of a half-plane
with the points corresponding to ¢ = 7/2 corresponding to boundary points. We miss
the points where 0 = 7, including the point (0,0, 1), but the set of those points is a
1-dimensional curve, and so a set of 2-dimensional measure zero. For the purposes
of integration we can ignore it. Let

w(x1, X2, x3) = P(x1, x2, x3) dx1 Adxa +Q(x1, X2, x3) dx1 Adxz+R(x1, x2, x3) dx2 Adxs.
Then
n m/2 8@1 a(pz 8(,02 8(p1
= P(p(0, -
foo= [ e m(55 52 -5 5)
8@1 a(pg 8@3 8(p1
+Q(§0(6/l/}))( 20 81# - 20 aw

9p29ps I3
+R((p(9,¢))( i ;Zf — 8(2)2”616 dy

s i/
= [ /0 ’ [P (cos(0) sin(y), sin(6) sin(y), cos(¥)) (— cos(y) sin(y))
+ Q(cos(6) sin(), sin(0) sin(y)), cos(y))) sin(0) Sil’lz(l/})
+ R(cos(0) sin(y), sin(0) sin(yp), cos(y)) (— cos(0) sinz(yb))] do dy.
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The induced orientation on the boundary dM is the counter-clockwise orientation
used in Example C.3, because that is the parametrization we get when we restrict to
the boundary, ¢(6, 7/2) = (cos(0), sin(0), 0).

The derivative on k-forms is the exterior derivative, which is a linear operator that
eats k-forms and spits out (k + 1)-forms. For a k-form

W = 8y,...,k dxfl A dxfz ARRRRA ngk,

define the exterior derivative dw as

.....

n
def g, L
dw = dgy,.q Ndxg Adxg A+ Adxg, =Z &h Edxy Adxg Adxe, Ao Adxg,.

m=1

Then define d on every k-form by extending it linearly.
For example,

d(P dxy Adxs + Qdxs ANdxq+ Rdxq A dxz)
= 8—del /\dXz/\dX3+a—deZ/\dX3/\dX1+&—RdX3/\dX1 A dxo
3.7(1 &xz 8x3

:(8P+8Q+8R

o7 o ax3) dxq A dxy A dxs.

You should recognize the divergence of the vector field (P, Q, R) from vector calculus.
All the various derivative operations in R? from vector calculus make an appearance.
If w is a 0-form in R3, then dw is like the gradient. If w is a 1-form in R3, then dw is
like the curl. If w is a 2-form in R3, then dw is like the divergence.

Something to notice is that
ddw) =0

for every w, which follows because partial derivatives commute. In particular, we get
a so-called complex: If AF(M) denotes the k-forms on an n-dimensional submanifold
M, then we get the complex

AOM) S AT S A2 S S Ao S o

We remark that one can study the topology of M by computing from this complex
%m, which is really about global solvability of the
differential equation dw = 1 for an unknown w. There are variations on this idea and

one appears in chapter 4, but we digress.

the cohomology groups,

Let us now state Stokes” theorem, sometimes called the generalized Stokes” theorem
to distinguish it from the classical Stokes’” theorem you know from vector calculus,
which is a special case.
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Theorem C.6 (Stokes). Suppose M C R" is an embedded compact smooth oriented (k + 1)-
dimensional submanifold-with-boundary, dM has the induced orientation, and w is a smooth

k-form defined on M. Then
/ W = / dw.
oM M

One can get away with less regularity, both on w and M (and JM) including
“corners.” In R?, it is easy to state in more generality, see Theorem B.2.

A final note is that the classical Stokes” theorem is just the generalized Stokes’
theorem with n = 3, k = 2. Classically instead of using differential forms, the line
integral is an integral of a vector field instead of a 1-form w, and its derivative dw is
the curl operator.

As to at least get a flavor of the theorem, let us prove it in a simpler setting, which
however is often almost good enough, and it is the key idea in the proof. Suppose
U c R" is a domain such that for each k = 1, ..., n there exist two smooth functions
ay and fx and U as a set is given by

(X1, vy XK1, Xk, -+ -, Xn) € TR(U),
ak(xll ey Xk=1, Xk41s - s xn) < Xk < ﬁk(x].l ey Xk=1, Xk41s+ -+ s xn)/

where 7, (U) is the projection of U onto the (x1, ..., Xk-1, Xk+1, - - - , X») cOmponents.
Orient JU as usual.

Write x” = (x1, ..., Xk—1, Xk+1, - - - , Xn), and let dV,,_; be the volume form for R"1.
Consider the (n — 1)-form

W= fdxi AN Ndxg_qg ANdxger Ao ANdxy.

Then dw = %dxl A -+ A dxy,. By the fundamental theorem of calculus,

dV
/da) 8xk W
Be(x') 9
=/ / f dxk an 1
W) Jar) 9xe

= fxr, oo X1, B(x), Xk, - o, X)) AV
i (U)

- f(xll'"/xk—l/ak(x,)/xk+l/'~'/xi’l)dv}’l—1
e (U)

- [ w
au

Any (n — 1)-form can be written as a sum of forms like w for various k. Integrating
each one of them in the correct direction provides the result.



D ' Basic Terminology and Results
from Algebra

We quickly review some basic definitions and a result or two from commutative that
we need in chapter 6. See a book such as Zariski-Samuel [ZS5] for a full reference.

Definition D.1. A set G is called a group if it has an operation x = y defined on it and
it satisfies the following axioms:

(Gl) fxe Gand y € G, thenx»y € G.
(G2) (associativity) (x +y)+z =x=*(y+z)forall x,y,z € G.
(G3) (identity) There exists an element 1 € G such that1+x = x forall x € G.

(G4) (inverse) For every element x € G there exists an element x™! € G such that
-1 _
xxx =0.

A group G is called abelian if it also satisfies:
(G5) (commutativity) x+y = y+x forall x,y € G.

A subset K C G is called a subgroup if K is a group with the same operation as the
group G. If G and H are groups, a function f: G — H is a group homomorphism if it
respects the group law, thatis, f(a *b) = f(a) = f(b). If f is bijective, then it is a group
isomorphism.

An example of a group is a group of automorphisms. For example, let U C C be
open and suppose G is the set of biholomorphisms f: U — U. Then G is a group
under composition, but G is not necessarily abelian: If U = C, then f(z) = z + 1 and
g(z) = —z are members of G, but f o g(z) = —z+1land go f(z) = —z - 1.

Definition D.2. A set R is called a commutative ring if it has two operations defined
on it, addition x + y and multiplication xy, and if it satisfies the following axioms:

(Al) If x e Rand y € R, thenx +y € R.

(A2) (commutativity of addition) x +y =y + x forall x,y € R.
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(A3) (associativity of addition) (x + y) +z =x +(y + z) forall x,y,z € R.
(A4) There exists an element 0 € R such that 0 + x = x for all x € R.
(A5) For every element x € R there exists an element —x € R such that x + (—x) = 0.
(M1) If x e Rand y € R, then xy € R.
(M2) (commutativity of multiplication) xy = yx forall x, y € R.
(MB3) (associativity of multiplication) (xy)z = x(yz) forall x,y,z € R.
(M4) There exists an element 1 € R (and 1 # 0) such that 1x = x for all x € R.
(D) (distributive law) x(y + z) = xy + xz forall x,y,z € R.

The ring R is called a field if furthermore:

(F) For every x € R such that x # 0 there exists an element 1/x € R such that
x(1/x) = 1.

In a commutative ring R, the elements u € R for which there exists an inverse 1/u
as above are called units.

If R and S are rings, a function f: R — S is a ring homomorphism if it respects the
ring operations, that is, f(a + b) = f(a) + f(b) and f(ab) = f(a)f(b), and such that
f(1) = 1. If f is bijective, then it is called a ring isomorphism.

Namely, a commutative ring is an abelian additive group (by additive group
we just mean we use + for the operation and 0 for the respective identity), with
multiplication thrown in. If the multiplication also defines a group on the set of
nonzero elements, then the ring is a field. A ring that is not commutative is one that
does not satisfy commutativity of multiplication. Some authors define ring without
asking for the existence of 1.

A ring that often comes up in this book is the ring of holomorphic functions.
Let 6(U) be the set of holomorphic functions defined on an open set U. Pointwise
addition and multiplication give a ring structure on 6(U). The set of units is the set
of functions that never vanish in U. The set of units is a multiplicative group.

Given a commutative ring R, let R[x] be the set of polynomials

k-1

P(x) = XX+ N+ e + ¢,

where cg, ..., cx € R. The integer k is the degree of the polynomial and ci is the leading
coefficient of P(x). If the leading coefficient is 1, then P is monic. If R is a commutative
ring, then so is R[x]. Similarly, we define the commutative ring R[x1, ..., x,] of
polynomials in n indeterminates.

The most basic result about polynomials, Theorem B.29 the fundamental theorem
of algebra, which states that every nonconstant polynomial over R = C has a root, is
really a theorem in one complex variable.
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Definition D.3. Let R be a commutative ring. A subset I C R is an ideal if f € R and
g, h € Iimpliesthat fg € and g+h € I. Inshort, I C R is an additive subgroup such
that RI = I. Given a set of elements S C R, the ideal generated by S is the intersection I
of all ideals containing S. If S = {f1, ..., fr} is a finite set, we say [ is finitely generated,
and we write I = (f1, ..., fx). A principal ideal is an ideal generated by a single element.
A commutative ring where every ideal is a principal ideal is called a principal ideal
domain or a PID. A commutative ring R is Noetherian if every ideal in R is finitely
generated.

It is not difficult to prove that “an ideal generated by S” really is an ideal, that is,
the intersection of ideals is an ideal. If an ideal I is generated by fi, ..., fk, then every
g € I can be written as

g=afit+-+crfe,
for some cy,...,cx € R. Clearly the set of such elements is the smallest ideal
containing f1, ..., fk.

Theorem D.4 (Hilbert basis theorem). If R is a Noetherian commutative ring, then R[x]
is Noetherian.

As the proof is rather short, we include it here.

Proof. Suppose R is Noetherian, and I C R[x]isanideal. Starting with the polynomial
f1 of minimal degree in I, construct a (possibly finite) sequence of polynomials
fi, f2, ... such that fy is the polynomial of minimal degree from the set I\ (fi, ..., fi-1).
The sequence of degrees deg(f1), deg(f2), ... is by construction nondecreasing. Let
cx be the leading coefficient of fj.

As R is Noetherian, then there exists a finite k such that (cq,c2,...,cn) C
(c1,c2,...,cx) for all m. Suppose for contradiction there exists a fi41, that is, the
sequence of polynomials did not end at k. In particular, (cy, ..., ck+1) C (c1,...,Ck)
or

Cik+1 = a1€1 + -+ - ayCy.

As degree of fi1 is at least the degree of f;, through fi, we can define the polynomial

g= alxdeg(f"“)_deg(fl)ﬁ + llzxdeg(fk+1)_deg(f2)f2 Foeee 4 akxdeg(fkﬁ-l)_deg(fk)fk.

The polynomial g has the same degree as fi+1, and in fact it also has the same
leading term, cx+1. On the other hand, g € (fi, ..., fx) while fi+1 € (f1,..., fx) by
construction. The polynomial ¢ — fi41 is also not in (fi, ..., fx), but as the leading
terms canceled, deg(g — fi+1) < deg(fr+1), but thatis a contradiction, so fi+1 does not
existand I = (f1,..., fr)- O

Definition D.5. An element f € R is irreducible if whenever f = gh for two elements
g, h € R, then either g or & is a unit. A commutative ring R is a unique factorization
domain (UFD) if up to multiplication by a unit, every element has a unique factorization
into irreducible elements of R.
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One version of a result called the Gauss lemma says that just like the property of
being Noetherian, the property of being a UFD is retained when we take polynomials.

Theorem D.6 (Gauss lemma). If R is a commutative ring that is a UFD, then R[x] is a
UFD.

The proof is not difficult, but it is perhaps beyond the scope of this book.



E | Results From Real Analysis

E.1 | Measure theory review

The beginning of this course does not require the Lebesgue integral, however, knowing
it may make some of the earlier results easier to understand and the exercises easier
to work. In some of the later chapters, Lebesgue integral does become necessary
in several places. To make the first reading of the entire book easier for a student
who has not had a course on measure theory yet, we present the basic ideas of the
Lebesgue integral and list the results that make it so useful. We avoid getting into the
details of the definition and simply state the useful results without proof. A reader
who is interested can consult, for example, [R1] or [R3].

Given a set X, we designate a collection Jl of subsets of X, called the measurable
sets. The collection Jl should be a o-algebra, meaning that it is closed under taking
complements, countable unions, and countable intersections. On these measurable
sets we define a measure, that is, a function u: Ml — R, such that p > 0, u(@) = 0, and
u is o-additive, that is, the measure of a union of countably many disjoint sets is the
sum of the measures. If X is the euclidean space R", there always exists a measure
called the Lebesgue measure that will agree with the standard n-dimensional volume
on simple sets such as rectangles. A complication is that not all subsets of R" can
then be measurable. We say that (X, J(, u) is a measure space.

A function f: X — R is measurable if its sublevel sets are measurable. Since one
generally has to work hard to produce a nonmeasurable function in the measure
spaces we consider, the reader may be forgiven for assuming every function in this
book is measurable. A function is simple if its support is of finite measure and it only
has finitely many values, in which case the integral is defined as

/deud=ef D ye(fw).

yef(X)

That is, on the set where f(x) = y we define the integral as the value of the function
times the measure of the set and then we add these up. If the function is actually a
step function and the measure was the Lebesgue measure, this is the same as would
be done for the Riemann integral. The integral of a nonnegative measurable f is
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defined by

/f du & sup @ du.
X p<f X
@ is simple
The integral of any real-valued measurable function is then defined by writing
f = f+ — f- for nonnegative functions f. and f_, as long as the integrals of at least

one of these is not infinite, and writing

/de#déf/Xﬁdu—/Xf—dy-

Similarly the integral of complex-valued measurable functions is defined by writing

f=u+iv,thatis,
/fdyd:ef/udp—i/vdy.
X X X

The most common class of functions to deal with is then the Ll-integmble functions,
which are the functions such that
11 < .
X

For any function where the integral is defined we obtain the most basic estimate

‘/deu < [1f1du

For the purposes of integration, we often allow nonnegative functions to take on the
value co at some points. In general, we allow our functions to be undefined on a set
of measure zero if we are integrating them since changing a function on a measure
zero set does not change the integral.

There are a couple of things to notice about the definition. First, because step
functions are simple functions with respect to the Lebesgue measure, the integration
is a generalization of the Riemann integral on the real line and on R" in general in
the sense that the two integrals agree when they are both defined.

Second, many more functions (all measurable functions in fact) can be limits of
simple functions, and the integral is defined as a limit of such integrals, one would,
rightly, expect that limits can easily pass under the integral and we no longer need to
worry about integrability of the limit.

Besides integration, one often forgotten feature of this setup is that it applies to
series. For a countable set X such as N we can define the so-called counting measure,
where every set S C X is measurable and p(S) is simply the number of elements in S.
If z, = f(n) is a function defined on X, then we write

Zzn:/dey.

neX
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So the following theorems also apply to series, where being L! simply means that the
series is absolutely summable.

We say that something happens almost everywhere if the set where it does not
happen is of measure zero. Similarly we may say that this something happens for
almost every x € X. Note that if a sequence of measurable functions converges to a
function f almost everywhere, then this function can be assumed to be measurable (it
is equal almost everywhere to a measurable function). We have the following three
theorems, which despite appearances are actually just equivalent to each other, but
each statement is useful in different situations.

Theorem E.1.1 (Fatou’s lemma). Let (X, JL, 1) be a measure space and { f, } a sequence of
nonnegative measurable functions that converges almost everywhere to a function f. Then

/fdy < liminf/ fndu.
X e JXx

Theorem E.1.2 (Monotone convergence theorem). Let (X, M, 1) be a measure space and
{fn} a sequence of nonnegative measurable functions that converges pointwise to a function f.

Then
/fdyzlim/fndy.
X =00 Jx

Theorem E.1.3 (Dominated convergence theorem). Let (X, ML, i) be a measure space and
{fn} a sequence of measurable complex-valued functions that converges almost everywhere
to a function f. Suppose g is a nonnegative L'-integrable function such that | f (x)| < g(x)
for almost every x. Then

/fdy = lim [ f,du.
X e Jx

A common application of the dominated convergence theorem is differentiating
under the integral.

Theorem E.1.4 (Differentiation under the integral). Let U C R be open and (X, AL, u) be
a measure space. Suppose f: UXX — Cisa function such that foreacht € U, x — f(t, x)

is L'-integrable, for almost every x, aa—{ exists on all of U, and there exists an L'-integrable

g: X — [0, oo] such that |3—{(t,x)
allt e U,

< g(x) forall t € U and almost every x € X. Then for

0
%/Xf(t,x)dy(x)z/Xa—{(t,x)dﬂ(x)-

A measure space is o-finite if it is a countable union of sets of finite measure.
For example, the euclidean space with Lebesgue measure is o-finite because it is a
union of balls, which are of finite measure. We often want to write an integral over a
product space as an iterated integral, such as writing an integral over a subset of R”"
using n one-dimensional integrals. If (X, /L, i) and (Y, W, v) are product spaces, we
can define a product measure space by requiring that u X v(A X B) = u(A)v(B) (we
again skip details). First, for nonnegative functions we obtain the following simple
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theorem where no integrability needs to be checked, and we are allowing things to
be infinite if needed.

Theorem E.1.5 (Tonelli). Suppose (X, M, u) and (Y, N, v) are o-finite measure spaces and
f: X XY — R isanonnegative measurable function. Then:

(i) For almost every x € X, y — f(x,y) is measurable, and for almost every y € Y,
x — f(x,y) is measurable.

(i) The functions y +— /X f(x,y)du(x) and x — fyf(x, y) dv(y) are measurable.

(ii)

ﬂ%yMWXVFiﬁaéf&JMWWﬁdww

:A(Lﬂ%wmwg@@)

In general there is the Fubini theorem. A measure is complete, if every subset of a
measure zero set is also measurable. A measure can be completed by simply throwing
those sets in, but it is a minor technicality that the product of two measure spaces is
not in general complete and must be completed. This is an issue for measurability of
the functions involved, but the functions that one usually considers in applications
are easily shown measurable in all of these measure spaces and their completions.

XxXY

Theorem E.1.6 (Fubini). Suppose (X, M, u) and (Y, N, v) are complete measure spaces
and f: X XY — R is Ll-integrable. Then:

(i) For almost every x € X, y v f(x,y) is L'-integrable, and for almost every y € Y,
x > f(x,y)is L'-integrable.

(if) The functions y +— fx f(x,y)du(x) and x — fyf(x, y) dv(y) is L-integrable.
(iif)
[ rigon = [ [, dueo) avty

- ( [ e dv(y>) du(x).

Tonelli theorem is often applied in tandem with the Fubini theorem. Tonelli
establishes integrability and Fubini is used to write the integral we need as iterated
integral, or swap the order of integrations.

Note that the Tonelli and Fubini theorems are very useful in simplifying the
development of the power series by using the counting measure as we mentioned
above. They are also useful for swapping a series summation and integration such as

1 © a1
/0 ;an(x)dx:;/o ay(x)dx.
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Here are also a couple of useful estimates for the Lebesgue integral. First, we have
an infinite-dimensional version of Cauchy-Schwarz.

Theorem E.1.7 (Cauchy-Schwarz). Suppose (X, ML, 1) is a measure space and f: X — C
and ¢: X — C are so-called L? functions on X, that is, they are measurable and fxl flPdu <

co and [ |g|*du < co. Then
2
[ saul < [ 1P [ lgPaa
X X X

Next, we have the integral version of the inequality resulting from a convex
combination of the values of a convex function.

Theorem E.1.8 (Jensen’s inequality). Suppose (X, A, 1) is a probability measure space,
that is, w(X) = 1, ¢: R — R is convex, and f is measurable. Then

(P(/de#)S/X(Pode

E.2 | Classical convexity

A set S € R" is convex (or as we will say in the main text geometrically convex), if
for every x,y € S and every A € [0, 1] the point (1 — A)x + Ay isin S. Interior and
closure of convex sets is convex. Arbitrary intersection of convex sets is convex, and
increasing unions are convex. Given a set S the convex hull of S is the intersection of
all convex sets containing S. The closed convex hull is the closure of that.

A hyperplane H C R" is the set of solutions x of the equation x - a = b for some
a € R"and b € R. A closed half-space is the set of points defined by x -a > b. A
function of the form x + x - a + b is called a real affine function.

Theorem E.2.1 (Supporting hyperplane theorem). If S ¢ R" is convex and x¢ € JS,
then there exists a supporting hyperplane through xo. That is, there exists an a € R" and
b € R such that xo - a = b (xq is on the hyperplane), and x - a > b for all x € S (S is in the
closed half-space defined by that hyperplane).

Note that the supporting hyperplanes need not be unique.

Theorem E.2.2 (Minkowski). If S, T C R" are two nonempty disjoint convex sets. Then
there is a separating hyperplane, that is, there exists an a € R" and a b € R such that
x-a>bforallxeSandx-a <bforallx €T.

We can also put these together:

Corollary E.2.3. A closed convex set S C R" is the union of all closed half-spaces contain-
ing S. More generally, for any set S, the closed convex hull of S is the intersection of all closed
half-spaces that contain S.
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A point xq € S is called an extreme point if for every x, y € Sand A € [0, 1] such that
(1-A)x + Ay = xo we have xo = x or xg = y. A point x¢ € S is called an exposed point
if there is an affine linear function whose restriction to S achieves a strict maximum
at x, in other words if there is a supporting hyperplane which intersects S at exactly
one point.

Theorem E.2.4 (Straszewicz). Let S C R" be closed and convex. Then the set of extreme
points of S is the closure of the set of exposed points of S.

Theorem E.2.5 (Krein-Milman). Let K C R" be compact and convex, then it is the convex
hull of its extreme points.

What is useful a couple of times for us in this book is that a compact convex set
has exposed points. Or more generally, the convex hull of a compact set has exposed
points.

Given a convex set S, a function f: S — R is convex if for every x,y € S and
A € [0,1] we have

FA=x+Ay) <A =A)f(x) +Af(y).

Alternatively, f is convex if its epigraph is a convex set, where

epigraph f = {(x,y) eSXR: f(x) > y}.

So arguments about convex sets translate to convex functions. For example, the
supporting hyperplane theorem shows a couple of rather interesting facts. First,
convex functions have “tangent” hyperplanes although not unique by considering a
supporting hyperplane of the epigraph:

Proposition E.2.6. Suppose S C R" is a convex set, f: S — R a convex function, and
xo € S. Then there exists an affine function g such that g(x) < f(x) for all x € S and

8 (x0) = f(xo).

This proposition has the following consequence:

f(xo) = sup{g(xo) : g is an affine function such that g(x) < f(x) for all x € S}.

E.3 |\ Smooth bump functions and partitions of unity

The function f(x) = 0 for x < 0 and f(x) = e"/* for x > 0 is a smooth (C*) function
that is zero for all x < 0 and positive (and less than 1) for x > 0. The function

g(x) = % is a smooth function that is zero for all x < 0 and 1 for all x > 1. By

modifying such examples we obtain the following bump function:
Theorem E.3.1 (Bump function). Suppose U C R" is open and K C U is compact. Then

there exists a smooth function ¢ : R"™ — [0, 1] such that ¢ is compactly supported in U and
@ = 1 on a neighborhood of K.
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By support, supp ¢, we mean the closure of the set {x : ¢(x) # 0}, and by
compactly supported in U we mean that supp ¢ is a compact subset of U. Another
variant of a bump function is the Urysohn lemma:

Theorem E.3.2 (Smooth Urysohn lemma). Suppose U C R" is open and A,B c U
are disjoint closed (in subspace topology) subsets. Then there exists a smooth function
@: U — [0, 1] such that ¢ = 0on Aand ¢ =1on B.

These functions are used usually for localizing some problem, or extending a
smooth function to all of U or all of R”. One can also ask for such bump functions to
glue together nicely. Suppose U c R" is open and {U, } 1 is an open cover of U, that
is, U =J,U,.

Theorem E.3.3 (Smooth partition of unity). Suppose U C R" is open and {U, } 1 is an
open cover of U, then there exists a partition of unity subordinate to the cover. That is, there
exist a family { @, } ek of smooth compactly supported functions ¢, : R" — [0, 1] such that:

(i) For each x € K, there is some t € I such that supp ¢, C U,.
(if) Foreach point x € U, there is a neighborhood on which all but finitely many @, vanish.

(iii) Forevery x € U, we have ), cx ¢(x) = 1.
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